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Dirac monopoles and dipoles in ferromagnetic spinor Bose-Einstein condensates

C. M. Savagé* and J. Ruostekoskl
Australian Centre for Quantum Atom Optics, Australian National University, ACT 0200, Australia
2Department of Physical Sciences, University of Hertfordshire, Hatfield, Herts, AL10 9AB, United Kingdom
(Received 3 July 2003; published 6 October 2003

We investigate a radial spin hedgehog, analogous to the Dirac monopole, in an optically trapped atomic
spin-1 Bose-Einstein condensate. By joining together a monopole-antimonopole pair, we may form a vortex
line with free ends. We numerically simulate the three-dimensional dynamics and imaginary time relaxation of
these structures to nonsingular textures and show that they can be observable for realistic experimental param-
eters.
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I. INTRODUCTION any vortex line either is closed or terminates at the boundary
of the atomic cloud. In a ferromagnetic spinor BEC the order
Topologically interesting structures in quantum fields parameter symmetry group is determined by the spatial rota-
range from vortices and vortex lattices in single componentions of the spin to be S@). This can be represented by a
fields [1] to Skyrmions in multicomponent field2]. They local coordinate axis, or tiad. A vortex line in a ferromag-
have long been important in the study of superfluid physicdietic BEC is determined by an integer multiple af Zpatial
[3] and quantum cosmologi4]. Experimental dilute gas rotations of the triad about the direction of the spin, when
Bose-Einstein condensatéBECS allow these structures to one moves around any closed loop surrounding the vortex
be investigated with unprecedented flexibility. core. Due to the noncommutativity of the spatial rotations,
The successful trapping of atomic BECs by purely opticalsuch a vortex is not a topological invariant, but can be con-
means has opened up a fascinating domain of res¢g/gl  tinuously deformed, e.g., to a vortex line with the opposite
Unlike in magnetic traps, where the spin of the atoms isSign or to a disgyration. Since the relative condensate phase
effectively frozen, in an optical dipole trap the magnetic de-between two spatial locations is not uniquely defined, a vor-
grees of freedom dramatically affect the structure of the contex line may also terminate in the middle of the atomic
densates. In particular, their equilibrium states exhibit riche€loud. This is analogous to the possibility of vortex lines
degeneracy of physically distinguishable states than magnetwith free ends in the angular momentum texture of superfluid
cally trapped BECs, with the degeneracy, or order, parametdiquid *He-A [13].
depending on the atomic spin. In this paper we study a fer- In this paper we consider the mean-field model of a fer-
romagnetic spin-1 BEC irf’Rb [6] whose degeneracy pa- romagnetic spin-1 BEC. We numerically integrate the Gross-
rameter is determined by the rotations of the gpij8]. We  Pitaevskii equations in real time to find the dynamics, and in
show that in the classical mean-field, or Gross-Pitaevskiiimaginary time to find energetic minima. Our initial states
approximation there can exist a vortex line with a free endare based on analytic expressions for the monopoles and di-
terminating on a hedgehoglike spin configuration whose supoles, with overall Thomas-Fermi density profiles.3Hte
perfluid velocity profile coincides with the vector potential of studies dipoles have been referred to as monopdi#h In
the Dirac magnetic monopol®—11]. Magnetic monopoles that context it was suggested that monopolium lattices might
are important in quantum cosmology; explaining their ob-be dynamically stable in rotating systems.
served low density stimulated the theory of cosmological Previous theoretical work on monopoles in atomic BECs
inflation [12]. The terminating vortex line, known as the has been limited to antiferromagnetic systgits-17, two-
Dirac string, is possible in a ferromagnetic spinor BEC be-
cause the noncommutativity of the spatial rotations results in % B V4 s e
ambiguity of the condensate phase difference between twe L% 4 S :‘;‘ & _."_-r"_-".:
spatial points. We also show that a monopole can be attache‘_a. w? \\.‘ i ‘,-‘ &
to an antimonopole with a vortex line, such that neitherend = ™ ~ * «° « 7 ¥ NN ok
reaches_ the boundary of the atomic cloud, forming a “di- __-_..*"-'. e o g oot )" ,,1',7 L .
pole,” Fig. 1. LA L r"' U
In a magnetically trapped BEC the order parameter, deter- .~
mined by the complex scalar field, has a well-defined phase iy VL
Hence, its circulation around any closed loop can equal only r g ’1‘ AR *-—"l{«".“_-“."':“‘
an integer multiple of -, where the integer coefficient rep-
resents a topologically invariant winding number. As aresult, FiG. 1. Spin fieldgF) for the monopole of Eq(4) (left) and the
dipole of Eq.(7) (right). In all figures the positive axis is upward,
and cones are proportional {&). The dipole’s singular points at
*Electronic address: craig.savage@anu.edu.au c==*(2.512)x,, are near the second and fourth planes of spin
"Electronic address: j.ruostekoski@herts.ac.uk vectors.
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component monopolegl8], or analogous two-dimensional The preceding parameters f8fRb correspond to the ferro-
structures called “spin monopoled19,20. This work has magnetic case, since,<0, and the energy is minimized
shown that monopoles may be created using phase imprintvhen|(F)|= 1 throughout the BEC for the case of a uniform
ing techniques for creating solitons and vorticesspin distribution.

[15,18,21,22 Spin textures have also been recently experi- For the ferromagnetic stat¢F)|=1, all the degenerate,
mentally created in an atomic spin?¥Na BEC by means of but physically distinguishable, states are related by spatial
rotating the spin profile with spatially dependent externalrotations of the atomic spin. These may be conveniently de-

magnetic field§23]. fined by means of the three Euler ang]&$
Il. MEAN-FIELD MODEL FOR MONOPOLES {1
AND DIPOLES = &
The second quantized Hamiltonian for the spin-1 BEC in { g
an optical dipole trap reads,8,24—-26 1
[ . o —glveiFag=iFyBg—iF,7[ Q
S (- I v 2% 08 t
H fd r[ o Ve Vo V() i o
R O PN e '“cog(BI2)
+QrueihaBFaplipt 5 Collidiplipte Y (#
=e¢’| sin(B)\2 |, 3)
1 . . - e'*sir?( BI2)
+ EczlﬂzlﬁEFay'FB&walﬁy , 1

wherep'=¢— 7 and ¢ denotes the macroscopic condensate

whereg, is the field annihilation operator for the Zeeman Phase. The combinatiop— 7 indicates an invariance under
component andn is the atomic massv(r) is the optical the changg of the macroscopic phase if it is smultgneously
trapping potential. In experiments, optical traps with a wideBccompanied by a spin rotation of the same magnitude.
range of aspect ratios and depths have been demonstratéf® €quivalence of the phase change and the spin rotation
[27]. In this paper we consider an isotropic harmonic trap-"éPresents a broken relative gauge-spin symmetry. Conse-
ping potential with frequency: V(r) =mw2r2/2. The mag- quently, the symmetry group of the order parameter is fully
netic field vector is denoted b, ug is the Bohr magneton, determined by the Euler angles to be(80The direction of

and the Landdactor gr=—1/2 for theF=1 transition of the expectation value of the spin igF)=zcos8
8Rb. In Eq.(1), F is the vector formed by the three com- +sin8(x cosa+Ysina), wherex,y,z are the Cartesian coor-
ponents of the & 3 Pauli spin-1 matriceg24], and we have dinate unit vectors.

used the Einstein summation convention over repeated indi- We are interested in the ferromagnetic state with a singu-
ces. The Zeeman energy is correct to first order in the madar pointlike core in the atomic spin field. Using the radial,
netic field. ¢y and c, are the spin-independent and spin- azimuthal, and polar spherical coordinatesé(¢), we se-
dependent two-body interaction coefficients. In terms of thdect =0, a=¢, and¢’' = — ¢ in Eq. (3), yielding

s-wave scattering lengtha, and a, for the channels with

total angular momentum zero and two, they atg e 2¢cod(6/2)
=47h?(ay+2a,)/3m and c,=4mh?(a,—ay)/3m. We use .

_ —i¢
the values given by van Kempeet al. [28] for ®'Rb: a, (=| e sin(0)/\2 | (4)
=101.8a5 and a,=100.4g, so that @y+2a,)/3 Sir?(6/2)

=100.%g and @,—ay)/3=—0.47ag, where the Bohr ra-
dius ag=0.0529 nm. We also use=2wx10s !, and as-  The corresponding spin exhibits a radially outward hedgehog
sume a total number ¢ =10° atoms. We make our lengths field and forms the monopoléF)=2cosé-+sin A(x cose

dimensionless with the length scadg,= VA/mw. As usual, +ysing). However, ford=0 the value of¢ is not defined

the dynamics is invariant up to changes of length and time : . T
) ; nd the first component is singular. Therefore, th int sin-
scale under changes ef andN providedN?w is constant. and the first component is singuia eretore, the point s

: ) .. oo gularity, or the hedgehog, at=0 is attached to a line singu-
In the mean-field Gross-Pitaevskii approximation the or-> .~ "= . .
der parameter is the three—compgr?ent Spingt(r) larity [in this case a doubly quantized &) vortex| along

h iti is. This is call Di ing. N hat f
— R0 Z(r), with £(r) Z(r)=1, andn(r) is the total den- the positivez axis. This is called a Dirac string. Note that for

. ; R z<0 there are no line singularities. The structure of the
sity. Then the expectation value of the spin is given(By

Uk o . ) monopole in terms of the individual spin components is as
= Faplp- The contribution of the two-body intéraction 10 tq)jq\ys: a doubly quantized vortex line in thé, compo-

the energy is nent, a vortex with unit circulation in th&, component, and
1 no vortex in thew _; component. The corresponding spinor
— | 43! Zn2 2 densities are shown in Fig. 2.
Ezn f d r[ 2" (Co+cx(F) )]' @ The corresponding superfluid velocity is
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A= (r?—c?)+4r?c?sirfe. (8)

This has monopole and antimonopole type singularities on
the z axis atz=|c| andz= —|c|, respectively. On the axis

for |z|>|c|, ;=1 and¢_,=0, while between the poles,
i.e., for|z|<|c|, {,=0 and{_; is singular, representing a
doubly quantized S@) vortex line. The corresponding
spinor densities are shown in Fig. 2.

The topological stability of linear and pointlike topologi-
cal defects may be characterized by the first and second ho-
motopy groups. Since the second homotopy group of350
is trivial, there are no stable topological point defects. How-

FIG. 2. (Color online Spinor densities for the monopo(keft) ever, as we preVIOUS_Iy showed, we may erm the mqnopole
and dipole(right). The spinors are given by E¢4) and Eq.(7), by attachmg itto a _smgular vqrtex line. It |s not p?ssmle to
respectively, multiplied by the Thomas-Fermi and vortex densityf@rM an isolated point defect in $8. The “charge”W of
profiles, as described in the text. Al lobes are bounded by densitfl€ Dirac monopole is similar to the topological invariant of
isosurfaces for a spinor component for 0. On thex=0 plane the ~ the point defects, which is determined by the way the order
isosurfaces are capped with a density color map for the correspondtarameter behaves on a closed surface enclosing the defect
ing spinor component. Monopole: the top lobe is fdf|2. The (3]
density zero associated with the doubly quantized vortex is seen
along the positivez axis. The bottom lobe is for¥_,|?, and the W= if A0, (F)-
central lobe is fol¥4|2. The singly quantized vortex can be seen. 8 =ik
Dipole: the top and bottom lobes are fo¥ ;|?, the central one for
| _,|%, and the remaining two lobes fgi 2. The vortices in  Here € denotes the totally antisymmetric tensor. The inte-
¥ _, and¥, can be seen on theaxis. gration is defined over a closed surface enclosing the mono-

pole. The singular vortex line always cuts through the sur-
h face. However, as we show in the following section, the
(Vg)=—i MéTVé' Dirac monopole can decay to a nonsingular coreless texture,
in which case(F) is well defined everywhere.

A x@)_ ©

(3Xj Xy

h
=y (Vo' —cospVa) Ill. NUMERICAL RESULTS
#i(1+cos) . We now turn to the numerical studies of the classical
=————¢, (5) mean-field theory for the ferromagnetic spinor BEC. We in-
Mr sin@ : ;
tegrate the relaxation and dynamics of the monopole and the

- . . monopole-antimonopole pair. The Gross-Pitaevskii equations
where ¢ is the polar unit vector. This has the form of the for the dynamics of the spinor mean field 424,25

electromagnetic vector potential of the Dirac magnetic

monopole, analogous to the corresponding angular momen- P 2
tum texture in superfluid liquid helium-_L3]. ih—= = —2—V2‘lfa+V(r)\Pa+ OrmeB FupVp
An antimonopole with spin vectors pointing radially in- at m
ward (F)=—Zzcosf#—sin 6(x cos¢+ysin¢), and the Dirac +CoW W g+ CoW R, FosW s . (10)

string along the negative axis, is given by
The explicit forms of the two-body interaction terms far

e~ 2¢sirg(6/2) =1,0,—-1 are, respectively,
—| —e idgj
{= e ' “sin( 6’)/\/E . (6) (Cot cz)n\Ifl—202|‘I’71|2‘I’1+02‘I’t1‘1'51
cog( 6/2)

. . _ Cot Co)NWo—Cy| Wo|2W o+ 2C,VEW, W _ 4,
An interesting system results from attaching a monopole (CotCaInWo=Col Wol Wot 2c, W5 Wy

to an antimonopole by joining their Dirac strings. The result- 2 -

. . ) CotCo)NW _1—2C,| WV _1+c, VT V5. 11

ing vortex line with two free ends then no longer reaches the (CotCo) ! 2| ¥4l tr2mTo (D
boundary of the atomic gas. From the spin field given byye solve these equations numerically in three spatial dimen-
Soni[14] follows an expression for the dipole spinor sions starting from initial monopoles and dipoles to find the
dynamical evolution of the system. We also solve them in

1+ (r?cos 20— c?)/\ A o~ _ . .
imaginary timet = — it to find minima, either local or global,

1 i :
(=5 e'\2(r2sin 26)/\ : () of the system’s energy functional. This requires normaliza-
e?*{1—(r2cos 20— c?)/\} tion of the Gross-Pitaevskii spinor after each time step. Our
numerical method is pseudospectral, using fast Fourier trans-
where forms to evaluate the Laplacian, and a forth-order Runge-
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FIG. 3. (Color onling Spin magnitude(F)| and spin field F)

of the relaxed state, with a magnetic fiéR| = 2% w/ ug , Of either it " e
an initial monopole B in z direction or dipole B in — 2z direction. FE M g et
The imaginary time simulations were run ferit =30/, with a e \"c':{:'f-":"'." L
time step 0.0024. Other parameters are as given in the text. Left: vyt \-'\;:;:)"_r:.-".' .

Three-dimensional 3D slice plot &fF)| in the central region. The
width shown in each dimension is half of the total simulation width  F|G. 4. (Color online Spin fields(F) (left column and spin
of (25//2)xy,. The slice planes are=0, y=0, andz=0. The  magnitudes|(F)| (right column after real time evolution of the
color map corresponds {¢F)| ranging between 0.046 and 1. Right: dipole of Fig. 1 foret= : 6 (top row) and 12(bottom row. The
(F), for the dipole, on the plane=0. One-quarter the simulation spin magnitudes are shown on slice plares0, y=0, andz=0.
width is shown in thex andy dimensions. The color map corresponds t6F)| ranging between 0 and 1. At
ot=6 the minimum of|[(F)| is 0.0033. Atwt=12 it is 0.0019.

. . . . o Approximately the central three-quarters of each simulation dimen-
Kutta time step. It is described in detail in RE29]. All our  gjon is shown. Parameters given in text.

simulations were performed using £2&atial grids for each
of the three spinor components. The physical region simu-

. here (o, ¢,z) are the cylindrical coordinates. We write, for
lated was centered on the trap, and was typically {25%;,, w ” - :
long in each dimension. A typical time step was 3Qv. z=0, p=arctanp/z) +smexp(-Cplz), whereC is here cho-

The initial conditions for our numerical integrations of the sen to be much larger than the inverse of the radius of the

Gross-Pitaevskii equatiorid0) are either the monopole Eq. atomic CISUd' we contmuously evolve the parametgt_so
(4) or dipole Eq.(7) with an overall Thomas-Fermi density $1' Ats=0, we have the D|rac “?°”°p°'e with the singu-
profile n(r), multiplied by an approximation to the vortex Ianty at p=0, ZZQ' The singularity can be remqved by
density profiled24]; see Fig. 2. In both real and imaginary continuously evolvings from 0 to 1. Ats=1, the spin h?‘s
time the structures initially evolve by the filling in of the rotated by the value ofr atp=0, =0, and the singularity

vortex core on the axis by the vortex-free component: for has dlsappeared. .
the monopole this is th& ; component, and for the dipole Depending on the functional dependence of the parameter
the W, component ' B we may have different coreless texturesplfp) depends

The imaginary time evolution relaxes toward the lowest®" P alone, with5(0)= and =0 at the boundary of the
energy component. In the absence of a magnetic field this i tomic CIQUd‘ we have the AT coreless vortex. On 'ghe other
the vortex-free componen¥ _, for the monopole. This rep- and,. with f=a/2 at the boundary, we obt'aln the
resents the relaxation of the monopole configuration towar ermin-Ho texture[32]. For the_ corelgss t_eXt““—W In Ea.

a uniform spin texture. A magnetic field along thexis can 9), would represent a topologically invariant winding num-

increase the energy of the vortex-free spin component, réger, provided tha{F) was asymptotically restricted on a

versing the direction of the relaxed spin. However, the vorte>{[:’r:"’m.e't Hovzgver,burg\lllvke n tiuperfluuil “%u'd giuum—Silwh?;ﬁ
cores may still be filled by the vortex-free compondnt ;. € Interactions between the supertiuid an € walls ot the

This results in a coreless vortex, similar to the AndersonSoNtainer may fix the boundary values of the spin, in atomic
Toulouse (AT) spin texture in superfluid liquid helium-3 BECS the spin may generally rotate and change the value of

[3,30,31. However, the system no longer remained in the™
ferromagnetic ground state and regions of reduced spin ma%-
nitude, close td(F)|=0, were found in both the imaginary P°
and real time simulations; see Figs. 3 and 4.

The relaxation of the singular monopole to a nonsingula
coreless texture may seem surprising at first, but it is topo
logically allowed. We can see how the singular monogdje
may be deformed to a nonsingular spin texture by continu
ously rotating the direction of the spin at the positiwaxis.
Consider the following parametrization:

The continuous deformation of the singular Dirac mono-
le to a nonsingular texture is related to the topology of line
defects in ferromagnetic spin-1 BECs. The ground state
Imanifold, with the symmetry group S8), corresponds to-
pologically to a three-spher@ sphere in four dimensions
with the diametrically opposite points set to be eq&lZ,.

In this space the only closed paths that cannot be continu-
ously deformed to a point are precisely the paths joining the
diametrically opposite points of the three-sphle&d8]. Hence,
only vortices with winding number equal to 1 are topologi-

e 4¢cod[ B(p,z,5)/2] cally stable[7] and, e.g., a vortex line with winding number
g equal to 2 can be continuously deformed to a vortex-free
(=| e s Bp.z9)N2 |, (12 state.
sif[ B(p,z,s)/2] The regions of low spin in the AT vortex represent the
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largest values of the spin gradient in the texture, indicating a | . % af 8 ,u‘,*/ 8. bV AE R
. . i ) el R
strong order parameter bending energy. The reduced spil AT el . A { x | :
. . 4 % .

\é?lue re_sults from the very _Weak ferrpmagnetlc energy of the~s ~ ‘\“\x:.." x'a ':,«"/ e RN \‘\", r‘:,-f,r\,"‘/' >

Rb spin-1 condensate: it is energetically more favorable for s O R B T T
the system to violate the ferromagnetic spin constraint thar™ = <= S S R TR ST N
to create a spin texture with a very large spin gradient. The_ . . PR ~m Sl e

. . P . . . . . - L N i — 1 o

regions with a large variation in the spin orientation continu- il A 3 T ! 2 . .
ously mix the ferromagneti¢(F)|=1 and the polai(F)| . ,,",r"","',u"‘u‘“\‘\c Sou I P NS

=0 phases of the BEC; see Fig. 3. While the violation of the

spinor phase and the variation of the spin value have beer, . . - ol o B ':‘,,' i
previously investigated in the case of singular defet®, it " "a“.-" v v iy SN o i
is interesting to observe that this may happen even as aresu* ' .f‘,,-:,.‘x:;‘;‘,;‘ L # ik ,—',_-"J"'("r:,—‘\: >~
of the order parameter bending energy of nonsingular tex- o B s e L :-_\ %4
tures. MR o BRI P

In the presence of cylindrically asymmetric perturbations + ~ #F .3 ,-‘\.' ey o e P
we found the coreless AT texture to be unstable with respec e MR
to drifting toward the boundary of the atomic cloud. Thisis = =2,/ /W W= = =<7/ 0 vy oo s -
analogous to the slow drift of a vortex line in a single- ’ ’
component BEC in a nonrotating trap]. We did not per- FIG. 5. Spin fieldgF) after real time evolution of the monopole

form any quantitative studies to determine whether the drifef Fig. 1 for wt=: 3 (top left), 6 (top righy, 12 (bottom lefy, 18

of the spin texture could possibly be suppressed by the exbottom right. Parameters given in text.

ternal magnetic fields. . . B Cn
The dipole relaxes to a state that is the same as in the ca¥\%"%h f%rrogétﬁ)r?éa(r;:]ettir: Itian?ewa_vg.iiagl.e-r?c:s;“g(rai%é?wtb(\e/vith

of the monopole, apart from reversed spin directions due t PP P

e .These structures. Abt=18, approximately three harmonic
the reversed magnetic field. Although the mqnopqle anq dlE)scillator periods, the spin field of the initial monopole has
pole relax to the same type of state, their imaginary tim

_ X ) L edeveloped an approximate dipolar structure, Fig. 5. However,
evolution follows different paths. In particular, the cylindri- o spinor is completely different from the dipole of Ed).

cal shell of low spin magnitude deveJops differently. For the o major difference between the dynamics of the monopole
monopole the transition fronjF)=—z in the core to(F) and dipole is that the dipole develops large regions centered
=z at the boundary occurs by the spin vectors in the interaround thez=0 plane where the spin magnitufi¢)| drops
facial region rotating radially outward. For the dipole, how- to zero; see Fig. 4.
ever, the direction of spin rotation differs in the regians We have examined the relaxation and dynamics of Dirac
>0 andz<0. The spin rotates radially outward for-0 and ~monopoles and dipoles in trapped ferromagnetic spinor
radially inward forz<0. To accommodate these different BECs, for realistic parameters ¢fRb. There are several
rotation directions, near=0 the spin magnitude drops close interesting aspects to be explored further. We have not inves-
to zero early in the relaxation. The cylindrical shell of low tigated the dynamical stability of the monopole-
spin magnitude then grows in thez directions as the relax- antimonopole pair or the effects of rotation. As proposed by
ation progresses. In contrast, for the monopole the growtf$oni [14], analogous structures, although not energetically
occurs from the gas boundaries toward #0 plane. stable in the presence of dissipation, could still be dynami-
The real time evolution of the dipole and monopole, with- cally stable in rotating superfluid liquid helium-3. In the ab-
out any applied magnetic field, is shown in Figs. 4 and 5sence of dissipation, our dynamical evolution also suggests

The initial states were first relaxed for an imaginary timethe dipole spin field to be surprisingly robust. However, as
iT=0.1k before the real time evolution. This ensured thatPUr Studies have shown, due to the weak ferromagnetic en-

the total density was close to the steady state distributior}frgy of the ““/Rb atom, any dynamically stable dipole con-
hence suppressing density oscillations. The dynamics is qui uration V\.'OUId also mclt_;de regions of S|gn|f|9antly redupgd
complex and hence we restrict ourselves to describing theP'" m"?‘gn'tuo‘_e' presenting a unique and highly nontrivial
major features. The spin field of the dipole is generally morg@Pological object for further studies.

robust in the dynamical evolution than that of the monopole.
Apart from the filling of the vortex core by the vortex-free
component, recognizable structures survive around one-half This research was supported by the EPSRC and the Aus-
period ¢=m/w) of evolution. However, the original states tralian Partnership for Advanced Computing. ACQAO is an
are noticeably different after about a period of evolution,Australian Research Council Center of Excellence.
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