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Violation of self-similarity in the expansion of a one-dimensional Bose gas
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1Institut für Theoretische Physik, Universita¨t Hannover, D-30167 Hannover, Germany
2Dipartimento di Fisica, Universita` di Trento and BEC-INFM, I-38050 Povo, Italy

3Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland
~Received 29 April 2003; published 1 October 2003!

The expansion of a one-dimensional Bose gas after releasing its initial harmonic confinement is investigated
employing the Lieb-Liniger equation of state within the local-density approximation. We show that during the
expansion the density profile of the gas does not follow a self-similar solution, as one would expect from a
simple scaling ansatz. We carry out a variational calculation, which recovers the numerical results for the
expansion, the equilibrium properties of the density profile, and the frequency of the lowest compressional
mode. The variational approach allows for the analysis of the expansion in all interaction regimes between the
mean-field and the Tonks-Girardeau limits, and in particular shows the range of parameters for which the
expansion violates self-similarity.
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I. INTRODUCTION

The experimental achievement of Bose-Einstein cond
sation~BEC! @1# has aroused a large interest in the physics
ultracold atomic gases. Among the topics related to this fi
the physics of low-dimensional atomic gases has rece
attracted significant attention. The development of the tr
ping techniques has allowed for the realization of very
isotropic geometries, where the confinement is so stron
one or two dimensions that at low temperatures the trans
sal motion is ‘‘frozen,’’ and does not contribute to the d
namics of the system. In this way two-@2–5# and one-
dimensional@2,6,7# systems have been accomplished. Lo
dimensional gases present significantly different proper
compared to the three-dimensional ones. A remarkable
ample is provided by the existence of quasicondensa
@8–11#, whose effects have been recently observed exp
mentally @12#.

During the last years, the one-dimensional~1D! Bose
gases have been the subject of growing interest, in partic
the limit of impenetrable bosons@13#, which behave to a
large extent as a noninteracting Fermi system, acqui
some remarkable properties. The conditions for the exp
mental realization of strongly correlated 1D gases are ra
restrictive @8,14#, since a large radial compression, a su
ciently small density, and eventually a large scattering len
are needed. Fortunately, recent experimental developm
have opened perspectives in this sense. Especially intere
is the possibility to modify at will the interatomic interac
tions by means of Feshbach resonances@15# and the capabil-
ity of loading an atomic gas in an optical lattice@16#.

From the theoretical side, the physics of 1D Bose ga
was first investigated by Girardeau@13#, who considered the
limit of impenetrable bosons, also called Tonks-Girarde
~TG! gas, pointing out a nontrivial relation with the physi
of ideal Fermi gases. This analysis was later extended
Lieb and Liniger@21#, who solved analytically the problem
for any regime of interactions, using Bethe ansatz. Yang
Yang @22# extended the analysis including finite temperatu
effects. Recently, the experimental accessibility of trapp
1050-2947/2003/68~4!/043601~6!/$20.00 68 0436
n-
f
,

ly
-
-
in
r-

-
s
x-
n

ri-

ar,

g
ri-
er

th
nts
ing

s

u

y

d
e
d

gases have encouraged the investigation of the harmonic
trapped case. The Bose-Fermi~BF! mapping has been em
ployed to the case of an inhomogeneous gas in the TG l
@23#. However, there is unfortunately, to the best of o
knowledge, no exact solution for arbitrary interactio
strength in the case of trapped gases. The problem of
equilibrium of a trapped gas can be analyzed using a lo
density approximation and employing the Lieb-Liniger~LL !
equation of state locally to evaluate the equilibrium dens
profiles @17#. A similar formalism has been recently em
ployed to analyze the collective oscillations in the prese
of harmonic trapping@18#. Both Refs.@17# and @18# have
shown the occurrence of a continuous transition from
mean-field~MF! regime to the TG one as the intensity of th
interaction is varied. Recently, Gangardt and Shlyapnik
@19# have discussed the stability and phase coherence o
trapped Bose gases. These authors have analyzed the
correlation properties and found that inelastic decay p
cesses, such as three-body recombination, are suppress
the TG regime, and intermediate regimes between MF
TG. This fact opens promising perspectives towards the
complishment of strongly interacting 1D Bose gases w
large number of particles. This analysis have been very
cently extended to the case of finite temperatures@24#.

The expansion of a one-dimensional Bose gas in a gu
was analyzed in Ref.@20# by means of a hydrodynamic ap
proach based on the local LL model. The expansion dyna
ics was shown to be different for different interactio
strengths, and its analysis could be employed to discern
tween the TG and MF regimes. In particular, the self-simi
solution is violated.

In this paper, we extend the analysis of Ref.@20# by in-
troducing a variational approach, which permits us to stu
the asymptotic regime at large expansion times. This met
is shown to be in excellent agreement with previous dir
numerical simulations, and additionally permits us to reco
the results of Refs.@17,18#. More importantly, our variationa
approach allows us to determine the regime of parameters
which the self-similarity of the expansion is violated.

The paper is organized as follows. In Sec. II we introdu
©2003 The American Physical Society01-1
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the local LL model which we employ to analyze the expa
sion dynamics. In Sec. III we briefly discuss the numeri
results obtained in Ref.@20#. In Sec. IV we present a varia
tional approach which allows us to investigate in detail
expansion dynamics for arbitrary regimes of parameters.
nally we conclude in Sec. V.

II. LOCAL LIEB-LINIGER MODEL

We analyze in the following a dilute gas ofN bosons
confined in a very elongated harmonic trap with radial a
axial frequenciesvr andvz (vr@vz). We assume that the
transversal confinement is strong enough so that the inte
tion energy per particle is smaller than the zero-point ene
\vr of the transversal trap. In this way, the transversal
namics is effectively frozen and the system can be con
ered as dynamically 1D. In this section we briefly review t
formalism introduced in Ref.@17#.

We assume that the interparticle interaction can be
proximated by ad function pseudopotential. Therefore th
Hamiltonian that describes the physics of the 1D g
becomes

Ĥ1D5Ĥ1D
0 1(

j 5 i

N mvz
2zi

2

2
, ~1!

where

Ĥ1D
0 52

\2

2m (
j 51

N
]2

]zj
2

1g1D(
i 51

N21

(
j 5 i 11

N

d~zi2zj ! ~2!

is the homogeneous Hamiltonian in the absence of the
monic trap,m is the atomic mass, andg1D522\2/ma1D .
The scattering problem under one-dimensional constra
was analyzed in detail by Olshanii@14#, and it is character-
ized by the one-dimensional scattering lengtha1D

5(2ar
2/2a)@12C(a/ar)#, with a the three-dimensiona

scattering length,ar5A2\/mvr is the oscillator length in
the radial direction, andC51.4603 . . . . As shown by Lieb
and Liniger@21#, the homogeneous HamiltonianĤ1D

0 can be
diagonalized exactly by means of Bethe ansatz@25#. In the
thermodynamic limit, a 1D gas at zero temperature with
given linear densityn is characterized by the energy p
particle

e~n!5
\2

2m
n2e„g~n!…, ~3!

whereg52/nua1Du. The functione(g) fulfills

e~g!5
g3

l3~g!
E

21

1

g~xug!x2dx, ~4!

whereg(xug) andl(g) are the solutions of the LL system o
equations@21#

g~xug!5
1

2p
1

1

2pE21

1 2l~g!

l2~g!1~y2x!2
g~yug!dy, ~5!
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l~g!5gE
21

1

g~xug!dx. ~6!

We assume next that at each pointz the gas is in local equi-
librium, with local energy per particle provided by Eq.~3!.
Then, one can obtain the corresponding hydrodynamic eq
tions for the density and the atomic velocity

]

]t
n1

]

]z
~nv !50, ~7!

]

]t
v1v

]

]z
v52

1

m

]

]z Fm le~n!1
1

2
mvz

2z2G , ~8!

where

m le~n!5S 11n
]

]nD e~n! ~9!

is the Gibbs free energy per particle. The hydrodynamic
scription holds if the local chemical potential, related to t
interaction energy in the homogeneous system, is m
larger than the kinetic energy associated to the density mo
lations. It assumes, in particular, that the density of the
varies smoothly within the typical distance fixed by the he
ing length ~local-density approximation!. Note that for the
case ofnua1Du→`, one obtainsm le(n)5g1Dn, retrieving
the 1D Gross-Pitaevskii equation@26#, whereas for the case
nua1Du→0, one getsm le(n)5p2\2n2/2m, and the equation
of Ref. @27# is recovered. The system has only one cont
parameter @8,17,18#, namely, A5Nua1Du2/az

2 , where az

5A\/mvz is the harmonic-oscillator length in thez direc-
tion. The regimeA@1 corresponds to the MF limit, in which
the stationary-state density profile has a parabolic form.
the other hand, the regimeA!1 corresponds to the TG re
gime, which is characterized by a stationary-state den
profile with the form of a square root of a parabola.

III. NUMERICAL RESULTS

In Ref. @20#, Eqs.~3!, ~5!, ~6!, and~9! were employed to
simulate numerically the expansion of a 1D gas in the fram
work of the hydrodynamic formalism. The expansion follow
the sudden removal of the axial confinement, while the rad
one is kept fixed. In particular, it was observed that dur
the expansion the density profile is well described by
expression

n~z,t !5nm~ t !F12S z

R~ t ! D
2Gs(t)

, ~10!

wherenm(t) provides the appropriate normalization,R(t) is
the radius of the cloud, and the exponents(t) takes the value
s(0)51 for an initial MF gas. The functions(t) decreases
monotonically in time, approaching an asymptotic value~see
Fig. 1!. Therefore, contrary to the expansion dynamics fo
BEC @28–30#, the self-similarity of the density profile is
violated.
1-2
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At this point we discuss the physics behind this violati
of the self-similarity. If the local chemical potential presen
a fixed power-law dependence on the density,m le}nl, it is
easy to show from the hydrodynamic equations~7! and ~8!
that there exists a self-similar solution of the formn
5(n0 /b)@12(z/bR)2#1/l, whereb̈5vz

2/bl11. For the par-
ticular case of the TG gas, the scaling law can be also
tained from the exact BF mapping@20#. However, sincem le
is obtained from the LL equations, the dependence ofm le on
n is quadratic for a low density and linear for a large on
Therefore,m le does not fulfill a fixed power-law dependenc
during the expansion, and the self-similarity is violated.
particular, as the expansion proceeds the whole system
proaches the low-density regime, and consequently, the
ponents decreases monotonically. In the following sectio
we analyze in more detail this effect.

IV. VARIATIONAL CALCULATION

In this section, we complete our understanding of the
pansion of a one-dimensional Bose gas in a guide by me
of a variational ansatz using a Lagrangian formalism. T
Lagrangian density for the system is of the form

L52mn
]f

]t
2

1

2
mnS ]f

]z D 2

2
1

2
mvz

2z2n2«~n!n, ~11!

where the velocity field is defined asv5]f/]z. The equa-
tions of motion are obtained from the functional derivati
of the actionA5*Ldtdz: dA/df50 ~continuity equation!,
dA/dn50 ~which after partial derivation with respect toz
provides the Euler equation!. From the numerical results w
have observed that the density is at any time well descri
by Eq. ~10!. Therefore, we assume the following ansatz
the density:

FIG. 1. Time evolution of the exponents(t) for A50.43, vr

52p(20) kHz, andN5200 atoms@vz52p3(1.8) Hz at t50].
Our variational result~dashed line! shows a very good agreeme
with the results obtained from the direct resolution of Eqs.~7! and
~8!.
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C~s!

b S 12
z2

R2b2D s

, ~12!

whereb and s are time-dependent variables,R is the initial
Thomas-Fermi radius, andC(s) is related to the normaliza
tion to the total number of particles. For thef field we
consider the following form:

f5 1
2 az21 1

4 bz4, ~13!

wherea andb are time-dependent parameters. We stres
this point that in the analysis of the self-similar expansion
a BEC @28–30# a quadratic ansatz~in z) for the f field
provides the exact solution. However, for the problem un
consideration in this paper, it is necessary to include high
order terms to account for the violation of the self-similari
We have checked that terms of higher order thanz4 introduce
only small corrections, and therefore we reduce to the fo
of Eq. ~13!.

We are interested in the dynamics of the parametersb and
s, related to the size and the shape of the cloud, respectiv
Integrating the Lagrangian density inz, L5*Ldz, one finds
a Lagrangian for the above-mentioned parameters:

L~ ȧ,a,ḃ,b,b,s!5
mNR2

2 H 2
ȧb2

2s13
2

3

2

ḃb4

~2s15!~2s13!

2
a2b2

2s13
22

abb4

~2s15!~2s13!

2
b2b6

~2s17!~2s15!~2s13!
2

b2vz
2

2s13J
2E dzne~n!. ~14!

We perform a gauge transformation@31#

L~ t,q,q̇!→L~ t,q,q̇!1
d

dt
g~ t,q!, ~15!

where

g~ t,q!5
mNR2

2 H 2
ab2

2s13
2

3

2

bb4

~2s15!~2s13!J .

~16!

The resulting Lagrangian is of the form L

5L(a,b,ḃ,b,ṡ,s). Imposing the conservation laws]L/]a
5]L/]b50, we obtain a Lagrangian depending only on t
two relevant parameterss and b, of the form L5K2V,
where

V

E1D
5S B~b,s!

f 0~s!
1

A2b2

@h0f 0~s0!#2

1

2s13D , ~17!

K

E1D
5

A2~M11ḃ
212M12ḃṡ1M22ṡ

2!

@h0f 0~s0!#2~2s13!
, ~18!
1-3
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where E1D5\2/2mua1Du2 is the typical energy associate
with the interatomic interactions. In Eq.~17!, we use the
functionB(b,s)5*dy(12y2)se„n(y)…/E1D , where we inte-
grate over the rescaled axial coordinatey5z/Rb. In Eqs.
~17! and ~18!, we define the dimensionless central dens
h05n0ua1Du, wheren0 is the initial central density and th
parameters05s(t50). We have additionally employe
the auxiliary functions f n(s)5*yn(12y2)sdy, and the
coefficients

M1151, ~19!

M125
2b

2s13
, ~20!

M225
b2~1211186s196s2116s3!

4~s11!~2s13!2~2s15!2
. ~21!

From the LagrangianL, one obtains the correspondin
Euler-Lagrange equations for the parametersb ands. In or-
der to find the initial conditionsh0 ands0 for the expansion,
we have numerically minimized the potentialV in the pres-
ence of the harmonic trap for different values ofA, assuming
b51 ~see Fig. 2!. WhenA@1, s0 tends to 1, as expected fo
the MF case. On the contrary, whenA!1, s0 tends to 1/2
~TG profile!. As expected from Ref.@17#, for A!1, h0
}A1/2, whereas forA@1, the MF dependenceh0}A2/3 is
recovered.

Our variational approach allows us to calculate the low
compressional mode, offering an alternative method as
one discussed in Ref.@18#. Expanding the potentialV around
the equilibrium solution up to second order inb ~see Fig. 3!,
and neglecting for small oscillations the time dependence
s, we obtain

FIG. 2. Equilibrium values~at t50 before opening the trap! of
the exponents, as a function of the parameterA. The dashed lines
denote the MF limit,s051, and the TG one,s051/2.
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1

2A2

@h0
2f 0~s0!#2

f 2~s0!

]2B

]b2
ub51 . ~22!

Our results show a continuous transition from the MF val
vm5A3vz , to the TG one,vm52vz , in excellent agree-
ment with the results obtained by means of a sum r
formalism @18#.

From the corresponding Euler-Lagrange equations,
have obtained the dynamics ofb(t) and s(t). We have
checked in all our calculations that the energy and numbe
particles remain a constant of motion. We have compared
variational results with our simulations based on the ex
resolution of the hydrodynamic equations@20#, obtaining an
excellent agreement~see Fig. 1!.

We have analyzed the asymptotic valueḃ` for different
values ofA. It is easy to obtain, that for a power-law depe
dence of the local chemical potentialm le}nl, the derivative
of the scaling parameter asymptotically approaches a v
ḃ`5A2/lvz . Therefore a continuous transition fromḃ`

5vz ~TG! to ḃ`5A2vz ~MF! is expected. We recover thi
dependence from our variational calculations~see Fig. 4!.

We have analyzed the behavior ofs during the expansion
dynamics for different values ofA. In particular, we have
defined the asymptotic ratioj5s` /s0, with s`5s(t→`)
~see Fig. 5!. Deeply in the TG regime (A!1) or in the MF
one (A@1), j.1, i.e., in those extreme regimes, the expa
sion is well described by a self-similar solution. Howeve
for intermediate values,j,1, i.e., the expansion is not sel
similar. The self-similarity is maximally violated in the vi
cinity of A51, althoughj departs significantly from 1 for a
range 0.01&A&100. The behavior at largeA can be under-
stood as follows. If the gas is att50 deeply in the MF
regime, the change of the functional dependence ofm le with
the density occurs at very long expansion times, when
initial interaction energy of the gas has been fully transfer
into kinetic energy. Therefore, for large values ofA the self-
similarity is recovered.

FIG. 3. Frequency of the lowest compressional mode as a fu
tion of the parameterA.
1-4
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V. CONCLUSIONS

In this paper, we have extended the analysis of Ref.@20#
on the expansion dynamics of a one-dimensional Bose ga
a guide. We have shown that the expansion violates un
certain conditions the self-similarity, and in this sense diff
significantly from the expansion dynamics of a BEC. W
have shown that the problem can be solved by employing
hydrodynamic approach and the local Lieb-Liniger mod
We have developed a variational approach based on a
grangian formalism to study the expansion for any regime
parameters. We have identified the possible physical si
tions at which self-similarity is violated. This should occur
a rather wide range of parameters (0.01&A&100). The par-
ticular properties of the expansion of a gas in the stron
interacting regime could therefore be employed to disc
between mean-field and strongly interacting regimes. In
dition, the asymptotic behavior of the expanded cloud co
be employed to discriminate between different initial inte
action regimes of the system.

FIG. 4. Expansion velocity. Asymptotic value ofḃ as a function
of the parameterA.
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Our discussion has been restricted to the analysis of
density properties. In fact the present formalism cannot
scribe the dynamics of the coherence in the system, i.e.
are limited to the diagonal terms of the corresponding sing
particle density matrix. The description of the nondiagon
terms lies beyond the scope of this paper, and requires o
techniques of analysis@19,32#.
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