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Asymptotically improved convergence of optimized perturbation theory
in the Bose-Einstein condensation problem
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We investigate the convergence properties of optimized perturbation theory, or lineard expansion~LDE!,
within the context of finite temperature phase transitions. Our results prove the reliability of these methods,
recently employed in the determination of the critical temperatureTc for a system of a weakly interacting
homogeneous dilute Bose gas. We carry out explicit LDE optimized calculations and also the infrared analysis
of the relevant quantities involved in the determination ofTc in the large-N limit, when the relevant effective
static action describing the system is extended to O(N) symmetry. Then, using an efficient resummation
method, we show how the LDE can already exactly reproduce the known large-N result for Tc at the first
nontrivial order. Next, we consider the finiteN52 case where, using similar resummation techniques, we
improve the analytical results for the nonperturbative terms involved in the expression for the critical tempera-
ture, allowing comparison with recent Monte Carlo estimates of them. To illustrate the method, we have
considered a simple geometric series showing how the procedure as a whole works consistently in a general
case.
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I. INTRODUCTION

Scalar field theories are extremely important in the stu
of symmetry breaking and restoration in different branch
of physics such as cosmology, particle physics, and c
densed matter physics, where they may represent inflat
Higgs particles, quark-antiquark bound states, Cooper p
bosonic atoms, and molecules. In most cases the vac
expectation value of those scalar fields represents an o
parameter that signals phase transitions associated with
metry breaking or restoration@1#.

In general, one important problem we have to deal w
when studying phase transitions in field theory regards
reliability of perturbation theory and its eventual breakdow
In this case, a nontrivial problem arises since nonperturba
methods must be used. This is the case in those phy
situations involving a second order or weakly first ord
phase transition, where we have to consider the problem
infrared ~IR! divergences that become progressively m
important as one approaches the critical temperature, f
above or below, and that will unavoidably spoil any pert
bative attempt to compute relevant quantities there. In th
situations we must find appropriate methods to take into
count the large IR corrections, present in the form of la
field fluctuations. There is a variety of nonperturbative me
ods that can be used in order to account for these correct
including the recent dynamical Boltzmann-like approach t
deals directly with the large field fluctuations@2#. At the
same time, the most common methods, at equilibrium, try
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resum the leading IR corrections. This happens, for exam
through the use of«-expansion techniques in order to com
pute corrections to the critical exponents that control the s
gular behavior of physical quantities near the critical po
~as is familiar from the theory of critical phenomena@3#!, the
large-N method, and other approaches~for a review, see Ref.
@4#!.

An issue that has attracted considerable attention rece
and that is associated with the perturbation theory bre
down problem is the study of how interactions alter the cr
cal temperature (Tc) of Bose-Einstein condensation~BEC!.
Due to its nonperturbative nature, this is clearly a nontriv
problem. On the other hand, studies related to the BECTc
problem are particularly important nowadays due to the
cent experimental realization of BEC in dilute atomic gas
~for reviews, see, for instance, Ref.@5#!. The experimental
achievement of BEC has led to many theoretical investi
tions which make use of methods developed to treat fin
temperature quantum field theories. At the same time, du
the high experimental precision with which the paramet
may be tuned, BEC experiments provide an important la
ratory to test many methods as well as models develope
treat those theories~see, e.g., Ref.@6#!.

The studies concerning the equilibrium properties of BE
can be addressed by means of a nonrelativistic effec
theory described by a complex scalar field. In the dilu
limit, which is the regime involved in these experimen
only two-body interactions are important@5#, and one may
then consider the following U~1! invariant finite temperature
Euclidean action:

SE5E
0

b

dtE d3xH c* ~x,t!S d

dt
2

1

2m
¹2Dc~x,t!

2mc* ~x,t!c~x,t!1
2pa

m
@c* ~x,t!c~x,t!#2J ,

~1.1!
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where, in natural units,b is the inverse of the temperature,m
is the chemical potential, andm represents the mass of th
atoms. At the relevant low temperatures involved in BE
the internal degrees of freedom are unimportant, and this
be taken as an effective model of hard core spheres
local interactions for whicha represents thes-wave scatter-
ing length.

The fieldc can be decomposed into imaginary-time fr
quency modesc j (x,v j ), with discrete bosonic Matsubar
frequenciesv j52p j /b, wherej is an integer. Near the tran
sition the chemical potential becomes very small as co
pared to the temperature (umu!T) and, since the correlation
length tends to infinity, the distances are large compare
the thermal wavelengthl5A2pb/m. Therefore, the non-
zero Matsubara modes decouple and one is left with an
fective action for the field zero modes (j 50) given by@7#

S3d5bE d3xH c0* S 2
1

2m
¹22m Dc01

2pa

m
@c0* c0#2J ,

~1.2!

wherec0 stands for the field’s zero mode. Recently, Arno
Moore, and Toma´sik @8# have argued that when naively go
ing from the original action (SE) to the reduced action (S3d)
by ignoring the effects of nonzero frequency modes o
misses the effects that short distances and/or high-frequ
modes have on long-distance physics. For the critical te
perature of condensation as a function of the den
@Tc(n)#, at second order, these effects can be absorbed in
modification of the strengths of the relevant interactio
which means that one should consider the more general f
for the reduced effective action Eq.~1.2!

Seff@c0 ,c0* #5bE d3xH c0* S 2Z c

1

2m
¹22m3Dc0

1Za

2pa

m
@c0* c0#2

1O„c0* c0u¹cu2,~c* c!3
…J 1bFvacuum,

~1.3!

whereZc is the wave-function renormalization function,m3
incorporates the mass renormalization function,Za incorpo-
rates the vertex renormalization function, andFvacuumrepre-
sents the vacuum energy contributions coming from the
tegration over the nonstatic Matsubara modes. T
O(c0* c0u¹c0u2,(c0* c0)3) terms represent higher order in
teractions in the zero modes of the fields. As shown in R
@8#, these terms will give contributions to the density of ord
a3 and higher, and therefore do not enter the order-a2 calcu-
lations considered here. By matching perturbative ordera2

results obtained with the original actionSE and the genera
effective actionSeff , the authors of Ref.@8# were able to
show that the transition temperature for a dilute, homo
neous, three-dimensional Bose gas can be expressed a
to leading order as
04361
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Tc5T0$11c1an1/31@c28ln~an1/3!1c29#a2n2/31O~a3n!%,
~1.4!

where T0 is the ideal gas condensation temperatureT0
52p/m@n/z(3/2)#2/3, n is the density,z(x) is the Riemann
zeta function, andc1 ,c28 , andc29 are numerical coefficients
A similar structure is also discussed in Ref.@9#. As far as the
numerical coefficients are concerned, the exact valuec285
264pz(1/2)z(3/2)25/3/3.19.7518 was obtained using pe
turbation theory@8#. On the other hand, the other two coe
ficients c1 and c29 are sensitive to the infrared sector of th
theory and consequently cannot be obtained perturbativ
but they can, through the matching calculation, be expres
in terms of the two nonperturbative quantitiesk and R
which are, respectively, related to the number dens
^c0* c0& and to the critical chemical potentialmc , as shown
below. The actual relation between the two nonperturba
coefficients and these physical quantities is given by@8#

c152128p3@z~3/2!#24/3k ~1.5!

and

c2952
2

3
@z~3/2!#25/3b291

7

9
@z~3/2!#28/3~192p3k!2

1
64p

9
z~1/2!@z~3/2!#25/3ln z~3/2!, ~1.6!

whereb29 in Eq. ~1.6! is

b29532pH F1

2
ln~128p3!1

1

2
272p2R296p2kGz~1/2!

1
Ap

2
2K22

ln 2

2Ap
@z~1/2!#2J , ~1.7!

with K2520.135 083 353 73. The quantitiesk and R are
related to the zero Matsubara modes only. Therefore, t
can be nonperturbatively computed directly from the redu
action Seff which, as discussed in numerous previous ap
cations, can be written as

Sf5E d3xF1

2
u“fu21

1

2
r baref

21
u

4!
~f2!2G , ~1.8!

wheref5(f1 ,f2) is related to the original real componen
of c0 by c0(x)5AmT/Zc@f1(x)1 if2(x)#, r bare

52mm3 /Zc , andu548pamTZa /Z c
2 . The vacuum contri-

bution appearing in Eq.~1.3! will not enter in the specific
calculation we do here and it has been omitted from E
~1.8!. In the large-N limit considered in the first part of this
work, and also in Refs.@10,11#, the field f in Eq. ~1.8! is
formally considered as havingN components (f i ,i
51, . . . ,N). In this case, the Bose-Einstein condensate
fective action Eq.~1.8! is theN52 special case of the gen
eral O(N) invariant action.

The three-dimensional effective theory described by E
~1.8! is super-renormalizable and requires only a mass co
5-2
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terterm to eliminate any ultraviolet divergence. In terms
Eq. ~1.8!, the quantitiesk and R appearing in Eqs.~1.5!–
~1.7! are defined by

k[
D^f2&c

u
5

^f2&u2^f2&0

u
~1.9!

and

R[
r c

u2
52

S~0!

u2
, ~1.10!

where the subscriptsu and 0 in Eq.~1.9! mean that the den
sity is to be evaluated in the presence and in the absenc
interactions, respectively, andS(0) is the self-energy with
zero external momentum. Since these physical quantities
dependent on the zero modes their evaluation is valid, at
critical point, only when done in a nonperturbative fashio
As discussed in the next section, the relation betweenr c and
S(0) comes from the Hugenholtz-Pines~HP! theorem at the
critical point.

Equation ~1.4! is a general order-a2 result with coeffi-
cients that, therefore, depend on nonperturbative physics
k andR. In principle, to evaluate these two quantities o
may start from the effective three-dimensional theory, giv
by Eq.~1.8!, and then employ any nonperturbative analytic
or numerical technique.

When quantum corrections are taken into account, the
propagator for the effective three-dimensional theory rea

G~p!5@p21r 1S ren~p!#21, ~1.11!

wherep2 represents the three-momentum andS ren(p) repre-
sents the renormalized self-energies. At the transition p
(p250), the system must have infinite correlation leng
and one then has

@G~0!#215@r c1S ren~0!#50. ~1.12!

This requirement leads to the Hugenholtz-Pines theorem
sult r c52S ren(0). Sincer c is at least of orderu it would be
treated as a vertex in a standard perturbation type of ca
lation in which G(p)51/p2 represents the bare propagat
This shows that perturbation theory is clearly inadequate
treat the BEC problem at the transition due to the presenc
infrared divergences. One must then esort to nonperturba
methods like numerical lattice Monte Carlo simulations, a
lytical 1/N, or the lineard expansion~LDE! @12# adopted in
this work ~see, for instance, Ref.@13# for earlier work on the
method!. The problem is highly nontrivial since th
Hugenholtz-Pines theorem automatically washes out
momentum-independent contributions, such as the one-
tadpole diagrams, which constitute the leading order of m
approximations. In practice, this means that the first n
trivial contributions start with two-loop momentum
dependent self-energy terms. However, having reduced
original model Eq.~1.1! to the effective three-dimensiona
one Eq.~1.8! makes it easier to tackle those contribution
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since one no longer has the problem of summing over
Matsubara frequencies, which is a hard task when the n
ber of loops increases.

Recent numerical Monte Carlo applications@14,15# have
predicted values forc1 that are close to 1.30.1 On the other
hand, some analytical applications have predicted val
such as;2.90 obtained with a self-consistent resummati
method@7#, ;2.33 obtained with the 1/N expansion to lead-
ing order@10#, and;1.71 obtained with the same expansio
to the next to leading order@11#. The LDE was first applied
to orderd2, producingc1;3.06 @17#. Recently, the calcula-
tion has been extended to orderd4 with the results;2.45 at
orderd3 and;1.51 at orderd4 @18#. The coefficientc29 was
evaluated with Monte Carlo techniques@14# and the pre-
dicted value obtained from those simulations is 75.760.4.
This quantity was also analytically evaluated with the LD
in Ref. @18#, where the encountered numerical values
;101.4, ;98.2, and;82.9 at second, third, and fourth o
ders, respectively. An order-d2 application to ultrarelativistic
gases has also been performed@19#. The LDE has been es
pecially successful in treating scalar field theories at fin
temperatures@20,21# as well as finite temperature and de
sity @22#. Several different applications performed with th
LDE are listed in Ref.@18#. Recently, Braaten and Radesc
@23# have also used the LDE, with different optimizatio
prescriptions, to evaluateTc at both large- and finite-N lim-
its, while Kleinert@24# has used the variational perturbatio
theory, which is a variation of the LDE, obtaining the valu
c1;0.9160.05. As we do here for the finite-N case, he con-
sidered up to orderd4 contributions, which include five-loop
diagrams. However, none of those authors considers res
mation techniques to accelerate convergence and they do
evaluate the coefficientc29 , which it is also computed in the
present work.

As far as the application of the LDE to the determinati
of the BEC transition temperature is concerned, since
first papers applying the LDE method to this proble
@17,18#, an important question was raised and remained
answered. This question regards the convergence prope
of the method in this application for the BEC problem, whi
is in fact related to the convergence of the method in criti
theories in general. Actually, this is a timely and importa
question regarding the applications of the LDE in field the
ries, since the first efforts were concentrated mostly on
anharmonic oscillator problem at zero temperature, wh
rigorous LDE convergence proofs have been produced@25–
28#. The extension to the finite temperature domain was a
considered by Duncan and Jones@29#, who used the anhar
monic oscillator partition function. Only very recently has
convergence proof been extended, but for a particular pe
bative series case, to asymptotically free renormaliza
quantum field theories at zero temperature@30#. Here, as in
our previous paper Ref.@31#, our interest is to probe conver
gence in the vicinity of a phase transition, such as for
Bose-Einstein condensation problem presented above.

1See Ref.@16# for an extension of these works to the O~1! and
O~4! cases.
5-3
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study should also settle the questions regarding the cor
ness of our original LDE applications@17,18#, since by
showing convergence in the large-N case we also establis
the reliability of our finite-N results, as originally studied in
those investigations. The LDE convergence in the largeN
extension of the BEC problem has also been recently
dressed by Braaten and Radescu@23#. The differences be-
tween their approach and ours will be discussed in so
detail in the text.

The literature shows@28,32,33# that in most applications
it is already possible to establish simple relations betw
the LDE and other nonperturbative methods at orderd where
one-loop diagrams are present. In fact, one can show th
those cases the LDE either exactly reproduces 1/N results or
produces very close numerical results. Here, the BEC p
lem poses an additional difficulty since, as discussed ab
the first nontrivial contributions start at the two-loop level
the self-energies. As we shall see, it is not easy in this cas
establish simple analytical relations for the quantities be
computed, like those given, e.g., in Refs.@28,32,33#, and the
problem must be treated differently. However, as we are
ing to show in the coming sections, our numerical resu
improved with an efficient resummation technique, exac
converge in the large-N limit and seem to also converge i
the arbitraryN case.

This paper is organized as follows. In Sec. II we brie
recall the LDE method and present the interpolated vers
of the action Eq.~1.8! to be studied throughout the pape
following the recent applications performed in Refs.@17,18#.
In Sec. III, we carry out the formal evaluation of^f2&u in
three different ways. The first is the usual order by order ty
of calculation, which is familiar from perturbative calcula
tions, and is in fact the only possible one for the realis
finite-N case. The second uses the type of resummation
miliar from nonperturbative methods such as the Hartree
the 1/N approximations. These two procedures generate
series for the large-N limit of ^f2&u @in which casef in Eq.
~1.8! is extended toN components# whose coefficients,
which are numerically obtained, can be usefully compared
a cross check, helping to establish the numerical reliability
the finite-N series. In the same section, we also consider
asymptotic infrared and ultraviolet behavior of the ser
which, as we shall see, is a very useful approximation allo
ing at the same time a fully analytical analysis. In Sec. IV
first examine the LDE optimized perturbation procedure i
general case, considering a simple geometric series in o
to get insight regarding the convergence structure of the
timal results. Then, the large-N BEC series are optimized
and a resummation technique which accelerates converg
is introduced. By taking the large-N result forc1 ~obtained in
Ref. @10#! as a reference value, we proceed with the inve
gation of convergence, showing that the LDE together w
the resummation technique can already exactly reproduce
large-N result at the first nontrivial order, provided that it
applied to a specific approximation fully exploiting the infr
red limit properties. Having explicitly shown the LDE con
vergence properties within a limit where an exact result
ists we turn our attention, in Sec. V, to the realistic finiteN
case where no similar infrared approximation is availab
04361
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Using the same resummation method, the order-d4 results for
c1 andc29 obtained in Ref.@18# are improved and the result
obtained seem to converge to the lattice Monte Carlo e
mates of Ref.@14#. Our conclusions are presented in Sec. V
For completeness and comparison purposes we also inc
two appendixes, one where the original large-N derivation is
reviewed and another one to detail useful properties of
large-order behavior of the LDE.

II. LDE AND THE INTERPOLATED EFFECTIVE SCALAR
THEORY FOR BEC

Let us start our work by reviewing the application of th
LDE method to our problem. The LDE was conceived
treat nonperturbative physics while staying within the fam
iar calculation framework provided by perturbation theory.
practice, this can be achieved as follows. Starting from
actionS one performs the following interpolation:

S→Sd5dS1~12d!S0~h!, ~2.1!

whereS0 is the soluble quadratic action, with an added~op-
timizable! mass termh, andd is an arbitrary parameter. Th
above modification of the original action somewhat reca
the usual trick consisting of adding and subtracting a m
term to the original action. One can readily see that ad
51 the original theory is retrieved, so thatd actually works
just as a bookkeeping parameter. The important modifica
is encoded in the field-dependent quadratic termS0(h)
which, for dimensional reasons, must include terms w
mass dimensions (h). In principle, one is free to choos
these mass terms and within the Hartree approximation t
are replaced by a direct~or tadpole! type of self-energy be-
fore one performs any calculation. In the LDE they are tak
as being completely arbitrary mass parameters, which wil
fixed at the very end of a particular evaluation by an optim
zation method. One then formally pretends thatd labels in-
teractions so thatS0 is absorbed in the propagator where
dS0 is regarded as a quadratic interaction. So one sees
the physical essence of the method is the traditional dres
of the propagator to be used in the evaluation of phys
quantities very much as in the Hartree case. What is differ
between the two methods is that within the LDE the prop
gator is completely arbitrary, constrained only to cope w
the so-called direct terms~i.e., tadpoles! within the Hartree
approximation. So, within the Hartree approximation the r
evant contributions are selected according to their topol
from the start.

Within the LDE one calculates in powers ofd as if it was
a small parameter. In this respect the LDE resembles
large-N calculation since both methods use a bookkeep
parameter which is not a physical parameter like the origi
coupling constants and within each method one performs
calculations by formally working as ifN→` or d→0, re-
spectively. Finally, in both cases the bookkeeping parame
are set to their original values at the end which, in our ca
meansd51. However, quantities evaluated at any fin
LDE order from the dressed propagator will depend exp
itly on h, unless one can perform a calculation to all orde
5-4
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Up to this stage the results remain strictly perturbative a
very similar to the ones that would be obtained via a t
perturbative calculation. It is now that the freedom in fixin
h generates nonperturbative results. Sinceh does not belong
to the original theory, one may require that a physical qu
tity F (k) calculated perturbatively to orderdk be evaluated a
a point where it is less sensitive to this parameter. This
terion, known as the principle of minimal sensitivity~PMS!,
translates into the variational relation@34#

dF (k)

dh U
h̄,d51

50. ~2.2!

The optimum valueh̄ which satisfies Eq.~2.2! must be a
function of the original parameters including the coupling
which generates the nonperturbative results. Another opt
zation procedure, known as the fastest apparent converg
~FAC! criterion ~see also Ref.@34#!, may also be employed
It requires, from thekth coefficient of the perturbative ex
pansion

F (k)5(
i 50

k

cid
i , ~2.3!

that

@F (k)2F (k21)#ud5150, ~2.4!

which is just equivalent to taking thekth coefficient~at d
51) in Eq. ~2.3! equal to zero. For the interested read
Refs. @17–23,25–33# provide an extensive~but far from
complete! list of successful applications of the method
different problems.

It is important to recall that the basic reason for the co
vergence of the LDE method in the quantum mechanics c
~anharmonic oscillator energy levels typically! @25–28# re-
lies on the fact that the LDE modifies perturbative expa
sions in such a way that the PMS or FAC optimized values
the initially arbitrary mass parameter~the equivalent ofh
here! essentially follow, at large perturbative orders, a patt
of rescaling this mass with the perturbative order, which
such as to compensate the generic factorial growth@35# of
the original perturbative expansion coefficients at large
ders. As we will see in Sec. III, in the present BEC case
relevant perturbative expansions do not exhibit factoria
growing coefficients, but nevertheless the reasons for con
gence of the LDE share some similarities with these ca
since the LDE followed by application of the PMS also i
troduces at sufficiently large order a certain scaling beha
with the perturbative order, in such a way as to modify~ex-
tend! the convergence radius of the original perturbat
series.

Let us now write the interpolated version of the effecti
model described by Eq.~1.8!. Before doing that let us rewrite
r bare5r 1A where A is a mass counterterm coefficie
needed to remove the UV divergence from the self-ene
This counterterm is the only one effectively needed with
the modified minimal subtraction (MS) renormalization
scheme adopted here for the evaluation of the relevant F
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man diagrams contributing to the self-energy, as explic
shown in Ref.@18#. Then one can choose

S05E d3x
1

2
@ u“fu21h2f2#, ~2.5!

obtaining

Sd5E d3xF1

2
u“fu21

1

2
h2f21

d

2
~r 2h2!f21

du

4!
~f2!2

1
d

2
Adf2G , ~2.6!

where Ad represents the renormalization mass counterte
for the interpolated theory, which depends on the parame
h andd. It is important to note that by introducing only extr
mass terms in the original theory the LDE does not alter
polynomial structure and, hence, the renormalizability o
quantum field theory. In practice, the original counterter
change in an almost trivial way so as to absorb the newh
and d dependence. The compatibility of the LDE with th
renormalization program has been shown in the framew
of the O(N) scalar field theory at finite temperatures, in t
work of Ref. @21#, showing that it consistently takes int
account anomalous dimensions in the critical regime. N
also that we have treatedr as an interaction, since this quan
tity has a critical value (r c) that is at least of orderd.

Requiring the original system to exhibit infinite correl
tion length at the critical temperature means that, atTc and
d51 ~the original theory!, the full propagatorG(d)(p), given
by

G(d)~p!5@p21h21dr 2dh21S ren
(d)~p!#21, ~2.7!

must satisfyG(d)(0)2150. This requirement implies

dr c
(d)52S ren

(d)~0!, ~2.8!

which is equivalent to the Hugenholtz-Pines theorem app
to the LDE.

III. LDE EVALUATION OF Šf2
‹U
„d…

IN THE LARGE- N LIMIT

Let us now turn our attention to the explicit LDE evalu
tion of ^f2&u

(d) in the large-N limit. In practice, the large-N
evaluation can be performed in different fashions which
clude the conventional order by order perturbative evalua
and the more economical closed form evaluation in wh
the whole large-N series is resummed. The first, purely pe
turbative method in the standard Feynman graph way is
the only possible one concerning the finite-N calculations,
where different classes of diagrams contribute. The sec
technique is usually employed in approximations such
Hartree and 1/N where it is possible to sum a certain class
graphs based on the type of loop terms they contain. Hav
resummed a given class, one may easily obtain a perturba
result by expanding the series to a given order indu. Of
course, both methods must lead to equivalent analytical
5-5
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sults but, as we shall see, the final numerical results can
different at high perturbative orders. This is due to the f
that both perturbative expansions contain coefficients that
numerically produced. Since our optimization procedu
may be sensitive to the numerical precision of those coe
cients it will be instructive to compare them in detail. Final
one can move one step further by obtaining a series w
exact coefficients that allows for a fully analytical investig
tion. This is made possible by considering an approximat
which avoids complicated integrals appearing in the ex
calculation due to the presence of dressed propagator
terms of self-energies, which are usually cumbersome
yond some given order. Such a simpler series, with ex
coefficients, is typically obtained if one considers the phy
cally motivated deep infrared behavior of the dressed sc
propagators. In this section we explore these three poss
evaluations.

A. Standard perturbative evaluation of Šf2
‹u
„d…

Let us evaluatêf2&u
(d) in the usual perturbative way. Th

relevant contributions, in the large-N limit, are shown in Fig.
1. Using the full propagator one may write this quantity,
the critical point, as

^f2&u
(d)5(

i 51

N

^f i
2&u

(d)5NE d3p

~2p!3
G(d)~p!

5E d3p

~2p!3

N

p21~h* !2 F11
dr c

(d)1S ren
(d)~p!

p21~h* !2 G21

,

~3.1!

whereh* 5hA12d. Note that with this prescription one ha
to evaluate only diagrams that would appear in the us
perturbative calculation since the quadraticdh2 vertex is au-
tomatically taken into account whenh* is expanded to the
relevant order ind.

One can express the large-N calculation more conve
niently, in the generalization of Eq.~1.8! to O(N) symmetry,
by consideringu5u8/N. In this case the nontrivial contribu
tions, in the large-N limit and expanded to LDE orderk, are
given by

FIG. 1. The Feynman graph for the relevant quantity^f2&u at
1/N order, with the resummed propagator~dashed lines!.
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^f2&u
(k)5NE d3p

~2p!3

1

p21~h* !2

2NE d3p

~2p!3

@S (n)~p!2S (n)~0!#

@p21~h* !2#2
, ~3.2!

where we have used Eq.~2.8! andS (n) denotes then-bubble
self-energy given by

S (n)~p!52
2

N S 2
du8

6 D n11E d3l

~2p!3

1

@ l 21~h* !2#

3F E d3s

~2p!3

1

@s21~h* !2#

3
1

@~s1p2 l !21~h* !2#
G n

, ~3.3!

which is then of orderk5n11 in d. Note that the mass
counterterm is a redundant quantity in the evaluation
^f2&u

(k) because this quantity depends on the difference

S ren
(n)~p!2S ren

(n)~0!5@Sdiv
(n)~p!1Sct

(n)~p!#

2@Sdiv
(n)~0!1Sct

(n)~0!#, ~3.4!

where Sdiv
(n)(p) is the divergent self-energy. For a gener

renormalizable theory, the quantitySct
(n)(p) represents all

counterterms associated with the parameters of the th
~such as masses and coupling constants! as well as the wave-
function counterterm associated with any event
momentum-dependent pole. At the same time,Sct

(n)(0) in-
volves the same counterterms except for the wave-func
one. However, as we have already emphasized previousl
the three-dimensional case the only type of primitive div
gence requires only a mass counterterm, which is the s
for Sdiv

(n)(p) and Sdiv
(n)(0). This means that in our cas

Sdiv
(n)(p)2Sdiv

(n)(0) is always a finite quantity. It turns out tha
this quantity is also scale independent as discussed in
@18#. Since, however, the individual contributionSdiv

(n)(p)
contains a divergence, we regularize all diagrams with
mensional regularization in arbitrary dimensionsd5322e,
where in the modified minimal subtraction renormalizati
scheme, the momentum integrals can be written as

E d3p

~2p!3
→S egEM2

4p D eE ddp

~2p!d
, ~3.5!

whereM is an arbitrary mass scale andgE.0.5772 is the
Euler-Mascheroni constant.

Then, from the use of standard Feynman parameters
the integrals over momenta, we can write the general fo
for each of the two terms in̂f2&u

(k) , Eq. ~3.2!, that depend
on the self-energy. The first such term can be expressed
5-6
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2NE d3p

~2p!3

S (n)~p!

@p21~h* !2#2
5

~2du8!n11

3~6h* !n

G„n~1/21e!12e…

~4p!3/2(n12) S egM2

~h* !2D e(n12)E
0

1

dxx~12x!23/21e1n(1/21e)

3E
0

1

dg~12g!n(1/21e)21@g~12g!#1/22e2n(1/21e)E
0

1

da1@a1~12a1!#2(1/21e)
•••

3E
0

1

dan@an~12an!#2(1/21e)E
0

1

db1b1
n22@b1~12b1!#21/2E

0

1

db2b2
n23

3@b1b2~12b2!#21/2
•••E

0

1

dbn21@b1b2•••bn21~12bn21!#21/2F~x,g,a i ,b j !,

~3.6!

where

F~x,g,a i ,b j !5H x1
~12x!

g~12g! Fg1~12g!S ~12b1!

a1~12a1!
1

b1~12b2!

a2~12a2!
1•••1

~b1b2 . . . bn21!

an~12an! D G J 2[n(1/21e)12e]

.

~3.7!

At the same time, thep50 term is given by

2NE d3p

~2p!3

S (n)~0!

@p21~h* !2#2
5

~2du8!n11

3~6h* !n

G„n~1/21e!1e21/2…

8p~4p!3/2(n11) S egM2

~h* !2D e(n11)E
0

1

dg~12g!n(1/21e)21

3@g~12g!#1/22e2n(1/21e)E
0

1

da1@a1~12a1!#2(1/21e)
•••E

0

1

dan@an~12an!#2(1/21e)

3E
0

1

db1b1
n22@b1~12b1!#21/2E

0

1

db2b2
n23@b1b2~12b2!#21/2

•••E
0

1

dbn21

3@b1b2•••bn21~12bn21!#21/2G~g,a i ,b j !, ~3.8!
al

rm
-

x-
n
v

on,
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h

where

G~g,a i ,b j !5H 1

g~12g! Fg1~12g!S ~12b1!

a1~12a1!

1
b1~12b2!

a2~12a2!
1•••

1
~b1b2•••bn21!

an~12an! D G J 2[n(1/21e)1e21/2]

.

~3.9!

It is not very difficult to see, by counting the superfici
degrees of divergence in Eq.~3.3!, that the only ultraviolet
divergence shows up in the one-bubble (n51) contribution.
In Eq. ~3.6! the UV divergence for this case hides in the te
x(12x)23/21e1n(1/21e) and appears explicitly upon integra
tion by parts overx. After that one can take the usual e
pansion in powers ofe and perform a numerical integratio
over the Feynman parameters to obtain for the first, non
nishing, term in Eq.~3.6! the result@17#
04361
a-

2NE
p

d2S (1)~p!

@p21~h* !2#2
5d2

~u8!2

h*

1

18~8p!3

3F1

e
16 lnS M

2h*
D 1224 ln 2G .

~3.10!

In the p50 case the pole shows up in the gamma functi
which becomesG(2e) for n51. Integration yields

NE
p

d2S (1)~0!

@p21~h* !2#2
52d2

~u8!2

h*

1

18~8p!3

3F1

e
16 lnS M

2h*
D 1214 ln~2/3!G .

~3.11!

The last two equations also reproduce the results found
lytically in Refs. @17,36#. As already mentioned, althoug
Eq. ~3.10! and Eq. ~3.11! diverge, their sum is finite and
scale independent. Together, they give the contribution
5-7
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2NE
p

d2@S (1)~p!2S (1)~0!#

@p21~h* !2#2

52d2
~u8!2

h*

1

18~8p!3
4 ln~4/3!. ~3.12!

All higher loop contributions are finite and one can safe
take e50 in Eqs. ~3.6! and ~3.8!. Note that in the above
perturbative series, which is generated order by order fr
the standard Feynman graph procedure, the first nontr
contributions start at orderd2u2, due to the fact that the firs
order expansion term, linear indu @i.e.,n50 in Eq.~3.3!#, is
automatically canceled as a consequence of the Hugenh
Pines theorem Eq.~2.8!. The number of Feynman variable
at each order isk12 for Eq.~3.6! andk11 for Eq.~3.8!. We
then get the order-d20 result in the large-N limit:

^f2&u
(20)52

Nh*

4p
1d

uN

3 (
i 51

19

CiS 2
duN

6h*
D i

1O~d21!.

~3.13!

Except for the first coefficient, where we have the exact
sult from Eq.~3.12!, all the other coefficients fori>2 can
obtained be only numerically. One well known numeric
routine that can be used to evaluate thei-dimensional inte-
grals over the Feynman parameters in Eqs.~3.6! and~3.8! is
the Monte Carlo multidimensional integration routineVEGAS

@37#. However, one should bear in mind thatVEGAS may not
be so reliable for a very large number of dimensions, si
VEGAS, as a Monte Carlo integration method, inheren
makes use of finite numbers of points and iterations,
these cannot be increased indefinitely in practice in orde
improve precision. So for integrals with avery large number
of dimensions~for example, the last coefficientC19 involves
a 39-dimensional integral! the VEGAS routine may lead to
wrong estimates for both the numerical value of the integ
and the corresponding error bar estimate obtained from
code~which also depends on the number of points and ite
tions used!. Fortunately, as we will see below, all the term
contributing at largeN can be computed alternatively in
much easier way~and to arbitrary precision! in terms of one-
dimensional integrals, thus assuring a much better preci
for the results, and we do not need to worry about any s
cific detail of any numerical routine to evaluate Eqs.~3.6!
and ~3.8!. The coefficients obtained this way, which we d
note byJi and which are given in the following subsectio
will be the results used in all of our large-N calculations.
TheseJi coefficients can then be contrasted with the res
obtained, e.g., withVEGAS, which we show here for illustra
tive purposes only, obtained using 104 points with 100 itera-
tions and fixed VEGAS parametersC15(7.24960.001)
31025, C25(2.05060.003)31026, C35(6.3260.01)
31028, C45(2.04860.003)31029, C55(6.8560.01)
310211, C65(1.70960.002)310212, C75(3.56160.006)
310214, C85(6.4860.01)310216, C95(1.06360.002)
310217, C105(1.56060.005)310219, C115(2.5960.04)
310221, C125(5.0060.09)310223, C135(962)310226,
C145(561)310228, C155(561)310230, C165(167)
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310233, C175(2.360.6)310234, C185(262)310237,
and C195(565)310239. Note that starting withC13 the
errors increase considerably as the dimension increase
expected with a fixed number ofVEGAS parameters.

B. Closed form evaluation ofŠf2
‹u
„d…

Let us now write the whole large-N perturbative series in
a closed form which resembles the usual 1/N resummation of
Feynman graphs. For completeness and comparison purp
we rederive, in Appendix A, the original large-N result found
by Baym, Blaizot, and Zinn-Justin@10#. Note, as already
emphasized, that one basic difference between the orig
large-N calculation and the LDE one is that the latter au
matically introduces an infrared regulated propagator, fr
the explicit mass termh. Apart from its main purpose o
defining in that way the relevant LDE series indu/h @cf. Eq.
~3.13!#, this also has the advantage of explicitly regularizi
the intrinsic infrared divergence of the corresponding expr
sion of Tc in the original calculations@10,11#. However,
similarly to the latter, there still remain some subtleties w
this closed~resummed! form of the perturbation series, re
lated to the fact that the integrals over momenta are not
solutely~UV! convergent, as we shall examine below. Thu
after applying the Hugenholtz-Pines theorem, and summ
all the leading large-N contributions shown in Fig. 1, one
obtains for the expression equivalent to Eq.~3.2! the result

^f2&u
(d)5NE d3p

~2p!3

1

p21~h* !2

2
duN

3 E d3p

~2p!3

d3k

~2p!3

1

@p21~h* !2#2

3F11
duN

6
B~k,h* !G21F 1

~k1p!21~h* !2

2
1

k21~h* !2G , ~3.14!

where

B~k,h* !5E d3q

~2p!3

1

@q21~h* !2#@~k1q!21~h* !2#

5
1

4pk
arctanS k

2h*
D ~3.15!

with k[uku, and similarly forp,q in Euclidean space. Con
trary to the corresponding expression in the massless
h50 ~see Appendix A!, here it appears not possible to int
grate Eq.~3.14! exactly due to the nontrivial dependence ink
andh* of the resummed propagatorB(k,h* ). But one can
at least still do the first integral exactly over the momentu
p. In Eq. ~3.14!, the integral overp is finite in d53, and can
be easily performed to give
5-8
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^f2&u
(d)52

Nh*

4p
2

duN

3

1

~8ph* !
E d3k

~2p!3

3F11
duN

6
B~k,h* !G21

3F 1

k214~h* !2
2

1

k21~h* !2G , ~3.16!

while the remainingk integral can be performed numericall
After a little algebra one gets

^f2&u
(d)52

Nh*

4p
1

uN

96p2
1d

uN

3 (
i 51

`

JiS 2
duN

6h*
D i

,

~3.17!

where theJi coefficients are given by

Ji5
3

16p3 S 1

8p D iE
0

`

dz
z2

~z211!~z214!
@A~z!# i

~3.18!

with

A~z!5
2

z
arctan

z

2
~3.19!

andz5k/h* . Analytically, the two ways we have presente
for obtaining the perturbative evaluation of^f2&u

(d) are ex-
pected to be equivalent and any difference may arise o
from the numerical evaluation of theCi andJi coefficients.
In this respect one expectsJi , which are evaluated from
one-dimensional integrals, to be more accurate thanCi , and
it will be instructive to compare the two results. We ha
numerically evaluatedJi with both MATHEMATICA @38# and
MAPLE, where we can compute the integrals with arbitra
precision, using diverse integration routines available
both, in order to check the reliability of the results. The fi
19 values obtained areJ157.248 5831025, J252.049 19
31026, J356.321 3931028, J452.048 2931029, J5
56.852 95310211, J652.3454310212, J758.165 24
310214, J852.880 69310215, J951.027 26310216, J10
53.695 89310218, J1151.339 55310219, J1254.886 11
310221, J1351.792 03310222, J1456.604 06310224, J15
52.444 05310225, J1659.079 03310227, J1753.384 00
310228, J1851.265 14310229, and J1954.742 88310231.
ComparingCi to Ji , one sees that the multidimension
VEGAS routine produces accurate results up toi 55 but the
values quickly deteriorate at large orders. This is because
VEGAS routine does not handle well integrals with a too lar
number of dimensions, for a relatively~and computationally
viable! small number of points and iterations, as explained
the end of Sec. III A. Therefore, in this work, we shall co
sider only the series with the more accurateJi coefficients, as
computed from Eq.~3.18!.

However, one notes that Eq.~3.17! displays a more sig-
nificant difference with respect to the ‘‘direct’’ perturbativ
04361
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series in Eq.~3.13!, which is due to the presence of the ext
first order term indu, independent ofh. Note that this con-
tribution is just theopposite, in sign, of the exact large-N
result @10# @see Eq.~A11! in Appendix A#. This apparent
difference between the two approaches to the large-N pertur-
bative series deserves a detailed discussion, to which we
turn our attention. In fact, the above difference is only
consequence of integrating expression~3.14! over p first;
namely, if performing the expansion in powers ofd, and then
integrating first overk in Eq. ~3.14! ~which is formally
equivalent to what is done in the standard perturbative ord
by-order graphical approach in the previous subsection!, the
linear term indu automatically cancels out. More precisel
one obtains in this case an integral of the type (j just denotes
an arbitrary mass parameter here, which is equal toh* in the
LDE calculation!

;NudE d3k

~2p!3 S 1

~k1p!21j2
2

1

k21j2D , ~3.20!

and in dimensional regularization the two terms in the la
parentheses just cancel out, as can be seen by making a
k→k2p in the first term.@One can also check with a stan
dard cutoff regularization that the integral in Eq.~3.20! gives
a zero result, though it is a less immediate calculatio#
Therefore, depending on the order in which the two integr
in Eq. ~3.14! are performed, one may get different resul
which is precisely the manifestation of an ambiguity due
the fact that the integrals are not absolutely~UV! convergent,
as pointed out in Refs.@10,11#. Actually, this problem is
more basically rooted in the fact that in obtaining Eq.~3.14!
one has formally resummed a series containing UV div
gences, considering, e.g., the separate contributions in
last bracket of Eq.~3.14! @see also Eqs.~A1! and ~A2! in
Appendix A#. Therefore, the actual point is that one is n
allowed~in principle! to exchange the perturbative, all ord
summation, for integration, which in our calculation is r
flected in the different resulting perturbative series. Go
back to the standard perturbative expansion, as performe
the previous subsection@Eqs. ~3.2!–~3.8!#, the perturbative
parameter expansion in powers ofd is made first, and the
UV divergence~which appears only at first nontrivial orde
d2u2 as discussed there! may be taken care of by the stan
dard renormalization. On the other hand, if we formally r
expand Eq.~3.14! in a power series inu, we can immediately
see that the integral defining the coefficient of the first or
term linear in ud, originating from @1
1(duN/6)B(k,h* )#21;1, has momenta routing that can
not be consistent with the actual perturbative graph: rat
considering for instance the first term of the last bracket
Eq. ~3.14!, one should havep1k→p for consistency~see
Fig. 1!, since this first order term indu implies that the
resummed propagator~dashed line! is pinched to a point, so
that there is nok-momentum flow. This would give again
zero result for the coefficient ofu, just for the same reason
as Eq. ~3.20! is vanishing, while formally performing the
5-9
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integral with p1k instead gives theNu/(96p2) term.2 To
summarize, while it will appear very convenient to forma
perform the integral overp first in Eq.~3.14!, it is consistent
only provided one subtracts the spurious linear term from
naive result Eq.~3.17!. The correct perturbative series thu
reads

^f2&u
(d)52

Nh*

4p
1d

uN

3 (
i 51

`

JiS 2
duN

6h*
D i

, ~3.21!

which has the same form as Eq.~3.13!. An expression similar
to Eq.~3.21! was also found by Braaten and Radescu in R
@23#.

C. Asymptotic infrared and ultraviolet behavior of Šf2
‹u
„d…

Before considering the relevant BEC perturbation se
Eq. ~3.13!, or equivalently Eq.~3.21!, in the large-N limit, let
us recall some expected general properties of large-order
turbative expansions, as seen from a diagrammatic poin
view. This digression will emphasize an important differen
between the generally expected large-order behavior of
turbative series in most renormalizable models and the
havior of the above BEC specific series.

In field theory one has to face the problem of the pert
bative series being often only an asymptotic~nonconvergent!
series, which, in most cases, is due to factorially grow
perturbative coefficients at large orders. If the coefficie
are of the same sign, order by order, those series are not
Borel summable@39,40#. In practice, this means that the pe
turbative expansion alone does not define uniquely the ph
cal quantities being expanded, so that the series has t
complemented by intrinsically nonperturbative contributio
containing typically terms with an exponential dependence
the ~inverse! expansion parameter@40#. This is problematic
because, apart from the special case of exactly solvabl
integrable models, in most theories those nonperturba
terms are at best known only on phenomenological groun
However, to investigate the large-order behavior of the p
turbative series~and therefore guess at least the form of no
perturbative missing contributions!, it is often sufficient to
consider a class of approximated graphs, expected~and
proved in some specific models! to give the dominant con
tributions to the perturbative coefficients at large order.
dimension d52, 3, and 4 renormalizable theories, su
dominant graphs are typically given by the next-to-lead
term in a 1/N expansion, where, roughly speaking, the mat
fields are in anN-vector representation, and it is sufficient

2Note that in the original calculation@10#, corresponding to taking
h50 in Eq.~3.14!, this ambiguity problem was consistently solve
simply by using dimensional regularization~see Appendix A for
details!: in contrast, the rather subtle point is that whenhÞ0 in Eq.
~3.14! it appears at first perfectly consistent to start with thep
integration. Nevertheless, this does not give the correct result, i
pendently of whether or not one uses dimensional regularizat
until one correctly identifies what the actual perturbative series
du/h should be, as explained above.
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consider the asymptotic behavior in the bubble (1/N) ap-
proximation of the relevant Green functions. For instance
a theory with a renormalized coupling one obtains, af
renormalization, a scale-dependent running coupling. A v
sketchy Green’s function calculation in the above appro
mation involves~after renormalization! typical momentum
integrals of the form

E dqF~q2!g~M !F12b0g~M !ln
q2

M2G21

, ~3.22!

where F(q2) is model dependent and characteristic of t
Green function considered,g(M ) is the running coupling,b0
is the first order renormalization group~RG! b-function co-
efficient, dg(M )/d ln M[b0g

2(M)1•••, and M is an arbi-
trary renormalization scale. When formally expanding E
~3.22! in a perturbative series ing, one gets integrals of the
form

(
p

g(p11)~M !~b0!pE
0

`

dq2F~q2!lnpS q2

M2D , ~3.23!

which leads to a factorial behaviorp! at largep. More pre-
cisely,F(q2) can be expanded in a power series inq2 (1/q2)
in the infrared~ultraviolet!, so that Eq.~3.23! gives series of
the form @40# ;g(p11)(2b0)pp! or ;g(p11)(b0)pp! for
largep, respectively, for the infrared and ultraviolet behavio
Considering, for example, an asymptotically free theory, i
with b0,0, one obtains a non-sign-alternating series wh
is thus non-Borel-summable, as far as the infrared beha
is concerned. This fact reflects the important infrared se
tivity of such theories.

Now, a drastic difference between the previous illustrat
of theories with a renormalized coupling and the effect
BEC f4 model in three dimensions considered here is t
for the latter only the mass is renormalized, so that the c
pling is finite and dimensionful, as pointed out previous
From this, and following the above line of reasoning, o
expects that the relevant BECTc perturbative series coeffi
cients at large orders do not display any factorial behav
Therefore, a more convergent series should appear, as is
firmed, for instance, by the form of the exact large-N pertur-
bative series in Eqs.~3.13! and ~3.21!, whose coefficients
appear clearly not very different from those of a geome
series. Also, from the above general considerations, a sim
behavior of the series is expected as well for arbitraryN.
Thus an interesting question is whether one could ob
from such large-order behavior estimates a sensible appr
mation of the exact series indu/h that would be relevant
within the LDE method.

Let us therefore investigate some analytically simpler
physically motivated approximations~expected to be asymp
totically dominant! of the large-order behavior of the powe
series indu/h, as generated from Eq.~3.16!. B(k,h) be-
haves as

e-
n,
n
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B~k,h* !;5
1

8p

1

h*
S 12

k2

12~h* !2
1••• D ~k!h* !,

1

8p S p

k
2

4h*

k2
1••• D ~k@h* !,

~3.24!

for the IR (k!h* ) and UV (k@h* ) limits, respectively.
This means that the deep IR behavior of the series shoul
essentially given by a k-independent term @1
1duN/(48ph* )#21, replacing the corresponding term
Eq. ~3.14!. Retaining only this simplest IR behavior, the r
maining integral overk becomes straightforward, and a
cordingly we obtain3 the relevant IR approximated series as
simple geometric series

^f2& IR
(d)52

Nh*

4p
2

duN

24ph*
F11

duN

48ph*
G21

3S 2
2h*

4p
1

h*

4p D2
duN

96p2

52
Nh*

4p
1

duN

96p2 F S 11
duN

48ph*
D 21

21G ,

~3.25!

where the first order term, independent ofh, has been ex-
plicitly subtracted from the naive integral result Eq.~3.16!
for consistency, as discussed in detail in Sec. III B@note that
the purpose of the last parenthesis in the first equality in
~3.25! is to retain, for clarity, the separate contributions
the two propagator terms in Eq.~3.16!#. Note also that Eq.
~3.16! is UV finite, so that the result Eq.~3.25! is indepen-
dent of the integration method used, and either dimensio
regularization or another integration method leads to
same result.

Similarly, we can still integrate Eq.~3.14! exactly when
taking the UV limit of the propagatorB(k,h* );(8k)21

from Eq. ~3.24!. One obtains

^f2&UV
(d)52

Nh*

4p
1S Nh*

2p3 D @py~714y2!28 ln~2!~11y2!

26 lny#~115y214y4!212
duN

~96p2!
, ~3.26!

wherey[48h* /(Ndu). When performing thep integration
first, all integrals are UV finite ind53 and again thehÞ0
mass explicitly regularizes the IR divergences. Note, for
stance, that in both Eqs.~3.25! and~3.26!, the 1/h* andh*
from the first and second integrals, respectively, cancel

3Note that, in close analogy with Eqs.~3.22! and ~3.23!, we ap-
proximate only the nontrivial resummed propagatorB(k,h* ) ac-
cording to Eq.~3.24!, and keep the exactk,h* dependence of the
remaining integrand.
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this is completely analogous to the cancellation in the or
nal calculation@10#, in dimensional regularization with no IR
cutoff mass, of the pole 1/(d23) ~see Appendix A for de-
tails!.

Next, note that by taking theh→0 limit of expression
~3.25! or ~3.26!, one recovers the correct 1/N exact result Eq.
~A11!. In other words, we see here that the massless l
h→0 of the LDE series consistently reproduces the ex
large-N result, which is expected since the LDE fordÞ1
plays the role of an infrared regulator. But this check is i
portant as regards the question of the possible converg
of the LDE series to the exact result, once a nontrivial op
mization of the LDE series, with respect to the arbitrary
maining mass parameterh, is performed, to be examined i
the next section.

With this aim, it is instructive to reexpand, in a pow
series ofdu/h* , the above two different IR and UV approx
mations forD^f2& (d). First, taking the IR limit Eq.~3.25!
gives the geometric series indu/h* :

^f2& IR
(k)52

Nh*

4p
1

duN

3 (
i 51

k

GiS 2
duN

6h*
D i

, ~3.27!

whereGi[@(64p2)(8p) i #21. Numerically, the first fiveGi
coefficients are G156.299131025, G252.506331026,
G359.972431028, G453.967931029, and G551.5788
310210, which are interesting to compare with the corr
sponding exact coefficients in Eq.~3.21!. One can see tha
the first low order coefficients of Eqs.~3.27! and ~3.21! are
of very similar magnitudes, and we have further checked t
significant departures~i.e., about an order of magnitude o
more! between the IR-approximated and exact large-N per-
turbative coefficients occur only at rather large@greater than
O(d15)] orders. In other words, from this comparison o
expects the IR-approximated series, which has a conven
and simpler geometric form, to be a very good approxim
tion of the exact large-N series. This is a strong indicatio
that the detailed nonasymptotic~infrared! behavior of the
scalar propagator should play essentially no role, as could
physically expected on general grounds, and as will be fu
confirmed by our numerical investigation below.

The same expansion for the UV limit~3.26! reads simi-
larly

^f2&UV
(d)52

Nh*

4p
1

duN

3 F21.746531024S du

3h*
D 12.4737

31025S du

3h*
D 2

1•••G , ~3.28!

where one can see in contrast that the coefficients are alr
quite different from the exact series Eq.~3.21! at low order,
so that we may expect the asymptotic UV limit of the prop
gator to give a less sensible approximation than the IR o
For completeness it is useful to consider alternatively
direct evaluation of Eq.~3.14! ~i.e., not as a perturbation
series in du/h). Taking thus the exact expression fo
B(k,h* ) instead of its simpler IR or UV limit, thek integra-
5-11
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KNEUR, PINTO, AND RAMOS PHYSICAL REVIEW A68, 043615 ~2003!
tion can be performed only numerically~note that it is still
IR and UV finite ind53). These~numerical! results for the
reference valueu51 and as function ofh* are illustrated in
Fig. 2. As one can see, both the IR and UV approximatio
as given in Eq.~3.24!, have a behavior that is somewh
different from the exact function Eq.~3.14! for very small
h* , although all expressions correctly give the exact resu
h* 50. However, although it is not visible on Fig. 2, the I
and UV approximations appear to be very good approxim
tions of the exact function for largerh* ;O(1), which is in
the range where their respective perturbative expan
forms start to be valid.

To summarize this subsection, introducing an IR regula
masshÞ0 as is done from the LDE procedure, together w
the deep IR limit of the propagator Eq.~3.24!, in Eq. ~3.14!
leads to perturbative series that are very close to the e
large-N one in Eq.~3.21!. The only subtlety when imple
menting the LDE within the convenient resummed largeN
closed form Eq.~3.14! is to recall that one should be caref
in exchanging the perturbative series summation with in
gration, since the resulting integral Eq.~3.14! is not ~abso-
lutely! UV convergent. The consequence is that, e.g.,
h* →0 limit of expression~3.16! does not commute with
taking the limit h* →0 before performing any integration
i.e., as is done in the original large-N calculation~see Ap-
pendix A!. This may be considered as reminiscent of t
infrared sensitivity of the theory, even if it is not as severe
in the above mentioned models with a running couplin
leading to divergent series with factorially growing perturb
tive coefficients.

IV. LARGE- N OPTIMIZATION, RESUMMATION,
AND CONVERGENCE PROPERTIES

As discussed in the Introduction, the study of LDE co
vergence properties in the BEC problem is much more co
plicated than in the pure anharmonic oscillator case@25–28#.
In principle, both models are described by a scalarf4 model
in one and three dimensions but in the BEC case the mod
used to study a phase transition. However, if the LDE wor
one expects that reasonable numerical results should be
tained, converging to the ‘‘exact’’ large-N result c1
58p/@3z(3/2)4/3#.2.328, evaluated in Ref.@10#. Before
proceeding, it is useful to point out an essential aspect

FIG. 2. Comparison between the naive IR and UV propaga
approximations Eqs.~3.25! and ~3.26!, and the exact numerical in
tegration of Eq.~3.16!, before subtracting the spurious contributio
Nu/(96p2).
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potential difficulty of the purely perturbative expansions E
~3.21! or similarly Eq. ~3.27!. Note that these areinverse
~alternated! series in the mass parameterh, thus with ana
priori finite convergence radiushc

21 @i.e., for u51 these
series are~absolutely! convergent only foruhu.hc] when
considered as series for complex values of the arbitrary m
parameterh. But, as discussed above, ultimately the ex
result is expected to be recovered forh→0. This situation is
not much different from the anharmonic oscillator cas
where typically the energy levels have perturbative exp
sions in powers ofl/m3 (l being the coupling andm the
mass! with, moreover, factorially growing coefficients a
large perturbative orders, but where nevertheless the L
converges@25–28# to the exact result, thanks to an approp
ate rescaling of the mass parameter that is consistent with
PMS optimized solutions. We will examine here how t
LDE procedure followed by the standard PMS optimizatio
Eq. ~2.2!, manages in fact to avoid thish→0 potential prob-
lem with the basic perturbation series, which is one of
main results of the present paper. This is where the infra
approximation is a useful guide: while its perturbative for
Eq. ~3.27! exhibits just the same feature as the exact se
Eq. ~3.21!, the former geometric series is known to all o
ders, and obviously itsh→0 limit is perfectly well defined
and gives the correct exact result, as can be seen by g
back to its original form Eq.~3.25! discussed in Sec. III C
But no such resummation is knowna priori for the relevant
nontrivial N52 series, where only the first few perturbativ
orders inu/h are known, and thus only this information ca
be used to define the LDE procedure.

Thus, before considering the LDE of the actual BEC s
ries, it appears very instructive to first examine the sa
LDE procedure performed on a simpler model which sha
many similarities with the relevant BEC problem. We w
see that the example below illustrates very well the ba
reasons for the success~or eventually failure! of the LDE
followed by the PMS optimization method in the gene
case, beyond the specific BEC problem considered in
paper.

A. A simple example of the LDE-PMS convergence

Let us examine the properties of the LDE and subsequ
PMS optimization in a general case by considering the
lowing function which admits a simple alternating geomet
series expansion:

F~x!52
1

x
2

x

~11x!
52

1

x
1 (

n51

`

~2x!n, ~4.1!

for which the expansion form is almost like our IR geomet
series Eq.~3.27!, for u51 andx[1/h* , apart from overall
different normalizations@compare, e.g., with Eq.~3.21! or
~3.27!#. Clearly, the exact expression in Eq.~4.1! tends to
21 for x→`; thus the goal is to examine whether the LD
procedure followed by the standard PMS optimizatio
which uses only the series expansion form in Eq.~4.1! at
successive perturbative orders, is able to reach such a r
and in what way. To make contact with the LDE series

r
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TABLE I. LDE of the simple alternating geometric series Eq.~4.1!. PMS optimization results, at differen
LDE ordersk.

k S0 S1 S2 S3 S4 S5

1 A2 2A2
2 1.69743 21.12996

60.167336I
3 1.81088 21.00296 21.11978

60.129109I
4 1.87082 20.959082 21.06361

60.076116I 60.0465028I
5 1.90768 20.950095 21.02417 21.05508

60.03648I 60.0499I
6 1.93258 20.954501 21.00183 21.03612

60.01086I 60.0407I 60.019I
7 1.95052 20.9630 20.99069 21.01992 21.03154

60.00447I 60.02932I 60.02416I
8 1.96405 20.9719 20.9861 21.0085 21.02313

60.01304I 60.01929I 60.023I 60.0096I
9 1.97462 20.9797 20.9851 21.0012 21.01516 21.0205

60.0174I 60.0114I 60.0195I 60.01346I
10 1.9831 20.9861 20.9859 20.9968 21.0088 21.016

60.019I 60.0056I 60.0154I 60.0141I 60.0055
n
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consider the series in Eq.~4.1! with x[ud/h* @except in the
21/x term on the right-hand side of Eq.~4.1! where we take
x[1/h* ], followed by an expansion in power series ofd in
which one takesd→1. The result of this LDE at arbitrary
orderk can be expressed entirely analytically in this case~see
also4 Appendix B!:

F~x[u/h!(k)52
1

x
Ap

~21!k

G~1/22k!G~11k!

1 (
n51

k

~2x!n
G~12n/21k!

G~12n1k!G~11n/2!

~4.2!

and the PMS optimization performed order by order~up to
order k510) is shown in Table I. From this table, we ca
draw several important observations.

~i! Applying the PMS optimization condition Eq.~2.2! to
F(x) generates complexh̄ solutions. In addition, all solu-
tions can be arranged into families which span the comp
plane. In general, a new family arises at even orders and

4Note a slight difference in Eq.~4.2! with respect to Eq.~B2! in
Appendix B, namely, the Gamma function ratioG(2n/21k)/
G(2n1k) in place ofG(12n/21k)/G(12n1k) appearing in Eq.
~B2!, due to the fact that Eq.~4.1! does not have the extra factor o
ud in front of the series. Because of this, nontrivial PMS solutio
dF(x)(k)/dx50 of Eq. ~4.2! already start at LDE orderk51 ~see
Table I!. But apart from that this difference only affects in ve
minor ways the qualitative behavior discussed below, in particu
the large-LDE-order behavior of the simple series~4.2! with respect
to the corresponding actual BEC series.
04361
x
is

is signaled by a first member that lies on the real axis. T
pattern was also found in the anharmonic oscillator appli
tions @28# and in the finite-N applications to the BEC cas
@18#.

~ii ! Despite the fact that the~naive! expansion at arbitrary
finite order has a finite convergence radiusuxu,1 @namely,
the LDE at orderk only uses the information of the right
hand side of Eq.~4.1!, where the series is absolutely conve
gent for uxu,1], the LDE-PMS procedure clearly converge
to the right result forx→` ~equivalentlyh→0) and the
convergence is quite rapid in this case.

~iii ! Although most of the PMS solutions do converge
the correctx→` result, there is a family of real solutionsS0
that clearly converges to a different result (;2).

~iv! Some of the~complex! solutions converge more rap
idly than others. In particular, at order 3 one of the solutio
is already very close to the exact result, and also one of
two real solutions that does converge to the exact res
which appears only at odd LDE orders, is not the best o
Note also that it is the real part which converges to the ri
result. However, to obtain those results one must cons
all, real and complex,h̄ values. In fact, the imaginary part
of the complex optimized valuesh̄ play an essential role and
for instance, suppressing even a small imaginary part res
in a completely wrong and unstable result for the optimiz
series. As we shall investigate in more detail below, this
because, for convergence of the series, it is the value ofuxu
(uhu21) that is relevant.

We shall now investigate in more detail the basic reas
for the main LDE convergence result~ii ! above. First, note
that in Eq.~4.1! we added an extra term 1/x;h* , since it
vanishes forx→`. In the relevant BEC case, as alrea

s

r
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KNEUR, PINTO, AND RAMOS PHYSICAL REVIEW A68, 043615 ~2003!
discussed in the previous section, this term has a very c
physical interpretation, as it corresponds to the tadp
graph. In the present case it may be considered only a
mathematical trick, which plays an important role for co
vergence. Indeed, when suppressing this extra linear ‘‘ma
term, one finds for the LDE-PMS in place of the resu
shown in Table I20.5625 and20.657460.153I , e.g., at
LDE orders k52 and k53, respectively; and at orderk
510 the best solution is20.9720860.285I , while other so-
lutions are still about 20% away from the exact result. Th
the additional linear term clearly substantially increases
speed of convergence. First, it is clear that nontrivial PM
solutions already start at order 1, while they start only
order 2 when suppressing this term. But this is not the m
reason for this faster convergence. Note that at very la
order, sayk;100, the numerical accuracy from both proc
dures~i.e., with or without the additional linear term! tends
to become essentially equivalent@except that the incorrec
solution;2, see~iii ! above, is absent in the procedure wi
the linear term suppressed#. However, it is evidently crucia
to have a procedure such that the very first few LDE ord
already give reasonably reliable results, and also to gain
order in the PMS solution, when we consider the relev
N52 BEC series for which only the first few perturbativ
orders are known. The essential role of the linear term
easily understood when expanding the~exact! result in Eq.
~4.1! for largex:

F~x!52
1

x
2

x

~11x!
52

1

x
2S 11

1

xD 21

5211O~1/x2!

~4.3!

such that forx→` (h→0) the first orderO(1/x) term can-
cels out. Now what happens is that this cancellation rema
after introducing the LDE procedure, thus leading to a fas
LDE-PMS convergence@see remark~ii ! above#, even though
the LDE modifies the structure of the perturbative expans
and, as already mentioned, uses only the perturbative in
mation from Eq. ~4.1!. This can be understood on bas
grounds when considering the large-k behavior of expression
~4.2!:

F~x[u/h!(k) ;
k→`

2
1

xk1/2G~1/2!
1 (

n51

k
~2x!nkn/2

G~11n/2!

;2
1

xk1/2G~1/2!
1exp~x2k!erfc~xk1/2!21,

~4.4!

where erfc(x) is the standard error function@41#, and this
large-order behavior in Eq.~4.4! is obtained after some alge
bra by using standard properties of the Gamma functi
~see also Appendix B!. Furthermore, it appears that th
large-k behavior of Eq.~4.4! exhibiting the scalingk1/2 is
rapidly reached: for instance, the difference betwe
(21)k/G(1/22k)/G(k11) in Eq. ~4.2! and k21/2/p in Eq.
~4.4! is already less than 4% fork>3. Analyzing thus from
Eq. ~4.4! the large-k behavior, one can derive by using th
04361
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asymptotic expansion of erfc(x) for the relevant limit x
→`, exp(x2)erfc(x);1/(Apx)@11O(1/x2)# @see also Eq.
~B5! in Appendix B#, that the first order termO„(1/x)/k1/2

…

compensates exactly the linear term, giving in Eq.~4.4!
F(x);211O„(1/x2)/k…, while omitting the linear term
gives insteadF(x);211O„(1/x)/k1/2

…. Although the latter
properties result from taking the somewhat extreme limik
→`, what is quite remarkable is that this behavior is alrea
well observed at very low orders, as the above compariso
numerical PMS optimization in Table I illustrates.

More generally, one can also understand from Eq.~4.4!
the main transformation operated by the LDE on the origi
series: while the latter had a finite convergence radius,
uhu.1, the LDE provides an extra damping factor 1/G(1
1n/2) which allows one to safely reach largeruxu values
~equivalently smalleruhu values! from the new perturbative
series, so that eventually the relevant limith→0 may be
approached. Indeed in practice, namely, at finitek orders, all
of the PMS solutionsh̄ of Eq. ~2.2! corresponding to Table
~except the ones in the first column corresponding to
incorrect solution, as will be discussed below! tend to have
smaller and smalleruh̄u values~although rather slowly de-
creasing! ask is increased.

A last remark on the LDE behavior of the simple examp
~4.1! concerns the occurrence of the incorrect PMS soluti
as indicated in~iii ! above. Clearly, this results directly from
the presence of the additional linear term: in the absenc
the latter, these extra solutions disappear from the LDE-P
result at any order. Actually, these are reminiscent of the
that Eq.~4.1! ~before LDE is performed! has another extre
mum at x521/2 ~i.e., h522). In the most general cas
where one would have no ideaa priori, e.g., of the sign of
the correct solution, this feature may be considered a
drawback of our procedure. But in fact, it is easy to get rid
this incorrect solution, simply because one knows that
solution we seek should be forh→0. In contrast, the PMS
optimized values at successive LDE ordersk corresponding
to this extra solution are always such thatuh̄u is maximal,
with respect to all other solutions. Furthermore, theseuh̄u
values do not exhibit the expected trend toward smaller
smaller values: on the contrary, the correspondinguhu value
is ~rather slowly! increasing ask is increased.

The important point is that, as we will see below, all
the above properties will be exhibited similarly by the mo
complicated BEC series and are, therefore, a very us
guideline. In particular, the cancellation due to the additio
linear term as observed above, the behavior with the L
orderk of the PMS solutions, including the behavior of th
incorrect PMS solution, all occur similarly in the more com
plicated cases of the actual BEC LDE series, with an
pected much faster LDE convergence. These are impor
remarks concerning the LDE application since, as alre
emphasized, the difference between our original applicati
Refs.@17,18# and the one performed in Ref.@23# amounts to
the fact that the latter authors optimizeD^f2& (d) in Eq. ~1.9!,
which differs from^f2& (d) by an equivalent linear term.

In the next subsections, we switch to the study of the LD
performed on the actual BEC series in the large-N limit.
5-14
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With this purpose we will consider̂f2&u
(d) as given by the

closed form series Eq.~3.21!, and alternatively also its infra
red approximation form Eq.~3.27!. These two quantities will
again be optimized with the standard PMS criterion E
~2.2!. For completeness we also show, with one exam
how the alternative fastest apparent convergence method
~2.4! generates similar results. We then present in Sec. IV
way to further rearrange the LDE series, by fully exploitin
the above explained behavior of the PMS optimized so
tions, which eventually further accelerates the converge
due to the fact that it can recover directly the large-LD
order behavior and consequent goodh→0 properties of the
infrared approximation, with the advantage of being app
cable in a general case to more arbitrary series. This te
nique is then used to treat both the complete closed form
the infrared approximation of^f2&u

(d) , as introduced, respec
tively, in Secs. III B and III C. For comparison purposes
alternative resummation procedure, based on Pade´ approxi-
mants@42#, is also studied in Sec. IV D. Finally, we analyz
all results to draw conclusions in Sec. IV E about the co
vergence structure of the LDE method.

B. Standard optimization

In order to perform a numerical analysis of the optimiz
solutions for ^f2&u

(k) , one first expands Eq.~3.13! to the
desired order ind. As usual, one then setsd51 before op-
timizing. This is the LDE part of the procedure. It can
performed either by explicit order-by-order expansion,
equivalently, more formally, by following the general stru
ture of the LDE expansion at arbitrary orderk as presented in
Appendix B, leading to the result Eq.~B2!. Like the simple
geometric series considered above, Eq.~4.1!, the equation
for ^f2&u

(k) is basically a series in powers of (du)k/h (k21),
so that the PMS and fastest apparent convergence proce
will also generate algebraic equations of orderk whose math-
ematically acceptable roots form a set of optimalh̄ values.

Applying the PMS condition Eq.~2.2! to ^f2&u
(k) ,

d^f2&u
(k)

dh U
h̄,d51

50, ~4.5!

or the fastest apparent convergence criterion^f2&u
(k)

2^f2&u
(k21)50, computed atd51 @which is again analo-

gous to taking thekth coefficient in Eq.~2.3!, with F (k)

5^f2&u
(k) equal to zero# generates the optimal results. Tab

II lists, to order d20 all families obtained by applying the
PMS optimization to the standard closed form expans
given by Eq.~3.21!. For completeness we compare, in Tab
III, results generated with the PMS optimization and the fa
est apparent convergence procedures for the same qua
This table clearly shows that both optimization criteria ge
erate compatible solutions that seem to converge to iden
results. We comment that this pattern was also observe
all remaining cases considered in this work, so we shall c
sider only the PMS optimization Eq.~4.5! from now on. In
addition, we can get more insight by considering our infra
approximated geometric series Eq.~3.27!, which has simple
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exact coefficients known to all orders. By applying the sta
dard PMS Eq.~4.5! to this simpler equation one obtains th
results shown in Table IV. This table has exactly the sa
characteristics as Table II except for the positive real num
cal values, which are much closer to the exact large-N value
c1.2.328 47.

Let us try to examine at this stage the~eventual! conver-
gence structure of the LDE as applied to the large-N limit
series, namely, the results presented in Tables II, III, and
In both cases the family structure is very similar to the o
found for the simple geometric series example in the pre
ous subsection, as well as in the studies that have proved
LDE convergence in the anharmonic oscillator@28#. For in-
stance, we also see in the present case the appearance
new family at even orders, such that all of them start with
real solution and become complex at the next order, the
ception beingF0, which has only negative real solution
and F4, which has only positive real solutions. As me
tioned before, the complex parts arise as a consequenc
solving the polynomial equations generated during the o
mization procedure and are mathematically acceptable.
refrain from trying to attach any physical significance to t
complex part of the optimalc1 values and instead of consid
ering only completely real solutions we take the optimiz
Re(c1) as the relevant quantity for the evaluation ofTc ,
which is a strictly real quantity. Also, in the geometric seri
application above, we saw that only the real parts of
optimal solutions converge to the expected real value w
x→`. Considering all complex solutions also has the adv
tage of giving a prediction at any order. Further, we note t
all families whose real parts are positive start with valu
close to;2.0 and then seem to follow similar patterns as t
perturbative order increases. In contrast, consideringF0
would bring important qualitative changes regarding t
critical temperature shift in relation to the ideal gas valu
DTc5Tc2T0, since the sign of this quantity was also
source of controversy@9# for some time until recently, when
most work started to predict positive values for the critic
temperature shift. It appears clear thatF0 is just the equiva-
lent of the S0 ~wrong! solution discussed in the simple
geometric series case, which was eliminated because it
not correspond to theh→0 expected behavior. As we wil
see below, the same criterion allows us to eliminate this
lution without ambiguity. Pushing further to much high
orders, we obtain for the exact 1/N series case Eq.~3.21!,
e.g., at LDE order 100, that most of the positive roots giv
solution whose~real part! is ;2.2, as well as a few solution
that are far from reasonable values, which we assume o
reflect the numerical limitation of the problem at hand. I
deed, to obtain these results the numerical procedure
volves first numerically solving the one-dimensional int
grals related to theJi coefficients in Eq. ~3.21!. As
emphasized, this has been done with great care with
maximum precision allowed byMATHEMATICA @38# and/or
MAPLE. Yet one cannot expect the results to be complet
stable once the LDE is carried out to very high orders. A
though the integration in Eq.~3.18! may in principle be done
to arbitrary accuracy, the limitation comes about later in
process of finding the roots of high order polynomial equ
5-15
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TABLE II. Standard LDE at largeN, Eq. ~3.21!. PMS results forc1, at different ordersk, obtained with all families.

k F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

2 22.163 2.163
3 22.698 1.879

60.169I
4 22.945 1.713 1.962

60.061I
5 23.087 1.642 1.913

60.077I 60.029I
6 23.179 1.620 1.870 1.935

60.196I 60.008I
7 23.244 1.622 1.843 1.928

60.293I 60.067I 60.001I
8 23.292 1.636 1.829 1.921 1.935

60.369I 60.128I 60.025I
9 23.329 1.654 1.825 1.913 1.936 1.946

60.429I 60.184I 60.062I
10 23.358 1.675 1.828 1.908 1.938 1.950

60.476I 60.233I 60.102I 60.027I
11 23.382 1.696 1.836 1.907 1.940 1.950 1.966

60.515I 60.276I 60.139I 0.056I
12 23.402 1.715 1.845 1.909 1.941 1.950 1.972

60.546I 60.313I 60.174I 60.086I 60.025I
13 23.419 1.733 1.856 1.913 1.942 1.950 1.974 1.983

60.571I 60.344I 60.206I 60.114I 0.050I
14 23.433 1.750 1.868 1.919 1.942 1.952 1.976 1.988

60.592I 60.372I 60.234I 60.141I 60.075I 60.023I
15 23.445 1.765 1.880 1.926 1.943 1.956 1.978 1.992 1.997

60.610I 60.395I 60.260I 60.166I 60.098I 60.045I
16 23.456 1.780 1.891 1.934 1.944 1.960 1.981 1.995 2.002

60.625I 60.416I 60.282I 60.189I 60.119I 60.066I 60.021I
17 23.466 1.792 1.903 1.942 1.944 1.966 1.984 1.998 2.006 2.010

60.638I 60.433I 60.302I 60.210I 60.140I 60.085I 60.040I
18 23.474 1.804 1.913 1.950 1.945 1.972 1.988 2.000 2.009 2.014

60.649I 60.449I 60.321I 60.229I 60.159I 60.104I 60.059I 60.019I
19 23.482 1.815 1.924 1.959 1.945 1.978 1.992 2.004 2.012 2.018 2.0

60.658I 60.463I 60.337I 60.246I 60.177I 60.121I 60.076I 60.036I
20 23.488 1.825 1.933 1.967 1.945 1.984 1.997 2.007 2.016 2.021 2.0

60.666I 60.475I 60.351I 60.262I 60.193I 60.138I 60.092I 60.053I 60.017I
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tions, which is a notoriously unstable numerical problem
general. So it is rather the optimization procedure, as imp
by the LDE and PMS which is to be carried out numerica
which appears sensitive to numerical accuracy at very h
orders. Nevertheless, from our analysis all results perform
with MATHEMATICA appear under very good control, say un
a LDE order of about;50. It looks as if all~stable! families
in Table II will ~slowly! converge, at very high orders, t
approximately the same values, again in a way similar
what was observed in the simple geometric series exam
discussed above in Sec. IV A and in the anharmonic osc
tor case@28#. However, it appears that these PMS optimiz
solutions in Table II rather converge to a value of abo
;2.2, i.e., close but not equal to the exact large-N result
c1.2.328. The reason for this slight discrepancy will
understood below.
04361
d
,
h
d

o
le
-

t

In contrast, the results in Table IV illustrate how good t
IR approximation is, although from a perturbatively in
equivalent approach, and indicate that the LDE series in
~3.25! do converge to the correct result. Pushing the LDE
higher orders, we obtain for Eq.~3.27!, for instance at order
100, that most of the solutions are very close~within 0.1%
error! to the exact result, the closest solution bei
2.328 3460.001 328 84I .

In order to explain the convergence properties on m
basic grounds, for both the exact 1/N and the IR approxi-
mated series, one first observes that, as in the simple
ample studied in Sec. IV A above, all of the PMS optimiz
tion solutions corresponding to Tables II–IV, except forF0,

haveuh̄u starting from relatively large values and then~rather
slowly! decreasing as the LDE orderk is increased, therefore
5-16
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TABLE III. Standard LDE at largeN, Eq. ~3.21!. Three families of PMS and fastest apparent convergence results forc1.

k F1-PMS F1-FAC F2-PMS F2-FAC F3-PMS F3-FAC

2 2.163 2.498
3 1.87960.169I 1.88460.274I
4 1.71360.061I 1.66060.097I 1.962 1.996
5 1.64260.077I 1.59360.078I 1.91360.029I 1.91760.0462I
6 1.62060.196I 1.58560.213I 1.87060.008I 1.85860.003I 1.935 1.941
7 1.62260.293I 1.60060.314I 1.84360.067I 1.82660.063I 1.92860.001I 1.92860.005I
8 1.63660.369I 1.62260.390I 1.82960.128I 1.81360.130I 1.92160.025I 1.91560.0213I
9 1.65460.429I 1.64760.448I 1.82560.184I 1.81160.189I 1.91360.062I 1.90560.061I
10 1.67560.476I 1.67160.493I 1.82860.233I 1.81760.241I 1.90860.102I 1.89960.102I
11 1.69660.514I 1.69460.529I 1.83660.276I 1.82760.284I 1.90760.139I 1.89860.141I
12 1.71560.545I 1.71560.558I 1.84560.313I 1.83960.321I 1.90860.174I 1.90160.178I
13 1.73360.571I 1.73460.582I 1.85660.344I 1.85260.353I 1.91360.206I 1.90660.210I
14 1.75060.592I 1.75260.601I 1.86860.371I 1.86560.380I 1.91960.234I 1.91360.239I
15 1.76560.610I 1.76760.618I 1.88060.395I 1.87760.403I 1.92660.260I 1.92160.265I
16 1.78060.625I 1.78260.631I 1.89160.416I 1.89060.423I 1.93460.282I 1.93060.287I
17 1.79260.638I 1.79560.643I 1.90360.433I 1.90260.440I 1.94260.302I 1.93960.308I
18 1.80460.649I 1.80760.654I 1.91360.449I 1.91360.455I 1.95060.321I 1.94760.326I
19 1.81560.658I 1.81760.663I 1.92460.463I 1.92360.468I 1.95960.337I 1.95760.342I
20 1.82560.666I 1.82760.670I 1.93360.475I 1.93460.480I 1.96760.351I 1.96660.356I
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reaching the border of the convergence radius of the orig
du/h series. More precisely, the convergence radius of
geometric series in Eq.~3.27! is immediately given byR21

51/(24p), so that, foru51, the originalu/h series~before
LDE is performed! can converge only ifuh̄u.1/(24p)
;0.013. @One expects similarly that the exact large-N origi-
nal series in Eq.~3.21! should have a convergence radi
very close to this 1/(24p) value, as we actually checke
numerically by calculating, e.g.,R215 lim i→`Ji 11 /Ji to suf-
ficiently high orderi;103.# On the other hand, the exac
result should be recovered forh50, which is outside the
convergence radius of the original perturbative expans
Nevertheless, just as explained with the simple geome
series in Sec. IV A above, this is compensated by the fact
the reorganized LDE series to orderk modify perturbative
coefficients of ordern with an extra damping factor o
1/G(11n/2) @see, e.g., Eqs.~B2! and ~B3! in Appendix B#.
As a result, this modifies the convergence radius so
smaller and smaller values ofuhu can be reached, which
basically explains, e.g., the good convergence of the IR
ries to the right exact result shown in Table IV. Moreover,
important remark in view of the more interesting applicati
to the finite N52 case is to realize that most results pr
duced by the families with real positive parts in Tables II–
already give reasonable values at very low ordersk;2,3,
being, for instance, about 10% away from the exact res
We believe this is not at all a coincidence but simply refle
the faster convergence properties of the PMS solution wi
our prescription, as discussed in detail with the simple
ample of Sec. IV A, due to the presence of the linear tadp
term, which implied for the simpler geometric series case
exact cancellation forh→0 of the first order term. For the
actual IR geometric series the normalization of the tadp
term relative to the series is completely different, howev
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but becauseuh̄u→(24p)21 as the LDE orderp increases,
one sees immediately that the first term of the expansion
the tadpole term foruh̄u→(24p)21 is 2N/(96p2), so that a
similar cancellation still occurs, again making the conv
gence somewhat faster.

Based on those general convergence property cons
ations, we may also introduce a very simple criterion to
lect among the multiple PMS solutions as illustrated
Tables II–IV: we can consider the PMS solutions with t
smallestuh̄u, yet such thatuh̄u is still within the convergence
radius of the relevant series. Note that this criterion also
the advantage of automatically eliminating the negativeF0
solution, as it turns out that the latter always correspond
the largest~and in fact, slowly increasing withk) uh̄u values,
just as was the case for the simpler example of Sec. IV
Indeed, it is interesting to compare again the exact versu
approximated 1/N series when replacing within their respe
tive LDE expansions to orderk this exact value ofh
5R21, instead of the PMS optimizedh̄ values. This is illus-
trated in Table V, where it clearly appears that the IR a
proximated series behaves in a somewhat better way than
exact series.

Now coming back to the exact large-N series case in try-
ing to better understand the results in Tables II and III,
can alternatively numerically study the exact express
~3.16! directly, that is, performing the integration numer
cally before expanding inu/h series. In contrast with the
latter expansion having~before LDE is performed! finite
convergence radius as just discussed above, Eq.~3.16! is of
course defined for arbitrarily smallh. The behavior of this
expression foru51 close toh50 is shown in Fig. 2. As one
can see, in addition to the exact result ath50, Eq. ~3.16!
gets a real minimum ;2.061 87 for very small h
5-17
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TABLE IV. Infrared LDE at largeN, Eq. ~3.27!. PMS results forc1, at different ordersk.

k F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

2 22.852 2.852
3 23.577 2.444

60.276I
4 23.910 2.244 2.482

60.200I
5 24.100 2.184 2.397

60.097I 60.079I
6 24.223 2.184 2.333 2.397

60.020I 60.081I
7 24.309 2.205 2.298 2.369

60.028I 60.060I 60.032I
8 24.372 2.232 2.283 2.342 2.366

60.055I 60.037I 0.040I
9 24.214 2.256 2.279 2.324 2.354

60.068I 60.016I 60.036I 60.016I
10 24.460 2.277 2.282 2.313 2.341 2.352

60.074I 60.010I 60.028I 60.022I
11 24.498 2.294 2.287 2.307 2.331 2.346

60.074I 60.010I 60.019I 60.022I 0.009I
12 24.518 2.307 2.293 2.305 2.324 2.339 2.345

60.072I 60.017I 60.011I 60.019I 0.014I
13 24.540 2.317 2.299 2.305 2.319 2.333 2.341

60.068I 60.022I 60.004I 60.015I 0.015I 60.006I
14 24.559 2.324 2.305 2.306 2.316 2.328 2.337 2.340

60.064I 60.025I 60.001I 60.011I 0.014I 60.009I
15 24.575 2.330 2.310 2.308 2.315 2.324 2.333 2.338

60.061I 60.027I 60.005I 60.007I 0.012I 60.010I 60.004I
16 24.589 2.334 2.315 2.310 2.314 2.322 2.330 2.335 2.338

60.057I 60.027I 60.008I 60.004I 0.010I 60.010I 60.006I
17 24.602 2.338 2.318 2.313 2.314 2.320 2.327 2.333 2.336

60.053I 60.027I 60.010I 60.001I 0.008I 60.009I 60.007I 60.003I
18 24.613 2.340 2.322 2.315 2.315 2.319 2.325 2.330 2.334 2.336

60.050I 60.027I 60.012I 60.001I 0.005I 60.008I 60.007I 60.004I
19 24.623 2.342 2.324 2.317 2.316 2.319 2.324 2.329 2.332 2.335

60.047I 60.026I 60.013I 60.003I 0.003I 60.007I 60.007I 60.005I 60.002I
20 24.631 2.344 2.327 2.319 2.317 2.319 2.323 2.327 2.331 2.333 2

60.045I 60.025I 60.014I 60.005I 0.002I 60.005I 60.006I 60.007I 60.003I
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;0.002 357 45. Now it clearly appears that all the LDE s
lutions in Tables II and III are disturbed by the presence
this real minimum very close toh50: namely, in the pro-
cess of reaching smaller and smallerh values after the LDE-
PMS procedure is applied, the PMS optimization solutions
the LDE at successive orders can be ‘‘trapped’’ in the fi
minimum reached. In contrast, notice in Fig. 2 that the
approximated series has a similar real minimum but loca
exactly ath50; therefore it is not surprising that the PM
optimized LDE does converge correctly to this minimum
this case. This explains why the exact large-N series con-
verges to a value slightly different from the exact one, and
accordingly a weak point of the procedure. In view of this
is interesting to briefly compare these results with the al
native prescription such that the LDE-PMS procedure is
04361
-
f

f
t

d

is
t
r-
-

plied on the same series Eq.~3.21!, but omitting the tadpole
term linear in h: 2Nh* /(4p)5^f2&u

(d)2D^f2&c
(d) . This

corresponds to extremizingD^f2&c
(d) directly @see Eq.~1.9!#.

This is then similar to the recent LDE convergence studies
Braaten and Radescu@23#. Note that in this case the add
tional extremum at very smallh is removed. By selecting for
simple illustration only the best PMS solutions~i.e., the ones
whose real parts are the closest to the exact 1/N result
;2.328 . . . ), we obtain for c1 the results shown in Table
VI. As one can see, the results in this procedure do conve
to the right result, but very slowly. On the other hand, o
can also realize that the results at lowest ordersk;3 –4 are
far away~more than a factor of 2! from the exact result. In
fact, one should wait until aboutk;50 to have a reasonabl
good approximation.~Moreover, we note that may other so
5-18
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TABLE V. Comparison of infrared and exact LDE at largeN, for h5Rc
2151/(24p) at different ordersk.

k 1 2 3 4 5 6 7 8 9 10

IR 1.16424 3.20165 1.89188 2.67411 2.17385 2.47173 2.27958 2.39236 2.31806 2.36035
exact 1.16424 2.2129 1.78534 1.98289 1.892 1.94579 1.92615 1.94536 1.94367 1.95312

k 11 12 13 14 15 16 17 18 19 20 100

IR 2.33129 2.34685 2.33524 2.34073 2.33590 2.33765 2.33549 2.33588 2.33481 2.33474 2
exact 1.95614 1.9624 1.96651 1.9715 1.97566 1.97999 1.98393 1.98782 1.99149 1.99504 2
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lutions that are not shown in Table VI start to be very u
stable at such high orders, some being several orders of m
nitude away from the correct result.! So, even if the series
without tadpole term ultimately converges to the right res
within this LDE prescription, it appears of not much prac
cal use for the nontrivialN52 case, where we recall tha
only the first three perturbative coefficients are known at
moment. This is to be contrasted with the results of Tab
I–IV, where the fact that the lowest orders are alread
good approximation is, as explained above, a consequen
the cancellation of the first orderO(h) term, and of the
behavior of the PMS solutions as the LDE orderk is in-
creased.

We will next discuss a method that fully exploits the
scaling properties of the LDE-PMS solution at large orde
and which accordingly allows us to directly resum the LD
perturbative series and to eventually further accelerate
LDE convergence, when applied to our BEC problem.

C. Contour integral accelerated LDE resummation technique

Having performed the usual LDE interpolation, withh*
5hA12d andu→du, one obtains the physical quantityF
expanded to orderk. This procedure defines a partial su
that may be written as@see Eqs.~3.13! and ~3.21!#

F (k)~h* ,du![ (
n50

k

cn~ud!n@ f ~h* !#n, ~4.6!

wheref (h* ) is a function ofh* whose form depends on th
dimensionality of the physical quantityF. As we have al-
ready emphasized, the use ofh* is just an economical way
to take into account the simpledh2 vertex. Usually, one
expandsh* so that all the terms of order<k are present and
the direct application of the PMS optimization or faste
apparent convergence to this quantity, atd51, defines the
standard LDE. On the other hand, one might be tempte
improve a perturbative series for which the highest or
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term contains (du)k and then expandh* , obtaining a higher
order series. This may seem artificial at first because
contributions of order greater thank would come only from
dh2 insertions, not taking into account, at the same ord
new contributions that arise from the quarticdu vertex.
However, by construction@43# this procedure helps to acce
erate convergence as it gives in a more direct and simple
the large LDE order behavior, as studied by the direct ‘‘bru
force’’ LDE method in Appendix B. One may consider an a
order resummation by observing that, ford→1, the partial
LDE series is given formally, from the simple pole residue
as

F (k)~h,u,d→1!5
1

2p i R dd
d2k21

12d
F~h,u,d!, ~4.7!

where the counterclockwise contour encircles the orig
Now, one performs a change of variables~see Ref.@43# for
the original application of this procedure! for the relevantd
→1 limit,

d[12v/k, ~4.8!

together with a similarly order-dependent rescaling of
arbitrary mass parameterh→hk1/2, where the power 1/2 is
simply dictated by the form of the scalar mass interact
termh2f2 in Eq. ~2.6!. This rescaling of the mass paramet
is of course consistent with what is obtained by a direct stu
of the large-k behavior of the standard LDE~see Appendix
B!.

For k→` this resummation takes the final form of th
replacement

h* →hv1/2, ~4.9!

followed by the contour integration
TABLE VI. Best PMS results forc1, at different ordersk, from the exact LDE series at largeN when
omitting the tadpole term2(Nh)/(4p).

k 3 4 5 6 10 15

c1 1.061 1.22260.37I 1.34 1.43560.720I 1.71060.99I 1.89661.089I
k 20 30 50 60 80 100
c1 1.99961.120I 2.12960.880I 2.24360.900I 2.27260.910I 2.31160.780I 2.3360.69I
5-19
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F (k→`)~d→1!5
1

2p i R dv
v

exp~v !F~h* →hv1/2!,

~4.10!

where the ‘‘weight’’ exp(v)/v originates from

dd~12d!21→2dv/v, ~4.11!

and

lim
k→`

~12v/k!2k215exp~v !, ~4.12!

while the original contour was deformed to encircle t
branch cut Re(v),0. Here, one is initially dealing with a
power series in (du)@du/h* # i @cf., e.g., Eqs.~3.6! and~3.8!#,
and so the use of

R dv exp~v !va52p i /G~2a! ~4.13!

shows that the main effect of this resummation is to div
the original expansion coefficients at orderd ( i 11) by terms
G(11 i /2);( i /2)! for largen. This damping of the perturba
tive coefficients at large order, as implied by this spec
resummation, is fully consistent with what is obtained by
direct ‘‘brute force’’ resummation of the LDE series for larg
order k→` @see, e.g., Eqs.~B2! and ~B3! in Appendix B#.
But such a damping is rather generic and was exploited
cently in the completely different context of asymptotica
free models@30#, where it was shown to accelerate conv
gence of the LDE. When applied to the anharmonic osci
tor, it is in fact~asymptotically! equivalent to the more direc
LDE resummation with an order-dependent rescaling of
arbitrary mass, as employed in some of Refs.@25# to estab-
lish rigorous convergence of the LDE for the oscillator e
ergy levels, which is itself an extension of the orde
dependent mapping resummation technique~see Seznec an
Zinn-Justin@13#!. In fact, this procedure can essentially su
press the factorial behavior at large orders of the perturba
coefficients generic in many theories, and convergence
be obtained even for series that are originally not Borel su
mable @25,30#. The above contour integral resummation
very convenient since it is algebraically simpler than the
rect LDE summation~compare with Appendix B!. In the
present case, one expects fast convergence since the or
series has no factorially divergent coefficients.

Let us start by treating the standard closed form resul
this contour integral accelerated resummation techni
~CIRT!, transforming Eq.~3.21! into

^f2&u
(k)52

Nh

4pG~1/2!
1

Nu

3 (
i 51

k
Ji

G~11 i /2! S 2
uN

6h D i

,

~4.14!

which clearly displays the coefficient damping. Then, by a
plying the PMS Eq.~4.5!, one obtains the results displayed
Table VII. This table shows that only the lowest order re
parts of the positive families produce reasonable results
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the values seem to deteriorate at high orders. Again,
observes that all positive families have similar behavi
starting from values close to;2.000, the values decreas
and then start to increase, as exemplified byF1. Table VII
seems to show that the disturbance due to the presence o
extra minimum of Eq.~3.16!, ;2.061 87 for very smallh
;0.002 357 45, reflected in the data of Table II, is amplifi
by the CIRT that resums the series. This effect will be furth
discussed in Sec. IV E below.

We shall now examine how the all order LDE summati
can further improve the convergence of the series. To
that, we consider again the IR behavior~3.25!, which is suf-
ficient to grasp the essential features by keeping all res
fully analytical. Applying thus the CIRT method to the sim
pler geometric IR series Eqs.~3.25! and~3.27!, we obtain the
result

^f2&u
(k)52

Nh

4pG~1/2!
1

Nu

96p2 F(
i 50

k
~2x! i

G~11 i /2!
21G

52
Nh

4pG~1/2!
1

Nu

96p2
@ex2

erfc~x!21#, ~4.15!

where x[Nu/(48ph) and erfc(x)512erf(x) is the stan-
dard error function~see also Appendix B!. Next, upon using
the well known asymptotic expansion of erfc(x) for x→`,
i.e., h→0 @41# @see Eq.~B5! in Appendix B#, we can again
apply the PMS optimization procedure at given success
ordersk. The PMS optimization generates the results sho
in Table VIII. Note how the large-N result, c1
58p/@3z(3/2)4/3#.2.328, is exactly reproduced already a
the lowest nontrivial order. Moreover, as one can see fr
this table, this real solution remains valid at any order
perturbation theory. Thus, the exact large-N result is recov-
ered from this exact CIRT resummation of the LDE, ev
though we have used only the IR approximation of t
propagator. The convergence to the exact 1/N result in this
alternative LDE implementation is extremely rapid upon u
ing the CIRT. This also indicates that the convergence to
exact result can be independent of the details of the no
ymptotic behavior of the perturbative series coefficients,
least for the large-N quantity here considered.

An important feature of the CIRT-PMS results in Tab
VIII is that the asymptotic expansion in Eq.~B5! implies that
we are now dealing with a series inh/u, instead of the
standard perturbative series inu/h, which we started from,
as in Eqs.~3.13!, ~3.21!, and~3.27!. This is a consequence o
the IR approximation, leading to the simple geometric ser
in u/h, Eq. ~3.27!, whose all order CIRT form has an exa
expression Eq.~4.15! that can be reexpanded in anh/u se-
ries. The reason why the convergence properties of suc
series are much better than those of the original series sh
now be clear in view of the discussion in previous subs
tions: the original theory is to be recovered in the limith
→0, which is clearly not in the~finite! convergence domain
of the originalu/h series, while it is automatically inside th
convergence domain of the all LDE order resummed se
Eq. ~4.15!. Moreover, another advantage of this reverted
5-20
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TABLE VII. Standard LDE at largeN, Eq. ~4.14!. All CIRT PMS results forc1, at different ordersk.

k F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

2 22.818 2.818
3 23.400 2.000

60.814I
4 23.554 1.219 2.428

60.669I
5 23.597 0.750 2.121

60.242I 60.408I
6 23.610 0.506 1.734 2.246

60.247I 60.463I
7 23.613 0.416 1.422 2.096

60.740I 60.336I 60.233I
8 23.614 0.448 1.205 1.882 2.147

61.228I 60.127I 60.304I
9 23.614 0.587 1.071 1.681 2.062

61.691I 60.115I 60.269I 60.146I
10 23.614 0.836 1.001 1.518 1.932 2.087

62.138I 60.365I 60.171I 60.206I
11 23.614 1.203 0.998 1.397 1.797 2.034

62.552I 60.609I 60.038I 60.200I 60.097I
12 23.614 1.701 1.040 1.317 1.678 1.949 2.047

62.913I 60.841I 60.111I 60.151I 60.143I
13 23.614 2.343 1.126 1.272 1.581 1.856 2.012

63.190I 61.054I 60.266I 60.073I 60.148I 60.067I
14 23.614 3.142 1.251 1.58 1.506 1.768 1.954 2.020

63.339I 61.243I 60.419I 60.021I 60.122I 60.102I
15 23.614 4.106 1.412 1.272 1.455 1.691 1.887 1.996

63.301I 61.401I 60.566I 60.125I 60.073I 60.110I 60.048
16 23.614 5.229 1.606 1.309 1.424 1.628 1.821 1.955 2.001

62.996I 61.525I 60.702I 60.232I 60.010I 60.095I 60.074
17 23.614 6.491 1.828 1.367 1.411 1.579 1.761 1.906 1.984

62.327I 61.604I 60.825I 60.339I 60.062I 60.063I 60.082 60.035I
18 23.614 7.838 2.071 1.442 1.416 1.544 1.709 1.855 1.954 1.988

61.169I 61.632I 60.932I 60.442I 60.140I 60.019I 60.073 60.055I
19 23.614 9.181 2.327 1.532 1.434 1.522 1.665 1.807 1.917 1.975

60.628I 61.600I 61.022I 60.539I 60.220I 60.033I 60.051 60.061I 60.025I
20 23.614 10.360 2.584 1.634 1.466 1.513 1.632 1.764 1.877 1.952 1

63.236I 61.499I 61.091I 60.628I 60.299I 60.091I 60.019 60.055I 60.041I
he

tio
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wn
es

rs,
the
der
ries approach is that we may bypass the need for PMS
other similar criteria: clearly the best approximation to t
exact result will be simply given by the smallesth values,
irrespective of whether it is a solution of a PMS~or similar!
criterion.

D. LDE from Padé approximants

For completeness we will also consider in this subsec
the results obtained from a completely different resumma
of the relevant BEC series, based on the Pade´ approximant
~PA! method@42#. We define, as is standard, a PAP@n,m# as
a rational fraction of two polynomials of ordern and m,
respectively, in the relevant variableu/h:
04361
or

n
n

P@n,m#~u/h* ![

(
i 50

n

ai~u/h* ! i

(
j 50

m

bj~u/h* ! j

, ~4.16!

where the perturbative coefficientsai and bj are obtained
order by order by expanding Eq.~4.16! up to ordern1m and
matching the resulting series with the original expansion.
recall that PAs are generally useful when a series is kno
only up to the first few orders, as they can predict sometim
with a very good accuracy the unknown higher orde
and/or give very good resummation results. As far as
BEC series is concerned, our further motivation to consi
5-21
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TABLE VIII. Infrared LDE at largeN, Eq. ~4.15!. All CIRT PMS large-N results forc1, at different
ordersk.

k F1 F2 F3 F4 F5 F6 F7 F8 F9

2 2.328
3 2.328 2.262 2.395
4 2.328 2.320 2.337

60.067I 60.067I
5 2.328 2.369 2.287 2.271 2.386

60.054I 60.054I
6 2.328 2.389 2.268 2.294 2.363

60.027I 60.027I 60.041I 60.041I
7 2.328 2.391 2.266 2.323 2.334 2.281 2.376

60.005I 60.005I 60.050I 60.050I
8 2.328 2.386 2.270 2.344 2.313 2.293 2.364

60.011I 0.011I 60.045I 60.045I 60.025I 60.025I
9 2.328 2.379 2.278 2.357 2.300 2.310 2.347 2.289 2.36

60.021I 60.021I 60.036I 60.036I 60.036I 60.036I
10 2.328 2.371 2.286 2.363 2.294 2.325 2.332 2.296 2.36

60.027I 60.027I 60.025I 60.025I 60.038I 60.038I 60.017I 60.017I
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PMS
PAs is that it will allow us to simply define an alternativ
~approximated! series in theinversevariable h/u, starting
from the exact large-N ~or finite-N as well! series Eq.~3.13!.
As illustrated in the previous subsection with the IR appro
mated series that has an obvious alternative expansio
h/u, since the exact result is recovered forh→0, we shall
expect much better convergence properties from such an
verted series, as will be seen below. Note also that the
method is largely independent of the previous methods
that it can provide a further consistency cross check of
numerical results. Another advantage is that the PA techn
is immediately applicable as well to the finite-N case, to be
discussed below in Sec. V. A drawback of the PA meth
however, is that the approximants are not uniquely defin
since for a given perturbative expansion of orderk one may
considera priori all possible PAs withn1m5k. In order to
thus limit somehow the number of possible PAs without
troducing much bias in our analysis, we will consider on
resulting PAs that can be expanded in powers ofh/u, for the
reasons discussed above, which imposes thatn,m. To illus-
trate in the simplest case the power of PAs, let us fi
consider again the IR approximated geometric se
Eq. ~3.27!, but assuming that only the first order term of t
u/h series is known: ^f2& IR;2(Nh* )/(4p)1(duN)/
@(96p2)(8p)#(2duN)/(6h* ). We could then define an ap
proximation of this series as follows:
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^f2& IR;2
Nh*

4p
1

duN

96p2
$P@0,1#~u/h* !21%, ~4.17!

where the PA of ordern1m51 is

P@0,1#~u/h![@b01b1duN/~6h!#21, ~4.18!

and a simple matching of the expansion of Eq.~4.17! gives
b051 andb151/(8p), such that the exact geometric seri
is in fact recovered, and can of course be expanded in
alternative form of anh/u series. Although this example
may be too simple, we can expect that the more general
that are constructed below to approximate the more com
cated exact series will have similarly good resummat
properties. Typically, at order 3 we have to considerP@1,2#
and P@0,3#. The PA results are shown in Table IX for th
large-N case. The orderk designates in this case the order
the ~re!expansion in LDE power series of the PAs, followe
again by a standard PMS optimization. Higher ordersk.5
are not shown but exhibit a very stable behavior with so
tions very similar to those of the lowest orders shown.
one can see, the exact result is often reproduced as a
solution, which is not so remarkable in the present 1/N case,
as it simply means thath50 ~for which value the PA is well
defined by construction! is a solution when applying the
vant
TABLE IX. PMS optimization of Pade´ approximants~based on both the original and CIRT improved series for two of the rele
families! for c1 in the large-N case with the exact series coefficients.

k P@1,2#PMS P@1,2#CIRT P@0,3#PMS P@0,3#CIRT

3 2.623 2.034 2.0160.14 I 2.32860.18 I 2.32860.05I
4 2.61 2.05 1.87760.34 I 2.02 2.32860.17 I 2.32860.05I
5 2.61560.10 I 2.0460.1 I 1.7760.61 I 1.9860.06 I 2.2960.2 I 2.3760.19 I 2.3460.05I 2.3360.05 I
5-22
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PMS to the PAs. Clearly, the best PMS solutions, ifhÞ0,
are obtained from the smallestuhuÞ0 values. Although it
appears clearly that the PAP@0,3# gives much better result
than P@1,2#, note that the latter gives solutions;2.05 and
;2.6 that are located not far below and above the ex
value. The betterP@0,3# results may eventually be explaine
by noting that theP@0,3# should have much better resumm
tion properties forh→0, having no numerator term inu/h.

Another advantage of the PAs is that one may skip
PMS criterion and simply take the limith→0 directly, in
which case the exact 1/N result is reproduced. Of course, a
concerns the large-N case, these results are only a cons
tency cross check, since we started from the exact se
anyway and thus only managed to define a PA such tha
h→0 limit is well defined, in contrast with the naiveu/h
series. But the very same PA procedure can be applied to
finite-N case to be discussed in the next section.

E. Brief summary and discussion of the convergence properties

One may now summarize the main features of this
tailed large-N investigation so that the finite-N application,
in the next section, can be carried out straight away. Reg
ing the family selection one notes, especially in Tables II a
IV, that except forF0 all families produce results that con
verge to approximately similar values at high orders, as
the anharmonic oscillator and geometric series cases. Th
fore, choosingF1 consistently in all the BEC application
appears to be an appropriate choice since this family is
the only one that allows predictions at any order~e.g., in a
computation involving only low orders ind). Again, this is
consistent with the observations drawn from the geome
series analysis.

To understand completely the reason for convergence
particularly convenient to examine the formal expressions
the large-LDE-order behavior, i.e., fork→`, as derived in
detail in Appendix B. What happens, as already explaine
Sec. IV B, is that when the LDE order is increased the
merical PMS optimal solutionsuh̄u tend to be smaller and
smaller and thus to reach the border of the convergence
dius of the original perturbative series. But at the same ti
from the study of the asymptotic behavior of the series
large LDE orders, we see that the main effect of the re
ranged LDE series is to provide an extra damping fac
1/G(11n/2) as well as a scaling factorkn/2 in its order n

coefficient. So, after conveniently redefiningh→h̃k1/2, the
newoptimizedh̃ values can tend to zero, for which the ne
LDE-resummed series is now more and more converg
@see, e.g., Eq.~4.15!# and leads to the correcth;0 result.
However, in the process of reaching smaller and smaller
ues, it may happen that another nontrivial extremum
present, is first met, in which case the convergence is
turbed or slowed down by the presence of this other ex
mum andh→0 may no longer be reached. This is precise
what happens in the case of the exact 1/N series, as illus-
trated above in Tables II and III, with this problem worseni
as the series is resummed, as shown by the results in T
VII, for the CIRT resummation applied to the exact largeN
perturbative series. In contrast, by using the IR series
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proximation the disturbing extremum that now approach
hÞ0 is removed and this problem is not present there.
nally, we mention that the recent LDE convergence stud
of Braaten and Radescu@23# follow the same lines as the
standard LDE calculations performed by us in Secs. III B a
IV B, the major difference being that those authors prefer
extremizeD^f2&c

(d) directly @see Eq.~1.9!#. In practice, the
difference between those physical quantities amounts to
tadpole term2Nh* /(4p)5^f2&u

(d)2D^f2&c
(d) , which ap-

pears in Eqs.~3.13! and ~3.21!. In the case of the standar
LDE-PMS application, like the one shown in Table II, the
numerical results are similar to ours at very large orde
ultimately exhibiting convergence, but do not give a go
approximation at the lowest orders. The reason for this fa
convergence when the tadpole term is present is the can
lation of the leading terms forh→0 as explained in detai
above. Our simple geometric series investigation has a
shown the crucial role, regarding convergence, played by
type of linear term. Moreover, these types of loop terms
also at the origin of good convergence properties observe
many other applications@28,32,33#.

V. THE FINITE- N CASE WITH RESUMMATION
OF THE LDE

Let us now turn our attention to the finite-N results and,
especially, to the improvement of the LDE within this lim
by using the CIRT resummation method discussed in
previous section. The insight gained in the detailed largeN
study will prove to be very useful in understanding the stru
ture of the optimized results and in selecting the appropr
solutions. For arbitraryN, the quantitieŝ f2&u

(k) as well as
dr c

(k) have been evaluated in detail, up to orderd4, in Ref.
@18#. The contributing diagrams evaluated in that referen
for the d perturbative expansion of̂f2&u

(k) to orderd4 are
shown in Fig. 3. In Ref.@18# all the integrals appearing in
those diagrams were obtained with the type of perturba
calculation discussed in Sec. III A with the multidimension
Feynman integrals calculated withVEGAS. These terms were
also later obtained by Braaten and Radescu@23# in a different
way, by reducing the multidimensional integrals to on
dimensional ones in some of the terms of fourth order ind
and, more recently, Kastening@44# has also revised thes
numerical results, obtaining more precise numerical res
for the integrals. From the results originally obtained in R
@18# and using the corresponding updated, higher precis
coefficients evaluated in@44#, the terms contributing to
^f2&u

(k) to orderd4, shown in Fig. 3, are given by

FIG. 3. All diagrams contributing tôf2&u
(4) at the critical point.

The black dots represent thedh2 insertions.
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^f2&u
(4)52

Nh*

4p
2d2

u2

h*

N~N12!

18~4p!3
@0.143 84#1d3

u3

~h* !2

N

~4p!6

~16110N1N2!

108
@8.069 40#

1d4
u4

h3

N~N12!2

~18!2~4p!7
@0.115 07#2d4

u4

h3

N

~4p!7

~40132N18N21N3!

648
@3.128 11#

2d4
u4

h3

N

~4p!7

~44132N15N2!

324
@1.718 59#1d4

u4

h3

N~N12!2

108~4p!7
@0.208 21#

2d4
u4

h3

N

~4p!7

~44132N15N2!

324
@2.667 46#1O~d5!, ~5.1!

TABLE X. All ordinary PMS and CIRT improved PMS optimization forc1 in the finiteN52 case.

k F0 PMS F0 CIRT F1 PMS F1 CIRT F2 PMS F2 CIRT

2 23.05916 23.98590 3.05916 3.98590
3 24.47035 25.97078 2.44730 3.10543

61.65256I 63.09300I
4 25.30592 27.03900 1.53443 1.19134 3.14286 5.22847

62.29581I 64.33683I
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where, as before,h* 5hA12d must be expanded accord
ingly to take into account all contributions shown in Fig.
The symmetry factors appearing in Eq.~5.1! can be found,
e.g., in@45#. The symmetry coefficients clearly show that th
perturbative expansion is valid for anyN, which means that
up to orderd4, the large-N results Eqs.~3.13! and~3.21! may
be recovered, within numerical error bars of about 2%. T
evaluation is easily done by consideringu to be of order 1/N
so that only (uN)k terms are retained together with the firs
u-independent term. Figure 3 illustrates well how the LD
mixes, at a given order, diagrams which normally appea
different orders in the 1/N expansion.

By settingN52 one then gets the more compact form

^f2&u
(4)52

h*

2p
1du(

i 51

3

KiS 2
du

h*
D i

1O~d5!, ~5.2!

where the coefficients areK153.221 5831025, K2
51.517 9231026, K359.665 1431028. It is worth remark-
ing that the coefficientsK1 and K2 obtained from the nu-
merical results of Ref.@18# agree with these results, als
obtained later by the authors of Refs.@23,44#. At the same
time the K3 coefficient used here, which was obtained
Refs.@23,44#, differs by about 10% from the one that wou
come from the results of Ref.@18#. In principle we can trace
this difference to the fact that five nontrivial graphs wi

5We thank B. Kastening for pointing out to us the correct valu
for the five-loop diagrams and for discussions concerning the d
culties in evaluating them.
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fiveloops enter the evaluation ofK3 ~see Fig. 3!, which re-
quire some careful calculation.5

Then, by applying the standard PMS Eq.~2.2! to Eq.~5.2!
one obtains three families, shown in Table X, in agreem
with Ref. @18#. Turning to the CIRT resummation of Eq.~5.2!
one proceeds as in the large-N case~see Sec. IV C!. By ap-
plying the CIRT improved in the context of the PMS optim
zation to Eq.~5.2! one obtains three other families, als
shown in Table X. In fact, the previous large-N analysis
strongly suggest that here also the first family with posit
real parts should be the relevant family for ourN52 predic-
tions. Indeed, if we assume that the large-order behavio
the actualN52 series coefficients should not be drastica
different from the analogous large-N series, all the fast con
vergence and scaling properties that were discussed in
IV should be approximately valid forN52 also. Then, the
first negative family in Table X is easily eliminated by th
same criteria as in the large-N case, because it again alway
corresponds to the largestuh̄u and does not exhibit any tren
toward smalleruh̄u values as the LDE orderk is increased.
Similarly, we also notice that theF1 family in Table X has
Re(h̄) substantially smaller thanF2, while we expect the
exact result to be forh→0. Moreover, due again to th
presence of the tadpole term in our procedure, from
analysis in Sec. IV we can expect that our results, altho
intrinsically limited for N52 to the first four LDE orders,
should nevertheless already be a reasonably good app
mation.

A further cross check of the consistency of our resu
without any knowledge of the exact higher order coefficie
for the caseN52 is the stability of the result when replacin
these unknown perturbative coefficients by a well-defin

s
-
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approximation. This is the result exhibited in Table X
where the unknown orderKi with i>4 were replaced by the
corresponding coefficients of the IR approximated series
~3.27!. As one can see, the stability of these results is q
remarkable, and one can even observe the slow converg
of the standard LDE-PMS to the CIRT result.

The physically meaningful real part of our order-d4 CIRT
improved resultc1.1.19 can then be compared with th
recent Monte Carlo estimatesc151.3260.02 andc151.29
60.05. Note that the standard order-d4 PMS result c1

.1.53 is also a satisfactory estimate. We note that the C
and ordinary PMS results just bound the Monte Carlo e
mates from below and above, respectively.

Finally, in Table XII we show the results forc1 obtained
by Pade´ approximants, as discussed in the last section.
expected, at first nontrivial LDE order~order 3!, only the 1/N
solution is found from the PAs, because onlyh50 is a PMS
optimization solution. As one can see, the nontrivial resu
at higher orders~5–10! of the LDE expansion in Table XII
are nicely consistent with what is independently obtain
from the standard LDE and CIRT results shown in Table
Note, however, that the PAsP@0,3# are in better consisten
cythanP@1,2#, which in fact give results only very similar to
the ones in the large-N case shown in Table IX.
n
e
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The contributions todr c
(4)52S ren

(4)(0), which enter in the
derivation of the constantc29 , Eq. ~1.6!, have also been ex
plicitly evaluated in Ref.@18# and again we refer the inter
ested reader to that reference for the details and we s
below only the final result for the renormalized, scale- (M -)
dependentdr c

(4) obtained in that reference:

TABLE XI. Same as Table X forc1 in the finiteN52 case, but
with IR largeN perturbative coefficientKi for i .3.

k F0 PMS F0 CIRT F1 PMS F1 CIRT F2 PMS F2 CIRT

2 23.059 23.986 3.059 3.986
3 24.470 25.971 2.447 3.105

61.653I 63.093I
4 25.306 27.039 1.534 1.194 3.143 5.106

62.296I 64.337I
5 25.717 27.05 1.352 1.176 3.71 5.09

62.83I 64.33I
6 25.97 27.05 1.29 1.179 4.00 5.09

63.13I 64.32I
10 26.43 27.05 1.219 1.179 4.49 5.09

63.66I 64.32I
2dr c
(4)5S ren

(4)~0!52du
h*

8p S N12

3 D2d2
u2

~4p!2

~N12!

18 F lnS M

h*
D 20.597 75G2d3

u3

h*

~N12!2

108~4p!3
@0.143 848#

1d3
u3

h*

~16110N1N2!

~4p!5108
@81.076#1d4

u4

h2

~N12!

6~4p!6

~16110N1N2!

108
@8.099 27#

2d4
u4

h2

~40132N18N21N3!

~4p!6648
@20.430 48#2d4

u4

h2

~44132N15N2!

~4p!6324
@12.041 14#

2d4
u4

h2

~44132N15N2!

~4p!6324
@17.004 34#1d4

u4

h2

~N12!2

~18!2~4p!6
@2.8726#1O~d5!, ~5.3!
al
on-

g to
which, for N52, becomes

dr c
(4)52S ren

(4)~0!5d
uh*

6p
1d2u2A2F lnS M

h*
D 20.597 75G

2d3
u3

h*
A31d4

u4

~h* !2
A41O~d5!, ~5.4!

where A251.407 2431023, A358.508 5931025, and A4
53.522 9931026. The application of the PMS optimizatio
to Eq. ~5.4! reproduces the same results as obtained in R
@18#, which are;101.4,;98.2, and;82.9 from second to
fourth order, respectively.
f.

At the same time, treatingdr c
(4) with the CIRT~from Sec.

IV C! one obtains the result6 Re@r c
(4)(M5u/3)#

50.001 003 4u2, which, together with the CIRT improved
^f2&u

(4) result and Eq.~1.6!, leads to~with errors estimated
from the integrations performed in@18# with VEGAS! c29
584.960.8, whereas the Monte Carlo result isc29575.7
60.4 @8#. To our knowledge, these are the only analytic
predictions for this coefficient to the present date. For c
sistency, note that the optimization ofdr c

(4) , including the
selection of solutions, has also been performed accordin
what was done for̂f2&u

(d) .

6Note that the scaleM5u/3 was originally chosen in the Monte
Carlo applications@8#.
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TABLE XII. PMS optimization of Pade´ approximants~based on both the original and CIRT improved series for two of the rele
families! for finite N52 case.

k P@1,2# PMS P@1,2# CIRT P@0,3# PMS P@0,3# CIRT

3 2.62 2.04 2.0160.20 I 2.32863.24 I 1.37 3.28
4 2.60 2.06 1.9860.41 I 1.98 2.32863.07 I 0.9760.34 I 3.15
5 2.6360.07 I 2.0260.07 I 1.9760.62 I 1.9460.12 I 1.5163.45 I 3.1563.45 I 1.1160.44 I 3.17
10 2.6060.04 I 2.0560.04 I 1.8260.31 I 1.8860.11 I 1.2061.65 I 3.4561.65 I 1.1560.11 I 3.27
re
re
s
ks
th
e

pr

n
o
os

em

ic
a
a
r
to

te
am
te

, o
nt
d
ne
ce
e
ca
s
t

ul
t
co
n-
w

co

e

e

y

E

in-
se-

y
he
by

ned
er-
rd
d its
.

ed
is-
IV.

her
ion
rs.
ole
n-
tion
d to

ion
nce

te-
ore
his
e-
lify
pti-
ves
he
dy

re-
her
es,
act
is
ro-
ctual

e
le
Note that we have not attempted to examine the infra
behavior of the finite-N case since its series is much mo
complicated than the large-N one. However, our previou
large-N investigation shows that the LDE already wor
well, even for the standard series, when considering only
lowest order terms. Here, only these lowest order terms w
computed so that our results, up to orderd4, can be consid-
ered good estimates even if one knows that the whole
cedure may get spoiled at very high orders.

VI. CONCLUSIONS

We have investigated how the LDE followed by a sta
dard PMS optimization performs in the nontrivial case
phase transitions of interacting homogeneous dilute B
gases described by an effective three-dimensionalf4 field
theory. This nonperturbative method has recently been
ployed in Refs.@17,18# and in Ref.@23# to determine the
critical temperature for such a system, giving good numer
results. One advantage is that the formal calculations
performed exactly as in the perturbative case. This me
that, at each order, one deals with a very reduced numbe
contributions, which are not selected according to their
pology ~like the number and type of loops!. Therefore, the
method is valid for any finite value ofN. To handle ultravio-
let divergences, the renormalization program is implemen
in the usual perturbative way. Also, an arbitrary mass par
eter consistently introduced by the method avoids any po
tial infrared problems.

The convergence properties, including rigorous proofs
these nonperturbative methods have been studied in qua
mechanics@25–28# and more recently in quantum fiel
theory @30#. However, despite the many successes obtai
with the LDE in different applications, the convergen
study in the BEC case poses additional challenges. On
the reasons is that it is difficult to establish simple analyti
links between the LDE and other nonperturbative method
the one-loop level, since these terms do not contribute at
transition point. This could arise the suspicion that the res
obtained in Refs.@17,18# for the realisticN52 case are jus
a numerical coincidence. The exact value for the linear
efficient c1 which appears in the critical temperature of i
teracting homogeneous dilute Bose gases is still unkno
@9#, although much progress has been recently made
cerning its determination@14#. Here, our aim was to prove
the reliability of the recent LDE results forc1 and c29 @18#
through a detailed analysis of the LDE convergence prop
ties.

We started our convergence study by considering the
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fective BEC model at largeN where the results obtained b
Baym, Blaizot, and Zinn-Justin (c1.2.328)@10# can be con-
sidered ‘‘exact.’’ We performed the usual perturbative LD
evaluation of̂ f2&u

(d) in different ways which allows for nu-
merical accuracy checks. By considering the asymptotic
frared behavior of the propagator we obtained a simpler
ries with exact coefficients which allows for a full
analytical analysis. Before tackling the optimization of t
BEC series we investigated how the procedure works
considering a simple geometric series. The insight gai
during this exercise proved to be very important in und
standing the family structure of optimal solutions with rega
to convergence properties. Then, the standard series an
infrared limit were optimized with the PMS criterion Eq
~2.2!, leading to reasonable results in the standard case~see
Table II!. At the same time, the numerical results produc
by the same optimization applied to the infrared series d
play better convergence properties, as shown in Table
This also shows that the optimization procedure is rat
sensitive to the actual form of the perturbative expans
series coefficients, in particular at low perturbative orde
Indeed, we emphasize again that including the linear tadp
term in the LDE-PMS procedure is crucial for a faster co
vergence and to obtain an already very good approxima
at low perturbative orders, although both procedures ten
similar results at very high orders.

We then presented an efficient all order resummat
technique, similar to the one used to prove LDE converge
within quantum field theories at zero temperature@30#. This
LDE resummation method takes advantage of contour in
gration techniques, which allow one to resum the series m
directly and thus to accelerate convergence. Applying t
contour integral resummation technique to the exact largN
perturbative LDE series seems at first, however, to amp
the numerical instabilities generated through numerical o
mization. This problem becomes more severe as one mo
to higher perturbative orders as shown in Table VII. On t
other hand, applying the CIRT to the infrared series alrea
exactly reproduces the large-N value c152.328 at the first
nontrivial order. This solution has no complex parts and
mains valid as one goes to higher orders, while all ot
families of solutions display good convergence properti
having real parts that are numerically very close to the ex
value ~see Table VIII!. In summary, this extensive analys
has shown that, for this type of series, the optimization p
cedure and convergence rate may be influenced by the a
values of the first few perturbative order coefficients. W
have shown that, for this effective BEC model, the simp
5-26
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infrared series retains all the nonperturbative information
that the LDE, augmented with the CIRT, performs rath
well. Finally, we have seen that all families display a ve
similar structure and will predict approximately the sam
values at high perturbative orders. We have also shown
the family that produces negativec1 values is easily elimi-
nated because it does not correspond to the expected
toward smalluhu values of the PMS solution. The very sam
criterion allows one to single out the values generated by
first family of positive solutions, for both the large-N and
finite-N cases. Finally, the results obtained by a differe
resummation based on Pade´ approximants, used as an alte
native to define the relevanth→0 limit from the perturbative
series inu/h prior to LDE, appear quite consistent with th
earlier ones.

More formally, our present study investigated in some
tail the large-order behavior of the LDE~e.g., in Sec. IV C
with the CIRT method or alternatively in Appendix B!, from
which we can also point out interesting analogies to as w
as differences from the LDE convergence properties in qu
tum mechanics for the anharmonic oscillator@25–28#. The
latter is described by a~one-dimensional! scalar theory with
a f4 interaction term, and as is well known its energy lev
have perturbative expansion coefficients that are factori
growing at large orders@35#. Nevertheless, as already me
tioned in Sec. II, the LDE can converge essentially beca
the PMS optimized solutions behave like a rescaling of
mass parameter with perturbative order which can comp
sate the factorial behavior at large orders. In contrast,
relevant BEC perturbative series here considered in Sec
have a finite convergence radius, such that no explicit res
ing of the mass parameter should be necessary in princ
for convergence. Nevertheless, what the LDE followed
PMS optimization is performing is to enlarge the origin
series convergence radius, and is thus qualitatively simil
in this respect to the oscillator. These properties of the L
are best exploited by the CIRT more direct resummat
method.

The final part of the work was devoted to the realis
finite-N case for which only the standard series with coe
cients numerically obtained is available. In practice, h
only the first low order contributions could be evaluated a
the comparisons performed in the large-N case show tha
VEGAS produces, in this case, accurate coefficients wh
should not completely spoil the optimization procedure. F
consistency with the large-N case we considered only th
real parts of the first family of positive solutions as the r
evant ones. Applying the CIRT to this case has improved
recent order-d4 results of Ref.@18#, generatingc1.1.19 and
c29.84.9, which are about 9% smaller and 11% higher,
spectively, than the recent lattice Monte Carlo estima
@14,15#. In any case one cannot expect to make a defini
analytical prediction, for these coefficients, from a calcu
tion involving only a handful of contributions. Nevertheles
the agreement between our improved analytical LDE res
and the recent numerical Monte Carlo results is quite imp
sive. Moreover, the consistency of ourN52 results as ob-
tained from a different resummation method~Padéapproxi-
mants! used prior to the LDE procedure is also noticeab
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Our results seem to support the fact that, analytically,
leading contributions toDTc for the BEC case studied her
can be obtained by resumming typical leading and nex
leading 1/N type of graphs as in Refs.@11# and @18#. The
better LDE numerical values may be due to the mixing
such contributions since in realityN52.

In summary, our detailed convergence study together w
the improved optimization procedure results show the pot
tial of the LDE to tackle nonperturbative calculations in fie
theory at critical points. We have explicitly shown ho
meaningful nonperturbative results for the BEC problem c
be obtained in a consistent fashion, which also works fo
general case such as the simple geometric series analyz
the paper.
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APPENDIX A: REVIEW OF THE ORIGINAL
LARGE- N CALCULATION

Let us briefly recall how the exact large-N derivation of
c1 was performed in the original calculation, Ref.@10#, in
order to exhibit the differences with the LDE~exact or ap-
proximate! evaluation as performed in Sec. III. Considerin
the original theory described by Eq.~1.8! at the critical point,
the Hugenholtz-Pines theorem imposes@7,14# r c52S(0),
whereS(0) represents the field self-energy with zero ext
nal momentum. Then one has a massless propagator an
appearance of IR divergences has to be carefully dealt w
In Ref. @10#, after applying the HP theorem, the releva
expression forD^f2& reads

D^f2&5^f2&u2^f2&0

5NE d3p

~2p!3 F 1

p21S~p!2S~0!
2

1

p2G , ~A1!

where 1/p2 represents the term with no interaction,^f2&u→0,
to be subtracted according to the discussion in Sec. II@com-
pare, e.g., with Eq.~1.9!#, and

S~p![
2

NE d3k

~2p!3
F~k!

1

~k1p!2
, ~A2!

with the ‘‘dressed’’~resummed! scalar propagator~see Fig.
1!

F~k!5F 6

Nu
1B~k!G21

, ~A3!

where
5-27
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B~k!5E d3q

~2p!3

1

q2~k1q!2
5

1

8k
~A4!

represents the basic one-loop~massless! bubble integral. At
the relevant~next to leading! 1/N order one obtains the bas
expression to be evaluated as

D^f2&522E d3p

~2p!3

d3k

~2p!3

1

p4 S 6

Nu
1B~k! D 21

3F 1

~k1p!2
2

1

k2G , ~A5!

where the 1/p2 subtraction term cancels out with the fir
order term belonging to the 1/N expansion of the term@p2

1S(p)2S(0)#21 in Eq. ~A1!. Note that, after applying the
HP theorem, all loop integrals in Eq.~A5! involve massless
scalar propagators. Accordingly, both integrals in Eq.~A5!
are IR divergent at intermediate steps, although the fi
physical resultD^f2& should be an IR~and UV! convergent
quantity. Also, the integral overk is not ~absolutely! UV
convergent: it has superficially a logarithmic UV divergenc
Thus, as emphasized in Refs.@10,11#, one should be very
careful to correctly regularize these integrals before do
standard manipulations, like typically exchanging the or
of the two integrations in Eq.~A5!. The authors of Ref.@10#
chose to work in dimensional regularization, which tak
care of both, UV and IR divergences. We thus now summ
rize the main steps of this calculation. First, one integra
over p, so that the second term of the square brackets in
~A5! vanishes, since*ddp/p450 in dimensional regulariza
tion. The integration of the nonvanishing first term in t
square brackets of Eq.~A5! gives a result whose behavior fo
d→3 is essentially given by;1/@G(d23)#, which would,
naively, give zero as a result. However, it combines with
simple pole ind23 given by the nextk integral~see below!.
More precisely, integration of Eq.~A5! gives ~omitting fac-
tors that are regular ford→3)

E ddp

~2p!d

1

p4~k1p!2

5
1

~4p!d/2

G~d/221!

G~d23!

p

sin~pd/2!
kd26, ~A6!

where the space-time dimensiond is kept arbitrary, for the
moment. One has next to deal with an integral overk of the
generic form~omitting again nonessential constant over
factors!

I f2;E ddk

~2p!d

kd26

6/Nu1B~d!kd24
, ~A7!

whereB(d53)51/8. Next, to evaluate Eq.~A7!, we make
the following change of variable:P25k2e wheree[42d,
which gives
04361
al
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ddk→ 22

e
p2d(112/e)ddP. ~A8!

Then using the basic dimensional regularization formula

E ddP

~2p!d

~P2!b

~P21R2!a

5
1

~2p!d/2

G~d/21b!

G~d/2!G~a!
G~a2b2d/2!~R2!(d/21b2a),

~A9!

we obtain after some algebra

I f2;
2p

~4p!d/2~42d!G~d/2!sin~2p~32d!/~42d!!

3B2(d23)/(42d)S 6

NuD (22d)/(42d)

, ~A10!

where, for d→3, sin21@2p(32d)/(42d)# combines with
G21(d23) to give a finite result7 proportional tou. Putting
back all overall factors, one finds

D^f2&52
Nu

96p2
, ~A11!

which is simply related toc1 via Eq.~1.5!, in agreement with
Ref. @10#.

APPENDIX B: LARGE-ORDER BEHAVIOR
OF STANDARD LDE AND PMS

In this appendix we briefly analyze the large-order beh
ior of the standard LDE, in order to exhibit some gene
properties of the LDE-PMS optimization solutions, as w
as the link with the more direct CIRT method considered
Sec. IV B.

Considering either Eq.~3.21! or ~3.27! with h* [h(1
2d)1/2, the result of its expansion to orderk in d followed
by d→1 can be written formally as@the coefficientsKn here
refer indistinguishably to either theJn of Eq. ~3.21! or theGi
of Eq. ~3.27!#

D^f2& (k)~h,u!52
Nh

4p (
n50

k

~21!n
G~3/2!

n!G~3/22n!

1
uN

3 (
n51

k

KnS 2
uN

6h D n

3 (
q50

k2n-1

~21!q
G~12n/2!

q!G~12n/22q!
,

~B1!

7Note a misprint in Eq.~27! of Ref. @10#, where the relevant term
sin@2p(32d)/(42d)# reads sin@p(d22)/(42d)#.
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where the last sum originates from the expansion of
2d)2n/2 and the upper limit of this sum takes into accou
that at orderk of thed expansion there is a term coming fro
u(u/h)n→dn11u(u/h)n and a term from (12d)2n/2. The
sums can be performed analytically to give

D^f2& (k)~h,u!52
Nh

4p
Ap

~21!k

G~1/22k!G~11k!

1
uN

3 (
n51

k

KnS 2
uN

6h D n

3
G~2n/21k!

G~2n1k!G~11n/2!
. ~B2!

The expression~B2! as it stands is particularly convenient
be optimized with respect toh at arbitrary orderk, leading to
the results shown, e.g., in Tables II–VI, X, and XI, depen
ing whether one takes the exact 1/N, IR approximated, or
exact N52 values of the relevant perturbative coefficien
Kn , given in Eq.~5.2!.

The large LDE order behavior, fork→`, of expression
~B2! can also be analyzed, to give

D^f2& (k)~h,u! ;
k→`

2
Nh

4p

1

Apk1/2

1
uN

3 (
n51

k

KnS 2
uN

6h D n kn/2

G~11n/2!
,

~B3!

where we used, to obtain Eq.~B3!, the well-known proper-
ties of the Gamma functions, such asG(2z)
or

a

ys
.

,

04361
1
t

-

522z21/2G(z)G(1/21z)/A(2p), G(z)G(12z)sin(pz)5p,
and the Stirling asymptotic behavior G(b1az)
;A2pe2az(az)az1b21/2.

Expression~B3! clearly suggests rescaling for conv
nience the arbitrary mass parameter according toh→h̃k1/2.
Of course, after such a rescaling the relevant limit is ag
h̃→0. After such a rescaling, one obtains

D^f2& (k→`)~ h̃,u!;2
Nh̃

4p

1

G~1/2!

1
uN

3 (
n51

`
Kn

G~11n/2! S 2
uN

6h̃
D n

,

~B4!

which, as expected, agrees with the CIRT ‘‘direct’’ LDE r
summation result Eq.~4.14!.

More precisely, for the simpler geometric series cases
~4.2! and Eq.~3.27!, thus corresponding to~up to an overall
factor! Kn51, the sum in Eq.~B4! can be further performed
exactly, to give exp(x2)erfc(x)21 with x[u/h @x
[uN/(48ph)# for Eq. ~4.2! @Eq. ~3.27!#. Finally, the
asymptotic expansion of erfc(x) for the relevant limit x
→` ~equivalentlyh→0) @41#:

exp~x2!erfc~x!;
1

Apx
F11 (

q51

`

)
i 51

q S 2
1

2x2D q

~2i 21!G ,

~B5!

was used at different stages in Sec. IV, for instance, to
amine the behavior of the LDE series when the linear tadp
term is included in the procedure.
an-

s.
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