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Creation and evolution of trains of dark solitons in a trapped one-dimensional
Bose-Einstein condensate
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The generation of dark solitons from large initial excitations and their evolution in a one-dimensional
Bose-Einstein condensate trapped by a harmonic potential is studied analytically and numerically. We consider
three different techniques of controllable creation of multisoliton structures~soliton trains! from large initial
excitations and calculate their initial parameters~depths and velocities! with the use of a generalized Bohr-
Sommerfeld quantization rule. Multisoliton effects are discussed.
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I. INTRODUCTION

Current experiments@1–4# on the formation of solitons in
Bose-Einstein condensates~BEC’s! have stimulated inten
sive theoretical studies devoted to generation and evolu
of solitons in BEC. Special interest was attracted by the B
with repulsive interaction between atoms where dark solit
can be generated by various methods, e.g., by inducing
sity defects in BEC@4# ~density engineering!, by imprinting
spatial phase distribution@3# ~phase engineering!, and by col-
lision of two condensates@5,6#. At ultralow temperatures, a
trapped BEC is well described by the three-dimensional~3D!
Gross-Pitaevskii~GP! equation@7#, and localized excitations
in BEC can be studied by its numerical solution~see, e.g.,
Refs.@8#!. However, in highly asymmetric cigar-shape tra
the 3D GP equation can be reduced under certain condit
to 1D nonlinear Schro¨dinger~NLS! equation~see, e.g., Refs
@9–11#! which is a well-studied mathematical model wide
used for description of evolution of wave packets in vario
nonlinear media.

In homogeneous case, when the trap potential is drop
the NLS equation has the property of complete integrabi
@12#. In this case, the parameters of solitons formed by
initial disturbance are determined by the spectrum of
Zakharov-Shabat~ZS! linear problem associated with th
NLS equation. In practice, this spectrum can be calculated
such approximate methods as variational approach@13# or
quasiclassical method@14,15#. If the size of the initial distur-
bance is much less than the size of the whole condens
then we can consider the stage of solitons formation as
ing place in homogeneous condensate and apply the met
developed for the integrable NLS equation. Just this
proach was used in a recent paper@16# for the special case o
steplike phase initial disturbance. In the present paper
shall consider generation of solitons from arbitrary init
disturbance by the quasiclassical method developed in
@17#. In this method the spectrum of the ZS linear problem
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determined by the generalized Bohr-Sommerfeld quant
tion rule which gives the parameters of solitons formed fro
the initial disturbance. If the condensate as a whole is
disturbed too much, then further propagation of dark solito
along nonuniform BEC can be described as their oscillati
in BEC confined by a trap~see, e.g., Refs.@18,19#!.

The organization of the paper is as follows. In Sec. II w
start with outline of the reduction of the 3D GP equation
the 1D NLS equation that will provide us with the characte
istic values of parameters. In Sec. III we describe genera
of soliton trains in a trapped BEC from initial disturbances
different types and study their evolution. In the case of p
turbation of the condensate density by a large and smo
initial pulse we find initial parameters of created solito
with the use of generalized Bohr-Sommerfeld quantizat
rule. We predict locations of turning points of oscillato
motion of solitons which are well confirmed by direct n
merical simulations. We also discuss behavior of dark s
tons generated by the phase imprinting method and crea
of solitons during collisions of two condensates in the pr
ence of the harmonic trap potential. The outcomes of
theory are summarized in Conclusion.

II. DERIVATION OF 1D NLSE FROM THE 3D GP
EQUATION

We start with the 3D GP equation for the order parame
c[c(r ,t):

i\
]c

]t
52

\2

2m
Dc1Vtrap~r !c1g0ucu2c, ~1!

where we use the standard notationg054p\2as /m, as be-
ing the s-wave scattering length, which is considered po
tive, m is the atomic mass;Vtrap(r ) is a trap potential, andc
is normalized to number of particlesN in BEC. Considering
the case of a cigar-shape BEC, we takeVtrap5(m/2)v2x2

1(m/2)v'(y21z2) where longitudinal trap frequencyv is
much less than the transverse onev' . Then the 3D GP
equation~1! can be reduced to 1D~NLS! equation, if one can
neglect excitations of higher transverse modes and o
ground-state transverse motion can be taken into accoun
©2003 The American Physical Society14-1
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easy estimate shows that energies of transverse motion
much greater than the nonlinear energy, if the condition

asN
l

!1 ~2!

is fulfilled, wherel is a longitudinal size of the condensat
In this case atoms occupy only the ground state of th
transverse motion which, thus, is decoupled from the lon
tudinal motion. Since the transverse motion is reduced to
ground state only, we can factorize the whole condens
wave function. To make the resulting 1D evolution equat
dimensionless, we introduce

c~r ,t !5~A2pa'
2 as!

21/2expS 2 iv't2
y21z2

2a'
2 D C~x,t !,

~3!

wherea'
2 5\/mv' , and make a change of independent va

ables x5221/4a'x8, t521/2t8/v' . This results in the ca-
nonical form of the NLS equation with a parabolic potenti

i
]C

]t
1

]2C

]x2
22uCu2C5

1

2
n2x2C, ~4!

wheren5v/v'!1 and the primes are suppressed. The
mensionless BEC wave functionC(x,t) is normalized ac-
cording to

E
2`

`

uC~x,t !u2dx523/4
Nas

a'

. ~5!

A stationary solutionC(x,t)5C(x)exp(2imt), corre-
sponding to the ground state of BEC, is given byC(x) sat-
isfying the equation

d2C

dx2
1mC22uCu2C5

1

2
n2x2C, ~6!

subject to the zero boundary condition atuxu→` and having
no other zeros. The eigenvaluem ~chemical potential! is de-
termined by the normalization condition~5!. In dimension-
less units the longitudinal size of the condensate is of or
of magnitudem1/2/n and if the kinetic energy of longitudina
motion is much less thanm, which gives the conditionm
@n, then considerable part of the condensate can be
scribed by Thomas-Fermi~TF! approximation in which the
term with the second space derivative in Eq.~6! can be ne-
glected almost everywhere, so that

r0~x![uCTF~x!u25F~x!5 1
2 ~m2 1

2 n2x2! ~7!

with normalization condition

E
2A2m/n

A2m/n
uCTF~x!u2dx5

~2m!3/2

3n
. ~8!
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By equating Eqs.~5! and ~8! we determine the value o
the dimensionless chemical potentialm in terms of experi-
mentally measurable parameters

m5221/2S 3nNas

a'
D 2/3

. ~9!

Then the conditionm@n yields the criterion

n1/2!Nas /a' ~10!

of applicability of the TF approximation in physical units
Note that the condition that the characteristic width of t
soliton solution of the NLS equation must be much less th
condensate’s lengthl yields again the same inequality~10!.
The initial dimensionless axial length of the condensate
equal tol 5A2m/n, or in dimensional units

l 5~3Nasa'
2 /n2!1/3. ~11!

Substitution of this expression into Eq.~2! gives the condi-
tion of applicability of 1D reduction of the 3D GP equatio
in the formasN/a'!1/n, so that combining this inequality
with Eq. ~10!, we arrive at criteria of applicability of the
present theory:

n1/2!
asN
a'

!
1

n
. ~12!

In what follows we deal mainly with two dimensionless p
rametersn andm, which completely define the initial distri
bution of the condensate density.

Let us estimate these values for typical experimental
rameters@20# of the condensate withN533103 atoms of
87Rb with scattering lengthas'5 nm. Takinga''3 mm
~which corresponds to the frequencyv';53102 Hz) and
the frequency of longitudinal trapv;10 Hz, one can obtain
n50.02, the initial condensate lengthl;0.12 mm. The pa-
rameterasN/a' is equal to;5 and conditions~12! of ap-
plicability of this theory are satisfied quite well: 0.14!5
!50.

III. FORMATION OF SOLITONS FROM LARGE
INITIAL EXCITATION

The problem of evaluation of parameters of dark solito
formed from a large initial excitation on a constant bac
ground is formally solved by the inverse scattering meth
@12#. In the framework of this method, the NLS equation
associated with the ZS linear spectral problem@12#, and soli-
ton parameters are related with the eigenvalues of this p
lem calculated for a given initial condensate wave funct
C(x,0). If the initial disturbance is large enough, so that t
linear spectral problem possesses many eigenvalues, th
well-known quasiclassical method can be applied for th
calculation. As was shown in a recent paper@17#, a general-
ized Bohr-Sommerfeld quantization rule is very convenie
for this aim.

To formulate this rule, it is convenient to introduce a ne
small parameter«, «!1, into Eq.~4! by means of replace
4-2
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mentsx5x8/«, t5t8/«, and n5n8«, so that the equation
transforms to

i«
]C

]t
1«2

]2C

]x2
22uCu2C5

1

2
n2x2C, ~13!

where we have omitted for simplicity the primes in the ne
variables. Then the limit«!1 corresponds to formation of
large number of solitons from an initial disturbance with p
rameters of order of magnitudeO(1) ~see Ref.@17#!. In
framework of the inverse scattering transform method
NLS equation, i.e., Eq.~13! with the zero right-hand side, i
treated as a compatibility condition of two linear equatio
for auxiliary functionx, which we write down in the form

«2xxx5Ax, x t52 1
2 Bxx1Bxx ~14!

~equivalent to the ZS problem; see Refs.@21,22#!, where

A52S l2
i«Cx

2C D 2

1uCu22«2S Cx

2C D
x

, ~15!

B52l1
i«Cx

C
. ~16!

The first equation~14! may be considered as a second-ord
scalar spectral problem with a given ‘‘potential’’C and l
playing the role of the spectral parameter. WhenC(x,t)
evolves according to Eq.~13! with n50, the eigenvaluesln
of this problem do not change with timet, and each eigen
value corresponds to a soliton created from the initial pu
To investigate the limit«!1, let us represent the condensa
wave function in the form

C~x,t !5Ar~x,t !expS i

«E
x

v~x8,t !dx8D , ~17!

where r(x,t) is the condensate density andv(x,t) is the
hydrodynamic velocity. Indeed, substitution of Eq.~17! into
Eq. ~13! yields the system

1
2 r t1~rv !x50, ~18!

1
2 v t1vvx1rx1«2@~rx

222rrxx!/8r2#x52 1
2 n2x,

which for «→0 takes the form of hydrodynamic equation
For smooth enough functionsr(x,t) andv(x,t), when

u«rx /ru!r and u«vxu!r, ~19!

which corresponds to neglecting the space derivatives inA,
spectral problem~14! transforms into

«2xxx5@2~l1v/2!21r#x. ~20!

It is to be mentioned here that conditions~19! are nothing but
the conditions of applicability of the well-known hydrody
namical approach when due to a relatively high density
two-body interactions are strong enough and one can neg
the ‘‘quantum pressure’’~see, e.g., Ref.@7#!.
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Equation ~20! has a formal analogy with a stationar
Schrödinger equation for a quantum-mechanical motion o
particle in the ‘‘energy-dependent’’ potential, i.e., the pote
tial depending on the spectral parameterl. According to the
above-mentioned independence of the eigenvaluesln on
time, they can be calculated with the use of the initial dis
butionsr(x,0) andv(x,0). Since we are interested in suc
initial data which give rise to creation of large number
solitons, this means that functionsr(x,0) andv(x,0) corre-
spond to problem~20! with a large number of eigenvalues
Then the quasiclassical approach can be used for their ca
lation @17#. To clarify this method, we have shown schema
cally in Fig. 1 a plot of the ‘‘Riemann invariant’’

l152v~x,0!/21Ar~x,0!, ~21!

which plays a role of the ‘‘quantum-mechanical potentia
for problem ~20!. ~The second Riemann invariantl2

52v(x,0)/22Ar(x,0) can be considered in the same wa!
The Riemann invariant for the same disturbance but w
respect to uniform backgroundF(x)51 is shown for com-
parison by thin solid line. We see that in both cases there
‘‘potential well,’’ but for the nonuniform Thomas-Ferm
background case the eigenvalues acquire imaginary
~‘‘decay width’’! due to tunneling effect. This means th
dark solitons in confined condensate have a finite lifetim
Nevertheless, it makes sense to speak about solitons
confined condensate, if their lifetimestn are much greater
than the period;1/n of their oscillations. It is clear tha
‘‘shallow’’ solitons with smalltn do not survive in the con-
fined condensate, so thatln with values close to the top o
the ‘‘potential barrier’’ do not correspond to any real soliton
On the contrary, in the case of the uniform background d
cussed in Ref.@17# all eigenvalues correspond to real so
tons appearing eventually from the initial pulse. In multiso

FIG. 1. Schematic plot of the Riemann invariantl1 given by
Eq. ~21! ~thick solid line!; the thin solid line shows the Rieman
invariant for disturbance with respect to uniform background;
dashed line shows background without disturbance.x* denotes the
position of localized disturbance andDF(x* )512F(x* ) is the
change of the condensate density because of condensate nonu
mity. d is the characteristic scale of the initial disturbance. T
horizontal lines of different width indicate positions of eigenvalu
ln and the width of each line characterizes the lifetime of the c
responding solitons~the thicker a line is, the smaller is the lifetime!.
Dimensionless variables are defined in the text.
4-3
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ton problem there is also one more scale of time equa
time of formation of solitons from the initial pulse. For dee
enough solitons it can be estimated by the order of ma
tude as time necessary for solitons with velocityuVnu
52ulnu ~see below! to pass the distance equal to the widthd
of the initial problem. For the problems under considerati
this time;d/2ulnu must be much less than the period;1/n.
Thus, we are interested in the eigenvaluesln which satisfy
inequalities

tn@
1

n
@

d

2ulnu
. ~22!

It is clear that there are no such reservations in the cas
uniform background@17# where formallytn5` and one can
wait long enough to observe formation of soliton with a
value ofln .

To calculate the real parts of the eigenvaluesln corre-
sponding to deep solitons, one can use the generalized B
Sommerfeld quantization rule

1

«Exn
2

xn
1AS ln1

1

2
v~x,0! D 2

2r~x,0!dx5pS n1
1

2D ,

n50,1,2, . . . ,M , ~23!

with given initial distributionsr(x,0) andv(x,0). We sup-
pose here that the integrand has only one maximum andxn

1

andxn
2 are the points where the integrand function vanish

they depend onln and are chosen such that relationship~23!
is satisfied~see Fig. 1!. Analytical form of each emerging
soliton in an asymptotic region where it is well separa
from other solitons~i.e., in the limit t→`) is expressed in
terms ofln as follows:

rs
(n)~x,t !5r02

r02ln
2

cosh2@Ar02ln
2 ~x22lnt !/«#

, ~24!

vs
(n)~x,t !5ln~r0 /rs

(n)21!. ~25!

As is clear, formulas~24! and ~25! represent the one-solito
solution which parameters such as densityr0 and phase dif-
ference qn at 6` are connected by the relationln

5Ar0cos(qn/2) @17,19#. Thus, the last formula allows one t
find initial values ofqn for solitons emerging from the dar
excitation of the condensate with given initial distributio
of r(x,0) andv(x,0) against a constant uniform backgroun

If the background is not uniform, then solution of Eq.~13!
can be searched in the form of an initial excitationF(x,t)
against an inhomogeneous backgroundF(x) @19#, i.e., in the
form

C~x,t !5F~x!F~x,t !, ~26!

whereF(x,0) is given by Eq.~17!.
In order to use ansatz~26! it is natural to chooseF(x)

such that the resulting equation forF(x,t) would be close to
04361
to

i-

,

of

hr-

s:

d

.

the NLS equation@19#. This can be achieved by requirin
F(x) to be an eigenfunction of the nonlinear spectral pro
lem

«2Fxx1S «vb2
~nx!2

2 DF22r0F350, ~27!

lim
x→6`

F~x!50, ~28!

which satisfies the following normalization conditions:

F~0!51, Fx~0!50. ~29!

In Eq. ~27! vb is an eigenvalue.
In the case when an inhomogeneous background cha

in space in the intervals of integration in Eq.~23!, we can
apply the same method withr0 replaced by the value of the
background densityF2(x* ) at the placex* of the localized
initial excitation ~see Fig. 1!.

We have used this approach for finding soliton parame
for different types of initial excitations:~i! excitations of the
density r(x), ~ii ! excitation of the hydrodynamic velocity
v(x) ~‘‘phase imprinting method’’!, and~iii ! collision of con-
densates.

A. Density disturbance

For illustration of the process of solitons formation fro
the density disturbance, the initial data were taken in
form

r~x,0!5S 12
a

cosh~x! D
2

, v~x,0!50, ~30!

where the parametera measures the strength of the distu
bance. We have chosen the following values of the para
eters:a50.8, n50.3, and«50.3. The values ofln for the
three deepest solitons calculated with the use the Bo
Sommerfeld rule~23! are shown in Table I together with th
corresponding values ofqn and amplitudesatheor

(n) 52ln/n of
their oscillatory motion~see Ref.@19#!. In the last column
the amplitudes of the oscillatory motion found from nume
cal solution of Eq.~4! with the initial data~30! are shown.
The discrepancy is less than 10% and is caused, appare
by the fact that in our case the created solitons did not
reach the asymptotic values of their velocitiesVn52ln . Be-
sides that, numerical calculations show that the ‘‘initial c
ordinates’’ of solitons created from the initial pulse cannot
identified exactly withX(0)50. This is the reason why soli
tons created from one initial pulse do not reverse simu

TABLE I. Parameters of solitons created from initial intensi
disturbance.

n l (n) q (n) atheor
(n) anum

(n)

0 0.41 2.29 2.74 2.48
1 0.65 1.72 4.35 4.23
2 0.80 1.28 5.33 5.54
4-4
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CREATION AND EVOLUTION OF TRAINS OF DARK . . . PHYSICAL REVIEW A68, 043614 ~2003!
neously their directions of motion even during the first p
riod of oscillations in the confined condensate. Th
phenomenon is illustrated in Fig. 2, where the densityr(x,t)
and hydrodynamic velocityv(x,t) of the condensate ar
shown as functions ofx at the moments when two solitons
each train have already reversed the direction of their pro
gation and are moving to the center, while the other t
solitons are still moving from the center. This process
‘‘solitons’ reflection from the potential well’’ takes abou
20% of the whole period of their oscillations.

B. Phase disturbance

For illustration of the process of soliton formation by th
phase imprinting method, we have chosen the initial con
tions in the form

r~x,0!5F2~x!, v~x,0!5
a

cosh2~kx!
. ~31!

Again the soliton parameters can be calculated with the
of the Bohr-Sommerfeld quantization rule~23! and their val-
ues correspond well to numerical simulation. In particu
the Bohr-Sommerfeld rule gives correct number of solito
and signs of their initial velocities. As one can see in Fig.
at first the deepest soliton moves to the right but the hyd
dynamic velocity distribution corresponds to its motion
the left. Only when the local-density minimum touches thx
axis, the velocity distribution makes a flip and after that
corresponds to the predicted direction of the soliton pro
gation ~see Fig. 4!. All solitons predicted by the Bohr
Sommerfeld quantization rule can be observed during so

FIG. 2. Space distribution of the density of a BEC~a! and of its
hydrodynamic velocity~b! in the harmonic trapped potential wit
n50.3 at timet54.24~solid line! with initial excitation taken in the
form of pulse~30! ~dashed line! with r051, a50.8, and«50.3.
Dimensionless variables are defined in the text.
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time interval after their formation~see Figs. 4 and 5!. How-
ever, in the case of initial data~31! we also observe strong
nonsoliton contribution to excitation of the condensate~see
Fig. 3! which leads to much more complicated picture of
evolution. One may say that in this case solitons move al
background varying with time and the influence of this tim
dependence is not small contrary to the previous case of
density disturbance. As a result, the motion of solitons c
not be described as~almost! harmonic oscillations along con

FIG. 3. Space distribution of density of BEC~a! and its hydro-
dynamic velocity ~b! in the harmonic trapped potential withn
50.3 at timet51 without ~dashed line! and with~solid line! initial
excitation that is taken as a phase step withr051, a54, k50.4,
and«51. Dimensionless variables are defined in the text.

FIG. 4. The same as in Fig. 3, att51.5.
4-5



as
ld
s

in
r i

e
ra
la

n
o
n
it
o
d

ve
a
g
n

ce

es

es

the

ef-
ns
od
sent

n of
ng
en
und
n

nte-
ales
the
s.

re

V. A. BRAZHNYI AND A. M. KAMCHATNOV PHYSICAL REVIEW A 68, 043614 ~2003!
stant nonuniform background. But even in this case qu
classical method of finding the solitons’ parameters yie
quite accurate description of solitons’ motion for times le
than 2p/n.

C. Collision of two separated condensates

Formation of dark solitons can be observed also dur
collision of two separated condensates that move unde
fluence of the trap potential@6#. Taking the initial conditions
in the form

r~x,0!5exp@2k~x2j!2#1exp@2k~x1j!2#,

v~x,0!50, ~32!

we have solved Eq.~4! numerically. It was found that thes
two condensates oscillate in the trap potential and inte
with each other in quite complicated way when they over
with each other. Since the initial data~32! lead to a number
of eigenvaluesl (n), one may expect that during the collisio
of two condensates the corresponding number of dark s
tons must be observed. This is indeed the case as one ca
in Fig. 6, where the density and the hydrodynamic veloc
distributions are shown at the moment of maximal overlap
two condensates whose initial density distributions are in
cated by dashed lines. The number of solitons matches
well with that predicted by the Bohr-Sommerfeld quantiz
tion rule, but their motion cannot be presented as propa
tion with slowly changing parameters along constant nonu
form background.

The plot in Fig. 6~a! can be considered as an interferen
pattern of two coherent condensates after their overlap@23#.
From Eq. ~23! we can estimate the eigenvalues aslnd
.«pn, whered is the initial distance between condensat

FIG. 5. The same as in Fig. 3, att54.
04361
i-
s
s

g
n-

ct
p

li-
see
y
f
i-
ry
-
a-
i-

.

Then velocities of solitonsvn52ln differ from one another
by Dv52«p/d and distances between interference fring
are of order of magnitude

Dx.
2p«

d
t. ~33!

After transformation to dimensional units we reproduce
estimateDx52p\t/(md) of Ref. @23#.

Thus, the quasiclassical approach provides simple and
fective method for calculation of the parameters of solito
arising from large enough initial disturbance. This meth
can be used for estimation of these parameters in the pre
day experiments with BEC solitons.

IV. DISCUSSION AND CONCLUSION

In the present paper we have investigated the evolutio
localized excitations in a 1D BEC with a positive scatteri
length confined by a harmonic trap potential. It has be
shown that the existence of an inhomogeneous backgro
becomes especially important when initially multisolito
pulses are under consideration. In comparison to the i
grable case with constant background, new temporal sc
appear in the problem. They are associated with
harmonic-oscillator frequency and finite lifetime of soliton

FIG. 6. Formation of dark solitons~solid line! during the colli-
sion of two initially separated condensates~dashed line! corre-
sponding to the initial data~32! with parametersk50.5, j58, and
«50.5 in harmonic trap potentialn50.2 att54. ~a! The density of
BEC and~b! hydrodynamic velocity. Dimensionless variables a
defined in the text.
4-6
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The lifetime decreases with the soliton amplitude, wh
leads to rather rapid disappearance of shallow dark solit
Generally speaking, a soliton with a small amplitude c
even lose its meaning when it is considered against a n
uniform background.

The generalized Bohr-Sommerfeld quantization rule p
vides simple method for evaluation of parameters of solit
emerging eventually from large initial disturbance. It perm
one to find number of solitons as well as their initial amp
tudes and velocities in agreement with numerical simu
tions.
ev

A
e

.A
n,
ps

v

nd

A

04361
s.
n
n-

-
s

-

ACKNOWLEDGMENTS

The present work is a revised and extended version of
of Ref. @24# made in collaboration with V.V. Konotop, who i
greatly acknowledged for fruitful discussions. A.M.K.
grateful to the staff of Centro de Fı´sica da Mate´ria Conden-
sada, Universidade de Lisboa, for kind hospitality. The wo
of V.A.B. was supported by the FCT~Grant No. SFRH/BPD/
5632/2001!. The work of A.M.K. in Lisbon was supported
by NATO. A.M.K. also thanks RFBR~Grant No. 01–01–
00696! for partial support.
E

ys.

er,

s.

ev.

K.

e,

t

@1# R. Dum, J.C. Cirac, M. Lewenstein, and P. Zoller, Phys. R
Lett. 80, 2972~1998!.

@2# S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock,
Sanpera, G.V. Shlyapnikov, and M. Lewenstein, Phys. R
Lett. 83, 5198~1999!.

@3# J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L
Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerso
W.P. Reinhart, S.L. Rolston, B.I. Schneider, and W.D. Philli
Science287, 97 ~2000!.

@4# Z. Dutton, M. Budde, C. Slowe, and L.V. Hau, Science293,
663 ~2001!.

@5# W.P. Reinhardt and C.W. Clark, J. Phys. B30, L785 ~1997!.
@6# T.F. Scott, R.J. Ballagh, and K. Burnett, J. Phys. B31, L329

~1998!.
@7# F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringary, Re

Mod. Phys.71, 463 ~1999!.
@8# D.L. Feder, M.S. Pindzola, L.A. Collins, B.I. Schneider, a

C.W. Clark, Phys. Rev. A62, 053606~2000!.
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