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Asymptotically improved convergence of optimized perturbation theory
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We investigate the convergence properties of optimized perturbation theory, or diresqransion(LDE),
within the context of finite temperature phase transitions. Our results prove the reliability of these methods,
recently employed in the determination of the critical temperalyrdor a system of a weakly interacting
homogeneous dilute Bose gas. We carry out explicit LDE optimized calculations and also the infrared analysis
of the relevant quantities involved in the determinatiorngfin the largeN limit, when the relevant effective
static action describing the system is extended t&N)O§ymmetry. Then, using an efficient resummation
method, we show how the LDE can already exactly reproduce the knownNargsult for T, at the first
nontrivial order. Next, we consider the finitd=2 case where, using similar resummation techniques, we
improve the analytical results for the nonperturbative terms involved in the expression for the critical tempera-
ture, allowing comparison with recent Monte Carlo estimates of them. To illustrate the method, we have
considered a simple geometric series showing how the procedure as a whole works consistently in a general
case.
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I. INTRODUCTION resum the leading IR corrections. This happens, for example,
through the use of-expansion techniques in order to com-
Scalar field theories are extremely important in the studypute corrections to the critical exponents that control the sin-
of symmetry breaking and restoration in different branchegular behavior of physical quantities near the critical point
of physics such as cosmology, particle physics, and conl@s is familiar from the theory of critical phenomelr&d), the

densed matter physics, where they may represent inﬂatonfrgeN method, and other approachiésr a review, see Ref.
Higgs particles, quark-antiquark bound states, Cooper pairs,

bosonic atoms, and molecules. In most cases the vacuum : . . .
expectation value of those scalar fields represents an ordggd that is associated with the perturbation theory break-

parameter that signals phase transitions associated with sym—lwn problem is the s]:tudy of h.OW |r_1teract(|jons aI_t er the criti-
metry breaking or restoratigii]. cal temperatureT,) of Bose-Einstein condensatigBEC).

. .. Due to its nonperturbative nature, this is clearly a nontrivial
In general, one important problem we have to deal with b y

. C L roblem. On the other hand, studies related to the BEC
when studying phase transitions in field theory regards th roblem are particularly important nowadays due to the re-

reliability of perturbation theory and its eventual breakdown.cant experimental realization of BEC in dilute atomic gases
In this case, a nontrivial prob_lem arises since nonperturbat!vgtOr reviews, see, for instance, RéB]). The experimental
methods must be used. This is the case in those physicgkthievement of BEC has led to many theoretical investiga-
situations involving a second order or weakly first ordertions which make use of methods developed to treat finite
phase transition, where we have to consider the problem aémperature quantum field theories. At the same time, due to
infrared (IR) divergences that become progressively morethe high experimental precision with which the parameters
important as one approaches the critical temperature, fronmay be tuned, BEC experiments provide an important labo-
above or below, and that will unavoidably spoil any pertur-ratory to test many methods as well as models developed to
bative attempt to compute relevant quantities there. In thostreat those theoriesee, e.g., Ref6]).

situations we must find appropriate methods to take into ac- The studies concerning the equilibrium properties of BEC
count the large IR corrections, present in the form of largecan be addressed by means of a nonrelativistic effective
field fluctuations. There is a variety of nonperturbative meththeory described by a complex scalar field. In the dilute
ods that can be used in order to account for these correction$it, which is the regime involved in these experiments,
including the recent dynamical Boltzmann-like approach thaPnly two-body interactions are importaffi], and one may
deals directly with the large field fluctuatiodg]. At the then_con5|der_the following (1) invariant finite temperature
same time, the most common methods, at equilibrium, try tg-uclidean action:

An issue that has attracted considerable attention recently
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where, in natural unitsg is the inverse of the temperatuye, TC=T0{1+clan1’3+[céln(an1’3)+c§]a2n2’3+ O(a®n)},
is the chemical potential, anah represents the mass of the (1.4
atoms. At the relevant low temperatures involved in BEC,
the internal degrees of freedom are unimportant, and this cawhere T, is the ideal gas condensation temperatiig
be taken as an effective model of hard core spheres wittF 27/m[n/{(3/2)]*3, n is the density{(x) is the Riemann
local interactions for whicla represents the-wave scatter-  zeta function, and,,c;, andc} are numerical coefficients.
ing length. A similar structure is also discussed in Re]. As far as the
The field ¢ can be decomposed into imaginary-time fre- numerical coefficients are concerned, the exact valire
quency modesy;(x,;), with discrete bosonic Matsubara —64w{(1/2)¢(3/2) %*/3=19.7518 was obtained using per-
frequenciesv;j=2j/ B, wherej is an integer. Near the tran- turbation theory[8]. On the other hand, the other two coef-
sition the chemical potential becomes very small as comficientsc, andc) are sensitive to the infrared sector of the
pared to the temperaturéu]<T) and, since the correlation theory and consequently cannot be obtained perturbatively,
length tends to infinity, the distances are large compared tbut they can, through the matching calculation, be expressed
the thermal wavelength =27 B/m. Therefore, the non- in terms of the two nonperturbative quantitias and R
zero Matsubara modes decouple and one is left with an efwhich are, respectively, related to the number density
fective action for the field zero modeg=0) given by[7] (¢ o) and to the critical chemical potential., as shown
below. The actual relation between the two nonperturbative
coefficients and these physical quantities is giverj&ly

2ma N )
lﬂo"’w[‘ﬂo%] ,

(1.2

3 * 1 2
SEd:ﬁJdX ¢0 _ZmV M
c,=—12873£(3/2)] 3k (1.5

where sy stands for the field’s zero mode. Recently, Arnold, and

Moore, and Tomsik [8] have argued that when naively go- 2 7

ing from the original action$g) to the reduced actiorSg) C3=— 5[5(3/2)]75/31354r 5[5(3/2)]78/3(192773@2

by ignoring the effects of nonzero frequency modes one

misses the effects that short distances and/or high-frequency At e

modes have on long-distance physics. For the critical tem- + 5 §(2)[L(E2) ] £(312), (1.6)
perature of condensation as a function of the density

[Tc(n)], at second order, these effects can be absorbed intoghereb’, in Eq. (1.6) is

modification of the strengths of the relevant interactions,

which means that one should consider the more general form , 1 5 1 5 5
for the reduced effective action E€L.2) by=327 Eln(128rr )+ 5—7277 R—967°k [£(1/2)
1
_ 3 2 In2
Sl 518 | ¢ X[ wg(—zwﬁv ‘“3) Yo P "2 ], (.7
2 2\/;
2m7a ) . .
+Za?[¢3 ol with K,=—0.135083 353 73. The quantities and R are

related to the zero Matsubara modes only. Therefore, they
can be nonperturbatively computed directly from the reduced

+ BFvacuums action S which, as discussed in numerous previous appli-
cations, can be written as

+OWg ol V2. (4% 1))

(1.3
, (19

1 1 u
§|V¢|2+ Erbared’z"' Z(¢2)2

— 3
where Z,, is the wave-function renormalization functiong S¢_f dx
incorporates the mass renormalization functigg,incorpo-
rates the vertex renormalization function, afg.,,mrepre- Where¢=(¢1,¢,) is related to the original real components
sents the vacuum energy contributions coming from the inof ¢y by  ¢o(X)=VMT/ Z,[ p1(X) +ida(X)],  Tbare
tegration over the nonstatic Matsubara modes. The=2mus/Z2,, andu=487ramTZa/Zf,,. The vacuum contri-
o(¥3 z/xoleo|2,(w3 0)®) terms represent higher order in- bution appearing in Eq(1.3) will not enter in the specific
teractions in the zero modes of the fields. As shown in Refcalculation we do here and it has been omitted from Eg.
[8], these terms will give contributions to the density of order(1.8). In the largeN limit considered in the first part of this
a® and higher, and therefore do not enter the oafecalcu-  work, and also in Refd.10,11], the field ¢ in Eq. (1.8) is
lations considered here. By matching perturbative oefer- formally considered as havingN components &;,i
results obtained with the original acti@ and the general =1,... N). In this case, the Bose-Einstein condensate ef-
effective actionS.¢, the authors of Ref[8] were able to fective action Eq(1.8) is theN=2 special case of the gen-
show that the transition temperature for a dilute, homogeeral O(N) invariant action.
neous, three-dimensional Bose gas can be expressed at nextThe three-dimensional effective theory described by Eq.
to leading order as (1.8) is super-renormalizable and requires only a mass coun-
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terterm to eliminate any ultraviolet divergence. In terms ofsince one no longer has the problem of summing over the
Eq. (1.8), the quantitiesx and R appearing in Egs(1.5—  Matsubara frequencies, which is a hard task when the num-
(1.7) are defined by ber of loops increases.
Recent numerical Monte Carlo applicatiorst,15 have
A% (P*)y—(d%)o predicted values foc, that are close to 1.300n the other
K=—"u u (1.9 hand, some analytical applications have predicted values
such as~2.90 obtained with a self-consistent resummation
and method[7], ~2.33 obtained with the IV expansion to lead-
ing order[10], and~ 1.71 obtained with the same expansion
; 3(0) to the next to leading ordgd1]. The LDE was first applied
R=—=—"12- (110 to order 5%, producingc;~3.06[17]. Recently, the calcula-
2 u? tion has been extended to ord& with the results-2.45 at
order 5® and~ 1.51 at orders* [18]. The coefficientc) was
where the subscripts and 0 in Eq.(1.9) mean that the den- evaluated with Monte Carlo techniqués4] and the pre-
sity is to be evaluated in the presence and in the absence @fcted value obtained from those simulations is 75074.
interactions, respectively, antl(0) is the self-energy with This quantity was also analytically evaluated with the LDE
zero external momentum. Since these physical quantities aig Ref. [18], where the encountered numerical values are
dependent on the zero modes their evaluation is valid, at the 101.4, ~98.2, and~82.9 at second, third, and fourth or-
critical point, only when done in a nonperturbative fashion.ders, respectively. An ordef? application to ultrarelativistic
As discussed in the next section, the relation betwgeand  gases has also been perfornj@d]. The LDE has been es-
2(0) comes from the Hugenholtz-PingsP) theorem at the pecially successful in treating scalar field theories at finite
critical point. temperature$20,21] as well as finite temperature and den-
Equation(1.4) is a general ordea? result with coeffi- sity [22]. Several different applications performed with the
cients that, therefore, depend on nonperturbative physics VieDE are listed in Ref[18]. Recently, Braaten and Radescu
«x andR. In principle, to evaluate these two quantities one[23] have also used the LDE, with different optimization
may start from the effective three-dimensional theory, giverprescriptions, to evaluaf€, at both large- and finité¥ lim-
by Eq.(1.8), and then employ any nonperturbative analyticalits, while Kleinert[24] has used the variational perturbation
or numerical technique. theory, which is a variation of the LDE, obtaining the value
When quantum corrections are taken into account, the fulg; ~0.91+0.05. As we do here for the finits-case, he con-
propagator for the effective three-dimensional theory readssidered up to ordef* contributions, which include five-loop
diagrams. However, none of those authors considers resum-
G(p)=[p*+r+3edp)] ™, (1.1)  mation techniques to accelerate convergence and they do not
evaluate the coefficienty , which it is also computed in the
wherep? represents the three-momentum ahg{p) repre- present work.
sents the renormalized self-energies. At the transition point As far as the application of the LDE to the determination
(p?=0), the system must have infinite correlation length,of the BEC transition temperature is concerned, since the

and one then has first papers applying the LDE method to this problem
[17,18, an important question was raised and remained un-
[G(0)] *=[rc+2q0)]=0. (112 answered. This question regards the convergence properties

of the method in this application for the BEC problem, which
This requirement leads to the Hugenholtz-Pines theorem rds in fact related to the convergence of the method in critical
sultr.=—3%,,(0). Sincer is at least of ordeu it would be  theories in general. Actually, this is a timely and important
treated as a vertex in a standard perturbation type of calcujuestion regarding the applications of the LDE in field theo-
lation in which G(p) = 1/p? represents the bare propagator.ries, since the first efforts were concentrated mostly on the
This shows that perturbation theory is clearly inadequate t@nharmonic oscillator problem at zero temperature, where
treat the BEC problem at the transition due to the presence afgorous LDE convergence proofs have been prodii2ée-
infrared divergences. One must then esort to nonperturbativeg]. The extension to the finite temperature domain was also
methods like numerical lattice Monte Carlo simulations, ana-considered by Duncan and Jor@9)], who used the anhar-
lytical 1/N, or the linears expansionLDE) [12] adopted in  monic oscillator partition function. Only very recently has a
this work (see, for instance, Reff13] for earlier work on the  convergence proof been extended, but for a particular pertur-
method. The problem is highly nontrivial since the bative series case, to asymptotically free renormalizable
Hugenholtz-Pines theorem automatically washes out aljjuantum field theories at zero temperat[86]. Here, as in
momentum-independent contributions, such as the one-loopur previous paper Ref31], our interest is to probe conver-
tadpole diagrams, which constitute the leading order of mosgience in the vicinity of a phase transition, such as for the
approximations. In practice, this means that the first nonBose-Einstein condensation problem presented above. This
trivial contributions start with two-loop momentum-
dependent self-energy terms. However, having reduced the
original model Eq.(1.1) to the effective three-dimensional !See Ref[16] for an extension of these works to th€1(and
one Eq.(1.8) makes it easier to tackle those contributions,O(4) cases.
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study should also settle the questions regarding the correctdsing the same resummation method, the o@feresults for
ness of our original LDE applicationgl7,18, since by c,; andc’ obtained in Ref[18] are improved and the results
showing convergence in the larglecase we also establish obtained seem to converge to the lattice Monte Carlo esti-
the reliability of our finiteN results, as originally studied in mates of Ref[14]. Our conclusions are presented in Sec. VL.
those investigations. The LDE convergence in the laige- For completeness and comparison purposes we also include
extension of the BEC problem has also been recently adwo appendixes, one where the original lafgelerivation is
dressed by Braaten and Rade$@@]. The differences be- reviewed and another one to detail useful properties of the
tween their approach and ours will be discussed in soméarge-order behavior of the LDE.
detall in the text.

The literature show$28,32,33 that in most applications || | pg AND THE INTERPOLATED EFFECTIVE SCALAR
it is already possible to establish simple relations between THEORY FOR BEC
the LDE and other nonperturbative methods at o@lethere
one-loop diagrams are present. In fact, one can show that in Let us start our work by reviewing the application of the
those cases the LDE either exactly reproducésrésults or  LDE method to our problem. The LDE was conceived to
produces very close numerical results. Here, the BEC probireat nonperturbative physics while staying within the famil-
lem poses an additional difficulty since, as discussed abovéar calculation framework provided by perturbation theory. In
the first nontrivial contributions start at the two-loop level in practice, this can be achieved as follows. Starting from an
the self-energies. As we shall see, it is not easy in this case @¢tionS one performs the following interpolation:
establish simple analytical relations for the quantities being
computed, like those given, e.g., in Ref88,32,33, and the S—S5=0S+(1—-6)Sy(7), 2.9
problem must be treated differently. However, as we are go-
ing to show in the coming sections, our numerical resultswhereS, is the soluble quadratic action, with an addeg-
improved with an efficient resummation technique, exactlytimizable mass termy, andé is an arbitrary parameter. The
converge in the largét limit and seem to also converge in above modification of the original action somewhat recalls
the arbitraryN case. the usual trick consisting of adding and subtracting a mass

This paper is organized as follows. In Sec. Il we brieflyterm to the original action. One can readily see thatat
recall the LDE method and present the interpolated versior 1 the original theory is retrieved, so thétactually works
of the action Eq.(1.8) to be studied throughout the paper, just as a bookkeeping parameter. The important modification
following the recent applications performed in Rdfs7,18. is encoded in the field-dependent quadratic te®gf»)
In Sec. lll, we carry out the formal evaluation ¢#%), in  which, for dimensional reasons, must include terms with
three different ways. The first is the usual order by order typamass dimensionsz). In principle, one is free to choose
of calculation, which is familiar from perturbative calcula- these mass terms and within the Hartree approximation they
tions, and is in fact the only possible one for the realisticare replaced by a direcor tadpole type of self-energy be-
finite-N case. The second uses the type of resummation fdore one performs any calculation. In the LDE they are taken
miliar from nonperturbative methods such as the Hartree anés being completely arbitrary mass parameters, which will be
the 1N approximations. These two procedures generate twéixed at the very end of a particular evaluation by an optimi-
series for the largé¥ limit of (?), [in which cases in Eq.  zation method. One then formally pretends thdabels in-
(1.8) is extended toN components whose coefficients, teractions so tha®, is absorbed in the propagator whereas
which are numerically obtained, can be usefully compared agS, is regarded as a quadratic interaction. So one sees that
a cross check, helping to establish the numerical reliability othe physical essence of the method is the traditional dressing
the finiteN series. In the same section, we also consider thef the propagator to be used in the evaluation of physical
asymptotic infrared and ultraviolet behavior of the seriesquantities very much as in the Hartree case. What is different
which, as we shall see, is a very useful approximation allowbetween the two methods is that within the LDE the propa-
ing at the same time a fully analytical analysis. In Sec. IV wegator is completely arbitrary, constrained only to cope with
first examine the LDE optimized perturbation procedure in ahe so-called direct term@.e., tadpoleswithin the Hartree
general case, considering a simple geometric series in ordepproximation. So, within the Hartree approximation the rel-
to get insight regarding the convergence structure of the opevant contributions are selected according to their topology
timal results. Then, the largd-BEC series are optimized from the start.
and a resummation technique which accelerates convergence Within the LDE one calculates in powers éfas if it was
is introduced. By taking the largd-result forc, (obtained in  a small parameter. In this respect the LDE resembles the
Ref.[10]) as a reference value, we proceed with the investidlargeN calculation since both methods use a bookkeeping
gation of convergence, showing that the LDE together withparameter which is not a physical parameter like the original
the resummation technique can already exactly reproduce trmupling constants and within each method one performs the
largeN result at the first nontrivial order, provided that it is calculations by formally working as iN—%« or 6—0, re-
applied to a specific approximation fully exploiting the infra- spectively. Finally, in both cases the bookkeeping parameters
red limit properties. Having explicitly shown the LDE con- are set to their original values at the end which, in our case,
vergence properties within a limit where an exact result eximeansé=1. However, quantities evaluated at any finite
ists we turn our attention, in Sec. V, to the realistic firite- LDE order from the dressed propagator will depend explic-
case where no similar infrared approximation is availableitly on 7, unless one can perform a calculation to all orders.
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Up to this stage the results remain strictly perturbative andnan diagrams contributing to the self-energy, as explicitly
very similar to the ones that would be obtained via a trueshown in Ref[18]. Then one can choose

perturbative calculation. It is now that the freedom in fixing

7 generates nonperturbative results. Sifogoes not belong So:f d3x1[|V¢|2+ 2] 2.5

to the original theory, one may require that a physical quan- 2 K ' '

tity @ calculated perturbatively to ordéf be evaluated at o

a point where it is less sensitive to this parameter. This criobtaining
terion, known as the principle of minimal sensitivifyM$S),

. o . 1 1 1) ou
translates into the variational relati¢84] — f 3y~ 24 = 2420 Do o2y g2y D7 2y2
do
=0. (2.2 5
dn |5 521 +§A5¢2 : (2.6)

The optimum valuey which satisfies Eq(2.2) must be a  \yhere A; represents the renormalization mass counterterm
function of the original parameters including the couplings,for the interpolated theory, which depends on the parameters
which generates the nonperturbative results. Another optimiz, and . It is important to note that by introducing only extra
zation procedure, known as the fastest apparent convergenggss terms in the original theory the LDE does not alter the
(FAC) criterion (see also Refl34]), may also be employed. polynomial structure and, hence, the renormalizability of a
It requires, from thekth coefficient of the perturbative ex- guantum field theory. In practice, the original counterterms
pansion change in an almost trivial way so as to absorb the ngw

K and ¢ dependence. The compatibility of the LDE with the
M= ¢ s 2.3 renormalization program has been shown in the framework
=R of the O(N) scalar field theory at finite temperatures, in the
work of Ref. [21], showing that it consistently takes into
that account anomalous dimensions in the critical regime. Note
also that we have treatedas an interaction, since this quan-
tity has a critical valuer(,) that is at least of ordes.

Requiring the original system to exhibit infinite correla-
tion length at the critical temperature means thafl aand
'5=1 (the original theory, the full propagato6(?(p), given

[®®—p*-D]|,_,=0, (2.4

which is just equivalent to taking thieth coefficient(at &
=1) in Eq. (2.3 equal to zero. For the interested reader
Refs. [17-23,25-33 provide an extensivébut far from
complete list of successful applications of the method to
different problems. (D (p)=p2+ n? — 5724+ 3(9) -1

It is important to recall that the basic reason for the con- G P =lp o= dn 2P (27
vergence of the LDE method in the quantum mechanics cas@ust satisfyG(?(0)"*=0. This requirement implies
(anharmonic oscillator energy levels typicall25—-2§ re-
lies on the fact that the LDE modifies perturbative expan- or=-38(0), 2.9
sions in such a way that the PMS or FAC optimized values of = ) ) )
the initially arbitrary mass parametéihe equivalent ofy which is equivalent to the Hugenholtz-Pines theorem applied
herg essentially follow, at large perturbative orders, a patternto the LDE.
of rescaling this mass with the perturbative order, which is

such as to compensate the generic factorial grdssj of ll. LDE EVALUATION OF  (?){”
the original perturbative expansion coefficients at large or- IN THE LARGE- N LIMIT
ders. As we will see in Sec. lll, in the present BEC case the

relevant perturbative expansions do not exhibit factorially Let us now turn our attention to the explicit LDE evalua-
growing coefficients, but nevertheless the reasons for convetion of (¢2){? in the largeN limit. In practice, the larg
gence of the LDE share some similarities with these casegvaluation can be performed in different fashions which in-
since the LDE followed by application of the PMS also in- clude the conventional order by order perturbative evaluation
troduces at sufficiently large order a certain scaling behavioand the more economical closed form evaluation in which
with the perturbative order, in such a way as to modéy-  the whole largeN series is resummed. The first, purely per-
tend the convergence radius of the original perturbativeturbative method in the standard Feynman graph way is also
series. the only possible one concerning the finieealculations,

Let us now write the interpolated version of the effectivewhere different classes of diagrams contribute. The second
model described by Eq1.8). Before doing that let us rewrite technique is usually employed in approximations such as
pare=T +A where A is a mass counterterm coefficient Hartree and I where it is possible to sum a certain class of
needed to remove the UV divergence from the self-energyyraphs based on the type of loop terms they contain. Having
This counterterm is the only one effectively needed withinresummed a given class, one may easily obtain a perturbative
the modified minimal subtraction MS) renormalization result by expanding the series to a given ordersin Of
scheme adopted here for the evaluation of the relevant Feymourse, both methods must lead to equivalent analytical re-
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dp 1
2\(K) _
(0 Nf (2m)° p2+(7*)?

. X - dp [2M(p)—=M(0)]
Nf (2m)?®  [p?+(7*)%? 3.2

where we have used E(.8) and> (" denotes the-bubble
self-energy given by

FIG. 1. The Feynman graph for the relevant quantipf), at
1/N order, with the resummed propagatdashed lines 2 ( 5u/)n+1f a3l 1

(n) -
=P (2m)° [12+ (7)2]

6

sults but, as we shall see, the final numerical results can be
different at high perturbative orders. This is due to the fact
that both perturbative expansions contain coefficients that are

" f d? 1
(2m)3 [$*+(n*)?]

numerically produced. Since our optimization procedures 1 n
may be sensitive to the numerical precision of those coeffi- > . 3.3
cients it will be instructive to compare them in detail. Finally, [(s+p—D)"+(7")"]

one can move one step further by obtaining a series with

exact coefficients that allows for a fully analytical investiga- which is then of ordek=n+1 in 5. Note that the mass
tion. This is made possible by considering an approxmatlorcountefterm is a redundant quantity in the evaluation of
which avoids complicated integrals appearing in the exac{#?) because this quantity depends on the difference
calculation due to the presence of dressed propagators in

terms of self-energies, which are usually cumbersome be- SMp)—2D0)=[=(p)+ (“>(p)]
yond some given order. Such a simpler series, with exact 00)+ 30
coefficients, is typically obtained if one considers the physi- —[2gv(0 0], @4

cally motivated deep infrared behavior of the dressed scalar
propagators. In this section we explore these three possiblghere 3 {")(p) is the divergent self-energy. For a general
evaluations. renormalizable theory, the quantity{"(p) represents all
counterterms associated with the parameters of the theory
_ _ o (such as masses and coupling consyaassvell as the wave-
A. Standard perturbative evaluation of (%), function counterterm associated with any eventual
Let us evaluaté$?)(? in the usual perturbative way. The momentum-dependent pole. At the same tiB&)(0) in-
relevant contributions, in the lardédimit, are shown in Fig.  volves the same counterterms except for the wave-function
1. Using the full propagator one may write this quantity, atone. However, as we have already emphasized previously, in

the critical point, as the three-dimensional case the only type of primitive diver-
gence requires only a mass counterterm, which is the same
d3p for 3{M(p) and V(0). This means that in our case
20(8) _ 2\(8) _ ) div : div e .
() _;1 ()= f (277)36( (p) s (p)—32M(0) is always a finite quantity. It turns out that
this quantity is also scale independent as discussed in Ref.
d®p N st 3@ p)] [18]. Since, however, the individual contributiab{{)(p)
=f 3 2. 7.2 > > ; contains a divergence, we regularize all diagrams with di-
(2m)" p*+(7") P+ (7") mensional regularization in arbitrary dimensiahs 3— 2e,

(3.2 where in the modified minimal subtraction renormalization
scheme, the momentum integrals can be written as

wheren* = 71— 5.' Note that with this prescriptic_m one has d3p e7EM 2\ € d’p

to evaluate only diagrams that would appear in the usual f SH( ) f ot (3.5

perturbative calculation since the quadratig? vertex is au- (2m) . (2)

tomatically taken into account whes* is expanded to the

relevant order ind. whereM is an arbitrary mass scale ang¢=0.5772 is the
One can express the larfje-calculation more conve- Euler-Mascheroni constant.

niently, in the generalization of E¢1.8) to O(N) symmetry, Then, from the use of standard Feynman parameters for

by consideringi=u’/N. In this case the nontrivial contribu- the integrals over momenta, we can write the general form
tions, in the largeN limit and expanded to LDE ordés, are  for each of the two terms 6%, Eq. (3.2), that depend
given by on the self-energy. The first such term can be expressed as
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e™ 2 e(n+2)

(7*)?

- f d®p  EM(p)  (—ou)" T (N(L/2+ €) + 2€)
@m)P [P+ (727 3(67*)"  (4m)¥2)

J'ldXX(l_X)73/2+e+n(l/2+ €)

0
! 1

XJ’ dy(l_y)n(1/2+e)*l[y(l_,y)]1/27efn(l/2+e)J- dal[al(l_al)]f(llkre). .
0 0
' 12 ! n-2 w(t n-3

XJ’O dan[a’n(l—an)]*(l +E)f0 dB.B7 “ILB(1-B1)] fo dB.B5

1
X[B1Ba(1—Ba)] Y2 - fo dBn_1[B1B2- - Bn-1(1=Bn-1)]1 YA x, v, Bj)s
(3.6)

where

(1-x) (1-81)  B1(1-52) (B1Bz .. Bn-p)| ]| "nW2re+2d
f(Xiy!ailBj):[X+ y(l—y)[y+(1_y)(a1(l—al)+az(l—a2)+-..+ a’n(l_an) )H .
(3.7
At the same time, the=0 term is given by

e’M 2\ €(n+1)

(7*)?

- f d*p  20)  (—6u)"T(N(1/2+ €)+e—1/2)
@m [pP+(7*)?  3(67*)"  8m(4m¥0D

fld’)’(l_ ,y)n(1/2+e)—l
0

1/2 1/2 ! 1/2+ ! 1/2+
X[y(1—y)]Home +E)foda1[al(1_al)]_( E)"’fodan[an(l_an)]_( 9

1 1 1
X fo dB.BY A Bu(1-By)] fo dB2B5 [ B1Ba(1—B2)] Y2 - fo dBn_1

X[B1B2: - Bn-1(1=Bn-1)]1 Y%G(y,;,B)), (3.9
|
where _Nf 825 (p) :52(u,)2 1
. (1 gy p P2+ ()22 ¢ 188m)°
1
Q(%ai,ﬂj)=(—_[7+(l—7)(—_ 1
Y1=9) ay(1=a) X| 26| ——|+2-41n2|.
,31(1_,32)4_“. 27
012(1— az) (31@
(BB Br_q) | ]| N2+ +e-172] In the p=0 case the pole shows up in the gamma function,
+ a(l—a,) )H which becomed’(2¢€) for n=1. Integration yields
n n
(3.9 Nf 200 Lw)? 1
p [p?+(7*)%]? 7" 18(8m)°
It is not very difficult to see, by counting the superficial
degrees of divergence in E.3), that the only ultraviolet « £+6 In M +2+41n(2/3)|.
divergence shows up in the one-bubbie=(1) contribution. € 27*
In Eq. (3.6) the UV divergence for this case hides in the term (3.10

x(1— ) ~32retn(l2t€) gnd appears explicitly upon integra-

tion by parts overy. After that one can take the usual ex- The last two equations also reproduce the results found ana-
pansion in powers o and perform a numerical integration lytically in Refs.[17,36. As already mentioned, although
over the Feynman parameters to obtain for the first, nonvakq. (3.10 and Eq.(3.11) diverge, their sum is finite and
nishing, term in Eq(3.6) the resulf17] scale independent. Together, they give the contribution
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SIS W(p)—3@(0)] X103 C;= (2.3t_(;.96)>< 10 34 Cig=(2%+2)X 10°%,
—Nj 5 T and Cq=(5*5)X10 . Note that starting withC,; the
P [P+ (7")7] errors increase considerably as the dimension increases, as
()? 1 expected with a fixed number ®EGAS parameters.
=— 52—* ———41In(4/3).  (3.12
7" 188m) B. Closed form evaluation of( ¢2)(?

All higher loop contributions are finite and one can safely Let us now write the whole largi- perturbative series in
take e=0 in Egs.(3.6) and (3.8). Note that in the above a closed form which resembles the usu&l tésummation of
perturbative series, which is generated order by order fronfreynman graphs. For completeness and comparison purposes
the standard Feynman graph procedure, the first nontriviale rederive, in Appendix A, the original largéresult found
contributions start at ordef?u?, due to the fact that the first by Baym, Blaizot, and Zinn-JustifilO]. Note, as already
order expansion term, linear du [i.e.,n=0 in Eq.(3.9],is  emphasized, that one basic difference between the original
automatically canceled as a consequence of the HugenholtiargeN calculation and the LDE one is that the latter auto-
Pines theorem Eg2.8). The number of Feynman variables matically introduces an infrared regulated propagator, from
at each order ik+ 2 for Eq.(3.6) andk+ 1 for Eq.(3.8). We  the explicit mass termy. Apart from its main purpose of
then get the ordes?® result in the largeN limit: defining in that way the relevant LDE seriesdn/ 7 [cf. Eq.
i (3.13], this also has the advantage of explicitly regularizing

- the intrinsic infrared divergence of the corresponding expres-
+0(57). sion of T; in the original calculationg§10,11. However,

(3.13 similarly to the latter, there still remain some subtleties with

' this closed(resummeg form of the perturbation series, re-
Except for the first coefficient, where we have the exact related to the fact that the integrals over momenta are not ab-
sult from Eq.(3.12, all the other coefficients for=2 can  solutely(UV) convergent, as we shall examine below. Thus,
obtained be only numerically. One well known numerical after applying the Hugenholtz-Pines theorem, and summing
routine that can be used to evaluate tkdimensional inte- all the leading largeN contributions shown in Fig. 1, one
grals over the Feynman parameters in H§) and(3.8) is  obtains for the expression equivalent to E8}2) the result
the Monte Carlo multidimensional integration routvieGAs 5
[37]. However, one should bear in mind the&tGAS may not NCIN d°p 1
be so reliable for a very large number of dimensions, since (9007 = 3 2 *)2
je num | (2m)° p*+ (")

VEGAS, as a Monte Carlo integration method, inherently
makes use of finite numbers of points and iterations, and SuN d3p d3k 1
these cannot be increased indefinitely in practice in order to - f
improve precision. So for integrals withvary large number 3 (2m)® (2m)° [p*+ (7*)%)?
of dimensiongfor example, the last coefficie;q involves
a 39-dimensional integralthe VEGAS routine may lead to X
wrong estimates for both the numerical value of the integral
and the corresponding error bar estimate obtained from the
code(which also depends on the number of points and itera- -~ 1
tions used Fortunately, as we will see below, all the terms K2+ (5*)?
contributing at largeN can be computed alternatively in a
much easier wayand to arbitrary precisiorn terms of one-
. ) . . .. where
dimensional integrals, thus assuring a much better precision
for the results, and we do not need to worry about any spe-
cific detail of any numerical routine to evaluate E¢3.6) d3q
and (3.8). The coefficients obtained this way, which we de- B(k,n*):j (2m)3 [a*+(7*)?][(
note byJ; and which are given in the following subsection, ™ 1q 7
will be the results used in all of our largeé-calculations. 1 r( Kk )

N7z*  uN 2 SuN
2,(20)_ _ N It
(GN== G 05 2 G 5,

1
(k+p)2+(7*)?

SuN -1
1+ TB(k,n*)

, (3.19

1
k+a)%+(7*)%]

TheseJ; coefficients can then be contrasted with the results = ——arcta

47k (3.19

obtained, e.g., witlvEGAS, which we show here for illustra- 2n*

tive purposes only, obtained using*lioints with 100 itera-

tions and fixed VEGAS parametersC,;=(7.249-0.001)  with k=|k|, and similarly forp,q in Euclidean space. Con-
x107%, C,=(2.050+0.003)x10°° C3=(6.32-0.01) trary to the corresponding expression in the massless case
X108, C,=(2.048+0.003)x10°°, C5=(6.85-0.01) #5=0 (see Appendix A here it appears not possible to inte-
X101, Cg=(1.709+0.002)x 10 12 C,=(3.561+0.006) grate Eq(3.14) exactly due to the nontrivial dependencekin
X101 Cg=(6.48+-0.01)x10 16 C¢=(1.0630.002) and#* of the resummed propagatBi(k, »*). But one can
X101 C,5=(1.560+0.005)x 10 1°, C,;=(2.59+0.04) at least still do the first integral exactly over the momentum
X 10721 C1,=(5.00-0.09)x10 2% C;3=(9+2)x10 %,  p.In Eq.(3.14, the integral ovep is finite ind=3, and can
Cu=(5+1)X10 %2 C;s=(5+1)x10 %% C;=(1+7) be easily performed to give

043615-8



ASYMPTOTICALLY IMPROVED CONVERGENCE @ . .. PHYSICAL REVIEW A 68, 043615 (2003

N7*  6uN 1 d3k ;eries in Eq(3.1_3, which is due to the presence of .the extra
(2D =— P f first order term indu, independent ofy. Note that this con-
m ( tribution is just theopposite in sign, of the exact larght
SuN -1 result [10] [see Eqg.(A1l) in Appendix A]. This apparent
1+ TB(k’ 77*)} difference between the two approaches to the |&fgeertur-
bative series deserves a detailed discussion, to which we now
turn our attention. In fact, the above difference is only a
) (3.16  consequence of integrating expressi@i14) over p first;
namely, if performing the expansion in powers&fand then
integrating first overk in Eq. (3.14 (which is formally
equivalent to what is done in the standard perturbative order-
by-order graphical approach in the previous subsetite

3 (8my*)) (2m)°

X

1 1

X —_
k24+4(79*)?  K*+(n*)?

while the remaining integral can be performed numerically.
After a little algebra one gets

N7*  uN uN = SuN\’ linear term indu automatically cancels out. More precisely,
<¢2>&5): ~ +——+o E Ji( ——1 one obtains in this case an integral of the tyggust denotes
™ 96w 3= 67 an arbitrary mass parameter here, which is equaf‘tin the
(3.17  LDE calculation
where thel; coefficients are given by
Nué J 4% ! (3.20
i ~Nu - , .
3 1\'[= 22 i (277)3 (k+p)2+§2 k2+§2
Ji= a- dz————-—[A(2)]
1673\87/) Jo = (Z2+1)(Z%+4)
(3.18
_ and in dimensional regularization the two terms in the large
with parentheses just cancel out, as can be seen by making a shift
k—k—p in the first term[One can also check with a stan-
A(z)= Earctan; (3.19 dard cutoff regularizatio_n t_hat the inte_gral in_ E§.20 gives_
z a zero result, though it is a less immediate calculation.

Therefore, depending on the order in which the two integrals
andz=k/»*. Analytically, the two ways we have presented jn Eq. (3.14 are performed, one may get different results,
for obtaining the perturbative evaluation 6$?){” are ex-  which is precisely the manifestation of an ambiguity due to
pected to be equivalent and any difference may arise onlyhe fact that the integrals are not absolut@ly/) convergent,
from the numerical evaluation of thg; andJ; coefficients.  as pointed out in Refd.10,11]. Actually, this problem is
In this respect one expects, which are evaluated from more basically rooted in the fact that in obtaining E214)
one-dimensional integrals, to be more accurate hgnand  one has formally resummed a series containing UV diver-
it will be instructive to compare the two results. We havegences, considering, e.g., the separate contributions in the
numerically evaluated; with both MATHEMATICA [38] and  last bracket of Eq(3.14 [see also Eqs(Al) and (A2) in
MAPLE, where we can compute the integrals with arbitraryAppendix A]. Therefore, the actual point is that one is not
precision, using diverse integration routines available inallowed (in principle) to exchange the perturbative, all order
both, in order to check the reliability of the results. The firstsummation, for integration, which in our calculation is re-
19 values obtained ar@;=7.24858<10 >, J,=2.04919 flected in the different resulting perturbative series. Going
X107%, J3=6.3213% 108 J,=2.04829<10°° Js  back to the standard perturbative expansion, as performed in
=6.85295¢10 1, J5=2.3454<10 2,  J,=8.16524 the previous subsectiofEqs. (3.2—(3.8)], the perturbative
X101, J4=2.88069<10 15, J4=1.02726<10 ', J,,  parameter expansion in powers &fis made first, and the
=3.6958% 10 18 J,,=1.33955¢10° %% J,,=4.88611 UV divergence(which appears only at first nontrivial order
x1072% J,5=1.79203% 10 %2, J,,=6.60406<10 %% J;5  &%u? as discussed therenay be taken care of by the stan-
=2.44405¢10 %5, J;6=9.07903< 10?7, J,;,=3.38400 dard renormalization. On the other hand, if we formally re-
X107 28 J,4=1.26514<10 ?°, andJ,;=4.7428810 3L,  expand Eq(3.14 in a power series in, we can immediately
ComparingC; to J;, one sees that the multidimensional see that the integral defining the coefficient of the first order
VEGAS routine produces accurate results up 05 but the term linear in  ué, originating from [1
values quickly deteriorate at large orders. This is because the (SuN/6)B(k,»*)] *~1, has momenta routing that can-
VEGAS routine does not handle well integrals with a too largenot be consistent with the actual perturbative graph: rather,
number of dimensions, for a relative(gnd computationally considering for instance the first term of the last bracket in
viable) small number of points and iterations, as explained aEq. (3.14), one should havep+k—p for consistency(see
the end of Sec. Ill A. Therefore, in this work, we shall con- Fig. 1), since this first order term idu implies that the
sider only the series with the more accurdteoefficients, as resummed propagatddashed lingis pinched to a point, so
computed from Eq(3.18. that there is nd-momentum flow. This would give again a

However, one notes that E(B.17) displays a more sig- zero result for the coefficient af, just for the same reasons
nificant difference with respect to the “direct” perturbative as Eq.(3.20 is vanishing, while formally performing the
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integral with p+k instead gives théNu/(9672) term? To  consider the asymptotic behavior in the bubbleN)1/ap-

summarize, while it will appear very convenient to formally proximation of the relevant Green functions. For instance, in

perform the integral ovep first in Eq.(3.14), it is consistent a theory with a renormalized coupling one obtains, after

only provided one subtracts the spurious linear term from theenormalization, a scale-dependent running coupling. A very

naive result Eq(3.17). The correct perturbative series thus sketchy Green’s function calculation in the above approxi-

reads mation involves(after renormalizationtypical momentum
integrals of the form

SuN

—g) , (3.2)

]!
1—Bog(M)InWl , (3.22

N7*  uN o
2(8) _ _ - )
(60 =- 7 to3 23

f dgF(g®)g(M)

which has the same form as H8.13. An expression similar

to Eq.(3.21) was also found by Braaten and Radescu in Ref. o L
[23]. where F(g“) is model dependent and characteristic of the

Green function considered(M) is the running coupling3,
CA o ) ) 2 (8) is the first order renormalization gro§RG) B-function co-
. Asymptotic infrared and ultraviolet behavior of (¢);, efficient, dg(M)/d In M=8,g3M)+---, and M is an arbi-
Before considering the relevant BEC perturbation seriegrary renormalization scale. When formally expanding Eqg.
Eqg.(3.13, or equivalently Eq(3.21), in the largeN limit, let ~ (3.22 in a perturbative series ig, one gets integrals of the
us recall some expected general properties of large-order peflerm
turbative expansions, as seen from a diagrammatic point of
view. This digression will emphasize an important difference
between the generally expected large-order behavior of per- 3 q?
turbative series in most renormalizable models and the be- > g(pﬂ)('\/')(ﬁo)pf dg?F(g?)InPl — |, (3.23
havior of the above BEC specific series. P 0 M
In field theory one has to face the problem of the pertur-

bative series being often only an asymptd@tionconvergent
g y ympta gen which leads to a factorial behavigi at largep. More pre-

series, which, in most cases, is due to factorially growing" 2) can be expanded in a power seriesin(1/q?)

perturbative coefficients at large orders. If the coefficient<iSelY:F(d _ : :
ghthe infrared(ultraviole, so that Eq(3.23 gives series of

1 1
Borel summablé39,40. In practice, this means that the per- € form [40] ~gP (= Bo)Pp! or ~gP(0)Pp! for

turbative expansion alone does not define uniquely the phys|279€P; respectively, for the infrared and ultraviolet behavior.
cal quantities being expanded, so that the series has to [sePnsidering, for example, an asymptotically free theory, i.e.,
complemented by intrinsically nonperturbative contributions With Bo<<0, one obtains a non-sign-alternating series which
containing typically terms with an exponential dependence irfS thus non-Borel-summable, as far as the infrared behavior
the (inversé expansion paramet&a0]. This is problematic IS concerned. This fact reflects the important infrared sensi-
because, apart from the special case of exactly solvable ity of such theories. o .
integrable models, in most theories those nonperturbative NOW, & drastic difference between the previous illustration
terms are at best known only on phenomenological ground' theo4r|es with a renormalized coupling and the effective
However, to investigate the large-order behavior of the perBEC ¢" model in three dimensions considered here is that
turbative seriesand therefore guess at least the form of non-0r the latter only the mass is renormalized, so that the cou-
perturbative missing contributiopsit is often sufficient to  PIling is finite and dimensionful, as pointed out previously.
consider a class of approximated graphs, expecteu From this, and following the above line of reasoning, one
proved in some specific modgl® give the dominant con- expects that the relevant BEQ_perturbatlve series coeff|-_
tributions to the perturbative coefficients at large order. InCi€Nts at large orders do not display any factorial behavior.
dimension d=2, 3, and 4 renormalizable theories, such Therefore, a more convergent series should appear, as is con-
dominant graphs are typically given by the next-to-leadingfirmed, for instance, by the form of the exact lafgepertur-
term in a 1N expansion, where, roughly speaking, the mattePative series in Egs(3.13 and (3.21), whose coefficients
fields are in arN-vector representation, and it is sufficient to @PPear clearly not very different from those of a geometric
series. Also, from the above general considerations, a similar

behavior of the series is expected as well for arbitriiry
Thus an interesting question is whether one could obtain
7=0 in Eq.(3.14), this ambiguity problem was consistently solved from such large-order be_:hav_lor estimates a sensible approxi-
simply by using dimensional regularizatidsee Appendix A for ~Mation of the exact series iAu/7 that would be relevant
details: in contrast, the rather subtle point is that whes 0 in Eq. ~ Within the LDE method. . .

(3.14 it appears at first perfectly consistent to start with fhe Let us therefore investigate some analytically simpler but
integration. Nevertheless, this does not give the correct result, indd?hysically motivated approximatioriexpected to be asymp-
pendently of whether or not one uses dimensional regularizatiorfotically dominant of the large-order behavior of the power
until one correctly identifies what the actual perturbative series irseries indu/ 7, as generated from Ed3.16). B(k,7) be-
éul » should be, as explained above. haves as

°Note that in the original calculatiofi0], corresponding to taking
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1 1 K2 this is completely analogous to the cancellation in the origi-
a —*( - St (k< 7n*), nal calculatior 10], in dimensional regularization with no IR
B(k, 7*)~ ™5 12(7*) cutoff mass, of the pole 1d(-3) (see Appendix A for de-
' 1 4p* tallS)
—<%— Lz+ . ) (k>75*), Next, note that by taking they—0 limit of expression
87 k (3.25 or (3.26), one recovers the correctNLexact result Eq.

(324 (A11). In other words, we see here that the massless limit
for the IR (k<7*) and UV (k> 5*) limits, respectively. n—0 of the LDE series consistently reproduces the exact

This means that the deep IR behavior of the series should d%rgeNthresullt, V]YhiCh. ifs exgectedl stinceB t??h!‘DEh féié.l .
essentially given by a k-independent term [1 plays the role ol an infrared reguiator. but this check 1S 1m-

+ SUN/(48m5%)] L, replacing the corresponding term in portant as regards the question of the possible convergence
Eqg. (3.14. Retaininé only this simplest IR behavior, the re- of_the_ LDE series to the_ exact_ result, once a nontri_vial opti-
maining integral overk becomes straightforward, and ac- mization of the LDE series, with respect to the arbitrary re-

cordingly we obtaifthe relevant IR approximated series as gmaining mass parametey, Is performed, to be examined in

) ; ) the next section.
simple geometric series With this aim, it is instructive to reexpand, in a power

-1 series ofou/ »*, the above two different IR and UV approxi-

N 7* SuN SuN
()=~ o - - mations forA($?)(?. First, taking the IR limit Eq.(3.25
4T 24wy 48wy gives the geometric series #u/ 7*:
279* 77*) SuN Na*  SuN X SuN\
x| - ypd a7 MR o
47 4w 9pg? ()R = a7 3 ;1 GI( pyee (3.27)
__N7" 6uN SuN |}, whereG,=[ (6472)(8 )]~ L. Numerically, the first fiveG,
AT 9672 487 y* ’ coefficients are G;=6.2991x 10 %, G,=2.5063<10 °,

(3.25 G3=9.9724x10°8, G,=3.9679% 10 °, and Gs=1.5788
: x 10 1% which are interesting to compare with the corre-

where the first order term, independent of has been ex- Sponding exact coefficients in E¢8.21). One can see that
plicitly subtracted from the naive integral result §§.16  the first low order coefficients of Eq¢3.27) and (3.21) are
for consistency, as discussed in detail in Sec. I[hBte that ~ Of very similar magnitudes, and we have further checked that
the purpose of the last parenthesis in the first equality in EgSignificant departuredi.e., about an order of magnitude or
(3.25 is to retain, for clarity, the separate contributions of More between the IR-approximated and exact laNyper-
the two propagator terms in E¢3.16]. Note also that Eq. turbative coefficients occur only at rather lajggeater than
(3.16 is UV finite, so that the result Eq3.25 is indepen-  O(8™)] orders. In other words, from this comparison one
dent of the integration method used, and either dimension&@Xpects the IR-approximated series, which has a convenient
regularization or another integration method leads to thénd simpler geometric form, to be a very good approxima-
same result. tion of the exact larg® series. This is a strong indication

Similarly, we can still integrate Eq3.14 exactly when that the detailed nonasymptotitnfrared behavior of the
taking the UV limit of the propagatoB(k,s*)~(8k)~!  scalar propagator should play essentially no role, as could be
from Eq. (3.24). One obtains physically expected on general grounds, and as will be fully
confirmed by our numerical investigation below.

N7* N7* The same expansion for the UV [imi8.26 reads simi-
(PR=- 7+ [my(7+4y?)—8In(2)(1+y%)  larly

4 23

N#*  SuN Su
SouN a7 AN 4| oY
(9672) Y
2

v_vherey_E4877*/(N5u). Whe_n p_erforming theo i_ntegration Xlos(ﬂ) +o, (3.29
first, all integrals are UV finite ind=3 and again the;#0 37*

mass explicitly regularizes the IR divergences. Note, for in-
stance, that in both Eq$3.25 and(3.26), the 1/* andz*  Where one can see in contrast that the coefficients are already
from the first and second integrals, respectively, cancel ouguite different from the exact series E.21) at low order,
so that we may expect the asymptotic UV limit of the propa-
gator to give a less sensible approximation than the IR one.
3Note that, in close analogy with Eqe3.22 and (3.23, we ap-  FOr completeness it is useful to consider alternatively the
proximate only the nontrivial resummed propagaBi{k, »*) ac- direct evaluation of EC](314) (i.e., not as a perturbation
cording to Eq.(3.24, and keep the exadt, 7* dependence of the series in du/zn). Taking thus the exact expression for
remaining integrand. B(k, 7#*) instead of its simpler IR or UV limit, th& integra-
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c1m®) potential difficulty of the purely perturbative expansions Eq.
(3.21) or similarly Eqg. (3.27). Note that these armverse
IR — (alternated series in the mass parametey thus with ana
2sp UV priori finite convergence radiug, * [i.e., for u=1 these
20 series are(absolutely convergent only for 5|> 7, when

exact considered as series for complex values of the arbitrary mass

15 parametern. But, as discussed above, ultimately the exact

result is expected to be recovered #pr-0. This situation is

0.002 0.004 0.006 0.008 0.01

n* not much different from the anharmonic oscillator case,
where typically the energy levels have perturbative expan-
'sions in powers of\/m* (A being the coupling andh the
mas$ with, moreover, factorially growing coefficients at
large perturbative orders, but where nevertheless the LDE
converge$25-28 to the exact result, thanks to an appropri-
ate rescaling of the mass parameter that is consistent with the
PENT ) PMS optimized solutions. We will examine here how the
IR and UV finite ind=3). These(numerical results for the | pg procedure followed by the standard PMS optimization,
reference value=1 and as function of;* are illustrated in Eq. (2.2, manages in fact to avoid this—0 potential prob-
Fig. 2. As one can see, both the IR and UV approximationsiem with the basic perturbation series, which is one of the
as given in Eq.3.24, have a behavior that is somewhat main results of the present paper. This is where the infrared
different from the exact function Eq3.14 for very small 555 0ximation is a useful guide: while its perturbative form
7", although all expressions correctly give the exact result agq (3.27) exhibits just the same feature as the exact series
7" =0. However, although it is not visible on Fig. 2, the IR gq. (3.21), the former geometric series is known to all or-
and UV approximations appear to be very good approximagers, and obviously itsy— 0 limit is perfectly well defined
tions of the exact function for larges* ~O(1), which isin - 5nq gives the correct exact result, as can be seen by going
the range where their respective perturbative expansiopack to its original form Eq(3.25 discussed in Sec. Il C.
forms start to be valid. o _ But no such resummation is knovenpriori for the relevant

To summarize this subsection, introducing an IR regulatof,ontrivial N=2 series, where only the first few perturbative
massyn#0 as is done from the LDE procedure, together withorgers inu/+ are known, and thus only this information can
the deep IR limit of the propagator E(B.24), in Eq. (3.14) be used to define the LDE procedure.
leads to perturbative series that are very close to the exact Thus, before considering the LDE of the actual BEC se-
largeN one in Eq.(3.21). The only subtlety when imple- (jgs it appears very instructive to first examine the same
menting the LDE within the convenient resummed laNje- | DE procedure performed on a simpler model which shares
closed form Eq(3.14) is to recall that one should be careful many similarities with the relevant BEC problem. We will
in exchanging the perturbative series summation with integee that the example below illustrates very well the basic
gration, since the resulting integral E@.14) is not (abso-  yeasons for the successr eventually failurg of the LDE
lutely) UV convergent. The consequence is that, e.g., th@ollowed by the PMS optimization method in the general

7" —0 limit of expression(3.16 does not commute with case, beyond the specific BEC problem considered in this
taking the limit »* —0 before performing any integration, paper.

i.e., as is done in the original lard¢-calculation(see Ap-

pendix A). This may be considered as reminiscent of the

infrared sensitivity of the theory, even if it is not as severe as

in the above mentioned models with a running coupling, Let us examine the properties of the LDE and subsequent

leading to divergent series with factorially growing perturba-PMS optimization in a general case by considering the fol-

tive coefficients. lowing function which admits a simple alternating geometric
series expansion:

FIG. 2. Comparison between the naive IR and UV propagato
approximations Eqg3.25 and(3.26), and the exact numerical in-
tegration of Eq(3.16), before subtracting the spurious contribution
Nu/(9672).

tion can be performed only numericalipote that it is still

A. A simple example of the LDE-PMS convergence

IV. LARGE- N OPTIMIZATION, RESUMMATION, 1 X

1 o0
- - — = _ n
AND CONVERGENCE PROPERTIES d(x) X (15%) ” +n21 (—x)", (4.1

As discussed in the Introduction, the study of LDE con-
vergence properties in the BEC problem is much more comfor which the expansion form is almost like our IR geometric
plicated than in the pure anharmonic oscillator daXe-2§. series Eq(3.27), for u=1 andx=1/5*, apart from overall
In principle, both models are described by a scaiamodel  different normalizationgcompare, e.g., with Eq3.21) or
in one and three dimensions but in the BEC case the model i8.27)]. Clearly, the exact expression in E@.1) tends to
used to study a phase transition. However, if the LDE works,— 1 for x—; thus the goal is to examine whether the LDE
one expects that reasonable numerical results should be oprocedure followed by the standard PMS optimization,
tained, converging to the “exact” largd- result c;  which uses only the series expansion form in Eg§l) at
=87/[3¢(3/2)"%]=2.328, evaluated in Ref10]. Before successive perturbative orders, is able to reach such a result
proceeding, it is useful to point out an essential aspect andnd in what way. To make contact with the LDE series we
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TABLE I. LDE of the simple alternating geometric series E41). PMS optimization results, at different
LDE ordersk.

k O S1 S2 S3 A S5
1 V2 -2
2 1.69743 —1.12996
+0.167336
3 1.81088 —1.00296 —1.11978
+0.129109
4 1.87082 —0.959082 —1.06361
+0.076116 +0.0465028
5 1.90768 —0.950095 —1.02417 —1.05508
+0.03643 +0.0499
6 1.93258 —0.954501 —1.00183 —1.03612
+0.01086 +0.04017 +0.019
7 1.95052 —0.9630 —0.99069 —1.01992 —1.03154
+0.00447 +0.02932 +0.02416
8 1.96405 —0.9719 —0.9861 —1.0085 —1.02313
+0.01304 +0.01929 +0.023 +0.0096
9 1.97462 —0.9797 —0.9851 —1.0012 —1.01516 —1.0205
+0.0174 +0.0114 +0.0193 +0.01346
10 1.9831 —0.9861 —0.9859 —0.9968 —1.0088 —1.016
+0.019 +0.0056 +0.0154 +0.0141 +0.0055

consider the series in E.1) with x=ud/ »* [except in the is signaled by a first member that lies on the real axis. This
—1/x term on the right-hand side of E(#.1) where we take pattern was also found in the anharmonic oscillator applica-
x=1/9*], followed by an expansion in power series®fn  tions[28] and in the finiteN applications to the BEC case
which one takess—1. The result of this LDE at arbitrary [18].

orderk can be expressed entirely analytically in this cesse (i) Despite the fact that th@aive expansion at arbitrary
alsd' Appendix B: finite order has a finite convergence radjus<1 [namely,

the LDE at orderk only uses the information of the right-

_ 1)k
O (x=uln)W=— E\/; -y hand side of Eq(4.1), where the series is absolutely conver-
x 0 D(12=k)I(1+k) gent for|x|<1], the LDE-PMS procedure clearly converges

T'(1-n/2+K) to the right result forx—o (equivalently »—0) and the

k
+ E (—x)" convergence is quite rapid in this case.
n=1 F(1=-n+k)I'(1+n/2) (iii ) Although most of the PMS solutions do converge to
4.2 the correctx— oo result, there is a family of real solutioi®®
that clearly converges to a different result2).

and the PMS optimization performed order by ordep to (iv) Some of thelcomplex solutions converge more rap-
orderk=10) is shown in Table I. From this table, we can jqly than others. In particular, at order 3 one of the solutions
draw several important observations. is already very close to the exact result, and also one of the

(i) Applying the PMS optimization condition Eq2.2 10 1,5 rea| solutions that does converge to the exact result,
®(x) generates complex solutions. In addition, all solu- \which appears only at odd LDE orders, is not the best one.
tions can be arranged into families which span the complexote also that it is the real part which converges to the right
plane. In general, a new family arises at even orders and thigsult. However, to obtain those results one must consider
all, real and complexy values. In fact, the imaginary parts
of the complex optimized values play an essential role and,
Appendix B, namely, the Gamma function ratio(— n/2+k)/ for instance, suppressing even a small imaginary part_ re_:sults
I'(—n+Kk) in place ofl"(1—n/2+k)/T'(1—n+k) appearing in Eq. ina completely wrong anq unstgble result fo_r the optlm!ze_d
(B2), due to the fact that Eq4.1) does not have the extra factor of series. As we shall investigate in m‘?fe qua'l below, this is
ué in front of the series. Because of this, nontrivial PMS solutionsbecalise’ for_ convergence of the series, it is the valye|of
dd(x)®/dx=0 of Eq.(4.2) already start at LDE ordek=1 (see (|7 *) thatis relevant. _ _

Table ). But apart from that this difference only affects in very ~ We shall now investigate in more detail the basic reasons
minor ways the qualitative behavior discussed below, in particulafor the main LDE convergence resuit) above. First, note
the large-LDE-order behavior of the simple seri@<) with respect  that in Eq.(4.1) we added an extra termxtt »*, since it

to the corresponding actual BEC series. vanishes forx—o. In the relevant BEC case, as already

“Note a slight difference in Eq4.2) with respect to Eq(B2) in
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discussed in the previous section, this term has a very clegfsymptotic expansion of erfc)( for the relevant limitx
physical interpretation, as it corresponds to the tadpole., o expgderfc(x) ~ 1/(yax)[1+O(1/x?)] [see also Eq.
graph. In the present case it may be considered only as @®5) in Appendix B, that the first order tern®((L1/x)/kY?)
mathematical trick, which plays an important role for CON-compensates exactly the linear term, giving in E4.4)
vergence. Indeed, when suppressing this extra linear “massfi)(x)~—1+O((1/x2)/k), while omitting the linear term
term, one finds for the LDE-PMS in place of the resultsgives insteadp (x) ~ — 1+ O((1/x)/k*?). Although the latter
shown in Table 1—0.5625 and—0.6574£0.153, e.g., al  properties result from taking the somewhat extreme liknit
LDE ordersk=2 and k=3, respectively; and at ordéc " . \hat is quite remarkable is that this behavior is already

=10 the best solution is-0.97208-0.283, while other so- \q|| ghserved at very low orders, as the above comparison of
lutions are still about 20% away from the exact result. Thus,, merical PMS optimization in Table | illustrates.

the additional linear term clearly substantially increases the \1qre generally, one can also understand from &qd)

speed of convergence. First, it is clear that nontrivial PMSpe main transformation operated by the LDE on the original
solutions already start at order 1, while they start only alseries: while the latter had a finite convergence radius, for
order 2 when suppressing this term. But this is not the ma|n7]|>1 the LDE provides an extra damping factoi (1
reason for this faster convergence. Note that at very large n/2) which allows one to safely reach larged values

order, sayk~100, the numerical accuracy from both proce- gqyivalently smallef | values from the new perturbative
dures(i.e., with or without the additional linear tepntends series, so that eventually the relevant limjt-0 may be

to become essentially equivaleexcept that the incorrect approached. Indeed in practice, namely, at fikiteders, all

solution~2, see(iii) above, is absent in the procedure with of the PMS solutions_yof Eq.(2.2) corresponding to Table |

the linear term suppresspdowever, it is evidently crucial t th in the first col ding to th
to have a procedure such that the very first few LDE orderéexcep € ones in the irst column corresponding 1o the
correct solution, as will be discussed bejaiend to have

already give reasonably reliable results, and also to gain a 2
order in the PMS solution, when we consider the relevangmaller and smallef»| values (although rather slowly de-
N=2 BEC series for which only the first few perturbative créasing ask is increased. _ .

orders are known. The essential role of the linear term is A lastremark on the LDE behavior of the simple example
easily understood when expanding tfexac} result in Eq. (4.1) concerns the occurrence of the incorrect PMS solution,

(4.1) for largex: as indicated ir(iii) above. Clearly, this results directly from
the presence of the additional linear term: in the absence of
1 X 1 -1 the latter, these extra solutions disappear from the LDE-PMS
PX)=—3— A+ x I+5] =-1+ O(1/x?) result at any order. Actually, these are reminiscent of the fact

(4.3 that Eq.(4.1) (before LDE is performedhas another extre-
mum atx=—1/2 (i.e., =—2). In the most general case

such that forx—o (57— 0) the first ordetO(1/x) term can- Where one would have no ideapriori, e.g., of the sign of
cels out. Now what happens is that this cancellation remainte correct solution, this feature may be considered as a
after introducing the LDE procedure, thus leading to a fastefrawback of our procedure. But in fact, it is easy to get rid of
LDE-PMS convergencksee remarkii) aboved, even though this incorrect solution, simply because one knows that the
the LDE modifies the structure of the perturbative expansiorsolution we seek should be foy—0. In contrast, the PMS
and, as already mentioned, uses only the perturbative infoPptimized values at successive LDE ordersorresponding
mation from Eq.(4.1). This can be understood on basic to this extra solution are always such tha{ is maximal,

(4.2 values do not exhibit the expected trend toward smaller and
‘ s smaller values: on the contrary, the correspondinigvalue
Dd(x=uln)® ~ — n (—x)"k is (rathe_r slowly increasing akis mcreased.
7 koo XKY2D(1/2) A1 T(1+40/2) The important point is that, as we will see below, all of

the above properties will be exhibited similarly by the more
complicated BEC series and are, therefore, a very useful
+exp(x?k) erfa(xk¥?)— 1, guideline. In particular, the cancellation due to the additional
linear term as observed above, the behavior with the LDE
(4.4 orderk of the PMS solutions, including the behavior of the
incorrect PMS solution, all occur similarly in the more com-
where erfck) is the standard error functio1], and this plicated cases of the actual BEC LDE series, with an ex-
large-order behavior in Eq4.4) is obtained after some alge- pected much faster LDE convergence. These are important
bra by using standard properties of the Gamma functionsemarks concerning the LDE application since, as already
(see also Appendix B Furthermore, it appears that this emphasized, the difference between our original applications
largek behavior of Eq.(4.4) exhibiting the scalingk? is  Refs.[17,18 and the one performed in Ré23] amounts to
rapidly reached: for instance, the difference betweerthe fact that the latter authors optimiaé$?)(? in Eq.(1.9),
(—1)MT(1/2—k)/T(k+1) in Eq. (4.2 andk Y%7 in Eq.  which differs from($?)(? by an equivalent linear term.
(4.4) is already less than 4% fde=3. Analyzing thus from In the next subsections, we switch to the study of the LDE
Eq. (4.4) the largek behavior, one can derive by using the performed on the actual BEC series in the lakgdimit.

T XKV (1/2)
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With this purpose we will considef$?)(? as given by the exact coefficients known to all orders. By applying the stan-
closed form series E¢3.21), and alternatively also its infra- dard PMS Eq(4.5) to this simpler equation one obtains the
red approximation form Eq3.27). These two quantities will  results shown in Table IV. This table has exactly the same
again be optimized with the standard PMS criterion Eg.characteristics as Table Il except for the positive real numeri-
(2.2). For completeness we also show, with one examplegal values, which are much closer to the exact la¥gealue
how the alternative fastest apparent convergence method Ecy,=2.328 47.
(2.4) generates similar results. We then present in Sec. IVC a Let us try to examine at this stage tfeventual conver-
way to further rearrange the LDE series, by fully exploiting gence structure of the LDE as applied to the lakgdimit
the above explained behavior of the PMS optimized soluseries, namely, the results presented in Tables II, lll, and IV.
tions, which eventually further accelerates the convergenctn both cases the family structure is very similar to the one
due to the fact that it can recover directly the large-LDE-found for the simple geometric series example in the previ-
order behavior and consequent gope-0 properties of the ous subsection, as well as in the studies that have proved the
infrared approximation, with the advantage of being appli-LDE convergence in the anharmonic oscillat@8]. For in-
cable in a general case to more arbitrary series. This tectstance, we also see in the present case the appearance of a
nique is then used to treat both the complete closed form andew family at even orders, such that all of them start with a
the infrared approximation C{fd)z)&a), as introduced, respec- real solution and become complex at the next order, the ex-
tively, in Secs. IlIB and Il C. For comparison purposes anception beingF0, which has only negative real solutions,
alternative resummation procedure, based on Rgpeoxi- and F4, which has only positive real solutions. As men-
mants[42], is also studied in Sec. IV D. Finally, we analyze tioned before, the complex parts arise as a consequence of
all results to draw conclusions in Sec. IV E about the con-ssolving the polynomial equations generated during the opti-
vergence structure of the LDE method. mization procedure and are mathematically acceptable. We
refrain from trying to attach any physical significance to the
complex part of the optimat, values and instead of consid-
ering only completely real solutions we take the optimized
In order to perform a numerical analysis of the optimizedre(c,) as the relevant quantity for the evaluation Bf,
solutions for(¢?){?, one first expands E¢3.13 to the  which is a strictly real quantity. Also, in the geometric series
desired order ir5. As usual, one then ses=1 before op- application above, we saw that only the real parts of the
timizing. This is the LDE part of the procedure. It can be optimal solutions converge to the expected real value when
performed either by explicit order-by-order expansion, orx—co. Considering all complex solutions also has the advan-
equivalently, more formally, by following the general struc- tage of giving a prediction at any order. Further, we note that
ture of the LDE expansion at arbitrary ordeas presented in  all families whose real parts are positive start with values
Appendix B, leading to the result E¢B2). Like the simple  close to~2.0 and then seem to follow similar patterns as the
geometric series considered above, E41), the equation perturbative order increases. In contrast, considefiy
for (¢ is basically a series in powers 06¢)*/»*"Y,  would bring important qualitative changes regarding the
so that the PMS and fastest apparent convergence procedui@gical temperature shift in relation to the ideal gas value,
will also generate algebraic equations of orderhose math- AT.=T.—T,, since the sign of this quantity was also a

ematically acceptable roots form a set of optinjavalues.  source of controvers}g] for some time until recently, when

B. Standard optimization

Applying the PMS condition Eq2.2) to <¢2>&k), most work started to predict positive values for the critical
temperature shift. It appears clear tidl is just the equiva-
d(?)M lent of the SO (wrong solution discussed in the simplest
T =0, (4.5 geometric series case, which was eliminated because it does
mo=1 not correspond to they—0 expected behavior. As we will

see below, the same criterion allows us to eliminate this so-
or the fastest apparent convergence criteriot?)  |ution without ambiguity. Pushing further to much higher
—(¢?¥ =0, computed aw=1 [which is again analo- orders, we obtain for the exactN/series case E¢3.21),
gous to taking thekth coefficient in Eq.(2.3), with @ e g. at LDE order 100, that most of the positive roots give a
=(¢* equal to zerpgenerates the optimal results. Table solution whoséreal par} is ~2.2, as well as a few solutions
Il lists, to order 5%° all families obtained by applying the that are far from reasonable values, which we assume only
PMS optimization to the standard closed form expansiorreflect the numerical limitation of the problem at hand. In-
given by Eq.(3.21). For completeness we compare, in Tabledeed, to obtain these results the numerical procedure in-
11, results generated with the PMS optimization and the fastvolves first numerically solving the one-dimensional inte-
est apparent convergence procedures for the same quantigrals related to theJ; coefficients in Eq.(3.21). As
This table clearly shows that both optimization criteria gen-emphasized, this has been done with great care with the
erate compatible solutions that seem to converge to identicahaximum precision allowed byATHEMATICA [38] and/or
results. We comment that this pattern was also observed iMAPLE. Yet one cannot expect the results to be completely
all remaining cases considered in this work, so we shall constable once the LDE is carried out to very high orders. Al-
sider only the PMS optimization E@4.5 from now on. In  though the integration in E43.18 may in principle be done
addition, we can get more insight by considering our infraredo arbitrary accuracy, the limitation comes about later in the
approximated geometric series E§.27), which has simple process of finding the roots of high order polynomial equa-
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TABLE Il. Standard LDE at largéN, Eqg. (3.21). PMS results forc,, at different orderg, obtained with all families.

k FO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
2 -2163  2.163
3 -2698 1879
+0.169
4  -2945 1713 1.962
+0.061
5 —3.087 1642 1.913
+0.071  +0.029
6 —3.179  1.620 1.870 1.935
+0.196  +0.008
7 —3244 1622 1.843 1.928
+0.293  +0.067  +0.001
8 —3292 1636 1.829 1.921  1.935
+0.369 +0.128  +0.029
9 -3329 1654 1.825 1913 1936  1.946
+0.429  +0.184  +0.062
10 -3358  1.675 1.828 1.908  1.938  1.950
+0.478 +0.233 +0.102 +0.0217
11  -3.382  1.696 1.836 1.907  1.940  1.950 1.966
+0.519 +0.278 +0.139 0.058
12 -3402  1.715 1.845 1.909  1.941  1.950 1.972
+0.548 +0.313 +0.174 +0.088  +0.029
13 -3419  1.733 1.856 1913 1.942  1.950 1.974 1.983
+0.571 +0.344  +0.208 +0.114  0.050
14 -3433  1.750 1.868 1919 1942  1.952 1.976 1.988
+0.594 +0.374 +0.234 +0.141  +0.073  +0.023
15 -3.445  1.765 1.880 1.926  1.943  1.956 1.978 1.992 1.997
+0.610  +0.393  +0.260 +0.168 +0.098  +0.048
16 —3.456  1.780 1.891 1.934  1.944  1.960 1.981 1.995 2.002
+0.629 +0.4168 +0.282 +0.184  +0.119 +0.068  +0.021
17 -3.466  1.792 1.903 1.942 1944  1.966 1.984 1.998 2.006 2.010
+0.638 +0.433  +0.302 +0.210  +0.140 +0.083  +0.040
18 -3.474  1.804 1.913 1.950  1.945  1.972 1.988 2.000 2.009 2.014
+0.649 +0.449  +0.321 +0.229 +0.159 +0.104 +0.059 +0.019
19 -3482  1.815 1.924 1.959  1.945  1.978 1.992 2.004 2.012 2.018 2.020
+0.658 +0.463 +0.337 +0.246 +0.174 +0.121 +0.078 +0.038
20 -3.488  1.825 1.933 1.967  1.945  1.984 1.997 2.007 2.016 2.021 2.025
+0.668 +0.473  +0.351 +0.264 +0.193 +0.138 +0.094 +0.053 +0.017

tions, which is a notoriously unstable numerical problem in

In contrast, the results in Table IV illustrate how good the

general. So it is rather the optimization procedure, as impliedR approximation is, although from a perturbatively in-
by the LDE and PMS which is to be carried out numerically, equivalent approach, and indicate that the LDE series in Eq.
which appears sensitive to numerical accuracy at very higl@3_25) do converge to the correct result. Pushing the LDE to
orders. Nevertheless, from our analysis all results performe[;hgher orders, we obtain for E¢3.27), for instance at order
with MATHEMATICA appear under very good control, say until 100, that most of the solutions are very cldséthin 0.1%

a LDE order of about-50. It looks as if all(stablg families

erron to the exact result,

the closest solution being

in Table 1l will (slowly) converge, at very high orders, to 2 328 34+ 0.001 328 84

approximately the same values, again in a way similar to
what was observed in the simple geometric series example

In order to explain the convergence properties on more

discussed above in Sec. IV A and in the anharmonic oscillapaSIC grounds, for both the exaciNland the IR approxi-

tor case28]. However, it appears that these PMS optimizedmated series, one first observes that, as in the simple ex-

solutions in Table Il rather converge to a value of about?MPle studied in Sec. IV A above, all of the PMS optimiza-

~2.2, i.e., close but not equal to the exact laigeesult

tion solutions corresponding to Tables II-IV, except @,

c,=2.328. The reason for this slight discrepancy will behavem starting from relatively large values and thgather
slowly) decreasing as the LDE ordkis increased, therefore

understood below.
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TABLE Ill. Standard LDE at largeN, Eq. (3.21). Three families of PMS and fastest apparent convergence results.for

k F1-PMS F1-FAC F2-PMS F2-FAC F3-PMS F3-FAC

2 2.163 2.498

3 1.879-0.169 1.884+0.274

4 1.713-0.061 1.660+0.091 1.962 1.996

5 1.642-0.0714 1.593£0.078 1.913+0.029 1.917£0.0462

6 1.620+0.196 1.585+-0.213 1.870+0.008 1.858+0.003 1.935 1.941

7 1.622+0.293 1.600+0.314 1.843+0.061 1.826+0.063 1.928+0.001 1.928+0.003
8 1.636+0.369 1.622+0.390 1.829-0.128 1.813+0.130 1.921+0.023 1.915-0.0213
9 1.654+0.429 1.647+0.448 1.825-0.184 1.811+0.189 1.913+0.064 1.905-0.061
10 1.675-0.474 1.671+0.493 1.828+0.233 1.817-0.241 1.908+0.104 1.899+0.102
11 1.696-0.514 1.694+0.529 1.836:0.274 1.827£0.284 1.907+0.139 1.898+0.141
12 1.715-0.543 1.715-0.558 1.845-0.313 1.839+0.321 1.908:0.174 1.901+0.178
13 1.733:0.571 1.734+0.582 1.856+0.344 1.852+0.353 1.913+0.204 1.906+0.210
14 1.75G6-0.592 1.752£0.601 1.868+0.371 1.865+0.380 1.919+0.234 1.913+0.239
15 1.765-0.610 1.767+0.613 1.880+0.399 1.877+0.403 1.926+0.260 1.921+0.263
16 1.780:0.623 1.782+0.631 1.891+0.414 1.890+0.423 1.934+0.282 1.930+0.281
17 1.792-0.638 1.795+-0.643 1.903-0.433 1.902+0.440Q 1.942+0.302 1.939+0.308
18 1.804-0.649 1.807+0.654 1.913+0.449 1.913+0.453 1.950=0.321 1.947-0.324
19 1.815-0.658 1.817+-0.663 1.924+0.463 1.923+0.468 1.959+0.331 1.957-0.342
20 1.825-0.664 1.827£0.670 1.933+0.473 1.934+0.480 1.967+0.351 1.966+0.3560

reaching the border of the convergence radius of the origing} ¢ becausd 7| — (24m) ! as the LDE ordemp increases
ouly Series. Mor(_e premsely,_ the convergence radms_g)f th%ne sees immediately that the first term of the expansion of
geo/metrlc serlehs meqS'Z?) E |mmed|fi1t?Iy gven Ey? the tadpole term fofz| — (247) ~1is —N/(9672), so that a
=1/(24ar), so that, foru=1, the originalu/» series(before S . . . L7

( .Tr) g "= 8 similar cancellation still occurs, again making the conver-
LDE is performedl can converge only if|n|>1/(24m) gence somewhat faster

~(I).013.[One Eexpéeczts snr:nla&jly;hat I Iangeengl-d. Based on those general convergence property consider-
nal series in Eq(3.21) should have a convergence radius ations, we may also introduce a very simple criterion to se-

very close to this 1/(24) value, as we actually checked |04 among the multiple PMS solutions as illustrated in

numerically by calculating, e.gR™"=lim; _..Ji+1/J; 0 SU-  rap1eq |1_v: we can consider the PMS solutions with the
ficiently high orderi~10°.] On the other hand, the exact — —
smallest 7|, yet such thatz| is still within the convergence

result should be recovered foy=0, which is outside the radius of the relevant series. Note that this criterion also has
convergence radius of the original perturbative expansion '

Nevertheless, just as explained with the simple geometrig:he a_dvantage of automatically eliminating the negate
series in Sec. IV A above, this is compensated by the fact thaolution, as it tgrns out that the Iatte.r alwz?\ys corresponds to
the reorganized LDE series to ordemodify perturbative  the largestand in fact, slowly increasing witk) | 7| values,
coefficients of ordem with an extra damping factor of just as was the case for the simpler example of Sec. IVA.
1T (1+n/2) [see, e.g., Eq¥B2) and (B3) in Appendix B]. Indeedz it is interesting to compare again Fhe_ exact versus IR
As a result, this modifies the convergence radius so thztPproximated M series when replacing within their respec-
smaller and smaller values df;| can be reached, which tive LDE expansions to ordek this exact value ofz
basically explains, e.g., the good convergence of the IR se=R™?, instead of the PMS optimizegl values. This is illus-
ries to the right exact result shown in Table IV. Moreover, antrated in Table V, where it clearly appears that the IR ap-
important remark in view of the more interesting applicationproximated series behaves in a somewhat better way than the
to the finite N=2 case is to realize that most results pro-exact series.

duced by the families with real positive parts in Tables [I-IV ~ Now coming back to the exact largé-series case in try-
already give reasonable values at very low ordets2,3, ing to better understand the results in Tables Il and IIl, we
being, for instance, about 10% away from the exact resultcan alternatively numerically study the exact expression
We believe this is not at all a coincidence but simply reflects(3.16) directly, that is, performing the integration numeri-
the faster convergence properties of the PMS solution withircally before expanding im/# series. In contrast with the
our prescription, as discussed in detail with the simple exiatter expansion havingbefore LDE is performedfinite
ample of Sec. IV A, due to the presence of the linear tadpoleonvergence radius as just discussed above(E#H6© is of
term, which implied for the simpler geometric series case arourse defined for arbitrarily smaj. The behavior of this
exact cancellation foip—0 of the first order term. For the expression fou=1 close ton=_0 is shown in Fig. 2. As one
actual IR geometric series the normalization of the tadpolean see, in addition to the exact result7at 0, Eq. (3.16
term relative to the series is completely different, howevergets a real minimum~2.06187 for very small »
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TABLE IV. Infrared LDE at largeN, Eq. (3.27. PMS results forc,, at different orders.

k FO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
2 —2.852 2.852
3 —-3.577 2.444
+0.274
4 —3.910 2.244 2.482
+0.200
5 —4.100 2.184 2.397
+0.0917 +0.079
6 —4.223 2.184 2.333 2.397
+0.020 +0.081
7 —4.309 2.205 2.298 2.369
+0.028 +0.060 +0.032
8 —4.372 2.232 2.283 2.342 2.366
+0.059 +0.0317 0.040
9 —4.214 2.256 2.279 2.324 2.354
+0.068 +0.014 +0.034 +0.014
10 —4.460 2.277 2.282 2.313 2.341 2.352
+0.074 +0.010 +0.028 +0.022
11 —4.498 2.294 2.287 2.307 2.331 2.346
+0.074 +0.010 +0.019 +0.022 0.009
12 —-4518 2.307 2.293 2.305 2.324 2.339 2.345
+0.072 +0.017 +0.011 +0.019 0.014
13 —4.540 2.317 2.299 2.305 2.319 2.333 2.341
+0.068 +0.022 +0.004 +0.013 0.013 +0.004
14  —4.559 2.324 2.305 2.306 2.316 2.328 2.337 2.340
+0.064 +0.023 +0.001 +0.011 0.014 +0.009
15 —4.575 2.330 2.310 2.308 2.315 2.324 2.333 2.338
+0.061 +0.0217 +0.009 +0.007 0.012 +0.010 +0.004
16 —4.589 2.334 2.315 2.310 2.314 2.322 2.330 2.335 2.338
+0.057 +0.021 +0.008 +0.004 0.010a +0.010 +0.004
17 —-4.602 2.338 2.318 2.313 2.314 2.320 2.327 2.333 2.336
+0.053 +0.021 +0.010 +0.001 0.008 +0.009 +0.007 +0.003
18 —4.613 2.340 2.322 2.315 2.315 2.319 2.325 2.330 2.334 2.336
+0.050 +0.0217 +0.012 +0.001 0.003 +0.008 +0.007 +0.004
19 —4.623 2.342 2.324 2.317 2.316 2.319 2.324 2.329 2.332 2.335
+0.041 +0.024 +0.013 +0.003 0.003 +0.007 +0.007 +0.003 +0.004
20 —4.631 2.344 2.327 2.319 2.317 2.319 2.323 2.327 2.331 2.333 2.334
+0.043 +0.023 +0.014 +0.009 0.002 +0.003 +0.004 +0.001 +0.003

~0.002 357 45. Now it clearly appears that all the LDE so-plied on the same series E@®.21), but omitting the tadpole
lutions in Tables Il and IIl are disturbed by the presence ofterm linear in7: —N7*/(47)=($?)(?—A($?){?. This
corresponds to extremizingy( ¢2)\?) directly [see Eq(1.9)].
cess of reaching smaller and smallgwvalues after the LDE- This is then similar to the recent LDE convergence studies of
PMS procedure is applied, the PMS optimization solutions oBraaten and Radesd23]. Note that in this case the addi-
the LDE at successive orders can be “trapped” in the firsttional extremum at very smaj is removed. By selecting for
minimum reached. In contrast, notice in Fig. 2 that the IRsimple illustration only the best PMS solutioti€., the ones
approximated series has a similar real minimum but locateavhose real parts are the closest to the exabt fdsult
exactly atnp=0; therefore it is not surprising that the PMS ~2.328...), weobtain forc; the results shown in Table
optimized LDE does converge correctly to this minimum inVI. As one can see, the results in this procedure do converge
to the right result, but very slowly. On the other hand, one
verges to a value slightly different from the exact one, and ican also realize that the results at lowest order8—4 are
accordingly a weak point of the procedure. In view of this it far away(more than a factor of )2from the exact result. In

is interesting to briefly compare these results with the alterfact, one should wait until abolt~50 to have a reasonably
native prescription such that the LDE-PMS procedure is apgood approximation(Moreover, we note that may other so-

this real minimum very close tg=0: namely, in the pro-

this case. This explains why the exact lafgeseries con-
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TABLE V. Comparison of infrared and exact LDE at larijye for »= Rgl=1/(247-r) at different orderk.

k 1 2 3 4 5 6 7 8 9 10

IR 1.16424  3.20165 1.89188 2.67411 2.17385 247173  2.27958 2.39236 2.31806  2.36035
exact 1.16424 2.2129 1.78534  1.98289 1.892 1.94579  1.92615 1.94536 194367  1.95312

k 11 12 13 14 15 16 17 18 19 20 100

IR 2.33129  2.34685  2.33524  2.34073  2.33590 2.33765 2.33549 2.33588  2.33481 2.33474 2.32910
exact  1.95614 1.9624 1.96651 1.9715 1.97566  1.97999  1.98393 198782  1.99149 1.99504  2.10987

lutions that are not shown in Table VI start to be very un-term contains §u)* and then expand?*, obtaining a higher
stable at such high orders, some being several orders of magrder series. This may seem artificial at first because the
nitude away from the correct resulSo, even if the series contributions of order greater thanwould come only from
without tadpole term ultimately converges to the right resultss? insertions, not taking into account, at the same order,
within this LDE prescription, it appears of not much practi- new contributions that arise from the quartfu vertex.

cal use for the nontriviaN=2 case, where we recall that However, by constructiofd3] this procedure helps to accel-
only the first three perturbative coefficients are known at thesrate convergence as it gives in a more direct and simple way
moment. This is to be contrasted with the results of Tableshe large LDE order behavior, as studied by the direct “brute
-1V, where the fact that the lowest orders are already dorce” LDE method in Appendix B. One may consider an alll
good approximation is, as explained above, a consequence ofder resummation by observing that, fé+ 1, the partial

the cancellation of the first ordeD(#) term, and of the LDE series is given formally, from the simple pole residues,
behavior of the PMS solutions as the LDE ordeis in- as

creased.
We will next discuss a method that fully exploits these 1 5 k-1
scaling properties of the LDE-PMS solution at large orders, dW(pu,6—1)= o jg do7—5P(7,u,9), 4.7

and which accordingly allows us to directly resum the LDE
perturbative series and to eventually further accelerate the

LDE convergence, when applied to our BEC problem. where the counterclockwise contour encircles the origin.
Now, one performs a change of variablege Ref[43] for
C. Contour integral accelerated LDE resummation technique thelo”rrl]gqjilpal application of this procedurter the relevants
- ’
Having performed the usual LDE interpolation, witff
=ny1— 6 andu— éu, one obtains the physical quantidy S=1—0v/k (4.9
expanded to ordek. This procedure defines a partial sum ’

h i E A 2
that may be written afsee Eqs(3.13 and (3.21)] together with a similarly order-dependent rescaling of the

k arbitrary mass parameter— k2, where the power 1/2 is
M (%, 5u)=", c,(ud)"[f(7*)]", (4.6)  simply dictated by the form of the scalar mass interaction
n=0 term 22 in Eq. (2.6). This rescaling of the mass parameter
is of course consistent with what is obtained by a direct study
of the largek behavior of the standard LDEee Appendix
B)

wheref(#%*) is a function ofz* whose form depends on the
dimensionality of the physical quanti®. As we have al-
ready emphasized, the use ®f is just an economical way
to take into account the simpléz? vertex. Usually, one
expandsy* so that all the terms of ordexk are present and
the direct application of the PMS optimization or fastest . 2
apparent convergence to this quantity,sat 1, defines the U (4.9
standard LDE. On the other hand, one might be tempted to

improve a perturbative series for which the highest ordeffollowed by the contour integration

For k—o this resummation takes the final form of the
replacement

TABLE VI. Best PMS results forc,, at different ordersk, from the exact LDE series at largé when
omitting the tadpole term- (N»)/(4).

k 3 4 5 6 10 15
Cy 1.061 1.222-0.37 1.34 1.4350.720 1.710-0.99 1.896+1.089
k 20 30 50 60 80 100

c; 1.999-1.120 2.129+0.880 2.243-0.900 2.272+-0.910 2.311+0.780 2.33+0.69
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dv the values seem to deteriorate at high orders. Again, one
®(kﬂm)(5—>1)=2—wi fﬁ TGXD(U)@(??*—”?UUZ). observes that all positive families have similar behavior;
(4.10 starting from values close te-2.000, the values decrease
and then start to increase, as exemplifiedRdy. Table VII
seems to show that the disturbance due to the presence of the

where the “weight” exp()/v originates from extra minimum of Eq.3.16), ~2.061 87 for very smally

dé(1—6) 1= —dvlv, (4.1)  ~0.00235745, reflected in the data of Table I, is amplified
by the CIRT that resums the series. This effect will be further
and discussed in Sec. IV E below.
We shall now examine how the all order LDE summation
lim (1—v/k) " *=expv), (4.12  can further improve the convergence of the series. To see
Keee that, we consider again the IR behavi8t25, which is suf-

ficient to grasp the essential features by keeping all results
fully analytical. Applying thus the CIRT method to the sim-
pler geometric IR series Eq&.25 and(3.27), we obtain the
result

while the original contour was deformed to encircle the
branch cut Ref)<0. Here, one is initially dealing with a
power series in§u)[ su/ »*]' [cf., e.g., Eqs(3.6) and(3.8)],
and so the use of

fﬁdvexp(v)vazzm/r(—a) (4.13 (2= — N7
47TF(1/2) 9672

% (—x)'

=o'(1+i/2) !

shows that the main effect of this resummation is to divide

the original expansion coefficients at ord&t™?) by terms __ Nz n Nu [eCerfox)—1], (4.19
T'(1+i/2)~(i/2)! for largen. This damping of the perturba- 47l (1/2) B

tive coefficients at large order, as implied by this specific

resummation, is fully consistent with what is obtained by awhere x=Nu/(48w») and erfck)=1—erf(x) is the stan-
direct “brute force” resummation of the LDE series for large dard error functior(see also Appendix B Next, upon using
orderk—x [see, e.g., EqgB2) and (B3) in Appendix B].  the well known asymptotic expansion of er§(for x— oo,

But such a damping is rather generic and was exploited re-€., 7—0 [41] [see Eq(B5) in Appendix B|, we can again
cently in the completely different context of asymptotically apply the PMS optimization procedure at given successive
free modeld30], where it was shown to accelerate conver-ordersk. The PMS optimization generates the results shown
gence of the LDE. When applied to the anharmonic oscillain Table VIII. Note how the largdN result, c;

tor, it is in fact(asymptotically equivalent to the more direct =8m/[3¢(3/2)*3]=2.328, isexactly reproduced already at
LDE resummation with an order-dependent rescaling of théhe lowest nontrivial order. Moreover, as one can see from
arbitrary mass, as employed in some of REPE] to estab-  this table, this real solution remains valid at any order in
lish rigorous convergence of the LDE for the oscillator en-perturbation theory. Thus, the exact lafgeresult is recov-
ergy levels, which is itself an extension of the order-ered from this exact CIRT resummation of the LDE, even
dependent mapping resummation techni¢gee Seznec and though we have used only the IR approximation of the
Zinn-Justin[13]). In fact, this procedure can essentially sup-propagator. The convergence to the exadt igsult in this
press the factorial behavior at large orders of the perturbativelternative LDE implementation is extremely rapid upon us-
coefficients generic in many theories, and convergence mang the CIRT. This also indicates that the convergence to the
be obtained even for series that are originally not Borel sumexact result can be independent of the details of the nonas-
mable [25,30. The above contour integral resummation isymptotic behavior of the perturbative series coefficients, at
very convenient since it is algebraically simpler than the di-least for the largéN quantity here considered.

rect LDE summation(compare with Appendix B In the An important feature of the CIRT-PMS results in Table
present case, one expects fast convergence since the origindll is that the asymptotic expansion in E@®5) implies that
series has no factorially divergent coefficients. we are now dealing with a series ip/u, instead of the

Let us start by treating the standard closed form result oftandard perturbative seriesurin, which we started from,
this contour integral accelerated resummation techniquas in Eqs(3.13), (3.21), and(3.27). This is a consequence of

(CIRT), transforming Eq(3.21) into the IR approximation, leading to the simple geometric series
in u/n, Eq.(3.27, whose all order CIRT form has an exact
N k uN\i expression Eq(4.15 that can be reexpanded in ajiu se-
(pH W= — ———+ — > ( _) ries. The reason why the convergence properties of such a
47TF(1/2) 3 = F(1+ T(1+i/2) 67 series are much better than those of the original series should

(4.149 now be clear in view of the discussion in previous subsec-
tions: the original theory is to be recovered in the limgit
which clearly displays the coefficient damping. Then, by ap-— 0, which is clearly not in théfinite) convergence domain
plying the PMS Eq(4.5), one obtains the results displayed in of the originalu/ 5 series, while it is automatically inside the
Table VII. This table shows that only the lowest order realconvergence domain of the all LDE order resummed series
parts of the positive families produce reasonable results bugg. (4.15. Moreover, another advantage of this reverted se-
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TABLE VII. Standard LDE at largeN, Eq. (4.14. All CIRT PMS results forc,, at different orderk.

k FO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
2 —2.818 2.818
3 —3.400 2.000
+0.814
4 —3.554 1.219 2.428
+0.669
5 —3.597 0.750 2121
+0.242 +0.408
6 —3.610 0.506 1.734 2.246
+0.241 +0.463
7 —3.613 0.416 1.422 2.096
+0.740 +0.334 +0.233
8 —3.614 0.448 1.205 1.882 2.147
+1.228 +0.127 +0.304
9 —3.614 0.587 1.071 1.681 2.062
+1.691 +0.113 +0.269 +0.144
10 -3.614 0.836 1.001 1.518 1.932 2.087
+2.138 +0.363 +0.171 +0.204
11 -3.614 1.203 0.998 1.397 1.797 2.034
+2.552 +0.609 +0.038 +0.200 +0.091
12 -3.614 1.701 1.040 1.317 1.678 1.949 2.047
+2.913 +0.841 *+0.111 +0.151 +0.143
13 —-3.614 2.343 1.126 1.272 1.581 1.856 2.012
+3.190 +1.054 +0.264 +0.073 +0.148 +0.067
14 -3.614 3.142 1.251 1.58 1.506 1.768 1.954 2.020
+3.339 +1.243 +0.419 +0.021 +0.122 +0.102
15 -3.614 4.106 1412 1.272 1.455 1.691 1.887 1.996
+3.301 +1.401 +0.564 +0.123 +0.073 +0.110 +0.048
16 —3.614 5.229 1.606 1.309 1.424 1.628 1.821 1.955 2.001
+£2.994 +1.523 +0.702 +0.232 +0.010 +0.099 +0.074
17 —-3.614 6.491 1.828 1.367 1.411 1.579 1.761 1.906 1.984
+2.3217 +1.604 +0.829 +0.339 +0.062 +0.063 +0.082 *=0.039
18 -3.614 7.838 2.071 1.442 1.416 1.544 1.709 1.855 1.954 1.988
+1.169 +1.632 +0.932 +0.442 +0.140 +0.019 +0.073 *£0.058
19 -3.614 9.181 2.327 1.532 1.434 1.522 1.665 1.807 1.917 1.975
+0.628 +1.600 +1.022 +0.539 +0.220 +0.033 +0.051 =0.061 +0.023
20 —3.614 10.360 2.584 1.634 1.466 1.513 1.632 1.764 1.877 1.952 1.978

+3.234 +1.499 +1.091 +0.628 +0.299 +0.091 +0.019 =*0.053 +0.041

ries approach is that we may bypass the need for PMS or n .
other similar criteria: clearly the best approximation to the E ai(u/n*)'
exact result will be simply given by the smallesgtvalues, P[n,m](u/ 7*)= 'r:no , (4.16
irrespective of whether it is a solution of a PM& similar i
criterion. = bj(u/%*)
D. LDE from Padé approximants where the perturbative coefficiengg and b; are obtained

order by order by expanding E@t.16 up to ordem+m and
For completeness we will also consider in this subsectioimatching the resulting series with the original expansion. We
the results obtained from a completely different resummatiomecall that PAs are generally useful when a series is known
of the relevant BEC series, based on the Pagigroximant  only up to the first few orders, as they can predict sometimes
(PA) method[42]. We define, as is standard, a PAn,m] as  with a very good accuracy the unknown higher orders,
a rational fraction of two polynomials of order and m, and/or give very good resummation results. As far as the
respectively, in the relevant variable »: BEC series is concerned, our further motivation to consider
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TABLE VIII. Infrared LDE at largeN, Eq. (4.15. All CIRT PMS largeN results forc,, at different

ordersk.
k F1 F2 F3 F4 F5 F6 F7 F8 F9
2 2.328
3 2.328 2.262 2.395
4 2328 2.320 2.337

+0.064 *0.067
5 2328 2.369 2.287 2.271 2.386
+0.054 £0.054
6 2328 2.389 2.268 2.294 2.363
+0.021 =*£0.024 *=0.041 =*0.041
7 2328 2.391 2.266 2.323 2.334 2.281 2.376
+0.003 =*=0.003 =*=0.050 =*0.050
8 2328 2.386 2.270 2.344 2.313 2.293 2.364
+0.011 0.011 +0.043 +0.043 =*0.023 =*=0.028
9 2328 2.379 2.278 2.357 2.300 2.310 2.347 2.289 2.368
+0.021 +0.021 =*=0.03@ =*=0.03@ =*=0.03@ =*0.034
10 2.328 2.371 2.286 2.363 2.294 2.325 2.332 2.296 2.360
+0.024 *£0.024 =*=0.023 *=0.023 =*=0.03§ =*0.038 =0.017 =*=0.017

PAs is that it will allow us to simply define an alternative N7z*  SuN
(approximatey series in theinversevariable »/u, starting (%)~ — a + >{PL0.1](u/ %)~ 1}, (4.17)
from the exact largeN (or finite-N as wel) series Eq(3.13. 96m

As illustrated in the previous subsection with the IR approxi-
mated series that has an obvious alternative expansion
nlu, since the exact result is recovered fpr~0, we shall
expect much better convergence properties from such an in-
verted series, as will be seen below. Note also that the PA
method is largely independent of the previous methods, sand a simple matching of the expansion of E417) gives

that it can provide a further consistency cross check of thég=1 andb;=1/(87), such that the exact geometric series
numerical results. Another advantage is that the PA techniquis in fact recovered, and can of course be expanded in the
is immediately applicable as well to the finitécase, to be alternative form of anyp/u series. Although this example
discussed below in Sec. V. A drawback of the PA methodmay be too simple, we can expect that the more general PAs
however, is that the approximants are not uniquely definedhat are constructed below to approximate the more compli-
since for a given perturbative expansion of ordeme may cated exact series will have similarly good resummation
considera priori all possible PAs witm+m=k. In order to  properties. Typically, at order 3 we have to consié¢f,2]

thus limit somehow the number of possible PAs without in-and P[0,3]. The PA results are shown in Table IX for the
troducing much bias in our analysis, we will consider onlylargeN case. The order designates in this case the order of
resulting PAs that can be expanded in powershf, for the the (re)expansion in LDE power series of the PAs, followed
reasons discussed above, which imposesrthan. To illus-  again by a standard PMS optimization. Higher orders5

trate in the simplest case the power of PAs, let us firsare not shown but exhibit a very stable behavior with solu-
consider again the IR approximated geometric seriesions very similar to those of the lowest orders shown. As
Eq. (3.27), but assuming that only the first order term of the one can see, the exact result is often reproduced as a PMS
u/n series is known:(¢?)g~—(N5*)/(4m)+(SuN)/  solution, which is not so remarkable in the preseit tése,
[(9672)(87)](— SuN)/(67*). We could then define an ap- as it simply means thag=0 (for which value the PA is well
proximation of this series as follows: defined by constructionis a solution when applying the

Ms{here the PA of orden+m=1 is

P[0,1](u/ 7)=[by+b;8uN/(67)] %, (4.18

TABLE IX. PMS optimization of Padepproximantsbased on both the original and CIRT improved series for two of the relevant
families) for c, in the largeN case with the exact series coefficients.

k  P[1,2]PMS P[1,2]CIRT P[0,3]PMS P[0,3]CIRT
3 2.623 2.034 2.010.14 | 2.328-0.18 | 2.328-0.05I
4 2.61 2.05 1.8770.34 | 2.02 2.3280.17 | 2.328-0.05I
5 26150101 2.04-0.11 1.77+0.611 1.980.061 229021 2370191 2.34-0.05/ 2.33-0.05 |
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PMS to the PAs. Clearly, the best PMS solutionsypif 0,

are obtained from the smalleky|#0 values. Although it Q <y Q { ; @ @ @
appears clearly that the FR{0,3] gives much better results Q * * + + + + +

than P[1,2], note that the latter gives solutions2.05 and

~2.6 that are located not far below and above the exact @ @ @ @ @ @ @
value. The betteP[ 0,3] results may eventually be explained + + + + + + + +

by noting that theéP[ 0,3] should have much better resumma-

tion properties forp— 0, having no numerator term iy 7. @ @ @

Another advantage of the PAs is that one may skip the+@ + @ - + +
PMS criterion and simply take the limig—0 directly, in FIG. 3. All diagrams contributing t6$2)(*) at the critical point.
which case the exactN/result is reproduced. Of course, as The black dots represent tt#;? insertions.
concerns the largBt case, these results are only a consis- o ) _
tency cross check, since we started from the exact serigdoximation the disturbing extremum that now approaches
anyway and thus only managed to define a PA such that itg# 0 is removed and this problem is not present there. Fi-
n—0 limit is well defined, in contrast with the naive 7 nally, we mention that the recent LDE convergence studies
series. But the very same PA procedure can be applied to t Braaten and Rade_sc[lZS] follow the same lines as the
finite-N case to be discussed in the next section. standard LDE callculatlons pgrformed by us in Secs. 111 B and
IV B, the major difference being that those authors prefer to
extremizeA($?)(? directly [see Eq.(1.9)]. In practice, the
difference between those physical quantities amounts to the

One may now summarize the main features of this detadpole term—N7»*/(47)=($*)(?—A(¢>{?, which ap-
tailed largeN investigation so that the finit- application, pears in Eqs(3.13 and(3.21). In the case of the standard
in the next section, can be carried out straight away. Regard-DE-PMS application, like the one shown in Table II, their
ing the family selection one notes, especially in Tables Il anchumerical results are similar to ours at very large orders,
IV, that except forFO all families produce results that con- ultimately exhibiting convergence, but do not give a good
verge to approximately similar values at high orders, as irRpproximation at the lowest orders. The reason for this faster
the anharmonic oscillator and geometric series cases. Thergonvergence when the tadpole term is present is the cancel-
fore, choosingF1 consistently in all the BEC applications lation of the leading terms fo—0 as explained in detail
appears to be an appropriate choice since this family is alsBP0ve. Our simple geometric series investigation has also
the only one that allows predictions at any orderg., in a  Shown the crucial role, regarding convergence, played by this
computation involving only low orders ia). Again, this is type of linear term. Moreover, these types of loop terms are

consistent with the observations drawn from the geometrié‘ls‘O at the origin.of 900d convergence properties observed in
series analysis many other applicationf28,32,33.

To understand completely the reason for convergence it is
particularly convenient to examine the formal expressions of V- THE FINITE- N CASE WITH RESUMMATION
the large-LDE-order behavior, i.e., fér—o, as derived in OF THE LDE
detail in Appendix B. What happens, as already explained in | ot s now turn our attention to the finité-results and,
Sec. IVB, is that when the LDE order is increased the Nuggpecially, to the improvement of the LDE within this limit
merical PMS optimal solution$y| tend to be smaller and by using the CIRT resummation method discussed in the
smaller and thus to reach the border of the convergence rgrevious section. The insight gained in the detailed l&ige-
dius of the original perturbative series. But at the same timestudy will prove to be very useful in understanding the struc-
from the study of the asymptotic behavior of the series ature of the optimized results and in selecting the appropriate
large LDE orders, we see that the main effect of the rearsp|utions. For arbitraryN, the quantities(qﬁz)fjk) as well as
ranged LDE series is to provide an extra damping factor5r(ck) have been evaluated in detail, up to or@ér in Ref.
1 (1+n/2) as well as a scaling factde in its ordern  11g]. The contributing diagrams evaluated in that reference
coefficient. So, after conveniently redefining—7k'?, the  for the perturbative expansion df$?)*) to order 5 are
newoptimized values can tend to zero, for which the new shown in Fig. 3. In Ref[18] all the integrals appearing in
LDE-resummed series is now more and more convergerthose diagrams were obtained with the type of perturbative
[see, e.g., Eq(4.15] and leads to the correej~0 result.  calculation discussed in Sec. Il A with the multidimensional
However, in the process of reaching smaller and smaller valFeynman integrals calculated witheGAS. These terms were
ues, it may happen that another nontrivial extremum, ifalso later obtained by Braaten and Radd&3] in a different
present, is first met, in which case the convergence is disway, by reducing the multidimensional integrals to one-
turbed or slowed down by the presence of this other extredimensional ones in some of the terms of fourth orde#in
mum and»—0 may no longer be reached. This is preciselyand, more recently, Kastenin@4] has also revised these
what happens in the case of the exad\tl Beries, as illus- numerical results, obtaining more precise numerical results
trated above in Tables Il and III, with this problem worseningfor the integrals. From the results originally obtained in Ref.
as the series is resummed, as shown by the results in Tabl&8] and using the corresponding updated, higher precision
VII, for the CIRT resummation applied to the exact latge- coefficients evaluated if44], the terms contributing to
perturbative series. In contrast, by using the IR series ap-$2)( to orders*, shown in Fig. 3, are given by

E. Brief summary and discussion of the convergence properties
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TABLE X. All ordinary PMS and CIRT improved PMS optimization fay in the finiteN=2 case.

k FO PMS FO CIRT F1 PMS F1 CIRT F2 PMS F2 CIRT
2 —3.05916 —3.98590 3.05916 3.98590
3 —4.47035 —5.97078 2.44730 3.10543
+1.65256 +3.09300
4 —5.30592 —7.03900 1.53443 1.19134 3.14286 5.22847

+2.29581 +4.33683

N7* u? N(N+2) u® N (16+10N+N?)

@ T 27 77 771014384+ 5°
R T TV Y amp 108

[8.0694Q

———~70.11507 - ¢&*
Ui (18)2(477)7[ L 7® (4m)’ 648

u* N(N+2)2 u* N (40+32N+8N?+N3)
= — [3.1281]

u* N (44+32N+5N?)
,73(477-)7 324

[1.71859+ 54u—4 N(N—Jrz)z[o.zos 21
7° 1084)’

u* N (44+32N+5N?)
7 (4m)’ 324

[2.667 4§+ 0O(5°), (5.1

where, as beforep* = y/1— 6 must be expanded accord- fiveloops enter the evaluation &f; (see Fig. 3, which re-

ingly to take into account all contributions shown in Fig. 3. quire some careful calculatioh.

The symmetry factors appearing in E&.1) can be found, Then, by applying the standard PMS Eg.2) to Eq.(5.2)

e.g., in[45]. The symmetry coefficients clearly show that this one obtains three families, shown in Table X, in agreement

perturbative expansion is valid for afy; which means that, with Ref.[18]. Turning to the CIRT resummation of E(p.2)

up to orders*, the largeN results Egs(3.13 and(3.21) may  one proceeds as in the lareease(see Sec. IV € By ap-

be recovered, within numerical error bars of about 2%. Thiplying the CIRT improved in the context of the PMS optimi-

evaluation is easily done by consideringo be of order I zation to Eq.(5.2) one obtains three other families, also

so that only (N)* terms are retained together with the first, shown in Table X. In fact, the previous lar¢e-analysis

u-independent term. Figure 3 illustrates well how the LDESstrongly suggest that here also the first family with positive

mixes, at a given order, diagrams which normally appear ateal parts should be the relevant family for di=2 predic-

different orders in the N expansion. tions. Indeed, if we assume that the large-order behavior of

By settingN=2 one then gets the more compact form the actualN=2 series coefficients should not be drastically

different from the analogous lardé-series, all the fast con-

i vergence and scaling properties that were discussed in Sec.

+0(8%, (5.2 IV should be approximately valid fo=2 also. Then, the
first negative family in Table X is easily eliminated by the
same criteria as in the lardé-case, because it again always

where the coefficients areK,=3.2215810°5, K, corresponds to the Iargdg_ﬂ and does not exhibit any trend
=1.51792¢10 8, K3=9.66514< 10" 8. It is worth remark- toward smaller 5| values as the LDE ordé is increased.

ing that the coefficient,; and K, obtained from the nu- Similarly, we also notice that thE; family in Table X has
merical results of Ref[18] agree with these results, also Re(n) substantially smaller thafr,, while we expect the
obtained later by the authors of Ref&3,44. At the same exact result to be forp—0. Moreover, due again to the
time the K5 coefficient used here, which was obtained inpresence of the tadpole term in our procedure, from the
Refs.[23,44], differs by about 10% from the one that would analysis in Sec. IV we can expect that our results, although
come from the results of Reff18]. In principle we can trace intrinsically limited for N=2 to the first four LDE orders,
this difference to the fact that five nontrivial graphs with should nevertheless already be a reasonably good approxi-
mation.
A further cross check of the consistency of our results

SWe thank B. Kastening for pointing out to us the correct valueswithout any knowledge of the exact higher order coefficients
for the five-loop diagrams and for discussions concerning the diffifor the caséN=2 is the stability of the result when replacing
culties in evaluating them. these unknown perturbative coefficients by a well-defined

<¢2>(4): _ 7]_*+5u§ K| — ﬂ
u 27T i=1 ! 77*
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approximation. This is the result exhibited in Table XI, TABLE XI. Same as Table X foc, in the finiteN=2 case, but
where the unknown ordé¢; with i =4 were replaced by the With IR largeN perturbative coefficienk; for i>3.
corresponding coefficients of the IR approximated series Eq:

(3.27. As one can see, the stability of these results is qwtek FO PMS

FO CIRT F1 PMS F1 CIRT F2 PMS F2 CIRT

remarkable, and one can even observe the slow convergence _3059 —3.986 3.059 3.986
of the standard LDE-PMS to the CIRT result. 3 —4.470 —5971 2.447 3.105

The physically meaningful real part of our ordgt-CIRT +1.653 +3.093
improved resultc;=1.19 can then be compared with the 4 —5306 —7.039 1.534 1.194 3.143 5.106
recent Monte Carlo estimates=1.32+0.02 andc,;=1.29 +2208 +4.337
+0.05. Note that the standard ord&-PMS resultc, 5 —-5717 -7.05 1.352 1.176 3.71 5.09
=1.53 is also a satisfactory estimate. We note that the CIRT +283 +4.33
and ordinary PMS results just bound the Monte Carlo esti- -597 —-7.05 1.29 1.179 4.00 5.09
mates from below and above, respectively. +3.13 +4.32

Finally, in Table XII we show the results far; obtained 10 -6.43 —7.05 1.219 1.179 4.49 5.09
by Padeapproximants, as discussed in the last section. As +3.68 +4.32

expected, at first nontrivial LDE ordéorder 3, only the 1N
solution is found from the PAs, because only 0 is a PMS
optimization solution. As one can see, the nontrivial results

at higher orderg5—10 of the LDE expansion in Table XII The contributions toSr(4) 2533(0), which enter in the

are nicely consistent with what is independently Obta'nedderlvatlon of the constart}, Eq. (1.6), have also been ex-
from the standard LDE and CIRT results shown in Table X. -plicitly evaluated in Ref[18] and again we refer the inter-

Note, however, that the PAB[0,3] are in better consisten- ested reader to that reference for the details and we show
cythanP[1,2], which in fact give results only very similar to  below only the final result for the renormalized, scalit-}
the ones in the larght case shown in Table IX. dependen®r(? obtained in that reference:

M
In( —*> —0.597 7% —
n

u* (N+2) (16+10N+N?)
7? 6(4)° 108

(N+2)
18

u® (N+2)?

_sr@W=3® (g e
¢ renl 0)= 7* 108417)3

877'

N+2 u?
_ s -[0.143848

3 (4m)?

u® (16+ 10N+ N?)
7*  (4m)°108

[81.076+ 5" — [8.099 27

5 u* (40+32N+8N?+N3)
7? (47)%648

u’ (44+32N+5N?)

20.43048—- 58— 12.0411
[ 8 7? (47)%324 [ 4

u* (44+32N+5N?) u4 (N+2)2
————————[17.00433+ 6* — —————
2(18) (4m)°

(a3 [2.8726+0(8%),

(5.3

which, forN=2, becomes At the same time, treatm@r(“) with the CIRT (from Sec.
IVC) one obtains the resfilt Rgr{Y(M=u/3)]

=0.001 003 42, which, together with the CIRT improved

*
5= —3@0)= s 52u2A,| In M 05977 (2P result and Eq(1.6), leads to(with errors estimat’(’ad
6w n* from the integrations performed ifl8] with VEGAS) c5
» =84.9+0.8, whereas the Monte Carlo result ¢§=75.7
_ 5 +0.4[8]. To our knowledge, these are the only analytical
6\3 7 A3+ 54( *)2 At 00 ), (5.4 predictions for this coefficient to the present date. For con-

sistency, note that the optimization 6f£4), including the
selection of solutions, has also been performed according to

where A,=1.40724<107°, A;=8.5085%10°, andA;  what was done fof $2)(”)

=3.5229% 10 . The application of the PMS optimization
to Eq. (5.4) reproduces the same results as obtained in Ref——

[18], which are~101.4,~98.2, and~82.9 from second to
fourth order, respectively.

®Note that the scal®! =u/3 was originally chosen in the Monte
Carlo application$8].
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TABLE XII. PMS optimization of Padeapproximantgbased on both the original and CIRT improved series for two of the relevant
families) for finite N=2 case.

k  P[1,2] PMS P[1,2] CIRT P[0,3] PMS P[0,3] CIRT
3 2.62 2.04 2.0£0.20 | 2.328-3.24 | 1.37 3.28
4 2.60 2.06 1.980.41 | 1.98 2.328:3.07 | 0970341 3.5
5  263:0.071 20200071 1970621 1.94-0.121  15%345| 3.15-345| 1.1t0441 3.17
10  2.60-0.041 2.05-0.041 1820311 1.88-0111  1.20-1651  3.45-1651 1.15-0.111 3.27

Note that we have not attempted to examine the infraredective BEC model at larg®l where the results obtained by
behavior of the finiteN case since its series is much more Baym, Blaizot, and Zinn-Justirc(=2.328)[10] can be con-
complicated than the large-one. However, our previous sidered “exact.” We performed the usual perturbative LDE
largeN investigation shows that the LDE already works evaluation 0f<¢2>ﬁ5) in different ways which allows for nu-
well, even for the standard series, when considering only thenerical accuracy checks. By considering the asymptotic in-
lowest order terms. Here, only these lowest order term§ WerRared behavior of the propagator we obtained a simpler se-
computed so that our results, up to or@ér can be consid- yies with exact coefficients which allows for a fully
ered good estimates even if one knows that the whole progn,ytical analysis. Before tackling the optimization of the

cedure may get spoiled at very high orders. BEC series we investigated how the procedure works by
considering a simple geometric series. The insight gained
VI. CONCLUSIONS during this exercise proved to be very important in under-

We have investigated how the LDE followed by a stan-Standing the family structure of optimal solutions with regard
dard PMS optimization performs in the nontrivial case ofto convergence properties. Then, the standard series and its
phase transitions of interacting homogeneous dilute Bos#frared limit were optimized with the PMS criterion Eq.
gases described by an effective three-dimensiaffafield  (2.2), leading to reasonable results in the standard (sese
theory. This nonperturbative method has recently been emFable Il). At the same time, the numerical results produced
ployed in Refs.[17,18 and in Ref.[23] to determine the by the same optimization applied to the infrared series dis-
critical temperature for such a system, giving good numericaplay better convergence properties, as shown in Table IV.
results. One advantage is that the formal calculations ar€his also shows that the optimization procedure is rather
performed exactly as in the perturbative case. This meansensitive to the actual form of the perturbative expansion
that, at each order, one deals with a very reduced number @kries coefficients, in particular at low perturbative orders.
contributions, which are not selected according to their toindeed, we emphasize again that including the linear tadpole
pology (like the number and type of loopsTherefore, the term in the LDE-PMS procedure is crucial for a faster con-
method is valid for any finite value df. To handle ultravio-  vergence and to obtain an already very good approximation
let divergences, the renormalization program is implementedt low perturbative orders, although both procedures tend to
in the usual perturbative way. Also, an arbitrary mass paramsimilar results at very high orders.
eter consistently introduced by the method avoids any poten- We then presented an efficient all order resummation
tial infrared problems. technique, similar to the one used to prove LDE convergence

The convergence properties, including rigorous proofs, ofyithin quantum field theories at zero temperat[86]. This
these nonperturbative methods have been studied in quantunbE resummation method takes advantage of contour inte-
mechanics[25-2§ and more recently in quantum field gration techniques, which allow one to resum the series more
theory[30]. However, despite the many successes obtainedirectly and thus to accelerate convergence. Applying this
with the LDE in different applications, the convergence contour integral resummation technique to the exact latge-
study in the BEC case poses additional challenges. One gferturbative LDE series seems at first, however, to amplify
the reasons is that it is difficult to establish simple analyticakthe numerical instabilities generated through numerical opti-
links between the LDE and other nonperturbative methods ahization. This problem becomes more severe as one moves
the one-loop level, since these terms do not contribute at thg higher perturbative orders as shown in Table VII. On the
transition point. This could arise the suspicion that the resultgther hand, applying the CIRT to the infrared series already
obtained in Refs[17,1§ for the realistitN=2 case are just exactly reproduces the largh-value c;=2.328 at the first
a numerical coincidence. The exact value for the linear conontrivial order. This solution has no complex parts and re-
efficient c; which appears in the critical temperature of in- mains valid as one goes to higher orders, while all other
teracting homogeneous dilute Bose gases is still unknowfamilies of solutions display good convergence properties,
[9], although much progress has been recently made comaving real parts that are numerically very close to the exact
cerning its determinatiofil4]. Here, our aim was to prove value (see Table VIIJ. In summary, this extensive analysis
the reliability of the recent LDE results far, andc} [18] has shown that, for this type of series, the optimization pro-
through a detailed analysis of the LDE convergence propereedure and convergence rate may be influenced by the actual
ties. values of the first few perturbative order coefficients. We

We started our convergence study by considering the efrave shown that, for this effective BEC model, the simple
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infrared series retains all the nonperturbative information an@ur results seem to support the fact that, analytically, the
that the LDE, augmented with the CIRT, performs ratherleading contributions taA T, for the BEC case studied here
well. Finally, we have seen that all families display a verycan be obtained by resumming typical leading and next to
similar structure and will predict approximately the sameleading 1N type of graphs as in Ref$11] and[18]. The
values at high perturbative orders. We have also shown howetter LDE numerical values may be due to the mixing of
the family that produces negativg values is easily elimi- such contributions since in reality=2.

nated because it does not correspond to the expected trend In summary, our detailed convergence study together with
toward small 5| values of the PMS solution. The very same the improved optimization procedure results show the poten-
criterion allows one to single out the values generated by théal of the LDE to tackle nonperturbative calculations in field
first family of positive solutions, for both the largé-and  theory at critical points. We have explicitly shown how
finite-N cases. Finally, the results obtained by a differentmeaningful nonperturbative results for the BEC problem can
resummation based on Padpproximants, used as an alter- be obtained in a consistent fashion, which also works for a
native to define the relevamt— 0 limit from the perturbative ~ general case such as the simple geometric series analyzed in
series inu/ 7 prior to LDE, appear quite consistent with the the paper.

earlier ones.
More formally, our present study investigated in some de- ACKNOWLEDGMENTS
tail the large-order behavior of the LDE&.g., in Sec. IVC
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a ¢* interaction term, and as is well known its energy levels

have. perturbative expansion coefficients that are factorially APPENDIX A: REVIEW OF THE ORIGINAL

growing at large orderf35]. Nevertheless, as already men- LARGE-N CALCULATION

tioned in Sec. I, the LDE can converge essentially because

the PMS optimized solutions behave like a rescaling of the Let us briefly recall how the exact lardé-derivation of
mass parameter with perturbative order which can compere; was performed in the original calculation, R¢L0], in
sate the factorial behavior at large orders. In contrast, therder to exhibit the differences with the LDExact or ap-
relevant BEC perturbative series here considered in Sec. Ipproximate evaluation as performed in Sec. lll. Considering
have a finite convergence radius, such that no explicit rescathe original theory described by E@..8) at the critical point,

ing of the mass parameter should be necessary in principléie Hugenholtz-Pines theorem impog@sl4] r.=—3(0),

for convergence. Nevertheless, what the LDE followed bywhereZ (0) represents the field self-energy with zero exter-
PMS optimization is performing is to enlarge the original nal momentum. Then one has a massless propagator and the
series convergence radius, and is thus qualitatively similarhappearance of IR divergences has to be carefully dealt with.
in this respect to the oscillator. These properties of the LDHNn Ref. [10], after applying the HP theorem, the relevant
are best exploited by the CIRT more direct resummatiorexpression forA( $?) reads

method.
The final part of the work was devoted to the realistic A%y =(?)—{(d)o
finite-N case for which only the standard series with coeffi-
cients numerically obtained is available. In practice, here d3p 1
only the first low order contributions could be evaluated and = J (2m)3| p2+3(p)—3(0) a E , (A1)

the comparisons performed in the lafjeease show that
VEGAS produces, in this case, accurate coefficients which

2 ; ; )
should not completely spoil the optimization procedure. FotV1€T@ 1P represents the term with no interacti¢e®),, o,

consistency with the largl- case we considered only the to be subtragted according to the discussion in Sefcolin-
real parts of the first family of positive solutions as the rel-Pare. €.g., with Eq(1.9)], and

evant ones. Applying the CIRT to this case has improved the

recent ordeis* results of Ref[18], generatingz;=1.19 and 2 d3k

c5=84.9, which are about 9% smaller and 11% higher, re- E(p)=Nf (zw)aF(k) (k+p)2’
spectively, than the recent lattice Monte Carlo estimates

[14,15. In any case one cannot expect to make a definitinNith the
analytical prediction, for these coefficients, from a calcula- )

tion involving only a handful of contributions. Nevertheless,

the agreement between our improved analytical LDE results 1
and the recent numerical Monte Carlo results is quite impres- F(k)= [i + B(k)} ' (A3)
sive. Moreover, the consistency of oNr=2 results as ob- Nu

tained from a different resummation meth@@adeapproxi-

mantg used prior to the LDE procedure is also noticeable.where

(A2)

dressed”(resummed scalar propagatofsee Fig.
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d® 1 1 -2 :

B(k)zf i I (Ad) dk— —p~di+29gdp, (A8)
(2m)* g’(k+q)® 8K

represents the basic one-logpasslessbubble integral. At Then using the basic dimensional regularization formula

the relevantnext to leading 1/N order one obtains the basic diP (PP

expression to be evaluated as f

(2m® (P?+R?)?

d°p d%k 1/ 6 -1
A<¢2>:_2f __(_+B(k)) _ 1 F(d/2+b) 2\(d/2+b—a)
(2m)® (2m)® p* | Nu " (2m)2T(d/2)T(a) I'(a=b—d/2)(R%) Y,
1 1
X K i E , (AS) (A9)
(k+p) we obtain after some algebra
where the 13° subtraction term cancels out with the first 20
order term belonging to the /expansion of the terrip? | p2~ " :
+3(p)—2(0)] ' in Eq. (Al). Note that, after applying the (4m)"H(4=d)I'(d/2)sinN(27(3—d)/(4—d))
HP theorem, all loop integrals in EA5) involve massless 6 | 2-d)(@4—d)
scalar propagators. Accordingly, both integrals in EB&5) XBZ(d—s)/(4—d)(_) , (A10)
are IR divergent at intermediate steps, although the final Nu

physical resultA( ¢?) should be an IRand UV) convergent
guantity. Also, the integral ovek is not (absolutely UV
convergent: it has superficially a logarithmic UV divergence.
Thus, as emphasized in Refd.0,11], one should be very

where, for d—3, sin {2m(3—d)/(4—d)] combines with
I'"%(d—3) to give a finite resuftproportional tou. Putting
back all overall factors, one finds

careful to correctly regularize these integrals before doing Nu
standard manipulations, like typically exchanging the order A(p?)=— , (A11)
of the two integrations in EqA5). The authors of Ref.10] 9672

chose to work in dimensional regularization, which takes = = . ) . .
care of both, UV and IR divergences. We thus now summaWhich is simply related te, via Eq.(1.5), in agreement with
rize the main steps of this calculation. First, one integrategef- [10].

overp, so that the second term of the square brackets in Eq.

(A5) vanishes, sincgdp/p*=0 in dimensional regulariza- APPENDIX B: LARGE-ORDER BEHAVIOR

tion. The integration of the nonvanishing first term in the OF STANDARD LDE AND PMS

square brackets of E¢A5) gives a result whose behavior for

d—3 is essentially given by-1[T'(d—3)], which would, In this appendix we briefly analyze the large-order behav-

velv. ai it H i bi h ior of the standard LDE, in order to exhibit some generic
naively, give Zero as a result. However, it combines wi aproperties of the LDE-PMS optimization solutions, as well

simple polg ind—.3 given by the nexk in'tegral(sge_ below as the link with the more direct CIRT method considered in
More precisely, integration of EqA5) gives (omitting fac- Sec. IVB.

tors that are regular fai— 3) Considering either Eq(3.2) or (3.27 with 7*=7(1
§ — 8)'2 the result of its expansion to ordkrin & followed
f d’p 1 by 6— 1 can be written formally aghe coefficientK,, here
(2m)% p*(k+p)? refer indistinguishably to either thk, of Eq.(3.21) or theG;
of Eq. (3.27)]
1 TI'(di2-1) T KI5 (6) ‘
= : , N I'(3/2
4792 T(d—3) sin(wd/2) 2\(K) __N7 _ 13N
(4m) M) mu== 7 2 (D" rEpmy
where the space-time dimensidnis kept arbitrary, for the K n
moment. One has next to deal with an integral dvef the + uN K ( - ﬂ)
generic form(omitting again nonessential constant overall 341 " 6y
factors Ken1
> 1 I'(1-n/2)
d' kd—6 . =0 (=1) q'T'(1-ni2—q)’
I g2~ f , (A7)
(2m)9 6/Nu+B(d)k?* (B1)
whereB(d=3)=1/8. Next, to evaluate EqA7), we make
the following change of variable®?=k™ € wheree=4—d, "Note a misprint in Eq(27) of Ref.[10], where the relevant term

which gives sin2m(3—d)/(4—d)] reads sifir(d—2)/(4—d)].
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where the last sum originates from the expansion of (1=22-Y21(7)T'(1/2+2)/\/(27),

— 6) "2 and the upper limit of this sum takes into account
that at ordek of the § expansion there is a term coming from
u(u/7)"— 8" tu(u/ )" and a term from (+6) "2 The
sums can be performed analytically to give

(-1

Vm T(1/2—K)T(1+K)
( uN
Kol = =—

677)
T(—n/2+k)
TCni T (1n2)

N7
s

A(¢?)P(mu)=—

uNk

A

3 =1

(B2)

The expressiolB2) as it stands is particularly convenient to
be optimized with respect tg at arbitrary ordek, leading to
the results shown, e.g., in Tables II-VI, X, and XI, depend
ing whether one takes the exactN1/IR approximated, or
exactN=2 values of the relevant perturbative coefficients
K,, given in Eq.(5.2.

The large LDE order behavior, fdt—o, of expression
(B2) can also be analyzed, to give

Nn 1
2\ (k) _ =
A(p*) (n,U)k_m T
K
uN uN\" k"2
T S L ML
3~ 67 T(1+n/2)

(B3)

where we used, to obtain E¢B3), the well-known proper-
ties of the Gamma functions, such ad'(22)
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I'2)I'(1—-2z)sin(m2)=m,
and the Stirling asymptotic behaviorI'(b+az)
N zwefaZ(aZ)aHbfl/Z.

Expression(B3) clearly suggests rescaling for conve-
nience the arbitrary mass parameter according-te 7k
Of course, after such a rescaling the relevant limit is again

7—0. After such a rescaling, one obtains

o~ Ny 1
AP )(ﬂyU)N—Em
uN < K, uN\"
3 2 T _6_77) '

(B4)

which, as expected, agrees with the CIRT “direct” LDE re-
summation result Eq4.14).

More precisely, for the simpler geometric series cases Eq.
(4.2 and Eq.(3.27), thus corresponding tup to an overall
facton K,,=1, the sum in Eq(B4) can be further performed
exactly, to give experfc(x)—1 with x=u/n [x
=uN/(48m7)] for Eq. (4.2 [Eq. (3.27)]. Finally, the
asymptotic expansion of erfg] for the relevant limitx
— oo (equivalentlyp—0) [41]:

exp(x?)erfo(x) ~

Jax

* q 1 q
1+q§l .Hl ( _ﬁ) (2|—1)1,
(B5)

was used at different stages in Sec. IV, for instance, to ex-
amine the behavior of the LDE series when the linear tadpole
term is included in the procedure.
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