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Violation of self-similarity in the expansion of a one-dimensional Bose gas
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The expansion of a one-dimensional Bose gas after releasing its initial harmonic confinement is investigated
employing the Lieb-Liniger equation of state within the local-density approximation. We show that during the
expansion the density profile of the gas does not follow a self-similar solution, as one would expect from a
simple scaling ansatz. We carry out a variational calculation, which recovers the numerical results for the
expansion, the equilibrium properties of the density profile, and the frequency of the lowest compressional
mode. The variational approach allows for the analysis of the expansion in all interaction regimes between the
mean-field and the Tonks-Girardeau limits, and in particular shows the range of parameters for which the
expansion violates self-similarity.
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[. INTRODUCTION gases have encouraged the investigation of the harmonically
trapped case. The Bose-Fer(BF) mapping has been em-
The experimental achievement of Bose-Einstein condenployed to the case of an inhomogeneous gas in the TG limit
sation(BEC) [1] has aroused a large interest in the physics of 23]. However, there is unfortunately, to the best of our
ultracold atomic gases. Among the topics related to this fieldknowledge, no exact solution for arbitrary interaction
the physics of low-dimensional atomic gases has recentlgtrength in the case of trapped gases. The problem of the
attracted significant attention. The development of the trapequilibrium of a trapped gas can be analyzed using a local-
ping techniques has allowed for the realization of very an-density approximation and employing the Lieb-Linig&t. )
isotropic geometries, where the confinement is so strong iequation of state locally to evaluate the equilibrium density
one or two dimensions that at low temperatures the transveprofiles [17]. A similar formalism has been recently em-
sal motion is “frozen,” and does not contribute to the dy- ployed to analyze the collective oscillations in the presence
namics of the system. In this way tw¢2-5] and one- of harmonic trappind18]. Both Refs.[17] and [18] have
dimensional 2,6,7] systems have been accomplished. Low-shown the occurrence of a continuous transition from the
dimensional gases present significantly different propertiesnean-fieldMF) regime to the TG one as the intensity of the
compared to the three-dimensional ones. A remarkable ednteraction is varied. Recently, Gangardt and Shlyapnikov
ample is provided by the existence of quasicondensatiofil9] have discussed the stability and phase coherence of 1D
[8—11], whose effects have been recently observed experirapped Bose gases. These authors have analyzed the local
mentally[12]. correlation properties and found that inelastic decay pro-
During the last years, the one-dimensionidD) Bose cesses, such as three-body recombination, are suppressed in
gases have been the subject of growing interest, in particulathe TG regime, and intermediate regimes between MF and
the limit of impenetrable bosonsl 3], which behave to a TG. This fact opens promising perspectives towards the ac-
large extent as a noninteracting Fermi system, acquiringomplishment of strongly interacting 1D Bose gases with
some remarkable properties. The conditions for the experilarge number of particles. This analysis have been very re-
mental realization of strongly correlated 1D gases are ratherently extended to the case of finite temperat(iB=g.
restrictive[8,14], since a large radial compression, a suffi- The expansion of a one-dimensional Bose gas in a guide
ciently small density, and eventually a large scattering lengthvas analyzed in Ref20] by means of a hydrodynamic ap-
are needed. Fortunately, recent experimental developmenpsoach based on the local LL model. The expansion dynam-
have opened perspectives in this sense. Especially interestings was shown to be different for different interaction
is the possibility to modify at will the interatomic interac- strengths, and its analysis could be employed to discern be-
tions by means of Feshbach resonarjd&sg and the capabil- tween the TG and MF regimes. In particular, the self-similar
ity of loading an atomic gas in an optical lattiC&6]. solution is violated.
From the theoretical side, the physics of 1D Bose gases In this paper, we extend the analysis of R&X0] by in-
was first investigated by Girarde@li3], who considered the troducing a variational approach, which permits us to study
limit of impenetrable bosons, also called Tonks-Girardeatthe asymptotic regime at large expansion times. This method
(TG) gas, pointing out a nontrivial relation with the physics is shown to be in excellent agreement with previous direct
of ideal Fermi gases. This analysis was later extended bgyumerical simulations, and additionally permits us to recover
Lieb and Liniger[21], who solved analytically the problem the results of Ref§17,18. More importantly, our variational
for any regime of interactions, using Bethe ansatz. Yang andpproach allows us to determine the regime of parameters for
Yang[22] extended the analysis including finite temperaturewhich the self-similarity of the expansion is violated.
effects. Recently, the experimental accessibility of trapped The paper is organized as follows. In Sec. Il we introduce
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the local LL model which we employ to analyze the expan- 1

sion dynamics. In Sec. Il we briefly discuss the numerical ANy)= Vf g(x|y)dx. (6)
results obtained in Ref20]. In Sec. IV we present a varia- -t

tional approach which allows us to investigate in detail theWe assume next that at each pairthe gas is in local equi-

expansion dynamics for arbitrary regimes of parameters. Fil- . ith | I icl -
nally we conclude in Sec. V. ibrium, with local energy per particle provided by E®).

Then, one can obtain the corresponding hydrodynamic equa-

tions for the density and the atomic velocity
II. LOCAL LIEB-LINIGER MODEL

We analyze in the following a dilute gas ® bosons in+i(nv)zo, (7)
confined in a very elongated harmonic trap with radial and ot oJz
axial frequenciesv, and v, (w,>w,). We assume that the
transversal confinement is strong enough so that the interac- d d
tion energy per particle is smaller than the zero-point energy VTV T T gz
fiw, of the transversal trap. In this way, the transversal dy-
namics is effectively frozen and the system can be considwhere
ered as dynamically 1D. In this section we briefly review the
formalism introduced in Ref.17].
We assume that the interparticle interaction can be ap- Hie(N)=
proximated by as function pseudopotential. Therefore the

Hamiltonian that describes the physics of the 1D gass the Gibbs free energy per particle. The hydrodynamic de-

: ®

1
,u|e(n)+§ma)§z2

J
1+n(9—n) e(n) 9

becomes scription holds if the local chemical potential, related to the
N s 5 interaction energy in the homogeneous system, is much
Mw3Z; inati i i
Bo=[0 4 2 z4i 1 larger than the kinetic energy associated to the density modu-
1D~ "'1D = 2 ’ ( )

lations. It assumes, in particular, that the density of the gas
varies smoothly within the typical distance fixed by the heal-
where ing length (local-density approximation Note that for the
2 2 cr?se ofn|a;p| —, orll(e obtain;,uﬁ(n):gwn,fretrri]eving

~0 the 1D Gross-Pitaevskii equati¢@6], whereas for the case
Hio= =5, 121 Eﬂ;w; j;rl dz-z) nla;p| —0, one getsu;e(n)=7%42n?/2m, and the equation

J of Ref.[27] is recovered. The system has only one control
is the homogeneous Hamiltonian in the absence of the haparameter[8,17,18, namely, A=N|a;p|?/a, where a,
monic trap,m is the atomic mass, anghp=—2%%/ma,p. = Jh/mw, is the harmonic-oscillator length in thedirec-
The scattering problem under one-dimensional constraintdon. The regimeA>1 corresponds to the MF limit, in which
was analyzed in detail by Olshaiil4], and it is character- the stationary-state density profile has a parabolic form. On
ized by the one-dimensional scattering length,, the other hand, the regimé<1 corresponds to the TG re-
=(—a’/2a)[1—-C(a/a,)], with a the three-dimensional gime, which is characterized by a stationary-state density
scattering lengtha,=\2/mw,, is the oscillator length in  profile with the form of a square root of a parabola.
the radial direction, and=1.46@.... Asshown by Lieb

and Liniger[21], the homogeneous Hamiltoniait , can be I. NUMERICAL RESULTS
diagonalized exactly by means of Bethe ang2&]. In the In Ref. [20], Egs.(3), (5), (6), and(9) were employed to

thermo_dynam|c '"F“‘* a 1D gas at zero temperature with &imulate numerically the expansion of a 1D gas in the frame-
given linear densityn is characterized by the energy per

N N-1 N

work of the hydrodynamic formalism. The expansion follows

particle the sudden removal of the axial confinement, while the radial
2 one is kept fixed. In particular, it was observed that during
e(n)= ﬁnze(y(n)), (3) the expgnsion the density profile is well described by the

expression

where y=2/n|a,p|. The functione(vy) fulfills s(t)

N(z,t)=np(t) ; (10

1 —Z i
R

wheren,(t) provides the appropriate normalizatidr(t) is

the radius of the cloud, and the exponsftf) takes the value

s(0)=1 for an initial MF gas. The functios(t) decreases

monotonically in time, approaching an asymptotic valsee

Fig. 1). Therefore, contrary to the expansion dynamics for a

1 1 (1 2\ () vy o . S I
Xly)= — 4 — | — dy, (5 BEC [28-30, the self-similarity of the density profile is
90) 2m 2Wf—1x2(y)+(y—x)2g(y|7) ¥ & violated.

Yt 2
o= 15| 90 @

whereg(x|y) and\(y) are the solutions of the LL system of
equationg 21]
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T T s

, (12

Z2

C(s)
= - R2b2

1 - 4 _

b

whereb ands are time-dependent variableR,is the initial
Thomas-Fermi radius, and(s) is related to the normaliza-
tion to the total number of particles. For thg field we
consider the following form:

s(t)

¢=1az’+1B7%, (13
0.4 |
wherea and B are time-dependent parameters. We stress at
this point that in the analysis of the self-similar expansion of
02 f 1 a BEC[28-3(0 a quadratic ansatgn z) for the ¢ field
provides the exact solution. However, for the problem under
consideration in this paper, it is necessary to include higher-
0 1'0 2'0 order terms to account for the violation of the self-similarity.
time(1/w, ) We have checked that terms of higher order ttamtroduce
only small corrections, and therefore we reduce to the form
FIG. 1. Time evolution of the expones(t) for A=0.43, w,  Of Eq. (13).
=2m(20) kHz, andN=200 atoms[ w,=27X(1.8) Hz att=0]. We are interested in the dynamics of the parameiensd
Our variational resultdashed ling shows a very good agreement s, related to the size and the shape of the cloud, respectively.
with the results obtained from the direct resolution of Eg$.and  Integrating the Lagrangian density inL = [ £dz, one finds

(8). a Lagrangian for the above-mentioned parameters:
At this point we discuss the physics behind this violation . . MNR ab? 3 Bghb*
of the self-similarity. If the local chemical potential presents L(a @.58,8,0,8)=—5—1 - 5—-=-5 (25+5)(25+3)

a fixed power-law dependence on the densityen*, it is

easy to show from the hydrodynamic equatig¢is and (8) a’b? aBb*

that there exists a self-similar solution of the form T 2s5+3 _2(25+ 5)(2s+3)
=(ng/b)[1—(z/bR)?]**, whereb= w?/b* . For the par-

ticular case of the TG gas, the scaling law can be also ob- B?b° b2w§
tained from the exact BF mappig0]. However, sinceu;e - (2s+7)(2s+5)(2s+3) T 25+3

is obtained from the LL equations, the dependencg,gfon

n is quadratic for a low density and linear for a large one. _f dzne(n) (14)
Therefore,u,. does not fulfill a fixed power-law dependence '

during the expansion, and the self-similarity is violated. In )

particular, as the expansion proceeds the whole system a¥Ye perform a gauge transformatigi]

proaches the low-density regime, and consequently, the ex- d

ponents decreases monotonically. In the following section, L(t,q,d)—>L(t,q,d)+&g(t,q), (15)
we analyze in more detail this effect.

where
IV. VARIATIONAL CALCULATION
In this section, we complete our understanding of the ex- g9(t,q) = _ ab? _§ pb* )
pansion of a one-dimensional Bose gas in a guide by means ’ 2 2s+3 2 (2s+5)(2s+3)
of a variational ansatz using a Lagrangian formalism. The (16)
Lagrangian density for the system is of the form

The resulting Lagrangian is of the formL

»s =L(a,B,b,b,s,s). Imposing the conservation laws /Ja

—pMwzz’n— e(mn, (1) - dL/aB=0, we obtain a Lagrangian depending only on the
two relevant parameters and b, of the formL=K-V,

where the velocity field is defined as=d¢/Jdz. The equa- Wwhere

tions of motion are obtained from the functional derivation

of the actiond= [ £dtdz 8.A/84=0 (continuity equation V. [B(b,s) A?h? 1

8AISn=0 (which after partial derivation with respect E_lo_ fo(s) + [ 70fo(S0) ]2 25+3 ' (17)

provides the Euler equatipnFrom the numerical results we

have observed that the density is at any time well described - : .

by Eg. (10). Therefore, we assx;me the ¥ol|owing ansatz for iz A*(M11b?+2M1b5+ Mozs”)

the density: Eip [ 70fo(So)12(25+3)

ap 1 ((9¢>2

9z

: (18
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FIG. 3. Frequency of the lowest compressional mode as a func-
FIG. 2. Equilibrium valuegatt=0 before opening the tramf tion of the parameteA.

the exponens, as a function of the parametér The dashed lines
denote the MF limitsy=1, and the TG onesy=1/2.

on_,, 1 [mofo(so)]? B, 2
— = X T -~ Slp=1-
where E;p=%2/2m|a;p|? is the typical energy associated w? 2A?  fa(so) g2

with the interatomic interactions. In Eq17), we use the ) N

functionB(b,s) = [dy(1—y2)e(n(y))/E;p, where we inte- Our results show a continuous tran3|t|(_)n from the MF value,
grate over the rescaled axial coordingte z/Rb. In Egs. ®@m=\3w,, to the TG onewy=2w,, in excellent agree-
(17) and (18), we define the dimensionless central densityment with the results obtained by means of a sum rule
7o="No|asp|, Wheren is the initial central density and the formalism[18]. _ .
parameters,=s(t=0). We have additionally employed From the corresponding Euler-Lagrange equations, we

the auxiliary functions f,(s)=/y"(1—y?)Sdy, and the have obtained the dynamics @f(t) and s(t). We have
coefficients checked in all our calculations that the energy and number of

particles remain a constant of motion. We have compared the
variational results with our simulations based on the exact
resolution of the hydrodynamic equatiof0], obtaining an
excellent agreemerisee Fig. 1

—-b We have analyzed the asymptotic valog for different

Mq=1, (19

M1o= 2s+3’ (20 values ofA. It is easy to obtain, that for a power-law depen-
dence of the local chemical potentjaj,>n*, the derivative
) ) 3 of the scaling parameter asymptotically approaches a value
b“(121+ 1865+ 965+ 16s°) . . " :
M 5= 5 > (2D b= V2 w,. _Therefore a continuous transition froim,
4(s+1)(2s+3)%(2s+5) =w, (TG) to b..= 2w, (MF) is expected. We recover this

dependence from our variational calculatidese Fig. 4.

From the LagrangiarL, one obtains the corresponding  We have analyzed the behavior ®fluring the expansion
Euler-Lagrange equations for the parameteends. In or-  dynamics for different values oh. In particular, we have
der to find the initial conditions;q ands, for the expansion, defined the asymptotic ratig=s. /sy, with S.,=s(t— =)
we have numerically minimized the potentllin the pres- (see Fig. 3 Deeply in the TG regimeA<1) or in the MF
ence of the harmonic trap for different valuesf/ofassuming one (A>1), é=1, i.e., in those extreme regimes, the expan-
b=1 (see Fig. 2 WhenA>1, sy tends to 1, as expected for sion is well described by a self-similar solution. However,
the MF case. On the contrary, whén<1, sy tends to 1/2  for intermediate valueg<1, i.e., the expansion is not self-
(TG profile). As expected from Ref[17], for A<1, 5, similar. The self-similarity is maximally violated in the vi-
«AY2 whereas forA>1, the MF dependence,=A?3is  cinity of A=1, althoughé departs significantly from 1 for a
recovered. range 0.0A=<100. The behavior at larg& can be under-

Our variational approach allows us to calculate the lowesstood as follows. If the gas is a=0 deeply in the MF
compressional mode, offering an alternative method as theegime, the change of the functional dependence gfwith
one discussed in Ref18]. Expanding the potentidf around  the density occurs at very long expansion times, when the
the equilibrium solution up to second orderhirisee Fig. 3, initial interaction energy of the gas has been fully transferred
and neglecting for small oscillations the time dependence ointo kinetic energy. Therefore, for large values/ofthe self-

s, we obtain similarity is recovered.
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FIG. 4. Expansion velocity. Asymptotic value bfas a function
of the parameteA.

FIG. 5. Violation of the self-similarity. Value of=s.. /sy as a
function of the parametek. The valueé=1 denotes self-similarity.

Our discussion has been restricted to the analysis of the
density properties. In fact the present formalism cannot de-
In this paper, we have extended the analysis of fag]  Scribe the dynamics of the coherence in the system, i.e., we
on the expansion dynamics of a one-dimensional Bose gas € limited to the diagonal terms of the corresponding single-

a guide. We have shown that the expansion violates ungdarticle density matrix. The description of the nondiagonal

certain conditions the self-similarity, and in this sense differsi€'MS lies beyond the scope of this paper, and requires other

significantly from the expansion dynamics of a BEC. We €chnigques of analysig9,32.
have shown that the problem can be solved by employing the
hydrodynamic approach and the local Lieb-Liniger model.
We have developed a variational approach based on a La- We acknowledge support from Deutsche Forschungsge-
grangian formalism to study the expansion for any regime omeinschaft(SFB 407, the RTN Cold Quantum gases, ESF
parameters. We have identified the possible physical situsPESC BEC200@, Royal Society of Edinburgh, and the
tions at which self-similarity is violated. This should occur in Ministero dell’Istruzione, dell’Universitae della Ricerca

a rather wide range of parameters (0s04<100). The par- (MIUR). L.S. and P.P. acknowledge the Alexander von Hum-
ticular properties of the expansion of a gas in the stronglyboldt Foundation, the Federal Ministry of Education and Re-
interacting regime could therefore be employed to discerrsearch, and the ZIP Programme of the German Government.
between mean-field and strongly interacting regimes. In adbiscussions with M.D. Girardeau, M. Lewenstein, D.S.
dition, the asymptotic behavior of the expanded cloud couldPetrov, and G.V. Shlyapnikov are acknowledged. We espe-
be employed to discriminate between different initial inter-cially thank C. Menotti for providing us with the data of Ref.
action regimes of the system. [18].

V. CONCLUSIONS
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