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The generation of dark solitons from large initial excitations and their evolution in a one-dimensional
Bose-Einstein condensate trapped by a harmonic potential is studied analytically and numerically. We consider
three different techniques of controllable creation of multisoliton struct(geliton traing from large initial
excitations and calculate their initial parametédspths and velocitiesvith the use of a generalized Bohr-
Sommerfeld quantization rule. Multisoliton effects are discussed.

DOI: 10.1103/PhysRevA.68.043614 PACS nuntber03.75.Lm, 03.75.Kk, 05.45.Yv

[. INTRODUCTION determined by the generalized Bohr-Sommerfeld quantiza-
tion rule which gives the parameters of solitons formed from
Current experimentl—4] on the formation of solitons in  the initial disturbance. If the condensate as a whole is not
Bose-Einstein condensat¢éBEC’s) have stimulated inten- disturbed too much, then further propagation of dark solitons
sive theoretical studies devoted to generation and evolutiodlong nonuniform BEC can be described as their oscillations
of solitons in BEC. Special interest was attracted by the BEGN BEC confined by a tragsee, e.g., Ref418,19).
with repulsive interaction between atoms where dark solitons The organization of the paper is as follows. In Sec. Il we
can be generated by various methods, e.g., by inducing deftart with outline of the reduction of the 3D GP equation to
sity defects in BEQ4] (density engineering by imprinting the 1D NLS equation that will provide us with the character-
spatial phase distributidi8] (phase engineeringand by col-  1Stic values of parameters. In Sec. Il we describe generation
lision of two condensate,6]. At ultralow temperatures, a o_f soliton trains in a trapped BEC frorr_l initial disturbances of
trapped BEC is well described by the three-dimensi¢aa) dlffere_nt types and study their evo_lutlon. In the case of per-
Gross-Pitaevski{GP) equation[7], and localized excitations turbation of the condensate density by a large and smooth
in BEC can be studied by its n’umerical solutitsee, e.g initial pulse we find initial parameters of created solitons

Refs. [8]). H in hiahl . h with the use of generalized Bohr-Sommerfeld quantization
efs.[8]). However, in highly asymmetric cigar-shape Uraps je. we predict locations of turning points of oscillatory

the 3D GP equation can be reduced under certain conditionfotion of solitons which are well confirmed by direct nu-

to 1D nonlinear Schidinger(NLS) equation(see, e.9., Refs.  merical simulations. We also discuss behavior of dark soli-

[9-11)) which is a well-studied mathematical model widely ons generated by the phase imprinting method and creation

used for description of evolution of wave packets in variousof solitons during collisions of two condensates in the pres-

nonlinear media. ence of the harmonic trap potential. The outcomes of the

In homogeneous case, when the trap potential is droppegéheory are summarized in Conclusion.

the NLS equation has the property of complete integrability

[12] In this case, the parameters of solitons formed by the II. DERIVATION OF 1D NLSE FROM THE 3D GP

initial disturbance are determined by the spectrum of the EQUATION

Zakharov-ShabatZS) linear problem associated with the

NLS equation. In practice, this spectrum can be calculated by We start with the 3D GP equation for the order parameter

such approximate methods as variational apprdd@ or  ¥=u(r,t):

quasiclassical methdd 4,15. If the size of the initial distur- " 42

bance is much less than the size of the whole condensate, . _ 2

then we can consider the stage of solitons formation as tak- 'ﬁﬁ_ a ﬁmﬁ_ Virap(1) ¥+ Gol Y179, @

ing place in homogeneous condensate and apply the methods

developed for the integrable NLS equation. Just this apwhere we use the standard notatigg= 4 7#i2as/m, ag be-

proach was used in a recent paps] for the special case of ing the s-wave scattering length, which is considered posi-

steplike phase initial disturbance. In the present paper wéve, mis the atomic massy;,,,(r) is a trap potential, ang

shall consider generation of solitons from arbitrary initial is normalized to number of particlég in BEC. Considering

disturbance by the quasiclassical method developed in Refhe case of a cigar-shape BEC, we ta}(ge,dp=(m/2)w2x2

[17]. In this method the spectrum of the ZS linear problem is+ (m/2)w, (y?>+ z%) where longitudinal trap frequenay is

much less than the transverse oamg¢. Then the 3D GP
equation(1) can be reduced to 1INLS) equation, if one can

*Electronic address: brazhnyi@cii.fc.ul.pt neglect excitations of higher transverse modes and only
"Electronic address: kamch@isan.troitsk.ru ground-state transverse motion can be taken into account. An
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easy estimate shows that energies of transverse motion are By equating Eqs(5) and (8) we determine the value of
much greater than the nonlinear energy, if the condition  the dimensionless chemical potentjalin terms of experi-
mentally measurable parameters

asN
<1 @ IR ENES
m=2"" = 9
a
is fulfilled, wherel is a longitudinal size of the condensate. . ] o
In this case atoms occupy only the ground state of theif N€n the conditionu>» yields the criterion
transverse motion which, thus, is decoupled from the longi- v1’2<NaS/ai (10)

tudinal motion. Since the transverse motion is reduced to the
ground state only, we can factorize the whole condensatgs applicability of the TF approximation in physical units.
wave function. To make the resulting 1D evolution equationygte that the condition that the characteristic width of the
dimensionless, we introduce soliton solution of the NLS equation must be much less than
condensate’s lengthyields again the same inequalit§0).

2+22 The initial di . s .
_ 2 12 . Y e initial dimensionless axial length of the condensate is
w(r.)=(2mala) exp( o, t 2a® 0, equal tol=+2u/v, or in dimensional units

()

| =(3Nag@a?/v?)", (11)
2 _ : .
wherea’ =#/mew, , and make a change of independent vari Substitution of this expression into E() gives the condi-

—»—1/4 ’ — o121 H H _
?2'&2; f02rm o?ltﬁe, l\tILSZe;tuggéﬁ V-\E::;]Sargzlrjgts)oz?c :ohoete%?ial'tion of applicability of 1D reduction of the 3D GP equation
“in the formag\V/a, <1/v, so that combining this inequality

5 with Eq. (10), we arrive at criteria of applicability of the
A A 1 t th .
i+ —— 2| W[2W = = 22w, (4  Present theory:
ot (;)XZ 2
< a < E (12

wherev=w/w, <1 and the primes are suppressed. The di- a, v
mensionless BEC wave functio#f (x,t) is normalized ac-
cording to In what follows we deal mainly with two dimensionless pa-

rametersy and u, which completely define the initial distri-

o I/\/as bution of the condensate density.
f W (x,t)|2dx=2% a 5 Let us estimate these values for typical experimental pa-

- + rameters[20] of the condensate witth'=3x 10° atoms of
8Rb with scattering lengtag~5 nm. Takinga, ~3 um
(which corresponds to the frequeney, ~5% 10° Hz) and
the frequency of longitudinal trap~ 10 Hz, one can obtain
v=0.02, the initial condensate length-0.12 mm. The pa-
rameterag\/a, is equal to~5 and conditiong12) of ap-

A stationary solutionW(x,t)=W¥(x)exp(—iut), corre-
sponding to the ground state of BEC, is given'byx) sat-
isfying the equation

d?y 1 . - . L . .
+ W — 2| W |2 = = 22, 6) plicability of this theory are satisfied quite well: 0&&
dx? 2 <50.
subject to the zero boundary condition|gt—c and having Ill. FORMATION OF SOLITONS FROM LARGE
no other zeros. The eigenvalwe(chemical potentialis de- INITIAL EXCITATION

termined by the normalization conditidi). In dimension-
less units the longitudinal size of the condensate is of orde
of magnitudex % v and if the kinetic energy of longitudinal
motion is much less tham, which gives the conditioru
>, then considerable part of the condensate can be d
scribed by Thomas-Fern{iTF) approximation in which the
term with the second space derivative in E§). can be ne-
glected almost everywhere, so that

The problem of evaluation of parameters of dark solitons
ormed from a large initial excitation on a constant back-
ground is formally solved by the inverse scattering method
£12]. In the framework of this method, the NLS equation is
associated with the ZS linear spectral problgrd|, and soli-
ton parameters are related with the eigenvalues of this prob-
lem calculated for a given initial condensate wave function
¥ (x,0). If the initial disturbance is large enough, so that the

_ 2_ 1, 1.2,2 linear spectral problem possesses many eigenvalues, then a
Po)=[¥re()|"=F(x) =z (n=2v) Y well-known quasiclassical method can be applied for their
calculation. As was shown in a recent papEr], a general-

with normalization condition ized Bohr-Sommerfeld quantization rule is very convenient

_ (2)32 for this aim.
f\’zﬁ’v [P e(x)|2dx= K _ (8) To formulate this rule, it is convenient to introduce a new
—\2ulv 3v small parametet, ¢<1, into Eq.(4) by means of replace-
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mentsx=x'/g, t=t'/e, andv=v"g, so that the equation ' \ ! | !
transforms to AF (9

_ aw+ ,0°W
|8at to (9)(2

1
—2|\I’|2‘P=§v2x2‘lf, (13

where we have omitted for simplicity the primes in the new — -
variables. Then the limi¢ <1 corresponds to formation of a : !
large number of solitons from an initial disturbance with pa- : : .
rameters of order of magnitud®(1) (see Ref.[17]). In : :
framework of the inverse scattering transform method the, | L | !
NLS equation, i.e., Eq.13) with the zero right-hand side, is 0 X, Xt X,
treated as a compatibility condition of two linear equations
for auxiliary functiony, which we write down in the form

FIG. 1. Schematic plot of the Riemann invariant given by
Eq. (21) (thick solid ling; the thin solid line shows the Riemann
(14) invariant for disturbance with respect to uniform background; the

dashed line shows background without disturbaméedenotes the

(equivalent to the ZS problem; see Rdf&1,27), where position of localized disturbance antlF(x*)=1—F(x*) is the
change of the condensate density because of condensate nonunifor-

SZXXXZAXy Xt= %BXX+BXX

ieWw,\? « mity. d is the characteristic scale of the initial disturbance. The
A=—| N~ o5 t |W|2—g2 ﬁ) , (15 horizontal lines of different width indicate positions of eigenvalues
X N\, and the width of each line characterizes the lifetime of the cor-
) responding soliton&he thicker a line is, the smaller is the lifetime
B=2\+ ieWy (16) Dimensionless variables are defined in the text.
v

Equation (20) has a formal analogy with a stationary

The first equatior{14) may be considered as a second-orderSchralinger equation for a quantum-mechanical motion of a
scalar spectral problem with a given “potentiaf’ and\  particle in the “energy-dependent” potential, i.e., the poten-
playing the role of the spectral parameter. Whéix,t) tial depending on the spectral parameterAccording to the

evolves according to Eq13) with =0, the eigenvalues,,  above-mentioned independence of the eigenvalieson

of this problem do not change with tinteand each eigen- time, they can be calculated with the use of the initial distri-
value corresponds to a soliton created from the initial pulsebutions p(x,0) andv(x,0). Since we are interested in such
To investigate the limit <1, let us represent the condensateinitial data which give rise to creation of large number of

wave function in the form solitons, this means that functiopgx,0) andv(x,0) corre-
. spond to problen{20) with a large number of eigenvalues.
— v L R / Then the quasiclassical approach can be used for their calcu-
rxn= p(x,t)exp< sf v (X', dx ) (A7) lation[17]. To clarify this method, we have shown schemati-

cally in Fig. 1 a plot of the “Riemann invariant”
where p(x,t) is the condensate density amqx,t) is the
hydrodynamic velocity. Indeed, substitution of E¢7) into AT =—0(x,0/2+ Vp(x,0), (22)
Eq. (13) yields the system

which plays a role of the “quantum-mechanical potential”

3Pt (pv)y=0, (18  for problem (20). (The second Riemann invariant~
=—v(x,0)/2— {p(x,0) can be considered in the same way.

ot oot pyteX(p3— 2pp) 1807 ]=— 37X, The Riemann invariant for the same disturbance but with
respect to uniform backgrourie(x)=1 is shown for com-
parison by thin solid line. We see that in both cases there is a
“potential well,” but for the nonuniform Thomas-Fermi
background case the eigenvalues acquire imaginary part
(“decay width”) due to tunneling effect. This means that
dark solitons in confined condensate have a finite lifetime.
Nevertheless, it makes sense to speak about solitons in a
confined condensate, if their lifetimes, are much greater
2=~ (N +v/2)%+plx. (200  than the per_iod~ 1/1_/ of their oscillations. It is_ clear that
“shallow” solitons with small 7, do not survive in the con-
It is to be mentioned here that conditiofi®) are nothing but fined condensate, so that, with values close to the top of
the conditions of applicability of the well-known hydrody- the “potential barrier” do not correspond to any real solitons.
namical approach when due to a relatively high density thén the contrary, in the case of the uniform background dis-
two-body interactions are strong enough and one can neglectissed in Ref[17] all eigenvalues correspond to real soli-
the “quantum pressure(see, e.g., Ref.7]). tons appearing eventually from the initial pulse. In multisoli-

which for e —0 takes the form of hydrodynamic equations.
For smooth enough functionsx,t) andv(x,t), when

lepy/p|<p and |ev,|<p, (19

which corresponds to neglecting the space derivative4,in
spectral problentl14) transforms into
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ton problem there is also one more scale of time equal to TABLE I. Parameters of solitons created from initial intensity
time of formation of solitons from the initial pulse. For deep disturbance.

enough solitons it can be estimated by the order of magni

tude as time necessary for solitons with velocity,| n A 9™ alflor atm
=2|\,| (see belowto pass the distance equal to the width

Lo - . 0 0.41 2.29 2.74 2.48
of the initial problem. For the problems under consideration, 1 0.65 172 435 423
this time~d/2|\ ;| must be much less than the peried./v. 5 0.80 128 5 33 £ 4

Thus, we are interested in the eigenvalugswhich satisfy

inequalities
the NLS equatior{19]. This can be achieved by requiring
E d F(x) to be an eigenfunction of the nonlinear spectral prob-
™S> —> . (22
"y 2N lem
It is clear that there are no such reservations in the case of 2 (vx)? 3
uniform background17] where formallyr,= and one can e Fxt| 2wy = —5—F=2poF"=0, (27)
wait long enough to observe formation of soliton with any
value of\,,. lim F(x)=0, (29
To calculate the real parts of the eigenvalugscorre- X—*
sponding to deep solitons, one can use the generalized Bohr- o . o »
Sommerfeld quantization rule which satisfies the following normalization conditions:
1o \/ 7 2 1 F(0)=1, F,(0)=0. (29
Xn - . _ -
Efxn Aot ZU(X’0)> pXQdx=m| nt 5], In Eq. (27) wy, is an eigenvalue.

In the case when an inhomogeneous background changes
n=012... M, (23) in space in the intervals c_>f integration in E@3), we can
apply the same method wiiy, replaced by the value of the

with given initial distributionsp(x,0) andv(x,0). We sup- Packground density¥*(x*) at the place<* of the localized
pose here that the integrand has only one maximumxgnd nitial excitation(see Fig. 1 o .
andx, are the points where the integrand function vanishes]; we have used th|s_ a_p_proacr_l fo_r f|n(_1||ng s_ohtpn parameters
they depend o, and are chosen such that relationst#ig) or d'.ﬁ erent typg s of |_n|tlgl excitations(i) excnatlo_ns of th?
is satisfied(see Fig. 1 Analytical form of each emerging densn“yp ), .(”) excitation of t’he hyg_rodyn_a_mlc velocity
soliton in an asymptotic region where it is well separatedv(x) ("phase imprinting method}, andiii) collision of con-

from other solitongi.e., in the limitt—«) is expressed in densates.
terms of\, as follows: o
A. Density disturbance
) po—\2 For illustration of the process of solitons formation from
ps (X,t)=pg— 5 , (249 the density disturbance, the initial data were taken in the
cosi[ Vpo— N2 (x—2\t)/e] form
(n = (m_ 2
vg (X, t)=Np(po/ps’—1). (25 _ B

As is clear, formulag24) and (25) represent the one-soliton
solution which parameters such as dengigyand phase dif- where the parametar measures the strength of the distur-
ference ¥, at =« are connected by the relation, bance. We have chosen the following values of the param-
=/pocos(¥,/2) [17,19. Thus, the last formula allows one to eters:a=0.8, v=0.3, ande =0.3. The values of,, for the
find initial values of,, for solitons emerging from the dark three deepest solitons calculated with the use the Bohr-
excitation of the condensate with given initial distributions Sommerfeld rulg23) are shown in Table | together with the
of p(x,0) andv(x,0) against a constant uniform background. corresponding values af, and amplitudes{[., = 2\"/v of

If the background is not uniform, then solution of E§j3)  their oscillatory motion(see Ref[19]). In the last column
can be searched in the form of an initial excitatidx,t) the amplitudes of the oscillatory motion found from numeri-
against an inhomogeneous backgro@d) [19], i.e., in the  cal solution of Eq.(4) with the initial data(30) are shown.

form The discrepancy is less than 10% and is caused, apparently,
by the fact that in our case the created solitons did not yet
(X, H)=F(X)P(x1), (26)  reach the asymptotic values of their velocitiés=2X\,,. Be-
sides that, numerical calculations show that the “initial co-
where®(x,0) is given by Eq(17). ordinates” of solitons created from the initial pulse cannot be

In order to use ansat26) it is natural to choosé-(x) identified exactly withX(0)=0. This is the reason why soli-
such that the resulting equation f&r(x,t) would be close to tons created from one initial pulse do not reverse simulta-
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FIG. 2. Space distribution of the density of a BEQ and of its
hydrodynamic velocity(b) in the harmonic trapped potential with FIG. 3. Space distribution of density of BE@) and its hydro-
v=0.3 at timet=4.24(solid line) with initial excitation taken in the ~dynamic velocity (b) in the harmonic trapped potential with
form of pulse(30) (dashed lingwith po=1, a=0.8, ande=0.3. =0.3 at timet=1 without (dashed lingand with(solid line) initial
Dimensionless variables are defined in the text. excitation that is taken as a phase step wifh-1, a=4, k=0.4,
ande=1. Dimensionless variables are defined in the text.

neously their directions of motion even during the first pe- , . )

riod of oscillations in the confined condensate. Thistime interval after their formatiofsee Figs. 4 and)5How-
phenomenon is illustrated in Fig. 2, where the density,t) ever, in the case Of'lnltlal daﬁé%l)' we also observe strong
and hydrodynamic velocity (x,t) of the condensate are npnsollton contribution to excitation of the cond_enséﬁee _
shown as functions of at the moments when two solitons in F19- 3 which leads to much more complicated picture of its
each train have already reversed the direction of their propggvelution. One may say that in this case solitons move along
gation and are moving to the center, while the other twoPackground varying with time and the mfluen_ce of this time
solitons are still moving from the center. This process ofd€Pendence is not small contrary to the previous case of the
“solitons’ reflection from the potential well” takes about density disturbance. As a result, the motion of solitons can-
20% of the whole period of their oscillations. not be described aslmos) harmonic oscillations along con-

B. Phase disturbance e | | N

For illustration of the process of soliton formation by the
phase imprinting method, we have chosen the initial condi- [
tions in the form

=F2 :—a
p(X,00=F*(x), v(x,0) COSH(KX). (31

Again the soliton parameters can be calculated with the use

of the Bohr-Sommerfeld quantization ru(23) and their val- 20 \ |

ues correspond well to numerical simulation. In particular, (b)
the Bohr-Sommerfeld rule gives correct number of solitons
and signs of their initial velocities. As one can see in Fig. 3,
at first the deepest soliton moves to the right but the hydro-
dynamic velocity distribution corresponds to its motion to
the left. Only when the local-density minimum touches xhe
axis, the velocity distribution makes a flip and after that it 20 | \
corresponds to the predicted direction of the soliton propa- -10 o 10
gation (see Fig. 4. All solitons predicted by the Bohr-

Sommerfeld quantization rule can be observed during some FIG. 4. The same as in Fig. 3, &t 1.5.

Vo f 1
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FIG. 5. The same as in Fig. 3, &t 4. FIG. 6. Formation of dark soliton&olid line) during the colli-

sion of two initially separated condensatéashed ling corre-
sponding to the initial daté82) with parameters=0.5, (=8, and
stant nonuniform background. But even in this case quasie =0.5 in harmonic trap potentiai=0.2 att=4. (a) The density of
classical method of finding the solitons’ parameters yieldBEC and(b) hydrodynamic velocity. Dimensionless variables are
quite accurate description of solitons’ motion for times lessdéfined in the text.
than 2x/v.

C. Collision of two separated condensates Then velocities of solitons,,= 2\, differ from one another

) ) _ by Av=2e7/d and distances between interference fringes
Formation of dark solitons can be observed also duringye of order of magnitude

collision of two separated condensates that move under in-
fluence of the trap potentig6]. Taking the initial conditions

in the form .-
p(x,0)=exe] — k(x— &)2]+exd — k(x+ &)2], Ax=——t. (33

x,0)=0, 32 . . . .
v(x,0) (32 After transformation to dimensional units we reproduce the

estimateAx=2xAt/(md) of Ref.[23].
we have solved Eq4) numerically. It was found that these it (md) [23]

. . . , Thus, the quasiclassical approach provides simple and ef-
two condensates oscillate in the trap potential and interacgt,

with each other in quite complicated way when they overlap ctive method for calculation of the parameters of solitons
with each other. Since the initial daa?) lead to a number arising from large enough initial disturbance. This method

of eigenvalues.(™, one may expect that during the collision can be used for estimation of these parameters in the present

of two condensates the corresponding number of dark soh‘ijay experiments with BEC solitons.

tons must be observed. This is indeed the case as one can see

in Fig. 6, where the density and the hydrodynamic velocity

distributions are shown at the moment of maximal overlap of IV. DISCUSSION AND CONCLUSION

two condensates whose initial density distributions are indi-

cated by dashed lines. The number of solitons matches very In the present paper we have investigated the evolution of

well with that predicted by the Bohr-Sommerfeld quantiza-localized excitations in a 1D BEC with a positive scattering

tion rule, but their motion cannot be presented as propagdength confined by a harmonic trap potential. It has been

tion with slowly changing parameters along constant nonunishown that the existence of an inhomogeneous background

form background. becomes especially important when initially multisoliton
The plot in Fig. &a) can be considered as an interferencepulses are under consideration. In comparison to the inte-

pattern of two coherent condensates after their ovd28h  grable case with constant background, new temporal scales

From Eg. (23) we can estimate the eigenvalues ®gd  appear in the problem. They are associated with the

=gn, whered is the initial distance between condensates.harmonic-oscillator frequency and finite lifetime of solitons.
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