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Emission of polarized photons from unpolarized electrons moving in crystals
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Radiation emitted by unpolarized high-energy electrons penetrating crystals may be linearly polarized. This
occurs when the particle velocity makes an angle with respect to some major crystal axis that is appreciably
larger than the axial-channeling angle. For such an orientation, a complete description of spectral and polar-
ization characteristics of the radiation is derived. At planar channeling, a nonperturbative contribution to the
probability of the process appears to be caused by the plane field, and we must solve exactly a one-dimensional
mechanical problem. For that, the approximate form of the actual plane potential is suggested which provides
a precise fit for any crystal plane and an analytical solution to the motion problem. In a practical case, we must
consider electron-photon showers developing in sufficiently thick crystals. For the first time, to our knowledge,
this development is described taking into account the polarization of photons. We discuss qualitative features
of the phenomenon, present results of numerical calculations for thin and thick crystals, and evaluate the
possibility of the use of differently oriented crystals in a polarized hard-photon source.
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[. INTRODUCTION generally, cannot be done analytically. In crystals, as shown
in Ref. [3], this problem becomes essentially one-
Specific radiation is emitted by relativistic electrons pass-dimensional for the off-axis orientations. More precisely, the
ing through single crystals. This phenomenon was activelyngled, between the electron velocity and the nearest major
studied theoretically and experimentally during past few decrystal axis(incidence angle should satisfy the condition
cades(see, e.g., Ref[1] and references cited thergint  0sp="Uo<<1. Itis this region of incidence angles only, which
turned out that the shape of the spectrum and the intensity d¢$ considered below, and a finite set of the strongest planes
this radiation depend on the electron energy and crystal oricontaining the axis is important in it. Some of these planes
entation, emitted photons being polarized even for unpolarare schematically shown in Fig. 1 along with adjacent angu-
ized incident electrons. In general, these properties allow th&r domains, where the influence of each plane on motion
development of tunable sources of polarized high-energghould be taken into account exactly. From Fig. 1, the mean-
photons, which may have various applications. In particularing of the characteristic anglé, is that different domains
a diamond radiator is proposed for a new program of polar-
ized photon experiments at SLAC that will study novel as- /
pects of nuclei and nucleons usidg¥ (E160 and open 0yA J}/
charm (E161) photoproduction. In the present paper, elec-
trons are supposed to be unpolarized, then only linear polar- p
ization may be obtained using crystals. Our consideration 1l
starts from the well-known description of QED processes in
external fields obtained by means of the so-called quasiclas-
sical operator metho@COM, see, e.g., Refl]). Using this A |
method(see Ref[2] for the latest formulationand the ap- Q) L
proach developed in Reff3], we focus on the photon polar-
ization details and crystal thickness effects. General formulas
are essentially simplified and, additionally, a more adequate
form of the planar potential is introduced to facilitate calcu-
lations. The results obtained allow one to determine the op-
timal crystal type, thickness, and orientation providing nec-
essary characteristics of a polarized photon source for the
specific application. g ;
It is important for our consideration that the probabilities - T ¥ >
of QED processes taking proper account of quantum- 6, =0 0.=0 Oox
mechanical recoil effects are expressed within QCOM by 0T U= 0= Ve
way of classical trajectories of charged particles. This state- g, 1. Characteristic angular regions around (6@l axis (z
ment is correct for a wide class of external fields satisfyindaxis on the diagraiof diamond at electron energy of 150 GeV,
some conditions specified in Ref2]. The crystal electric  when g,,~1.1x10"* and 6,,=3.3x 10"5. Three strongest planes
field, which is responsible for the coherent processes, meetgick solid lines are shown along with domaingblank areas
these conditions as well. So, to calculate the probability, weyounded by dashed linewhere the one-dimensional motion prob-
must solve a two-dimensional mechanical problem, whichjem should be solved exactly.
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do not overlap fordy=s,. The magnitude of the angh,  where a=1/137, k*=(w,k) is the photon momentunxy’,
depends on the electron energy and the axis chosen, beirﬁx#(tlyz), x*(t)=[t,x(t)], e'=¢— o, ¢ is the electron en-
appreciably larger than the characteristic angle for axiakrgy, and

channeling,d,,. According to Ref[3], the transverséwith

respect to the axjsvelocity of an electron reads as=v,. L(ty,t)=(€" -vy)(e-vy)[e(e)+2]+[(e"-e)(v;-v,
+vper. Here the ternu,, . represents the exact solution for 72
the transverse velocity in the field of the only one plane of —1l+y ) — (e vy)(evy)]le(e)—2]. (2

the set. The ternp ¢, gives the contribution of other planes, ) ) )
which can be taken into account using a perturbation theorylere vy ,=v(t; ) is the electron velocity on the classical
and, additionally, the rectilinear trajectory approximation.trajectoryx(t), y=e/m, mis the electron mass, ang(e)
The componeni ., is present when the velocity belongs to =e/e’+¢'/e. If we setp(e)=2 (w=0) in the expression
one of the domains mentioned abadimank areas in Fig.)1  for L(t;,t,), formula(1) will describe the radiation from the
being almost aligned with one of the planes. It disappearscalar(zero-spin particle(see, e.qg., part 9 in Ref7] or [1]).
when the velocity of a particle forms sufficiently large anglesThis substitution rule holds for all subsequent formulas in
with each plane of the séhatched areas in Fig.).lln this  this section.
case, the perturbation theory in the whole crystal potential is Remember that the vectoesin Eq. (2) correspond to the
applicable being the essence of the so-called coherent bremso|arization which would be measured by some detector and,
tsrtarlﬁzyer:g(eci)ott?oeﬁrgf(saee’aert.i%I,eRig[.t‘\l/\]/z). Ictjilrigi?értg?tbtgteth thereby, have nothing to do with the polarization of emitted
component which needspthe exact calculation is one dimethOtons-' The Iaiter If described .by the magii in the
ontraction dw,=e;e dw,;. We introduce the vecto&

sional. To find the latter, We propose th.e approximat_e for.m 0 |&=1), which describes the analyzing ability of a detector,
g1ne actual planar potential which prowdes the precise fit forpy eiel = (1+ & 0),/2, whereo are the Pauli matrices. The
y crystal plane and allows one to find an analytic eXpres. L dwe: can be presented in the same fordw —(A
sion for the trajectory. That is done in the Appendix where i P ki
the explicit form of the velocity Fourier transform is also +B- 0)i/2. Then we have
obtained. 1 A

In Sec. Il, general expressions are derived giving the in- dw,==(A+B-&§)==(1+ 5§
stantaneougprobabilities per unit time or lengttcharacter- 72 2
istics of the radiation. Then they are analyzed and simplified.

We discuss the qualitative features of the phenomenon and B .

present results of numerical calculations for thin crystals. It 7= A A=dwyy+dwy,,

turns out that, for the two types of the azimuthal orientation

mentioned above, not only spectra but also polarization dis- Bi=dwy,+dw,,, Bo=i(dw,—dwyy),
tributions are utterly different. In a practical use, sufficiently

thick crystals are needed to get a noticeable yield. In this Bs=dwy;— dws,. 3)
case, we cannot neglect the multiple photon emission, their

absorption due to the”e™ -pair production, and the radia-  |n this equation, the Stokes vector of the radiatign,is

tiv_e energy loss of charged' particles. In other words, forgefined. The quantitp gives the value oflw,, summed up
thick crystals, we must consider an electromagnetic showegyer polarizations.
Such a consideration is performed in Sec. Ill, using the for-  \e assume further that the angular divergence of the elec-
mulas obtained in Sec. Il along with those describing theron peam is small enough. Then the same is true for the
e’e" -pair production by polarized photons. So we describgesylting photon beam provided that electron energy is suf-
the shower development taking into account the polarlzatlomicienﬂy large €>m), as the emission angle of a photon
of photons for both basic QED processes involved. Someyith respect to the particle velocitys typically of the order
results of Monte-Carlo simulations are presented for settinggs y~1<1. In this case, we can choose some agisiis)
used in NA43(see Ref[5]) and NAS9(see, e.g., Refl6])  gych that the momenta of all charged particles and photons
experiments at CERN. make small angle$¥,, with respect to this axisd,<1. Let
II. RADIATION AT FIXED PARTICLE ENERGY % tﬂzngifstgﬁozzwpsgﬁg ?;‘l:triloirsbltrary veadransverse
Let us start with the well-known formulésee, e.g., Eq. P
(16.7 in Ref.[1]) which describes spectral, angular, and po- v,=~1—3(y “+v7), e,=—(k -e)/k,~(n.-e),
larization distributions of photons emitted by unpolarized

electrons(positrons at given motion: n~=1-3n’, n=Ko,
dw. = a d_Ski dt, dt, L(ts.t,) we can remove components of all the vectors from EQ).
WV_(4W)2 0 g 10t Lt 1 As a result, we have
& aodod®n, & )
xXexpg i —(K,X;—X5) |, (1) dwy=—2—f dt; dt, L(t,,to)exp(—iD),
g’ (4r) g’
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we (t2 5 5
D=——[ dt{y “+[n —v, ()]},
28 ty

L(ty,tp)=(€ ,vy, —ny)(e v —n)[e(e)+2]
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Hereq are discrete reciprocal lattice vecto@(q) are coef-
ficients in the Fourier series describing the crystal potential

—[(el v —n)(e v —ny) [see Chap. 9 of Ref1] for the explicit form ofq andG(q)],
andq;=(q, -v). The tilde in the expression fav(s) means
+3(ef-e) (v —v1)?][e(e)=2]. (4  that the sum does not contaip | e, which just form the
plane potential. The Doyle-Turner approximation of the
No restrictive conditiongsuch as - €)=0] are imposed on atomic potentia[8] is used in the present paper to obtain the
the vectorse, . This allows one, first, to utilize any fixed coefficientsG(q).

basis for the description of the photon polarization regardless

In principle, using Eq(6), one can perform the integra-

of n. In what follows, we use the Cartesian basig, g ,€,), tion overt and 7 straight in Eq.(5). However, as we have
wheree, is directed along the neareghaking the smallest already obtained the quantity(s) by means of some pertur-
angle with respect to the particle velogityajor crystal axis, bation procedure, it is more convenient, consequently, to
& is within some crystal plane containing this axis, apds ~ continue in the same way. So, as in R&f, we expand the
perpendicular to this plane. Second, the vecirscan be  exponential function in Eq(5) in w(s), keeping quadratic
considered constant when integrating in E4).over photon  terms, and obtain

emission angléoverd?n,). Performing this integration, we
obtain the matn)wSp describing the spectral distribution of a
radiation:

e B R

Lijz

eXp[—'M[ler(t Itk

( )
+ &2 —5—(02i91j— 92;91i) — (92191 + 92;91i), (5

Where t:(t1+t2)/2, T:tz_tl, )\=wm2/(288’), 91’2
=9g(t1), and

1 (72
g(s)=vy Ul(s)_;j dxv, (t+x)],
—1/2

1 (72
p(t,T):—j dx g?(t+Xx).
TJ—72

In further consideration we use the approach developed in
Ref.[3]. Recollect that the transverse veIOC|ty can be repre-
sented as the sune;, =v3'°"+ 02!, whereo 2! given by
Eq. (3) in Ref.[3] is characterized by relatlvely small ampli-
tudes and large frequencies. On the contrary, large ampli-
tudes and small frequencies are inherent in the term
v$"°" which corresponds to the one-dimensional motion
in the field of a plane. Its explicit form readss'®"(t)
=¢2 v, expinawgt). Here, w, is the frequency of this mo-
tion andv , is the velocity Fourier transform calculated in the
Appendix. Correspondingly, the quantity(s) in Eq. (5)
turns into the sumg(s)=1(s) +w(s), where

Sin(Nwq7/2)

|nw0t
Nwo7/2 (6

I(s)=ey; (yv,)| en@os—

Iade J
,OCT—IO

X exp{ —INT[ 1+ pgjouft, r)]}Z cP, ™

1 i where pgiou(t, )= 7172 ,dxI3(t+x) and matricesC{”
pL| = _ g2 are
6” 4[‘10(8) 2](g2 gl) +)\(7__|0)

cM=4;

'—)+ [o(e)—2](1,— ;)2

ij )\(

—lail o= 1ajl 21,

- 2
cP=> (Si5{1— () +[e(e) —2]sir¢}

a. mg

—vip[fE (O + 7DD,

C(s) 2)\2 (%)% ij: 8
ar
3y =311 10 8 sy — O [N

+q>{|5i[¢(s) 2](1,— 1y, w)sing

+ (v 1) (D + v +1v)f 1) (0)

(P( )[(llIVJ ;v f (D)

—(ly Vj—|2jVi)f(+)(§)]],

7/2 .
@:f dx v [(t+ ) [~ F(£)],
—17/2
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summation is performed i€" over the subset o, paral-

lel to ey, while in Ci(jz) the complementary subset is used. As
a result, when the particle velocity is well off all major
planes, the spectrum and polarization of a radiation are de-
scribed by the ternC{?) if we extend the summation in it
over allq, . Then it reproduces results of the so-called CB
theory. In Ref[9] [see Eqgs(4.8) and(1.5)], the correlation
of this theory was explained with the Compton scattering
(off electrong of the equivalent photons representing in a
proper reference frame the periodic crystal field.

For p(«)>1, the constant field approximatiq€FA) is
widely used(see Secs. 4, and 17 in Rgt] describing CFA.
It can be applied when the magnitude of the extermalt
uniform) field is almost constant on the particle trajectory
during the radiation formation time;. The latter is deter-
mined by the conditionV'(7;)=<1. In our case, the applica-
bility condition of CFA readsvy7:<1. As 7; depends on the
photon energyw, this condition cannot be fulfilled every-
where in the radiation spectrum. In particular, it is violated
for w=2y?wy/p(>). The power spectrum is maximum at

sinx "
f)=—— foy(x)=e""=1(x),

a
V= —7
la, |

Using Egs.(7) and (8), we obtain the expression for the
probability of a photon detection irrespective of its polariza-
tion, de;”pzdvviS-p&iij , which coincides with Eq(4) in Ref.
[3].

Let us dwell on the plane field contributid®FQO to the
radiation. This is given by the term in E¢) which is pro-
portional toC{{"). To make estimates, we should recollect
some properties of the quantipyow(t,7) Which enters into
the phase¥ (7)=N71+ pgou(t.7)]. SO, psion(t,7) is the
even, positive, and monotonically increasing functiorroft
satisfies the inequalitypsjow(t,7) <p(®)<pc=Upe/m?,
whereU, is the potential-well depth of the plane ap¢t°)
is the limiting value ofpgou(t,7) as|7|—«. Using Eq.(6),
we can easily estimate the behaviorngf,,(t,r) at large and

) §=q||7-/2.

small 7: .
u=w/(e—w)~x=y?v(t)/m. Using Eq.(9), we find atu
s ,_(P)—(py)? = x for the formation timer¢~ 2w /[ yv(t)]. Numerical es-
p(w)—nio | voal*= m2 : timates of the latter expression show that, even in this part of

the spectrum, the CFA becomes valid at rather high electron
energy. For example, it happens &t100 GeV for (110)
planes of diamond and silicon, and @10 GeV for the

. ; . _ same plane of tungsten.
where(: --) means time averagingy, anduvy arey compo Using CFA, the probabilitydw, was calculated in Ref.

nents of the momentum and acceleration respectively of ﬁlO]. We emphasize that no approximations are used in the

charged particle. Letty and ¢, be the polar and azimuthal )
anglgs ofpincidence cgunteg)gﬁ trom tﬁe axis and plane corbresent paper at the PFC calculation. However, the results of

respondingly. Then the velocity of a particle makes the anglgfofégég]rear; l{lr?gfgL:;riaslétﬁgtighneérﬂlOg_:,tilﬁaig fr:]:crrlie:hr?i-
¢ with respect to the plane, at which, gk sin J;sin ¢ or, b 9

i (3) i
as 99<1, we havey=1,singy. At channeling[ y< 0, tude of the m_terference ter@;;”, c’(:lzs) Well.as_ the mfluence of
:(ZUDI/E)UZ], we havep(=)=<p,. At above-barrier mo- the slow motion on the CB teri@;;”. This influence is due

o (g n vy (=) deresaes s bangof o 1 1 eSSl LS sl ) oot
E)lrid)(.ar of 0.1U, /my) for 4> 0y, (see, e.g., p. 430 in Ref. u=xIs(q), Wheres(qH)=28|qH|/m2 is 2 conventional ki-
nematic parameter in the Compton scattering. Remember
that the power spectrum of the latter is maximum just at the
kinematic boundaryu=s(q). So the plane field and CB
contributions to the radiation intensity are well separated for
u<l.

The parametej. is essentially the deviation of the par-
ticle velocity due to the external field action during the hard-
CHp<1)=2 [y HS{1—TA0) +[e(e)—2]sir? &} photon formation timer,~|q;|~* measured in units of the

" characteristic emission angtg,= v~ L. For given plane and

_eyieyj[f(2+)(§)+ f(2_)(§)]}, (10)  Substance, this parameter depends only on the angle of inci-

denced,, namely,u=C, /%, (mrad. Using the Tables 9.2

where {=nw,7/2, e,;= 5, . This expression has the same and 15.1 in Ref[1], we obtain for(110 planes,C, (dia-
structure asC{” [cf. Eq. (8)] since both were obtained by mond =C, (silicon) ~0.01, andC,, (tungsten ~0.06. For
means of the perturbation theory. fgr<1, Eq.(10) is valid ~ weaker planes of the same crystal, is smaller being pro-
at any value of the anglé. In the opposite case whegn, ~ Portional to the magnitude of the plane electric field. From
=1, it holds fory> 6. The latter condition provides also Fig. 1in Ref.[10], the influence of the field on the Compton
the applicability of the rectilinear trajectory approximation in scattering can be neglectedf<0.05. In turn, the interfer-
the calculation ob,, and w,. So, as we have checked using €nce term provides corrections to PFC of the ordepqf;
the explicit forms ofv, and w, (see the Appendjx for 4  =3|G(q,)q, /(qu)|2 which, by definition, is much smaller
>0, C(M andC{?) are essentially the same except that thethan unity. Assumingu<0.05, we obtain from Eq(7) a

plwor<1)=15[ yo,(t)7]?, 9)

For p()<1, we can expand the exponential function in
Eq. (7) in powers ofpgou(t, ) retaining only the linear term
(dipole approximation In this case, the slow-fast interfer-
ence termC{?) gives higher-order corrections and should be

neglected, whiIeCi(jl) after averaging over timereads
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0.0
(b)

FIG. 2. (a) IntensitiesxdzNy/dx dl at e=180 GeV for(110) plane of silicon az= —0.25 (solid), atz=1 (dash dottef] the same in
diamond at =180 GeV,z=—0.25 for(110 plane(dashegland for(001) plane(dotted. (b) Third component of the Stokes vector for these

conditions except=1; z=¢, /Uy, X=wle.

simple but still rather accurate expression for the photorwhere the integration over= wgt corresponds to time aver-

emission probability per unit lengttiime), dW, as well as

aging and the variable= wq7/2 is introduced instead of.

the spectral distribution of polarization. According to the When the influence of the plane field on the Compton scat-

analysis performed in Refg10] and[3], the accuracy of 5%
or better is expected. Let us preseW in the form intro-

tering is neglectedthe factor exp—i\7pquu(t,7)] is omitted
in the term=C{?) in Eq. (7)), the integrals over are easily

duced in Eq.(3) as just this form will be used in further taken and we obtain for the CB contribution

calculations:
F) C) C,F)
d_\N: dw/ + dw! dw/ :E(A(C,F)+B(C,F).§)
do do do '’ do 2 ’

(11)

where the superscripts andF refer, respectively, to the CB
and PFC contributions. For the lattgslane field contribu-

tion), we have

(A®),BF) = f dgs f "dx(a®),b); b =P =0,
0 0

71_272
b{")=(D3—D?)sinV,

cogsd)—cosv

aF={[¢(s)~1]D;-D3}sinW¥ + < :

V=s8(1+Ds),

[

D1=2y2 v, sin(ns)sin(nx),
n=1

Dz=2721 vag(nsjcognx),
n=

D3=272n;:1 v mi[ F((n+m)s)—f(ns)f(ms)]

xcog (n+m)x]+(m——m)},

2 sinx

5—8—, f(x)—T, g(x)=cosx—f(x), (12

o

2

Glava, (a©, by e(1-p);

(A© B(©))= 122 n

Yoa

u a)m2

Ps@)” 2ee gyl

al9=3¢(s)-B(1-B),

b9 =B?r1v,, bEI=0, bV =3B%(1E-13), (13)
where §(1— B) is the step functiong(x)=1 for x>0 and
0(x)=0 for x<0, v is defined in Eq(8).

Using formulas obtained, we present now some examples
illustrating the characteristics of a radiation. Let us start with
the PFC given by Eq12). In Fig. 2, the radiation intensity
(a) and polarizationb) are plotted as functions of= w/«¢.
Remember that the quantitieg and wg in Eq. (12) depend
on the integral of motions, and so does the radiation. From
Fig. 2, the radiation at channeling< ¢, /U, <0) is softer
and more intensive than that at above-barrier motian (
>0). At givenz, the intensity is smaller for a weaker plane
(cf. curves for diamond As expected, the polarization at
such one-dimensional motion is directed perpendicular to the
plane (73<0,7,=0). The polarization degree is rather high
and does not reveal a sharp dependencg.on

In Fig. 3, the radiation intensity, probability, and polariza-

tion are shown for the angles of incidenfg=5 mrad and

0=0.036 wheny=180 urad. For the(110 plane of Si at
£=180 GeV, the channeling angle is 6f;=15 urad, i.e.,
>0y (z=140). Then, as explained above, the filBEQ
term in Eq.(11) has the same form as the second one and we
are dealing with pure CB. This term is dominant when, as in
our examplegy<<1. That is due to the relative smallness of
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(@)

(em™)

ki

xdzNy/dde, d°N /dxdl

0.8

X X

FIG. 3. (a) Solid curves present intensiX;dZNy/dde and probabilit)dzNy/dde (upper curvegate =180 GeV of CB in silicor{5 mrad
off the (001) axis and 18Qurad off the (1D) pland, dotted curve presents intensity for a “scalar” electr@n); third component of the
Stokes vector at the same settings.

qf™) from the first subsetroughly gf"~qf* ¢). As a result,  independent of the particle spin, whif®), which is pro-
the second term has a much smaller amplituqFZ(in a portional to the intensity, appears in the denominator of the
partial flux of equivalent photonsand much higher photon equation defining a polarizatiorp& B/A). In particular, the
frequencie{,eocq”’l in Eqg. (13)]. So it can be neglected for componentzns(u=s) for a scalar electron is given by Eqg.
$o<1 and expressiofil3) is reduced to a one-dimensional (14) if we omit the items?/(1+s)/2 in the denominator.

sum. Within this accuracy, we obtain fei at the maximum When both terms in Eq11) contribute to the radiation, a
of the first harmonic, i.e., ai=s, corresponding alignment is sometimes called “strings-of-
strings” (SO9 orientation, since at such an alignment par-
“ |G(ng)|? ” 5 ticles traverse axegstring9 forming the plane. In this case,
73(U=8s)=— nzl = / nzl |G(na) the emission of hard photons is described by the second term

in Eq. (11) being CB by nature. A difference of spectra and
polarizations for photons emitted by means of the same
X ’ (14) physical mechanism(CB) is completely due to that of
equivalent photon fluxes at different orientations. The quan-
tity [qy| which determines the shape of a spectrum is inde-
pendent ofg, at SOS:q;=q,9,. Then the summation over
O1in2q =2q 3, [see Eq(13)] corresponds to the splitting
of the total flux into subsets of equivalent photons having the
sameq . Remember that foR<Xpax (Xmax Marks the first
peak position the radiation is described within a high accu-
racy by only one subset having the minimal value|gf.

L s2 2 L 1
T21+s nltTh

wheres=2eqy/m?, q=2w/d,, anddp, is the interplanar
distance. The contribution of the first harmonit<1) to 75
atu=sis 7§=—[1+s%(1+s)/2] % It is worthy to note
that " is independent of5(q). In our case, whes?/(1
+5)/2=0.49, it overestimates the exact val{ig}) by 8%.
Recollect now that, according to R¢fl0], each equivalent

hoton | letely linearly polarized along is. In th
photon is completely linearly polarized along s In the i ) o is provided byely| = 27/d,,, whered, is the

first subset, all such photons hage perpendicular to the ' b formi he bl As th .
plane. Thus, the whole equivalent photon beam produced b (sét)apce etween axes forming the plane. As the quantity
in Eq. (13) is proportional toq;—q3, only first (g,

this subset is completely linearly polarized leading to the™3 ' . 11 .
polarization of emitted radiation perpendicular to the plane=0) term in the sum oveg, is positive for the main |¢,
(75<0,7,=0). Actually, the second term idW/dw [see |=|01/min) subset. Whenqg, increases, the magnitude of
Eq. (11)] has not been neglected in our calculation giving athegative terms diminishes. Their sum, however, cancels al-

this orientation nonvanishing but extremely small value ofMost perfectly the first term. This results in a small magni-
7 tude of 5 seen in Fig. 4. For the nextd;|=2|q1|min) Sub-

To give a glimpse of a role of the electron spin, the inten-S€t, already first two terms are positive, which leads to a
sity and polarization from a “scalar(zero-spin electron are  POSitive total sum oven,. As a result, the polarization is
presented in Fig. 8dotted curves The spin terms in Eq2) ~ Somewhat higher fox>Xq,, being parallel to the plane

and subsequent formulas are proportional ¢ge)— 2 (73> 0)_. Qualitatively, the equivalent pho'Fon peam at SOS
— w?(ee'). Therefore a difference in radiation characteris-orientation turns out to be almost unpolarized in contrast to

tics becomes observable at sufficiently large photon energidg€ above example of pure CB. The compongptvanishes
(for x>0.3 in Fig. 3. The peaks do not move being deter- at SOS oneqtaﬂon. Thls can be egsny verified if we, e.g.,
mined, at given orientation, solely by the particle enesgy ~ change the sign af in the sum=,_ in Eq. (13.

Due to the absence of the spin terms, the radiation from a The total(integrated oveiw) probabilitieswtyOt are typi-
scalar electron is less intensive and, because of that, hascally the order of magnitude larger at SOS orientation mainly
higher polarization. Really, the quantiB‘®) in Eq. (13) is  due to the PFC. More precisely, we have in the above ex-
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(em™)

N_/dxdl
.

d2

xdzNY Jdxdl

FIG. 4. (a) Contribution of the CB-like terniEg. (11) at SOS orientation, 0.3 mrad off t§601) axis in the (1D) pland. Intensities and
probabilities in diamond at=150 GeV(solid), and in silicon at =180 GeV(dotted; (b) third component of the Stokes vector at the same
settings.

amples for silicoW'®" (CB)=1.2 cm %, while at SOS ori- © o) @ G(q)q.|? © O
entation the PFC and CB-like terms give 42.9 ¢mand (AL BO)=— > —q (ag”,bg”) 6(1=B);
2.2 cm'!, respectively. @A |
To describe a shower development, the probability of 5
e* e -pair production by a photordW,, is needed as well. _om
Using Egs.(3.12 and(3.25 in Ref.[1], we obtain, first, the B= 288/|qH| '
expression analogous to E@.) where the summation over
Poc:’f]’l]tg()jr'] final states and electron spin states has been per- aéc)=%qo(8)+,8(1—,8), bgf)= —,327/17/2,
" beg’=0,  beg)=—3p%ri-p). (18)
o P e
dWe:(Zﬂ)z Tgf dt; dtp Le(ts, o) Note that this result may be obtained from E#3) by

means of the substitution mentioned above and evident

change in the common multiplier. The plane field contribu-
: (15 tion to the pair-production probabilifyfirst term in Eq.(17)]

was investigated in Refl11] where the CFA was used.

Though the applicability of this approximation is question-
Here p and ¢ are the electron momentum and energy, able(see discussion aboyeve used the results of Rfl1]

xexp{ —i i,(k,xl—xz)
&

=w—eg, and as a rough estimate and found that PFC to the pair-
production probability should be neglected under our condi-
Lty t)= (€ v1) (e vy) @) 2] tions.
+[(e"-e)(vy v~ 14+ y7?) IIl. RADIATION FROM THICK CRYSTALS
— (e vy)(evy)]le(e)+2]. (16) As long as the crystal thicknedssatisfies the condition

N,~Wy'L<1 (thin crysta), the radiation emitted is de-
Note that the quantitiels,(t,,t,) in Eq.(16) andL(ty,t,) scribed by formulas obtained in the preceding section. For
in Eg. (2) turn into each other if we changge(e) such thicknesses, the relative energy ldss/e, is even
—2]<[¢(&)+2]. Further consideration of the pair produc- sSmaller than the number of emitted photohs,. Since the
tion may be performed using the same approach and approxietal probabilitthyOt depends on the initial electron energy
mations as those applied above to the photon emission prolsy and crystal orientation, the same sample may prove to be
lem. Here we give explicitly only a perturbatiq€B-like)  thin or thick (N,~1) depending on settings. At the notice-

term in the expression fafW, in the form of Eq.(11): able N, =1) yield, an alteration of the particle energy can
no longer be neglected, several photons are emitted and the
dW.  dWF WO  gweh electron-photon shower develops.
f—__° 4 ¢ e —ACRLBER. 4 The main processes taken into account in our simulation
de de de de ¢ ¢ of the e"e” y-shower development are the following)

17 emission of photons due to the coherent and incoherent
mechanismsjji) absorbtion of photons due to tle€ e~ -pair
where 5 describes the photon polarization, and production by both mechanism&ii) multiple scattering of
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(b)
— 100 p
€
(s
< L
T x
z =
-
k] pd
= ‘_'C
—
0 40 - 80 120 160 0 40 80 120 160
® or energy loss (GeV) o (GeV)

FIG. 5. Yield from 1.5-cm-thick silicon crystal &enter of beamsettings as in Figs. 3 and @) power and energy-loss spectra for SOS
(1,2 and CB(3,4); (b) spectra(effective probabilities for SOS(dotted and CB(solid).

electrons and positrons. Many-dimensional maps of probtends to unity. In our case, they are very different, especially
abilities were created describing the photon emission anébr SOS orientatioificf. curves 1 and 2 in Fig.(8) ] when the
pair production depending on the energy, momentum direcPFC is dominant leading to rather soft power spectrum. Note
tion, and polarization. In other words, thousands of distribu-that due to the same mechanism of photon emis&rit0),
tions as those shown in Figs. 2, 3, and 4 have been obtaingde multiplicity is very high just for SOS orientatiofcf.
while a calculation of the PFC was the most arduous taskcurves 1 and 3 in Fig.(6)]. Remember that the multiplicity
Different mechanisms were simulated as independent onescreases when the lower energy boundary of photon re-
In particular, each photon emitted by the coherent mechacorded,w,,, decreases. Results presented in Filp) Gvere
nism was provided with the polarization according to Eq.obtained atw;,=1 GeV. In applications, power spectra are
(1)) and was unpolarized when emitted incoherently. Thdess interesting than the distributions in number of photons
angular divergence of the initial electron beam was alsdspectra. Such spectra are presented in Figh)5n the form
taken into account. The values for this divergence o38d  of effective probabilities capable of direct comparison with
and 50urad used in our calculations correspond to the ex{probabilities shown in Figs. 3 and 4. The shower spectra are
perimental conditions of Ref§6] and [5] as do also the significantly softer than the initial ones due to the decrease of
initial energies and angles of incidence. Note that the samthe mean energy of charged particles with the increasing
settings were used in above examplese Figs. 3 and)4 depth, and to the incoherent mechanism action. Recollect
illustrating instantaneous characteristics of a radiation. So wehat the parametéq| which determines the position of hard
can compare the outputs from thin and thick crystals. peaks in the instantaneous spectrum depends on the current
One must distinguish the true power spectrum of a radiaenergy and velocity direction. The latter also changes in
tion from that of energy losses. The latter is observed when thick crystals mainly due to the multiple scattering. Note that
detector(e.g., a calorimetersums up over the energies of all for conditions of Fig. 5, the mean-square scattering atagle
photons emitted by one electron. These spectra coincide ithe initial energy is about 50urad being larger than the
the limit of vanishing crystal thickness when the multiplicity angular divergence of the initial electron beam. As a result, a
(a number of photons at given nonzero total energy)losssmearing of peaks takes place and sharp structures are not

12

(b) 1

0.0

@ et TN

-
o

o«

Ny

multiplicity

0.6 ot o

0 40 80 120 160 0 40 80 120 160
o (GeV) energy loss {(GeV)

FIG. 6. (a) Polarization ¢3) at settings of Fig. 5 for SO&urve 1, CB (curve 3, and for SOS from 0.05-cm-thick diamond crystal
(curve 2 at settings of Fig. 1 in Refl5] (g,=150 GeV, ¥,=0.3 mrad,|¢|=<10 urad); (b) multiplicities at these conditions fos,,

=1 GeV.
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FIG. 7. At settings of Fig. 6(a) probability and energy-loss enhancements in silicon for $@8es 1,2 and CB(curves 3,4; (b) same
for SOS in diamond.

seen in shower spectra. All the factors mentioned affect thegog) plane is preferable to the stronger_((l)lplane for the
shape of polarization distributions shown in Figa)6 For  purpose of hard-photon production. Additionally, stronger
CB [see curve 3 in Fig. @], this distribution is maximal at (110) axes are involved in the first of the two SOS orienta-
w=100 GeV. The shift lef{by ~11 GeV as compared to tions increasing the CB-like contribution. As a result, the
Fig. 3(b)] is due to the energy and angular spread mentionetiard-photon x>0.5) yield turned out to be higher for this
above, while a diminution of the magnitude is mainly causedrientation at any crystal thickness. For example, this is 1.5
by the incoherentunpolarized photonscontribution. For times as large in the region~0.6-0.75 aL.=0.2 cm. Just
evident reasons, such changes are marked feebly for rel#his orientation is compared to pure CB in Fig. 8. For pure
tively thin diamond[see curve 2 in Fig. @] crystal. CB, a local maximum in the shower spectra situated at
Let us define an enhancement as bin-by-bin ratio of the=0.69 is seen even at largeithan those presented in Fig. 8.
yields from oriented to disoriented crystals. In the latter caseAt SOS, such a maximuntat x=0.71) is feebly marked
only incoheren{amorphouslike mechanism is acting, when already at.=0.04 cm, so that the spectra are monotonically
dN(yam)/dx~Q(x)/x with Q(x) being rather smooth function decreasing for largek. An increase of the yield at=0.71
of x. Therefore, the ratio of numbers of photapsobability  continues up td.=0.3 cm, however, the yield at this thick-
enhancemeintis very similar in form to a power spectrum ness is high by 3% only than &t=0.2 cm. Thus a satura-
while the energy-loss enhancement bears a strong resertien occurs in the hard part of the SOS spectrum at thick-
blance to the energy-loss spectrum shpgfecorresponding nessesL~0.2 cm. In Fig. 8, the thicknesses for CB
curves in Figs. &) and 7a)]. Note that an enhancement orientation are chosen to provide almost the same amount of
increases with decreasing thicknéss other things being hard photons as at SOS. They are noticeably smaller than the
equal. This explains, along with a larger baeg L—0)  saturation thickness for CB spectra, so that the hard-photon
probability enhancement for diamond, the order of magni-
tude difference in these quantities for silicon and diamond F.
crystals[cf. curves 1 in Figs. (& and 1b)]. [
Already from Figs. 5 and 6, the SOS orientation looks less
favorable than CB for the hard-photon production. As ex-
plained above, this is due to the PFC, which in itself is char-
acterized by relatively soft spectra with large intensities and E£3
total probabilities. Thus the CB-like contribution providing a z
hard-photon emission is suppressed at SOS, in particular, due
to the energy loss via competing mechanisms. However, the
thickness in above examples was chosen to optimize the
yield of CB atw~ 100 GeV being not optimal for SOS. Ad- 10°k
ditionally, the positions of peak&f. Figs. 3 and %in the E :
initial spectra were different for two orientations. 0.0 0.2 0.4 0.6 0.8 1.0
Let us now compare the yield from a diamond crystal at X
£0=250 GeV for three different orientations characterized . . .
by he same peak posilon in nstantaneous Spea, o, LC- % NATECL O POcts per bC 0 03 damond
=0.75. Those are two SOS orientatigr&25 urad off the y £o

i 160 urad off the (1_IJ) pland at L=0.1 cm (curve ) and L
(110 axis in the(001) plane and 18Qurad off the (001) =0.5 cm(curve 2; for SOS[325 urad off the(110) axis in the

axis in the (1D) plang and CB[5 mrad off the{001) axis  (o1) plang at L=0.04 cm(curve 3 andL=0.2 cm (curve 4;
and 160urad off the (1 D) pland. From Fig. 2, the weaker =w/e,,.

107

102
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TABLE |. Potential-well depthd),,, (eV), interplanar distances the point where the corresponding potentjbfj(y) is mini-

dpi (A), and parameters of fitA2) for some crystal planes. mal [U,(0)=0], i.e., in the middle between two neighbor-
ing planes. So, for &y<1, we haveU,(y)=—U1-Yy)

Crystal (plang Upi dpi ! a ay with Ug(y) defined in Eq.(A2). Note that only three of

Diamond(110 2354 1261 0109 1057 1994 SEVen fiing parameters;, y;, b, andc in Eq. (A2) are

Diamond (001) 1206 0892 0152 716  1.623 mdependen_t. Using c_ont!nwty conqmons of the potential and

Silicon (110 2127 1920 0100 1345 2750 corresponding electric fleld.gt poinis , Yo, we can, for

silicon (002) 1173 1358 0140 863 2018 ex.ample, express the remaining parametersyyiaa,, and

Copper(110 3414 1278 0161 7.00 1.660 22°

Iron (110 68.88 2.027 0.084 17.38 3.104 2

Tungsten(110)  132.69 2238 0.054 3490 5.656 a;—yidu(a+ay)

as

S 1-at(1-y)iatay)

yield of CB may be further increased. Even at equal yield of

ZY1(1_Y1)(al+az)_ 1

hard photons, CB spectra are preferable in applications being y ,
2 a,—y,(a;+ay)
on the whole much harder than SOS speétfacurves 1,3 2 JI\F1t @2
and 2,4 in Fig. 8 and having a polarizatiofabout 40% near 5
Xmay). Numerous relatively soft photons may cause rather b=-2yi(a;+ay), c=1l+yi(a;+ay). (A3
severe background conditions, producing, &ge~ pairs or o
hadrons directly in a radiator. Independent fitting parameters along with, and d,,, are

In conclusion, we hope that explicit formulas presentedisted in Table | for some crystal planes. _
along with a qualitative analysis performed allow anyone to The equation of one-dimensional motion in the potential
estimate the radiation characteristics at any orientation wherd (Y) is
polarized photons may be obtained from unpolarized elec-

trons or positrons penetrating through single crystals. y=*rvz=UY)IUy, «=20,1dy, 05=+v2Uy /e,
(Ad)
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01-02-16926. the integration over time in formulas describing a radiation
(see Sec.)lis performed at fixed value afwhen, by means
APPENDIX of a time shift, any initial conditions may be reduced to the
tandard onex(0)=0 providing v,(—t)=v(t). Then we

Let x be the coordinate perpendicular to some system oﬁ i : ! .
avev,=v_p,=v, in the velocity Fourier series

crystal planes with the interplanar distandg . Then the
periodic plane potential for electrons reads

S 2 2x 0= X vpexpinaot),
Ue(X)=—nZ G(ngexp(imny), q=g -, Y=g -

“~. ] 3
(A1) wherewy=27/T is the frequency of motion ant being its

_ ) o o _ period. Finally,
As the direct use of this potential is impossible in analytical
calculations, several approximate forfsge Chaps. 9 and 15 2 (T2
in Ref.[1]) were suggested. Being not satisfied with previ- vp==| dtu(t)cognwot). (AS)

ously used forms, we propose here the one which provides a TJo

precise fit for any crystal plane potential and very simple

; ; ; There is an additional symmetry, (t£T/2)= —uv,(t), for
ixfreiffle%r:jss for the velocity Fourier transforms. Fee\0 channeled particles when EA5) passes into

Ue(y)=—Upl 8(y1=Y)(1—azy’) + 6(y—y1) 6(Y,~Y) Ugh:sm(”_”) ™ dtoOsinnogt).  (26)

2T
X(azy?+by+c)+6(y—y)as(l-y)?], (A2) 0

where 6(x) was defined in Eq(13) being the step function From this equation, even harmonics vanish at_ channgéing
andU,, is the potential-well depth. From E¢AL), we have —1<2z=<0 for electrorls and at€9z=<1 for positrong. Let
Upi=2n-_..G(nq). The origin is set to the point where the US_define a quantityy, which is related tov, by v,
potential is minimal[U¢(0)=—U], i.e., just at the plane. =uv,60,/9(z) where g(z)=«T/4 at channeling andj(z)
Beyond the segmente[0,1], the values olU(y) may be  =«T/2 at over-barrier motion. Solving E§A4) and taking
obtained from Eq(A2) using evident symmetry and period- elementary integrals in Eq$A5) and (A6), we obtain for
icity conditions. For positrons, we also choose the origin aklectrons
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T [z+1 1
- lQ(Zle_z)z a_l(‘sn,l"' 5n,71)+ Q2+a
e 2

+0(z— ZZe)Q A [vz 256Qc SNV —ag(1— yz)COS‘I’Ze]] (A7)

e

{9(2 Zle)Q [\/Z 216QeSINW 1o —a;3y,COSW 4]

e

Wherezle:Ue(yl)/UpI:alyi_lv ZZe:Ue(yZ)/UpI:_33(1_y2)2! —1<21<25,<0, and

1 ) 1+2z4¢ N
\/a_larcm \/ 15,

( a,y1t+Vay(z— Z1e)> 0(Z2¢—2)

2= e Z)2x/a_1+0(z ae lay(z+c)—b%4] | a,
. )[iln< ary1+ ax(z-z10) +_In((1—y2)\/a_3+\/z—226)1
2e \/a_2 ag(l_y2)+ aZ(Z_ZZe) \/a—3 \/H ’

_ Qe . 1+Zle
\Ifle—\/?larcsn'(\/ 57 ) (A8)
Q{g(z) [(A=y2)ag+ V2o zZEH
nwge)
Analogously, we find for positrons
(p) 77 z 1
0(21p— Z 3_3(5”’1+5”’_l)+Q2—a2 0(z— zlp)Q [\/z 2,,Qp sinW ,—ag(1—y,)cos¥ ]
p p
+60(z— zzp)Q [\/z Z5,Qp SINW 5, — alylcos‘lfzp]] (A9)
pt
wherez,,= —2z5¢, Zyp= —21¢, 0<2,<2,,<1, and
™ 1 [P az(1-y,) 0(z5p~2)
2)=60(2y,—2) —=+60(z—2 ——arcsi +arcco +60(z—z
gp( ) ( 1p )2\/8.—3 ( 1p) \/a_3 r( {m \/a_2 ( 2p)
BT r(alywaz(z—zlp)—ag(l—yzwa2<z—22p> S ln(ylﬁlwz—z@”
Ja, a133y1(1-Yo) +a(z-21p)(2-25) | Vay V12| ’
P Vg Viz o eI iz )
n nol
Qp= 20, (Z)[1+0(z 1= (A10)

As expected, differences in electron and positron motions diminish vzl{erransverse energyincreases. We obtain from
above formulas foz>1 [high above the potential barrier wher- (y/ 0p|) where is the angle of a particle velocity with
respect to the plafeye=g,=1/\z and thereforas{? = 0P = mx\z=2myl/d,=qy. From Eq.(A7) we find forz>1

PISES 1/(7rn)3[(a1+ a,)sin(mny;) + (az— a,)sin( 7nys,)]

= " 220, fdycos(wny) e(y).
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So the velocity Fourier transform is expressed #5f1 via Fourier coefficients of a potential. This happens when the
rectilinear trajectory approximation is valid. If we substitute the origiparriodig plane potential fotJ(y) in this integral,
v{® takes the formy{®=G(nq)/(2zU,). Then the quantityyv,, appearing in Eq(10) readsyv,=G(ng)/(my). At z>1,

the velocity Fourier transform for positrons differs from that for electrons by the factms(@n), which does not lead to some
changes in Eq(10) as onlyv? enters into this formula.
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