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Emission of polarized photons from unpolarized electrons moving in crystals
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Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
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Radiation emitted by unpolarized high-energy electrons penetrating crystals may be linearly polarized. This
occurs when the particle velocity makes an angle with respect to some major crystal axis that is appreciably
larger than the axial-channeling angle. For such an orientation, a complete description of spectral and polar-
ization characteristics of the radiation is derived. At planar channeling, a nonperturbative contribution to the
probability of the process appears to be caused by the plane field, and we must solve exactly a one-dimensional
mechanical problem. For that, the approximate form of the actual plane potential is suggested which provides
a precise fit for any crystal plane and an analytical solution to the motion problem. In a practical case, we must
consider electron-photon showers developing in sufficiently thick crystals. For the first time, to our knowledge,
this development is described taking into account the polarization of photons. We discuss qualitative features
of the phenomenon, present results of numerical calculations for thin and thick crystals, and evaluate the
possibility of the use of differently oriented crystals in a polarized hard-photon source.
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I. INTRODUCTION

Specific radiation is emitted by relativistic electrons pa
ing through single crystals. This phenomenon was activ
studied theoretically and experimentally during past few
cades~see, e.g., Ref.@1# and references cited therein!. It
turned out that the shape of the spectrum and the intensi
this radiation depend on the electron energy and crystal
entation, emitted photons being polarized even for unpo
ized incident electrons. In general, these properties allow
development of tunable sources of polarized high-ene
photons, which may have various applications. In particu
a diamond radiator is proposed for a new program of po
ized photon experiments at SLAC that will study novel a
pects of nuclei and nucleons usingJ/C ~E160! and open
charm ~E161! photoproduction. In the present paper, ele
trons are supposed to be unpolarized, then only linear po
ization may be obtained using crystals. Our considera
starts from the well-known description of QED processes
external fields obtained by means of the so-called quasic
sical operator method~QCOM, see, e.g., Ref.@1#!. Using this
method~see Ref.@2# for the latest formulation! and the ap-
proach developed in Ref.@3#, we focus on the photon polar
ization details and crystal thickness effects. General formu
are essentially simplified and, additionally, a more adequ
form of the planar potential is introduced to facilitate calc
lations. The results obtained allow one to determine the
timal crystal type, thickness, and orientation providing n
essary characteristics of a polarized photon source for
specific application.

It is important for our consideration that the probabiliti
of QED processes taking proper account of quantu
mechanical recoil effects are expressed within QCOM
way of classical trajectories of charged particles. This sta
ment is correct for a wide class of external fields satisfy
some conditions specified in Ref.@2#. The crystal electric
field, which is responsible for the coherent processes, m
these conditions as well. So, to calculate the probability,
must solve a two-dimensional mechanical problem, whi
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generally, cannot be done analytically. In crystals, as sho
in Ref. @3#, this problem becomes essentially on
dimensional for the off-axis orientations. More precisely, t
angleq0 between the electron velocity and the nearest ma
crystal axis~incidence angle! should satisfy the condition
usp<q0!1. It is this region of incidence angles only, whic
is considered below, and a finite set of the strongest pla
containing the axis is important in it. Some of these plan
are schematically shown in Fig. 1 along with adjacent an
lar domains, where the influence of each plane on mot
should be taken into account exactly. From Fig. 1, the me
ing of the characteristic angleusp is that different domains

FIG. 1. Characteristic angular regions around the^001& axis (z
axis on the diagram! of diamond at electron energy of 150 Ge
whenusp.1.131024 anduax.3.331025. Three strongest plane
~thick solid lines! are shown along with domains~blank areas
bounded by dashed lines! where the one-dimensional motion prob
lem should be solved exactly.
©2003 The American Physical Society01-1
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do not overlap foru0>qsp . The magnitude of the angleusp
depends on the electron energy and the axis chosen, b
appreciably larger than the characteristic angle for a
channeling,uax . According to Ref.@3#, the transverse~with
respect to the axis! velocity of an electron reads asv.vexc
1vper . Here the termvexc represents the exact solution fo
the transverse velocity in the field of the only one plane
the set. The termvper gives the contribution of other plane
which can be taken into account using a perturbation the
and, additionally, the rectilinear trajectory approximatio
The componentvexc is present when the velocity belongs
one of the domains mentioned above~blank areas in Fig. 1!
being almost aligned with one of the planes. It disappe
when the velocity of a particle forms sufficiently large ang
with each plane of the set~hatched areas in Fig. 1!. In this
case, the perturbation theory in the whole crystal potentia
applicable being the essence of the so-called coherent br
strahlung~CB! theory~see, e.g., Ref.@4#!. It is clear that the
transverse motion of a particle is two dimensional but
component which needs the exact calculation is one dim
sional. To find the latter, we propose the approximate form
the actual planar potential which provides the precise fit
any crystal plane and allows one to find an analytic expr
sion for the trajectory. That is done in the Appendix whe
the explicit form of the velocity Fourier transform is als
obtained.

In Sec. II, general expressions are derived giving the
stantaneous~probabilities per unit time or length! character-
istics of the radiation. Then they are analyzed and simplifi
We discuss the qualitative features of the phenomenon
present results of numerical calculations for thin crystals
turns out that, for the two types of the azimuthal orientat
mentioned above, not only spectra but also polarization
tributions are utterly different. In a practical use, sufficien
thick crystals are needed to get a noticeable yield. In
case, we cannot neglect the multiple photon emission, t
absorption due to thee1e2-pair production, and the radia
tive energy loss of charged particles. In other words,
thick crystals, we must consider an electromagnetic sho
Such a consideration is performed in Sec. III, using the f
mulas obtained in Sec. II along with those describing
e1e2-pair production by polarized photons. So we descr
the shower development taking into account the polariza
of photons for both basic QED processes involved. So
results of Monte-Carlo simulations are presented for setti
used in NA43~see Ref.@5#! and NA59~see, e.g., Ref.@6#!
experiments at CERN.

II. RADIATION AT FIXED PARTICLE ENERGY

Let us start with the well-known formula~see, e.g., Eq.
~16.7! in Ref. @1#! which describes spectral, angular, and p
larization distributions of photons emitted by unpolariz
electrons~positrons! at given motion:

dwg5
a

~4p!2

d3k

v

«

«8
E dt1 dt2 L~ t1 ,t2!

3expF i
«

«8
~k,x12x2!G , ~1!
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wherea51/137, km[(v,k) is the photon momentum,x1,2
m

[xm(t1,2), xm(t)5@ t,x(t)#, «85«2v, « is the electron en-
ergy, and

L~ t1 ,t2!5~e* •v1!~e•v2!@w~«!12#1@~e* •e!~v1•v2

211g22!2~e* •v2!~e•v1!#@w~«!22#. ~2!

Here v1,2[v(t1,2) is the electron velocity on the classic
trajectoryx(t), g5«/m, m is the electron mass, andw(«)
5«/«81«8/«. If we setw(«)52 (v50) in the expression
for L(t1 ,t2), formula~1! will describe the radiation from the
scalar~zero-spin! particle~see, e.g., part 9 in Ref.@7# or @1#!.
This substitution rule holds for all subsequent formulas
this section.

Remember that the vectorse in Eq. ~2! correspond to the
polarization which would be measured by some detector a
thereby, have nothing to do with the polarization of emitt
photons. The latter is described by the matrixdwki in the
contraction dwg5eiek* dwki . We introduce the vectorj
(uju51), which describes the analyzing ability of a detect
by eiek* 5(11j•s) ik/2, wheres are the Pauli matrices. Th
matrix dwki can be presented in the same form:dwki5(A
1B•s)ki/2. Then we have

dwg5
1

2
~A1B•j![

A

2
~11h•j!

h5
B

A
, A5dw111dw22,

B15dw121dw21, B25 i ~dw122dw21!,

B35dw112dw22. ~3!

In this equation, the Stokes vector of the radiation,h, is
defined. The quantityA gives the value ofdwg summed up
over polarizations.

We assume further that the angular divergence of the e
tron beam is small enough. Then the same is true for
resulting photon beam provided that electron energy is s
ficiently large («@m), as the emission angle of a photo
~with respect to the particle velocity! is typically of the order
of g21!1. In this case, we can choose some axis (z axis!
such that the momenta of all charged particles and pho
make small anglesqax with respect to this axis:qax!1. Let
a' denote the component of an arbitrary vectora transverse
to the axis chosen. Using relations

vz.12 1
2 ~g221v'

2 !, ez52~k'•e'!/kz.~n'•e'!,

nz.12 1
2 n'

2 , n5k/v,

we can removez components of all the vectors from Eq.~1!.
As a result, we have

dwg5
av dv d2n'

~4p!2

«

«8
E dt1 dt2 L~ t1 ,t2!exp~2 iD !,
1-2
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D5
v«

2«8
E

t1

t2
dt$g221@n'2v'~ t !#2%,

L~ t1 ,t2!5~e'
* ,v1'2n'!~e' ,v2'2n'!@w~«!12#

2@~e'
* ,v2'2n'!~e' ,v1'2n'!

1 1
2 ~e'

* •e'!~v2'2v1'!2#@w~«!22#. ~4!

No restrictive conditions@such as (n•e)50] are imposed on
the vectorse' . This allows one, first, to utilize any fixed
basis for the description of the photon polarization regard
of n. In what follows, we use the Cartesian basis (ex ,ey ,ez),
whereez is directed along the nearest~making the smalles
angle with respect to the particle velocity! major crystal axis,
ex is within some crystal plane containing this axis, andey is
perpendicular to this plane. Second, the vectorse' can be
considered constant when integrating in Eq.~4! over photon
emission angle~over d2n'). Performing this integration, we
obtain the matrixwi j

sp describing the spectral distribution of
radiation:

dwi j
sp5

ia dv

4pg2E2`

`

dtE
2`

` dt

t2 i0
exp$2 ilt@11r~ t,t!#%Li j ,

Li j 5d i j
'F1

4
@w~«!22#~g22g1!21

i

l~t2 i0!G
1

w~«!

2
~g2ig1 j2g2 jg1i !2~g2ig1 j1g2 jg1i !, ~5!

where t5(t11t2)/2, t5t22t1 , l5vm2/(2««8), g1,2
[g(t1,2), and

g~s!5gFv'~s!2
1

tE2t/2

t/2

dx v'~ t1x!G ,
r~ t,t!5

1

tE2t/2

t/2

dx g2~ t1x!.

In further consideration we use the approach develope
Ref. @3#. Recollect that the transverse velocity can be rep
sented as the sum:v'.v'

slow1v'
f ast , wherev'

f ast given by
Eq. ~3! in Ref. @3# is characterized by relatively small ampl
tudes and large frequencies. On the contrary, large am
tudes and small frequencies are inherent in the te
v'

slow which corresponds to the one-dimensional mot
in the field of a plane. Its explicit form readsv'

slow(t)
5ey(nvn exp(inv0t). Here,v0 is the frequency of this mo
tion andvn is the velocity Fourier transform calculated in th
Appendix. Correspondingly, the quantityg(s) in Eq. ~5!
turns into the sum:g(s)5 l(s)1w(s), where

l~s!5ey(
n

~gvn!Feinv0s2
sin~nv0t/2!

nv0t/2
einv0tG , ~6!
04290
s
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-

li-
m

w~s!52(
q'

; G~q'!q'

mqi
Feiq is2

sin~qit/2!

qit/2
eiq itGei (q'r0).

Hereq are discrete reciprocal lattice vectors,G(q) are coef-
ficients in the Fourier series describing the crystal poten
@see Chap. 9 of Ref.@1# for the explicit form ofq andG(q)],
andqi5(q'•v). The tilde in the expression forw(s) means
that the sum does not containq'iey which just form the
plane potential. The Doyle-Turner approximation of t
atomic potential@8# is used in the present paper to obtain t
coefficientsG(q).

In principle, using Eq.~6!, one can perform the integra
tion over t and t straight in Eq.~5!. However, as we have
already obtained the quantityw(s) by means of some pertur
bation procedure, it is more convenient, consequently,
continue in the same way. So, as in Ref.@3#, we expand the
exponential function in Eq.~5! in w(s), keeping quadratic
terms, and obtain

dwi j
sp5

ia dv

4pg2E2`

`

dtE
2`

` dt

t2 i0

3exp$2 ilt@11rslow~ t,t!#% (
n51

3

Ci j
(n) , ~7!

where rslow(t,t)5t21*2t/2
t/2 dx l2(t1x) and matricesCi j

(n)

are

Ci j
(1)5d i j

'F i

l~t2 i0!
1

1

4
@w~«!22#~ l22 l1!2G

2 l 1i l 2 j2 l 1 j l 2i ,

Ci j
(2)5(

q'

; UG~q'!q'

mqi
U2

„d i j
'$12 f 2~z!1@w~«!22#sin2z%

2n in j@ f (1)
2 ~z!1 f (2)

2 ~z!#…,

Ci j
(3)52il(

q'

; UG~q'!q'

mqi
U2

Ji j , ~8!

Ji j 5
t

2
@12 f 2~z!#Fd i j

'
i

l~t2 i0!
2Ci j

(1)G1 iluFu2Ci j
(1)

1FH id i j
'@w~«!22#~ l22 l1 ,n!sinz

1~ l 1in j1 l 1 jn i ! f (2)~z!1~ l 2in j1 l 2 jn i ! f (1)~z!

1
w~«!

2
@~ l 1in j2 l 1 jn i ! f (2)~z!

2~ l 2in j2 l 2 jn i ! f (1)~z!#J ,

F5E
2t/2

t/2

dx n• l~ t1x!@eiq ix2 f ~z!#,
1-3
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f ~x!5
sinx

x
, f (6)~x!5e6 ix2 f ~x!,

n5
q'

uq'u
, z5qit/2.

Using Eqs.~7! and ~8!, we obtain the expression for th
probability of a photon detection irrespective of its polariz
tion, dwg

unp5dwi j
spd i j

' , which coincides with Eq.~4! in Ref.
@3#.

Let us dwell on the plane field contribution~PFC! to the
radiation. This is given by the term in Eq.~7! which is pro-
portional to Ci j

(1) . To make estimates, we should recolle
some properties of the quantityrslow(t,t) which enters into
the phaseC(t)5lt@11rslow(t,t)#. So, rslow(t,t) is the
even, positive, and monotonically increasing function oft. It
satisfies the inequalityrslow(t,t),r(`),rc5Upl«/m2,
whereUpl is the potential-well depth of the plane andr(`)
is the limiting value ofrslow(t,t) as utu→`. Using Eq.~6!,
we can easily estimate the behavior ofrslow(t,t) at large and
small t:

r~`!5 (
nÞ0

ugvnu25
^py

2&2^py&
2

m2
,

r~v0t!1!. 1
12 @g v̇y~ t !t#2, ~9!

where^¯& means time averaging,py and v̇y arey compo-
nents of the momentum and acceleration respectively o
charged particle. Letq0 andf0 be the polar and azimutha
angles of incidence counted off from the axis and plane c
respondingly. Then the velocity of a particle makes the an
c with respect to the plane, at which, sinc5sinq0 sinf0 or,
as q0!1, we havec.q0 sinf0. At channeling@c,upl
5(2Upl /«)1/2#, we haver(`)&rc . At above-barrier mo-
tion (c.upl), the quantityr(`) decreases fast being of th
order of 0.1(Upl /mc)2 for c@upl ~see, e.g., p. 430 in Ref
@1#!.

For r(`)!1, we can expand the exponential function
Eq. ~7! in powers ofrslow(t,t) retaining only the linear term
~dipole approximation!. In this case, the slow-fast interfe
ence termCi j

(3) gives higher-order corrections and should
neglected, whileCi j

(1) after averaging over timet reads

Ci j
(1)~r!1!5(

n
ugvnu2$d i j

'$12 f 2~z!1@w~«!22#sin2 z%

2eyiey j@ f (1)
2 ~z!1 f (2)

2 ~z!#%, ~10!

where z5nv0t/2, eyi5d2i . This expression has the sam
structure asCi j

(2) @cf. Eq. ~8!# since both were obtained b
means of the perturbation theory. Forrc!1, Eq.~10! is valid
at any value of the anglec. In the opposite case whenrc
*1, it holds forc@upl . The latter condition provides als
the applicability of the rectilinear trajectory approximation
the calculation ofvn andv0. So, as we have checked usin
the explicit forms ofvn and v0 ~see the Appendix!, for c
@upl , Ci j

(1) andCi j
(2) are essentially the same except that
04290
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summation is performed inCi j
(1) over the subset ofq' paral-

lel to ey , while in Ci j
(2) the complementary subset is used. A

a result, when the particle velocity is well off all majo
planes, the spectrum and polarization of a radiation are
scribed by the termCi j

(2) if we extend the summation in i
over all q' . Then it reproduces results of the so-called C
theory. In Ref.@9# @see Eqs.~4.8! and ~1.5!#, the correlation
of this theory was explained with the Compton scatter
~off electrons! of the equivalent photons representing in
proper reference frame the periodic crystal field.

For r(`)@1, the constant field approximation~CFA! is
widely used~see Secs. 4, and 17 in Ref.@1# describing CFA!.
It can be applied when the magnitude of the external~not
uniform! field is almost constant on the particle trajecto
during the radiation formation timet f . The latter is deter-
mined by the conditionC(t f)&1. In our case, the applica
bility condition of CFA readsv0t f!1. Ast f depends on the
photon energyv, this condition cannot be fulfilled every
where in the radiation spectrum. In particular, it is violat
for v&2g2v0 /r(`). The power spectrum is maximum a
u[v/(«2v);x5g2v̇(t)/m. Using Eq. ~9!, we find atu
*x for the formation timet f;2v0 /@g v̇(t)#. Numerical es-
timates of the latter expression show that, even in this par
the spectrum, the CFA becomes valid at rather high elec
energy. For example, it happens at«@100 GeV for (110)
planes of diamond and silicon, and at«@10 GeV for the
same plane of tungsten.

Using CFA, the probabilitydwg was calculated in Ref.
@10#. We emphasize that no approximations are used in
present paper at the PFC calculation. However, the resul
Ref. @10# are useful here since they allow us to check t
procedure of the exact calculation and estimate the ma
tude of the interference termCi j

(3) , as well as the influence o
the slow motion on the CB termCi j

(2) . This influence is due
to the presence ofrslow(t,t) in the phaseC(t). According
to Ref. @10#, the scale of the effect is given by the parame
m5x/s(qi), wheres(qi)52«uqiu/m2 is a conventional ki-
nematic parameter in the Compton scattering. Remem
that the power spectrum of the latter is maximum just at
kinematic boundary,u5s(qi). So the plane field and CB
contributions to the radiation intensity are well separated
m!1.

The parameterm is essentially the deviation of the pa
ticle velocity due to the external field action during the ha
photon formation timeth;uqiu21 measured in units of the
characteristic emission angleuph5g21. For given plane and
substance, this parameter depends only on the angle of
denceq0, namely,m5Cm /q0 ~mrad!. Using the Tables 9.2
and 15.1 in Ref.@1#, we obtain for^110& planes,Cm ~dia-
mond! .Cm ~silicon! .0.01, andCm ~tungsten! .0.06. For
weaker planes of the same crystal,Cm is smaller being pro-
portional to the magnitude of the plane electric field. Fro
Fig. 1 in Ref.@10#, the influence of the field on the Compto
scattering can be neglected ifm,0.05. In turn, the interfer-
ence term provides corrections to PFC of the order ofr f ast

. (̃uG(q')q' /(mqi)u2 which, by definition, is much smalle
than unity. Assumingm,0.05, we obtain from Eq.~7! a
1-4
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FIG. 2. ~a! Intensitiesxd2Ng /dx dl at «5180 GeV for~110! plane of silicon atz520.25 ~solid!, at z51 ~dash dotted!; the same in
diamond at«5180 GeV,z520.25 for~110! plane~dashed! and for~001! plane~dotted!. ~b! Third component of the Stokes vector for the
conditions exceptz51; z5«' /Upl , x5v/«.
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simple but still rather accurate expression for the pho
emission probability per unit length~time!, dW, as well as
the spectral distribution of polarization. According to th
analysis performed in Refs.@10# and@3#, the accuracy of 5%
or better is expected. Let us presentdW in the form intro-
duced in Eq.~3! as just this form will be used in furthe
calculations:

dW

dv
5

dW(F)

dv
1

dW(C)

dv
,

dW(C,F)

dv
5

1

2
~A(C,F)1B(C,F)

•j!,

~11!

where the superscriptsC andF refer, respectively, to the CB
and PFC contributions. For the latter~plane field contribu-
tion!, we have

~A(F),B(F)!5
a

p2g2E0

`ds

s E0

p

dx~a(F),b(F)!;b1
(F)5b2

(F)50,

b3
(F)5~D2

22D1
2!sinC,

a(F)5$@w~«!21#D1
22D2

2%sinC1
cos~sd!2cosC

sd
,

C5sd~11D3!,

D152g (
n51

`

vn sin~ns!sin~nx!,

D252g (
n51

`

vng~ns!cos~nx!,

D352g2 (
n,m51

`

vnvm$@ f „~n1m!s…2 f ~ns! f ~ms!#

3cos@~n1m!x#1~m→2m!%,

d5
m2u

«v0
, f ~x!5

sinx

x
, g~x!5cosx2 f ~x!, ~12!
04290
nwhere the integration overx5v0t corresponds to time aver
aging and the variables5v0t/2 is introduced instead oft.
When the influence of the plane field on the Compton sc
tering is neglected„the factor exp@2iltrslow(t,t)# is omitted
in the term}Ci j

(2) in Eq. ~7!…, the integrals overt are easily
taken and we obtain for the CB contribution

~A(C),B(C)!5
a

g2(q'

; UG~q'!q'

mqi
U2

~a(C),b(C)!u~12b!;

b5
u

s~qi!
[

vm2

2««8uqiu
,

a(C)5 1
4 w~«!2b~12b!,

b1
(C)5b2n1n2 , b2

(C)50, b3
(C)5 1

2 b2~n1
22n2

2!, ~13!

whereu(12b) is the step function:u(x)51 for x.0 and
u(x)50 for x,0, n is defined in Eq.~8!.

Using formulas obtained, we present now some examp
illustrating the characteristics of a radiation. Let us start w
the PFC given by Eq.~12!. In Fig. 2, the radiation intensity
~a! and polarization~b! are plotted as functions ofx5v/«.
Remember that the quantitiesvn andv0 in Eq. ~12! depend
on the integral of motion,«' and so does the radiation. From
Fig. 2, the radiation at channeling (z5«' /Upl,0) is softer
and more intensive than that at above-barrier motionz
.0). At givenz, the intensity is smaller for a weaker plan
~cf. curves for diamond!. As expected, the polarization a
such one-dimensional motion is directed perpendicular to
plane (h3,0,h150). The polarization degree is rather hig
and does not reveal a sharp dependence onx.

In Fig. 3, the radiation intensity, probability, and polariz
tion are shown for the angles of incidenceq055 mrad and
f050.036 whenc5180 mrad. For the~110! plane of Si at
«5180 GeV, the channeling angle is ofupl.15 mrad, i.e.,
c@upl (z.140). Then, as explained above, the first~PFC!
term in Eq.~11! has the same form as the second one and
are dealing with pure CB. This term is dominant when, as
our example,f0!1. That is due to the relative smallness
1-5
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FIG. 3. ~a! Solid curves present intensityxd2Ng /dxdl and probabilityd2Ng /dxdl ~upper curve! at «5180 GeV of CB in silicon@5 mrad

off the ^001& axis and 180mrad off the (11̄0) plane#, dotted curve presents intensity for a ‘‘scalar’’ electron;~b! third component of the
Stokes vector at the same settings.
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qi
(1) from the first subset~roughlyqi

(1);qi
(2)f0). As a result,

the second term has a much smaller amplitude (qi
22 in a

partial flux of equivalent photons! and much higher photon
frequencies@b}qi

21 in Eq. ~13!#. So it can be neglected fo
f0!1 and expression~13! is reduced to a one-dimension
sum. Within this accuracy, we obtain forh3 at the maximum
of the first harmonic, i.e., atu5s,

h3~u5s!52H (
n51

` UG~nq!

n U2J Y H (
n51

`

uG~nq!u2

3F11
s2

2~11s!
2

2

n S 12
1

nD G J , ~14!

wheres52«qc/m2, q52p/dpl , anddpl is the interplanar
distance. The contribution of the first harmonic (n51) to h3

at u5s is h3
(1)52@11s2/(11s)/2#21. It is worthy to note

that h3
(1) is independent ofG(q). In our case, whens2/(1

1s)/2.0.49, it overestimates the exact value~14! by 8%.
Recollect now that, according to Ref.@10#, each equivalent
photon is completely linearly polarized along itsq' . In the
first subset, all such photons haveq' perpendicular to the
plane. Thus, the whole equivalent photon beam produced
this subset is completely linearly polarized leading to
polarization of emitted radiation perpendicular to the pla
(h3,0,h150). Actually, the second term indW/dv @see
Eq. ~11!# has not been neglected in our calculation giving
this orientation nonvanishing but extremely small value
h1.

To give a glimpse of a role of the electron spin, the inte
sity and polarization from a ‘‘scalar’’~zero-spin! electron are
presented in Fig. 3~dotted curves!. The spin terms in Eq.~2!
and subsequent formulas are proportional tow(«)22
5v2/(««8). Therefore a difference in radiation character
tics becomes observable at sufficiently large photon ener
~for x.0.3 in Fig. 3!. The peaks do not move being dete
mined, at given orientation, solely by the particle energy« .
Due to the absence of the spin terms, the radiation from
scalar electron is less intensive and, because of that, h
higher polarization. Really, the quantityB(C) in Eq. ~13! is
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independent of the particle spin, whileA(C), which is pro-
portional to the intensity, appears in the denominator of
equation defining a polarization (h5B/A). In particular, the
componenth3(u5s) for a scalar electron is given by Eq
~14! if we omit the items2/(11s)/2 in the denominator.

When both terms in Eq.~11! contribute to the radiation, a
corresponding alignment is sometimes called ‘‘strings-
strings’’ ~SOS! orientation, since at such an alignment pa
ticles traverse axes~strings! forming the plane. In this case
the emission of hard photons is described by the second
in Eq. ~11! being CB by nature. A difference of spectra an
polarizations for photons emitted by means of the sa
physical mechanism~CB! is completely due to that o
equivalent photon fluxes at different orientations. The qu
tity uqiu which determines the shape of a spectrum is in
pendent ofq2 at SOS:qi5q1q0. Then the summation ove
q1 in (q'

5(q1
(q2

@see Eq.~13!# corresponds to the splitting
of the total flux into subsets of equivalent photons having
sameqi . Remember that forx<xmax (xmax marks the first
peak position! the radiation is described within a high acc
racy by only one subset having the minimal value ofuqiu.
This value is provided byuq1umin52p/dax , wheredax is the
distance between axes forming the plane. As the quan
b3

(C) in Eq. ~13! is proportional toq1
22q2

2, only first (q2

50) term in the sum overq2 is positive for the main (uq1
u5uq1umin) subset. Whenq2 increases, the magnitude o
negative terms diminishes. Their sum, however, cancels
most perfectly the first term. This results in a small mag
tude ofh3 seen in Fig. 4. For the next (uq1u52uq1umin) sub-
set, already first two terms are positive, which leads to
positive total sum overq2. As a result, the polarization is
somewhat higher forx.xmax being parallel to the plane
(h3.0). Qualitatively, the equivalent photon beam at SO
orientation turns out to be almost unpolarized in contras
the above example of pure CB. The componenth1 vanishes
at SOS orientation. This can be easily verified if we, e.
change the sign ofq2 in the sum(q2

in Eq. ~13!.

The total~integrated overv) probabilitiesWg
tot are typi-

cally the order of magnitude larger at SOS orientation mai
due to the PFC. More precisely, we have in the above
1-6
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FIG. 4. ~a! Contribution of the CB-like term@Eq. ~11! at SOS orientation, 0.3 mrad off the^001& axis in the (11̄0) plane#. Intensities and
probabilities in diamond at«5150 GeV~solid!, and in silicon at«5180 GeV~dotted!; ~b! third component of the Stokes vector at the sa
settings.
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amples for siliconWg
tot (CB).1.2 cm21, while at SOS ori-

entation the PFC and CB-like terms give 42.9 cm21 and
2.2 cm21, respectively.

To describe a shower development, the probability
e1e2-pair production by a photon,dWe , is needed as well
Using Eqs.~3.12! and~3.25! in Ref. @1#, we obtain, first, the
expression analogous to Eq.~1! where the summation ove
positron final states and electron spin states has been
formed:

dwe5
a

~2p!2

d3p

v

«

2«8
E dt1 dt2 Le~ t1 ,t2!

3expF2 i
«

«8
~k,x12x2!G . ~15!

Here p and « are the electron momentum and energy,«8
5v2«, and

Le~ t1 ,t2!5~e* •v1!~e•v2!@w~«!22#

1@~e* •e!~v1•v2211g22!

2~e* •v2!~e•v1!#@w~«!12#. ~16!

Note that the quantitiesLe(t1 ,t2) in Eq. ~16! andL(t1 ,t2)
in Eq. ~2! turn into each other if we change@w(«)
22#↔@w(«)12#. Further consideration of the pair produ
tion may be performed using the same approach and app
mations as those applied above to the photon emission p
lem. Here we give explicitly only a perturbation~CB-like!
term in the expression fordWe in the form of Eq.~11!:

dWe

d«
5

dWe
(F)

d«
1

dWe
(C)

d«
,

dWe
(C,F)

d«
5Ae

(C,F)1Be
(C,F)

•h,

~17!

whereh describes the photon polarization, and
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~Ae
(C) ,Be

(C)!5
a

v2 (
q'

UG~q'!q'

qi
U2

~ae
(C) ,be

(C)!u~12b!;

b5
vm2

2««8uqiu
,

ae
(C)5 1

4 w~«!1b~12b!, be1
(C)52b2n1n2 ,

be2
(C)50, be3

(C)52 1
2 b2~n1

22n2
2!. ~18!

Note that this result may be obtained from Eq.~13! by
means of the substitution mentioned above and evid
change in the common multiplier. The plane field contrib
tion to the pair-production probability@first term in Eq.~17!#
was investigated in Ref.@11# where the CFA was used
Though the applicability of this approximation is questio
able~see discussion above!, we used the results of Ref.@11#
as a rough estimate and found that PFC to the p
production probability should be neglected under our con
tions.

III. RADIATION FROM THICK CRYSTALS

As long as the crystal thicknessL satisfies the condition
Ng;Wg

totL!1 ~thin crystal!, the radiation emitted is de
scribed by formulas obtained in the preceding section.
such thicknesses, the relative energy lossD«/«0 is even
smaller than the number of emitted photons,Ng . Since the
total probabilityWg

tot depends on the initial electron energ
«0 and crystal orientation, the same sample may prove to
thin or thick (Ng;1) depending on settings. At the notice
able (Ng*1) yield, an alteration of the particle energy ca
no longer be neglected, several photons are emitted and
electron-photon shower develops.

The main processes taken into account in our simula
of the e1e2g-shower development are the following~i!
emission of photons due to the coherent and incohe
mechanisms,~ii ! absorbtion of photons due to thee1e2-pair
production by both mechanisms,~iii ! multiple scattering of
1-7
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FIG. 5. Yield from 1.5-cm-thick silicon crystal at~center of beam! settings as in Figs. 3 and 4;~a! power and energy-loss spectra for SO
~1,2! and CB~3,4!; ~b! spectra~effective probabilities! for SOS~dotted! and CB~solid!.
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electrons and positrons. Many-dimensional maps of pr
abilities were created describing the photon emission
pair production depending on the energy, momentum dir
tion, and polarization. In other words, thousands of distrib
tions as those shown in Figs. 2, 3, and 4 have been obta
while a calculation of the PFC was the most arduous ta
Different mechanisms were simulated as independent o
In particular, each photon emitted by the coherent mec
nism was provided with the polarization according to E
~11! and was unpolarized when emitted incoherently. T
angular divergence of the initial electron beam was a
taken into account. The values for this divergence of 30mrad
and 50mrad used in our calculations correspond to the
perimental conditions of Refs.@6# and @5# as do also the
initial energies and angles of incidence. Note that the sa
settings were used in above examples~see Figs. 3 and 4!
illustrating instantaneous characteristics of a radiation. So
can compare the outputs from thin and thick crystals.

One must distinguish the true power spectrum of a rad
tion from that of energy losses. The latter is observed whe
detector~e.g., a calorimeter! sums up over the energies of a
photons emitted by one electron. These spectra coincid
the limit of vanishing crystal thickness when the multiplici
~a number of photons at given nonzero total energy lo!
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tends to unity. In our case, they are very different, especi
for SOS orientation@cf. curves 1 and 2 in Fig. 5~a!# when the
PFC is dominant leading to rather soft power spectrum. N
that due to the same mechanism of photon emission~PFC!,
the multiplicity is very high just for SOS orientation@cf.
curves 1 and 3 in Fig. 6~b!#. Remember that the multiplicity
increases when the lower energy boundary of photon
corded,v th , decreases. Results presented in Fig. 6~b! were
obtained atv th51 GeV. In applications, power spectra a
less interesting than the distributions in number of photo
~spectra!. Such spectra are presented in Fig. 5~b! in the form
of effective probabilities capable of direct comparison w
probabilities shown in Figs. 3 and 4. The shower spectra
significantly softer than the initial ones due to the decreas
the mean energy of charged particles with the increas
depth, and to the incoherent mechanism action. Reco
that the parameteruqiu which determines the position of har
peaks in the instantaneous spectrum depends on the cu
energy and velocity direction. The latter also changes
thick crystals mainly due to the multiple scattering. Note th
for conditions of Fig. 5, the mean-square scattering angle~at
the initial energy! is about 50mrad being larger than the
angular divergence of the initial electron beam. As a resu
smearing of peaks takes place and sharp structures are
al
FIG. 6. ~a! Polarization (h3) at settings of Fig. 5 for SOS~curve 1!, CB ~curve 3!, and for SOS from 0.05-cm-thick diamond cryst
~curve 2! at settings of Fig. 1 in Ref.@5# («05150 GeV, q050.3 mrad, ucu<10 mrad); ~b! multiplicities at these conditions forv th

51 GeV.
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FIG. 7. At settings of Fig. 6;~a! probability and energy-loss enhancements in silicon for SOS~curves 1,2! and CB~curves 3,4!; ~b! same
for SOS in diamond.
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seen in shower spectra. All the factors mentioned affect
shape of polarization distributions shown in Fig. 6~a!. For
CB @see curve 3 in Fig. 6~a!#, this distribution is maximal at
v.100 GeV. The shift left@by ;11 GeV as compared to
Fig. 3~b!# is due to the energy and angular spread mentio
above, while a diminution of the magnitude is mainly caus
by the incoherent~unpolarized photons! contribution. For
evident reasons, such changes are marked feebly for
tively thin diamond@see curve 2 in Fig. 6~a!# crystal.

Let us define an enhancement as bin-by-bin ratio of
yields from oriented to disoriented crystals. In the latter ca
only incoherent~amorphouslike! mechanism is acting, whe
dNg

(am)/dx;Q(x)/x with Q(x) being rather smooth function
of x. Therefore, the ratio of numbers of photons~probability
enhancement! is very similar in form to a power spectrum
while the energy-loss enhancement bears a strong re
blance to the energy-loss spectrum shape@cf. corresponding
curves in Figs. 5~a! and 7~a!#. Note that an enhancemen
increases with decreasing thicknessL, other things being
equal. This explains, along with a larger bare~at L→0)
probability enhancement for diamond, the order of mag
tude difference in these quantities for silicon and diamo
crystals@cf. curves 1 in Figs. 7~a! and 7~b!#.

Already from Figs. 5 and 6, the SOS orientation looks le
favorable than CB for the hard-photon production. As e
plained above, this is due to the PFC, which in itself is ch
acterized by relatively soft spectra with large intensities a
total probabilities. Thus the CB-like contribution providing
hard-photon emission is suppressed at SOS, in particular,
to the energy loss via competing mechanisms. However,
thickness in above examples was chosen to optimize
yield of CB atv;100 GeV being not optimal for SOS. Ad
ditionally, the positions of peaks~cf. Figs. 3 and 4! in the
initial spectra were different for two orientations.

Let us now compare the yield from a diamond crystal
«05250 GeV for three different orientations characteriz
by the same peak position in instantaneous spectra,xmax
50.75. Those are two SOS orientations@325 mrad off the
^110& axis in the~001! plane and 180mrad off the ^001&
axis in the (11̄0) plane# and CB@5 mrad off the^001& axis
and 160mrad off the (11̄0) plane#. From Fig. 2, the weake
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~001! plane is preferable to the stronger (110̄) plane for the
purpose of hard-photon production. Additionally, strong
^110& axes are involved in the first of the two SOS orien
tions increasing the CB-like contribution. As a result, t
hard-photon (x.0.5) yield turned out to be higher for thi
orientation at any crystal thickness. For example, this is
times as large in the regionx;0.6–0.75 atL50.2 cm. Just
this orientation is compared to pure CB in Fig. 8. For pu
CB, a local maximum in the shower spectra situated ax
50.69 is seen even at largerL than those presented in Fig. 8
At SOS, such a maximum~at x50.71) is feebly marked
already atL50.04 cm, so that the spectra are monotonica
decreasing for largerL. An increase of the yield atx50.71
continues up toL50.3 cm, however, the yield at this thick
ness is high by 3% only than atL50.2 cm. Thus a satura
tion occurs in the hard part of the SOS spectrum at thi
nessesL;0.2 cm. In Fig. 8, the thicknesses for C
orientation are chosen to provide almost the same amoun
hard photons as at SOS. They are noticeably smaller than
saturation thickness for CB spectra, so that the hard-pho

FIG. 8. Number of photons per binDx50.02 in a diamond
crystal at«05250 GeV for CB @5 mrad off the^001& axis and

160 mrad off the (11̄0) plane# at L50.1 cm ~curve 1! and L
50.5 cm ~curve 2!; for SOS @325 mrad off the ^110& axis in the
~001! plane# at L50.04 cm~curve 3! and L50.2 cm ~curve 4!; x
5v/«0.
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V. M. STRAKHOVENKO PHYSICAL REVIEW A 68, 042901 ~2003!
yield of CB may be further increased. Even at equal yield
hard photons, CB spectra are preferable in applications b
on the whole much harder than SOS spectra~cf. curves 1,3
and 2,4 in Fig. 8!, and having a polarization~about 40% near
xmax). Numerous relatively soft photons may cause rat
severe background conditions, producing, e.g.,e1e2 pairs or
hadrons directly in a radiator.

In conclusion, we hope that explicit formulas presen
along with a qualitative analysis performed allow anyone
estimate the radiation characteristics at any orientation wh
polarized photons may be obtained from unpolarized e
trons or positrons penetrating through single crystals.
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APPENDIX

Let x be the coordinate perpendicular to some system
crystal planes with the interplanar distancedpl . Then the
periodic plane potential for electrons reads

Ue~x!52 (
n52`

`

G~nq!exp~ ipny!, q5
2p

dpl
, y5

2x

dpl
.

~A1!

As the direct use of this potential is impossible in analyti
calculations, several approximate forms~see Chaps. 9 and 1
in Ref. @1#! were suggested. Being not satisfied with pre
ously used forms, we propose here the one which provid
precise fit for any crystal plane potential and very sim
expressions for the velocity Fourier transforms. For 0<y
<1, it reads

Ue~y!52Upl@u~y12y!~12a1y2!1u~y2y1!u~y22y!

3~a2y21by1c!1u~y2y2!a3~12y!2#, ~A2!

whereu(x) was defined in Eq.~13! being the step function
andUpl is the potential-well depth. From Eq.~A1!, we have
Upl5(n52`

` G(nq). The origin is set to the point where th
potential is minimal@Ue(0)52Upl#, i.e., just at the plane
Beyond the segmentyP@0,1#, the values ofUe(y) may be
obtained from Eq.~A2! using evident symmetry and period
icity conditions. For positrons, we also choose the origin

TABLE I. Potential-well depthsUpl (eV), interplanar distances
dpl (Å), and parameters of fit~A2! for some crystal planes.

Crystal ~plane! Upl dpl y1 a1 a2

Diamond~110! 23.54 1.261 0.109 10.57 1.994
Diamond~001! 12.06 0.892 0.152 7.16 1.623
Silicon ~110! 21.27 1.920 0.100 13.45 2.750
Silicon ~001! 11.73 1.358 0.140 8.63 2.018
Copper~110! 34.14 1.278 0.161 7.00 1.660
Iron ~110! 68.88 2.027 0.084 17.38 3.104
Tungsten~110! 132.69 2.238 0.054 34.90 5.656
04290
f
ng

r

d
o
re
c-

.

f

l

-
a

t

the point where the corresponding potentialUp(y) is mini-
mal @Up(0)50#, i.e., in the middle between two neighbo
ing planes. So, for 0<y<1, we haveUp(y)52Ue(12y)
with Ue(y) defined in Eq.~A2!. Note that only three of
seven fitting parametersai , yi , b, and c in Eq. ~A2! are
independent. Using continuity conditions of the potential a
corresponding electric field at pointsy1 , y2, we can, for
example, express the remaining parameters viay1 , a1, and
a2:

a35
a22y1

2a1~a11a2!

12a11~12y1!2~a11a2!
,

y25
y1~12y1!~a11a2!21

a22y1~a11a2!
,

b522y1~a11a2!, c511y1
2~a11a2!. ~A3!

Independent fitting parameters along withUpl and dpl are
listed in Table I for some crystal planes.

The equation of one-dimensional motion in the poten
U(y) is

ẏ56kAz2U~y!/Upl, k52upl /dpl , upl5A2Upl /«,

~A4!

wherez5«' /Upl5U(y)/Upl1( ẏ/k)2 is the integral of mo-
tion ~transverse energy in units ofUpl). Remember now tha
the integration over time in formulas describing a radiati
~see Sec. I! is performed at fixed value ofz when, by means
of a time shift, any initial conditions may be reduced to t
standard onex(0)50 providing vx(2t)5vx(t). Then we
havevn5v2n5vn* in the velocity Fourier series

vx~ t !5 (
n52`

`

vn exp~ inv0t !,

wherev052p/T is the frequency of motion andT being its
period. Finally,

vn5
2

TE0

T/2

dt vx~ t !cos~nv0t !. ~A5!

There is an additional symmetry,vx(t6T/2)52vx(t), for
channeled particles when Eq.~A5! passes into

vn
ch5sinS np

2 D 4

TE0

T/4

dt vx~ t !sin~nv0t !. ~A6!

From this equation, even harmonics vanish at channeling~at
21<z<0 for electrons and at 0<z<1 for positrons!. Let
us define a quantityṽn which is related tovn by vn

5 ṽnupl /g(z) where g(z)5kT/4 at channeling andg(z)
5kT/2 at over-barrier motion. Solving Eq.~A4! and taking
elementary integrals in Eqs.~A5! and ~A6!, we obtain for
electrons
1-10
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ṽn
(e)5u~z1e2z!

p

4
Az11

a1
~dn,11dn,21!1

1

Qe
21a2

H u~z2z1e!
a11a2

Qe
22a1

@Az2z1eQe sinC1e2a1y1cosC1e#

1u~z2z2e!
a32a2

Qe
21a3

@Az2z2eQe sinC2e2a3~12y2!cosC2e#J , ~A7!

wherez1e5Ue(y1)/Upl5a1y1
221, z2e5Ue(y2)/Upl52a3(12y2)2, 21,z1e,z2e,0, and

ge~z!5u~z1e2z!
p

2Aa1

1u~z2z1e!F 1

Aa1

arcsinSA11z1e

11z D 1 lnS a1y11Aa2~z2z1e!

Aua2~z1c!2b2/4u
D u~z2e2z!

Aa2
G

1u~z2z2e!F 1

Aa2

lnS a1y11Aa2~z2z1e!

a3~12y2!1Aa2~z2z2e!
D 1

1

Aa3

lnS ~12y2!Aa31Az2z2e

Auzu
D G ,

C1e5
Qe

Aa1

arcsinSA11z1e

11z D , ~A8!

C2e5QeFge~z!2
1

Aa3

lnS ~12y2!Aa31Az2z2e

Auzu
D G ,

Qe5
pn

2ge~z!
@11u~z!#[

nv0
(e)

k
.

Analogously, we find for positrons

ṽn
(p)5u~z1p2z!

p

4
A z

a3
~dn,11dn,21!1

1

Qp
22a2

H u~z2z1p!
a32a2

Qp
22a3

@Az2z1pQp sinC1p2a3~12y2!cosC1p#

1u~z2z2p!
a11a2

Qp
21a1

@Az2z2pQp sinC2p2a1y1 cosC2p#J , ~A9!

wherez1p52z2e , z2p52z1e , 0,z1p,z2p,1, and

gp~z!5u~z1p2z!
p

2Aa3

1u~z2z1p!F 1

Aa3

arcsinSAz1p

z D 1arccosS a3~12y2!

Aa2~z2c!1b2/4
D u~z2p2z!

Aa2
G1u~z2z2p!

3F 1

Aa2

arctanS a1y1Aa2~z2z1p!2a3~12y2!Aa2~z2z2p!

a1a3y1~12y2!1a2A~z2z1p!~z2z2p!
D 1

1

Aa1

lnS y1Aa11Az2z2p

Au12zu
D G ,

C1p5
Qp

Aa3

arcsinSAz1p

z D , C2p5QpFgp~z!2
1

Aa1

lnS y1Aa11Az2z2p

Au12zu
D G ,

Qp5
pn

2gp~z!
@11u~z21!#[

nv0
(p)

k
. ~A10!

As expected, differences in electron and positron motions diminish whenz ~transverse energy! increases. We obtain from
above formulas forz@1 @high above the potential barrier whenz.(c/upl)

2 wherec is the angle of a particle velocity with
respect to the plane# ge.gp.1/Az and thereforev0

(e).v0
(p).pkAz.2pc/dpl[qc. From Eq.~A7! we find for z@1

ṽn
(e).1/~pn!3@~a11a2!sin~pny1!1~a32a2!sin~pny2!#

52
1

2zUpl
E

0

1

dy cos~pny!Ue~y!.
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So the velocity Fourier transform is expressed forz@1 via Fourier coefficients of a potential. This happens when
rectilinear trajectory approximation is valid. If we substitute the original~periodic! plane potential forUe(y) in this integral,

ṽn
(e) takes the formṽn

(e).G(nq)/(2zUpl). Then the quantitygvn appearing in Eq.~10! readsgvn.G(nq)/(mc). At z@1,
the velocity Fourier transform for positrons differs from that for electrons by the factor2cos(pn), which does not lead to som
changes in Eq.~10! as onlyvn

2 enters into this formula.
ta
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