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Inseparable positron annihilation and positronium formation in positron-atom collisions:
Description in terms of an absorption potential
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Pair annihilation in the elementary process of positreh)(collisions with atoms is discussed in terms of an
imaginary, absorption potential. This potential represents the QED effect of both direct annihilation during the
collision and the indirect one via positroniufR9 formation in a unified manner. These two mechanisms are
inseparable from each other near the threshold for positronium formation, where the collision time becomes
comparable to or even longer than the lifetime of the positronium. The theory is appliedeto-theollisions.

The dominans-wave annihilation cross section follows the Baz’ threshold law near the thredhg{ds *°S)

for the formation of Ps(413S). Simple relations between the singlet and triplet cross sections are derived. The
spin-averaged annihilation cross section rises sharply but continuously, first Bgidss'S), and then across
En(1s3S), which lies at 0.841 meV abovey(1s'S). The cross section would diverge Bi,(1s'S) and
En(1s3S) in the conventional theory where Ps is assumed to have an infinite lifetime. The change of the
annihilation probability as the Ps leaves His studied by decomposing it into the contributions from direct
and indirect annihilation and from the interference between them.
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[. INTRODUCTION are described in terms of the Hamiltoniklg including only
the Coulomb potentials and not the absorption potential
When a free positroe™ and a free electroe™ occupy a —iH’ [3,6]. The scattering wave functiow , thus obtained

common position, they annihilate at some rate emitting twas used to calculate the expectation valueHf, which is
vy-ray photons if they form a singlet pai6E0), and three if  proportional to the rate of pair annihilation during the colli-
triplet (S=1) [1-3]. In a bound hydrogenlike systeet -e~ sion. This approximation is usually justified by the extremely
or positronium(P9, the nonzero value of the wave function small probability of pair annihilation during the collision, or
at the coalescence point causes pair annihilation ims&n by the much shorter collision time,,, than the lifetime
state. The lifetimes-(ns 1S) of parapositronium Ps(s 1S) 7(nl) of a positronium under most experimental conditions;
against & annihilation are 1.24 10 °n® s. Those of ortho-  a positron with a kinetic energg>1 eV, e.g., can traverse
positronium Psfs 3S) against 3 annihilation are as long as a distance of 1 a.u. in less than 1§ s.
1.39x10 'n® s. Those of nors states are much longer. An- In fact, the annihilation cross section due to this method
nihilation occurs also in the field of other particles. Thus, adiverges as the positron ener@yapproaches, from below,
positron colliding with an atom or a molecule may annihilatethe thresholdEy, for positronium formation5,7—10. Just
with a bound electron. This is the direct mechanism of pairabove Ey,, the positronium-formation cross section rises
annihilation in collision. If a positronium is formed in this sharply from zerd5,8-11), as Wigner's threshold law pre-
collision, it also annihilates mainly after the collision is over, dicts [12]. This threshold behavior of the annihilation and
which is the indirect mechanism. positronium-formation cross sections derives from the ap-
The quantum electrodynamical phenomenon of pair anniproximation of the infinite positronium lifetime, or from the
hilation may be described quantum mechanically as particlaeglect of the absorption potentialiH’ in the scattering
loss due to an effective absorption potentialH’ propor-  calculation.
tional to &(r), wherer is the distance vector between the It is theoretically known, however, that a threshold law is
positron and the electrdm,5]. In the standard theory, how- changed, in general, if the species formed in the new open
ever, the elementary processes of positron-atom scatterirghannel has a finite lifetime [13]. This is because, in this
case, the thresholy, is blurred by the energy width as-
sociated with this lifetime by the uncertainty principlé
*Electronic address: igarashi@phys.miyazaki-u.ac.jp =7i/7. Thus, Baz[13] derived a formula
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00=CoRE{T (e+1)}*?]+C} (1)  tials (4) may be used to describe the rates of @nihilation
and 3y annihilation in Psgs 13S) [1,2]. These potentials
for the Swave contribution to the cross section for the newintroduce an imaginary part
channel at energies nearEy,, where[14]

e=(E—En)/(I'[2). ) —%T(n5)=—i<¢(n8)|H'|¢(ﬂS)> (7)

In Eq. (1), Co andC|, are constants independent af This
equation reproduces the Wigner threshold Ipl2] for e
>1, and naturally, also fof'—0. This equation may be
easily shown to reduce to

into the energy of Ps(s) to the first ordery/(ns) being its
wave function. The spin is omitted here, and also in the
following, when the meaning is clear. The widths are

1Q) — ~r2/on3 6,3
JO:CO(I‘/Z)l’Z[(eerl)l’ZJr6]1’2+C(’), I'(ns*S)=cry/2n°=5.29<10"°n"" eV,

=Co(I'12)Y (e2+1)Y2— €] Y2+ C}. (3) I'(ns3S)=I'(ns9)/B,3=4.75x10 °n"3 eV. (8)

The account for the finité' in the derivation of Eqs(1) The same absorption potentig@) may be used for low-
and(3) is equivalent, in terms of positron-atom collisions, to energy positron scattering by atorf¥s5]; note that the po-
the allowance for-iH’ in the positronium-formation chan- tential field is weak enough for neglecting another kind of
nels at large distances between positronium and the residuahnihilation with emission of only one photon. According to
ion. On the other hand, we recently introducedH’ di-  the general theory of scattering by a time-independent com-
rectly into the Schrdinger equation to treat positron scatter- plex potential at a real-valued energhs], an imaginary po-
ing by the hydrogen atorfb], as one should do for accurate tential leads to a nonunitary scattering matrix, and hence to
calculations. In this theory, the annihilation and positroniumthe breakdown of the flux conservation. In terms of positron
formation in the conventional sense are inseparable.B-or scattering, the cross section for flux absorption may be inter-
=~Ey,, the interference between the direct and indirect annipreted as the pair annihilation cross sectiolr, which can
hilation mechanisms becomes especially important. The corbe determined from the flux loss, calculated from the com-
ventional theory breaks down at these energies, since thgex phase shift in the case of a single-channel problem. It
effective collision time becomes comparable to or evencan be easily provefil5] that the same absorption or anni-
longer than the positronium lifetime whén=E,,; the effec-  hilation cross section is calculable also from the fornja
tive velocity of the relative ion-positronium motion is|E
—Ey|Y2 a.u. nearEy,. The present paper develops further Vo= (2h)(MWNH R, 9

detailed theory of the dynamics of pair annihilation due to ] ) o )
the potential-iH’, illustrating it for positron collisions with ~Wherev is the velocity of the incident positron. The scatter-

the hydrogen atom. ing wave function>®¥ in Eq. (9) is normalized to the unit
flux of the incident positrons and satisfies the Sdimger
Il. THEORY equation
A. Absorption potential [YH-E "W =[Hy—i(*3H")—E]**¥=0 (10

The operator—iH’ for 2y (S=0) and 3y (S=1) anni-

. ) for a real-valued total enerdy, of the whole system. Equa-
hilation of a free electron and a free positror 152] o Y d

tion (9) is exact within the quantum-mechanical formulation.

S 3y 2y/13~\ .S It was used in Ref[5] to calculate the singlet cross section
—i(**H")=—i(hery)(F%)aSs(r
( ) (ficrg)(re)aa(r) 1o for the e* +H collisions. Equation(9) also serves as a
=—i(e’lag)(Y%)aS358(r) (4)  basis of various approximations.

For spin-unpolarized positron and atomic beams, the total
to the lowest order, if the relative electron-positron motion,annihilation cross section is calculated [H16]
i.e., the motion irr, is much slower than the velocity of light
c. Here,« is the fine-structure constant, oo=1gto+3g%0, (12)

lc=27 and 3c=8(#*-9)/9, (5)  where3y is the statistical weight of the spin state of tie-

. . e~ pair, and therefore,
ro (=€?/myc?=2.82<10" '3 cm) is the classical electron P

radius, andag is the Bo.hr.radius. The 8 annihilation is L3g=(2S+1)/4. (12)
slower than the 2 annihilation by a factor
1130 — 2 An effective numbeiZy of target electrons contributing to
Pra=a (el e)=9m/[4a(m—9)] singlet annihilation is customarily defined by
=1.114x10°=(0.898< 10 %)~ 1. (6) ,
oior= (Clv) (7rg) Zesr, (13
The electron and the positron in a positronium move
much slower than the velocity of light, and hence the potenwhen 3o is negligible in comparison witho-.
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B. The conventional perturbation theory ;gan): Cga“)(F/Z)(F|e|)_1/2+ const (17)

Since the absorption potentialiH’ usually affects the _ _
collision process only very weakly, the wave functioi? ~ for e<0 near the thresholfb,7-10. This may be derived
in Eq. (9) may be approximated by the solutioh, of the  from Eq. (15) by replacing¥, by its Ps(5) channel func-

Schralinger equation for the Coulomik-body problem tion, which is the only term iV, that depends strongly an
near the threshold.
(Ho—Ep)W¥o=0, (14 We note that the effect of the imaginary potential on the
scattering process is negligible at enerdiethat satisfy the
so that the first-order perturbation approximatj@rb] relation|E— Ey(1s1%S)|>T'(1s13S), or |e|>1, and there-

fore, it follows that

L3 a0= (2hf ) (W o M °H | 15
(o ( v )< 0| | 0> ( ) 1'301:1’3;'(}35) for 1,

follows [16,17). Here, the bar on top of is meant to indi- 13 L5 an)

cate that the absorption potential is neglected in the calcula- Co ="o for e<—1. (18)

tion of the scattering wave function. Equati@ib) has long

been used as a standard method of calculating the annihil¥Ye note also that no spin effect is included in the Sehro

tion cross section. dinger equatior(14) for determining™3¢{"®. Furthermore,
In the scattering problenil4) for positron energyE, a the first-order approximatioil5) is the same for botts

positronium Psl) with an internal energye(nl) may be =0 andS=1 except for the coefficient of thé function in

formed above a threshold Eg(nl)=1+E(nl)=I1  EQ.(4). Therefore, we have

—(e?/4agn?), wherel is the ionization potential of the tar- . —ps

get. In fact, each leveE(nl) is split into fine and hyperfine S (19

levels. In particular, eacl state is split into two hyperfine 3q, sg(LPs)

levels E(ns’°S), so that the threshold may be written as
En(ns™®S). For the ground state, the hyperfine splitting for E— E,,(1s13S)>T(1s'S), and
is A=E(1s3S)—E(1s'S)=0.841 me\&T'(1s1%S) [18].

Note that no spin-dependent operators are included in the o, 1;(La”)
Schralinger equatior{14), so that the hyperfine splitting has 3 = 3an) P13 (20
gL (o

to be included artificially by shifting the energy scale for the
triplet cross section by from that for the singlet cross sec-

tion for E— Ey(1s13S)<—T'(1s'S). In these equations, the sin-

glet and triplet cross sections are to be compared at a com-

; i i _E1-12
en(-:I-ErquaE“?enn%S)tl)S tmomnetohg:éer?%r?qsgglo E]Th' aj. tge mon energy value measured from each respective threshold
9y S resnofty, Ir W. TTIS dIVEr £ (15133) The cross sections summed ovealso satisfy
gence was confirmed, for example, by Van Reeth and Hum-

. . . relations similar to Eqs(19) and (20).
berston[7] fo_r ;lnglet positron scattering by the h_ydrogen The first term in theSwave Baz’' threshold formul&3)
atom by variational calculations. Ryzhikh and Mitr¢§] e : ;

. . . sc?msﬂes a simple relation

used a momentum-space Lippmann-Schwinger equation an
obtained results that converged to a 1-2% level of accuracy. Loy(€)
Both their results and the hyperspherical close-coupling 0
(HSCOQ calculations for Eq(15) by the present authof$] 300(€)
agreed very well with the results of R¢T], reproducing the L 5 _ ) )
threshold divergence of Eq15) for the singlet case. The if “Co="Co, where the singlet and triplet cross sections are
model annihilation rate postulated by Laricchia and Wilkinto be compared at a common value ©fdefined for each

[19] also shows the divergence behavior, although more ragespective spin. Indeed, the relatioBo=°>C, follows if we
idly as[Eq,—E] assume that the cross secti®) satisfies Eq(19) and that

the first term is dominant in Eq3).
Gribakin and Ludlow[9] introduced an imaginary part
—iI'/2 into the Ps(%) energy in the derivation of the thresh-
Wigner’s law[12] predicts that thé th partial-wave cross old formulas(16) and(17). They found that the first term in
section for Ps($) formation behaves as o9 of Eq. (16) for e>0 is modified into the first equality in
Eq. (3) (without C}), and the first term inr™ of Eq. (17)
for e<0 into the second equality in E43) (without Cg).
This led them to conclude that the modified annihilation
cross section belovig,, connects smoothly to the modified

=Bi%, (21)

C. Threshold behavior

o{P9=CPIT )L * 12+ (higher-order terms  (16)

for e>0 near the threshold in the absence-ofH’, where
. . 1’ . .
the spin-dependent widifi(1s S) is denoted simply by’, positronium-formation cross section abokg,, thoughCj

and the. spln—dependfar.\t .reduced ener’gﬁe by E‘. The was not proved to be common to the two energy regions.
Swave first-order annihilation cross sectiof™, which is | ydlow and Gribakin[10] used the Ps-channel wave func-

the dominant contribution to®", behaves as tion with a complex wave number in the conventional for-
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mula (15) for the annihilation cross section. This also led to +H to the arrangement P9 can be described in terms of a

Eq. (3). This procedure can now be justified by using B,  single reaction coordinate throughout the collision. This is

which follows from the present formulation in terms of the not the case if the independent-particle coordinates are used.

absorption potential. Naturally, this argument proves @@t  This justifies the use of hyperspherical coordinajeg)) for

is indeed common to bote<0 ande>0. the whole Schrdinger equatior(10) for the rearrangement
To study the validity of theSwave threshold formul&3) collision.

and the %-3y relation derived from it, and to study the  The HamiltonianH in Eq. (10) may be divided into the

behavior of the higher partial-wave cross sections, a rigoroukinetic-energy operator inp, the absorption potential

treatment of the Schdinger equatior(10) is indispensable. —iH’, and the resth,, (see Ref[20] for its explicit form),

A preliminary report of an initial attempt on they2annihi-  which is adiabatic irp. Thus, we have

lation in positron scattering by the hydrogen at@h+H, is

found in Ref.[5]. Further results will be discussed in the H 1/ d 5d b 03
following section. =3 d_p2 ;@ +hyg—iH’. (23
lll. CALCULATIONS AND RESULTS The adiabatic channel functiodg;} are defined by the

_ _ eigenvalue equation
A. Hyperspherical close-coupling method

Starting from the independent-particle coordinategor had ©Q;p)¢i(Q;p)=Ui(p)¢i(Q;p), (24)
e” andr, for e~ relative to the protorp, we define the
five-dimensional hyperangl€) = (tan *(r,/r;),r;,r,) and
the hyperradiug satisfying

wherep is treated as the adiabatic parameter. The hyperra-
dius p becomes large when either thé-H or the Psp dis-
tance becomes large. Thus, each eigenvllluapproaches a
p2=rf+r§. (22) bou_nd—state energy of either the hydrogen atom or the posi-
tronium asp— .
In the HSCC method, the total wave functidn in the

An advantage of these hyperspherical coordinaje$){, Schralinger equatior(10) is expanded as

not enjoyed by (;,r,), is that only one variable out of the
six-dimensional coordinate space runs over to infinity.

Early developmen{20-27 revealed the usefulness of V(p,0)=2 p %Fi(p)gi(Qip), (25)
adiabatic hyperspherical potentials, or the potential energy !

curves drawn as functions of the hyperradjusin under- ; - :
standing the physics of bound and resonance states both \\/’iv-hICh leads to coupled radial equatidizs|

sually and numerically in analogy with adiabatic potential 1 g2

curves of diatomic molecules. A remarkable improvement | — = —— 4+ U, (p)—E, Fi(P)+Z (Vj—iH{)F;(p)=0.
was then achieved by taking the nonadiabatic coupling into| 2 dp? j !

account, i.e., by solving the close-coupling equations in (26)

terms of (p,{}), or the HSCC equations. The HSCC method _ ) ) ) )
has been used extensively and found to be a powerful todi€re: Et=E—1/2, and Vj; is the nonadiabatic coupling

for accurate studies of the dynamics of many kinds of threeSt€mming from the differential operators on the right-hand

body and even four-body systems; see, e.g., Ré&-23. side of Eq.(23). Equations(26) for the complex functions
The convergence of the HSCC method with respect to thaFi(p)} are solved up to a large value pf where the solu-
number of coupled channels has been found to be muclions are matched with the asymptotic form expressed in
faster than the conventional close-coupling method with thé"1.72) and satisfying the scattering boundary conditions.
independent-particle coordinates. This rapid convergence is "€ usual formulation for rearrangement collisions in
due to the HSCC's efficient account of the correlation effectd®™ms of independent-particle coordinates leads to coupled

betweenr; andr,, which are partly included already in the mtegro-differenti_al_equafcions because of the different vari-
single-channel approximation. ables for describing different arrangements. On the other

In general, a hyperradiug, is defined a5p§=MCR§ hand, Eqs(26) are coupledifferential equations, which are

+,ucr§ using a particular set of Jacobi coordinat&. {r.) much easier to solve.
and the reduced massdd {, u;) for the motion inR. and in
r.. This p. turns out to be independent of the choice of
Jacobi coordinatesR,r;). For the initial arrangement in In expansion(25), we retained only those channels con-
e"+H scattering, the appropriate Jacobi coordinates iserging to Hh=1,2) or Psf=1,2) in the asymptotic limit
(r1,rp), for which p. coincides withp of Eq. (22). The  since the HSCC expansion is known to converge rapidly, and
Jacobi coordinates that are good for the arrangemehtpPs since we are concerned with energieslose to the threshold
are the vector from the proton to the center of mass of the Ey, for the channel PsE3S) + p. In this energy region well
positronium, and the electron-positron distance vector,  below the H(2) and Ps(®) thresholds, the total angular
—r4. Inthis case we havg§=2R2+ (1/2)r2, which is equal  momentunL is equal to that of the incidert™ and to that of

to Eq. (22). Thus, the transition from the arrangemait  the asymptotic Pg-motion.

B. Partial-wave annihilation cross sections

042716-4



INSEPARABLE POSITRON ANNIHILATION AND . . . PHYSICAL REVIEW A68, 042716 (2003

T T T —_ 10-2 T T T T T T T T T T T T T T
=§ ~ 10 L P wave b
S S S wave B = L / 4
? =} = 7 D wave
< L4 '/ = 5 7 A
3 5107+ - 1 2 10 / /
g g e gt S
= @ B /‘/' i Q L 4'/ / B
2 8 e 2 e R ]
@ 10 DS R T N N N T 6‘ 107 Vo
S 10 107 107 10° 107 10° 10° 107"
) X E-Egy (a.u) E-Eg (a.un)
-10 -5 0 5 10 _ _
E-E4(S=1) (10°auw) FIG. 3. The partial-wave l(=0,1,2) singlet(full curves and

triplet (broken curvesannihilation cross sections®s plotted ver-

FIG. 1. The singlet$=0) and triplet §=1) annihilation cross ~ sus the incident positron ener§ymeasured from the thresholt},
sections' 3o (full and broken curvesand theirSwave components  for the production of positronium. Note that the threshdigsfor
L34, (dot-dashed and dotted curyeslotted as functions of the the full and broken curves are different By=0.841 meV.
incident positron energiz measured from the threshok,(S=1)
of the formation of an orthiriplet)-positronium. The total annihi-
lation cross section for an unpolarized positron beam is calculabl
by (fo+330)/4.

the fitting (represented by the circlesf the Baz’ formula(3)
fo the full curves is seen to be quite accurate, and the simple
relation (21) is observed quite well. The annihilation cross

sectionsl'3;§,a“) (broken curvep calculated in the conven-
and triplet 6=1) annihilation cross sections% of Eq. (9) tional manner(15) digress from the full curves close to the

near the threshold&,(1s%S), together with theilS-wave threshoIdEth gnd diverge. The positronium. formation cross
components-3r,. The singlet cross sectiohr rises sharply ~ Sections “%{ (dotted curvek calculated in the conven-
close toEy(1s'S), and then does the triplet cross sectiontional manner start to grow fro, according to the Wigner

35 close to Ey(1s3S), which lies aboveEy(1s'S) by  law (16), and approach the full curves as well as the Baz’ law
A (=0.841 meV). As discussed in Sec. IIC, the ratios(3).

YolP0 and oy /30, approachpB;; (=1.114x10°) on the The three lowest partial-wave cross sectidfis, for sin-

left of the thresholdsee Eq(20)], and they approach 1.0 on glet (full curves and triplet(broken curvesannihilation are

the right[see Eq.(19)]. The magnitudes of the sudden but shown in Fig. 3 in a broader energy region than Fig. 2 above
smooth rise offo and 1o near the threshold, therefore, also the thresholds. The singlet and triplet thresholds are adjusted

Figure 1 shows the whole picture of the singl&=0)

have a ratio 0fB13. to lie at the same position in Fig. 3. As is evident from the
The Swave contributions'%o, to % are plotted as full data in Fig. 2 ate=0, the ratio oo(E=1Ey)/30q(E
curves in Fig. 2 versus the reduced enekgyf Eq. (2), =3E,,) of the Swave cross sections 812, and the ratio

whose meaning is different depending on the spitn the  Yoo(E)/30(E) approaches 1.0 as the energyincreases;
energy region across the threshelet0 covered in Fig. 2, see Eq.(19). The higher-partial-wave cross sections start
from a constant value that depends®andL but satisfying
— Eqg. (20), remain constant near the threshold, and gradually
approach the Wigner-type ford6) independent of the spin
S due to the relatio19). Because of the Wigner law, the
cross sections for the higher partial waves, which are the
smaller close to the threshold, eventually dominate over the
lower partial waves ag increases.
The partial-wave cross sectionso below the threshold
are presented in Fig. 4. Here, the triplet cross sectibrs
ken curveg are multiplied by a factoB;3, while the singlet
ones(full curves are not, since the ratido, /30 should
approachB;; well below the thresholdy,. The P- and
D-wave cross sections become almost independent of the
FIG. 2. The near-threshol§wave singlet §=0) and triplet spin afteazr this normalization. Thwave cross sgctionﬁaq
(S=1) annihilation cross sections plotted versus the reduced er@nd P13 0o are almost the same at_ low energies, having a
ergy e of Eq. (2). Note that the threshold ener@, and the width ~ Proad minimum and then growing nearly as(Ey
I" in definition (2) differ depending on the spi& Full curves:*%s,  —E) ~Y2 The annihilation cross sectiofts " and 83,03"
calculated including the absorption potentiaiH '. Dotted curves  (dotted curve calculated using Eq.15) diverge in this way
for €>0: positronium formation cross sectiolfo{™ calculated ~as was explained earlier. The singlet cross sectiop di-
without —iH’ in the conventional manner. Broken curves for gresses from the dotted curve around iG.u. below the
<0: annihilation cross sectioh® @ [see Eq(15)] calculated in  threshold, and thep;3%0, does so around 16° a.u. below
the conventional manner. Circles: Baz’s threshold fornig)ditted  the threshold, thus avoiding divergence. TBaave cross
to the full curves. sections are dominant close to the threshold, buPteave

1021

10

Cross section (a.u.)
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107! : : . . . gion of p, affecting the properties of the asymptotic channel
S wave, perturbation —o.-" functions. Fpr P channels, Iarge valges pfcorrespond to
107t S wave (S-1)—=. 1 large Psp distancesR, ancj the integration ove® at largep
::f S wave // corresponds to that oveR(r). Therefore, all the matrix el-
‘é’ 1031 // 4 ements
3 00| Swave(szo)/’r;_ Hij=(P<ns)+p|H'[PLn’s) +p)g
2 P wave
8 105k i that couples-state positronium channels, including the diag-
D wave onal elements, approach constantspase~ because of the
106 f . . . . nonzeros-state wave functiongpsatr=0.

This leads to two significant consequences. First, for the
definition of the asymptotically correct channels, the positro-
nium states have to be redefined by diagonalizing the cou-
pling matrix —iH' at largep, or by taking linear combina-
tions of the wave functiongspdns), so that no coupling
potentials may exist asymptotically between any pair of the
redefined channels.

Second, each element of the diagonalized coupling matrix
—iH’ introduces an imaginary part into the positronium en-
ergy. This introduces a small imaginary part into the kinetic

E - Eth (a.u.)

FIG. 4. The partial-wave l(=0,1,2) singlet(full curves and
triplet (broken curvesannihilation cross sections plotted versus the
incident positron energ measured from the threshol,, for the
production of positronium. The triplet cross sections are multiplied
by a constantB;5=1.114x10°. The dotted curve is th&wave
result 1%«{2" obtained in the conventional manneee Eq.(15)].

For P andD waves, the full and broken curves are indistinguishable : I P .
in the figure. Note that the threshol@, for the full and broken ~€nergy of the relative Ps-motion: K%/4=(I'/2)(e+i). The

curves are different, and therefore, that the actual positron energid4@ve numbek is complex even foe>0 and may be writ-
for the singlet and triplet scattering for a common value of theten asKetiKin . Itimmediately follows thaK K =1I" and
abscissa are different from each other. that

_TVx, 2 12 12
dominates over theS wave for 0.15 a.uWE<E4—5.0 Kie=T " (e*+1)"+ €]
X 10 % a.u.

The validity of Baz's threshold formuld3) has been
tested by fitting it to the calculateslwave annihilation cross
section and by taking the ratio of the fitted to the calculated
value at eacl. This ratio is plotted in Fig. 5 for the singlet D= ypdr)f(e)expiKp)lp (p=R) (28)
(full curve) and triplet (broken curve cross sections. For
both spins, the formula is found to be fairly accurate [er outgoing with an amplitudef(e) decreases withR as

Kim: 1'*1/2[( 62+ 1)1/2_ 6] 1/2_ (27)

The asymptotic positronium-channel function

—Ey/<107% au. exp(—K;,R)/R, meaning that it is now a closed channel
even fore>0. Normal closed channels have no influence on
C. Annihilation in the positronium channel the flux conservation. The closed channels associated with

A remark is due here on the role of the imaginary cou-Ps(1s), however, cause flux loss through thel coupling
"included in Eq.(26). This potential is with open channels. There is no well-defined i(forma-

pling potential - iH; tion in the present theory even when the collision is practi-
extremely weak compared with the Coulomb potentials. P y eve o P
cally over before the positronium annihilates.

Nevertheless, this coupling persists up to the asymptotic re- The behavior of the annihilation cross section Br

=E,;, may be examined by inserting E®8) into the wave

L1 function ¥ in Eq. (9), the rest of® being slowly varying
with E close toEy,. After the integration ovef), the Swave
e cross section is found to be proportional to
s 10[ 1
m e
777777 o 1“|f0|2J dp exp(— 2Kimp) =T |fo|?/(2K;m) + const
0.9 / 1 1 1 1 1 1 5
‘104 -10° 107 10 =[fol*(K./2) +const, (29)

E-Eu(@u) except for a term more slowly varying with Here,f is the

FIG. 5. The accuracy of the fitting of Baz's formu(d) to the Swave amplitude, which is almost independentaflose to

calculatedSwave singlet(full curve) and triplet (broken curvg ~ €=0. The integral(29) combined with Eq(2_7) reproduces
annihilation cross sections. The ratio of the fitted Baz’ formula toBaz’s formula(3). If W is replaced by, as in the conven-
the calculated results is plotted against the incident positron energijonal method, the extremely smaly, (<[ Ey,—E]"?) at en-

E measured from the thresholg, for the production of positro- ergiesE below and very neaEy, makes the cross section
nium. extremely large.
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107! . . . . . 0.06 T T T T
S wave (S=0) ’ S wave (5=0)
102 | 2 004 E-E4=10°au. |
§ g
.................. £
£ 10 1 < 0.02
E 10 @ [ a - RRYR o A
= 10 ] &~ 0.00 -*-‘-f-'-/-»-\" R
10° 1 [ Interference
. ~ | | | |
10" 10 10" 10> 10° 10 10° 0‘020 2 4 6 3 10
Hyperradius p (a.u.) Hyperradius p (a.u.)
-1
10_2 o FIG. 7. The'S-wave annihilation functiortP(p) for scattering
10 7 at an energy of 10° a.u. above the positronium formation thresh-
= 107 . old Ey,, decomposed into the contributions from the direct channel
5 10 4 (H), positronium formation channégPs, and the interference be-
s 07T/ X\l
Z 10% | tween the two.
O (U W\ TV S . contribution toP (p;E) from this channel extends to a re-
& 07 4 gion of larger and largep (or R). This contribution to the
10 L Swave cross section depends strongly Bnwhich is the
10" 10° 10" 10> 10° 10* 10° 10° main reason for the rapid increase of the threshold formula

Hyperradius p (a.u.) (3) acrossEy, as is seen in Figs. 1 and 2. For thevave, K,
in Eq. (29 is just the same as for ttf@wave, and therefore,
FIG. 6. The singlet annihilation functiohP(p) of Eq.(30) asa  thep dependence d?;(p;E) looks similar toPy(p;E). The
function of the hyperradiug. Full curves: with inclusion of the scattering amplitudé,, however, is to be replaced by in
absorption potential-iH'. Dotted curves: without-iH’. The  Eq. (29). Since|f,|?<|E—E,,| at E nearEy,, this prevents
number on each curve is the positron eneigyn a.u. measured the P-wave cross section to grow large ndzy,.
from the threshold'Ey, for the production of para-Ps¢). (a) L Above Ey,, the positronium channel is open in the ab-
=0. The leftmost full and dotted curves, which are almost indistin-gence of the absorption potentiaiH ', and the positronium
guishablelfrom each other, are common to all cited energies exceprmed in this channel keeps annihilating at any large dis-
for 10" a.u.(b) L=1. tancesp or R up to infinity for any partial wave; see the
) o dotted curves in Figs.(6) and &b). On the other hand, in the
A procedure in the present time-independent approaclresence of-iH’, this channel is closed, and the annihila-
that corresponds to tracking the time evolution of the colli-tjon functions for this caséull curves drop eventually, thus
sion system would be to study the annihilation functiondeaﬂy deviating from the dotted curves.
“*P(R;E) defined by carrying out the integratia) over The annihilation functiorP(p;E) in Eq. (30) may be de-
the whole space except f&t Alternatively, one may define composed into three contributions, namely, that from the
the annihilation function*P(p;E) in terms of the hyper- gjrect-collision channels in¥, that from the Ps-formation
spherical coordinates by channels, and the cross terifias the interference termbe-
tween the two kinds of channels. This decomposition is ar-
bitrary to some extent since the channels are well-defined
only in the asymptotic regions of the configuration space; in
the region where the collision partners lie close to each other,
_ vihj p5dp(1*3\If|1'3I-|’|1'3\If>Q. (30) 'E:ho?ntotal wave functi_on may be expanded in te_rms of any
plete set of basis functions. Nevertheless, it would be
interesting to decompog®(p; E) using the present definition
The first-order annihilation function may be obtained by re-of channels in terms of the hyperspherical coordinates.
placing¥ in Eq. (30) by ¥ of Eq. (14). Figure 7 shows the contributions R{p;E), thus defined,
The S and P-wave annihilation function® (p;E) for  from direct annihilation(curve H, positronium formation
singlet collisions at energies nearEy, are plotted in Figs. (curve P$, and the interference between themEaslightly
6(a) and @b). Both the results from the wave function cal- aboveEy,. At this energy, the direct annihilation has a large
culated with and without the inclusion of the absorption po-peak at small values gf, and after it decreases, annihilation
tential —iH' are compared with each other. The smaflart  via positronium formation starts to contribute and keeps do-
of the annihilation function®_(p;E) is contributed mainly ing so until very large values gf. A significant interference
by the direct collision channels i¥ (or its approximation term is clearly seen at intermediate valuegpofts absolute
W) in Eq. (30), and is nearly independent Bfclose toEy,. magnitude depends on the particular definition of the chan-
The decay of the positronium-channel wave function withnels, but Fig. 7 illustrates at least the inseparability of the
the increase op, or R, becomes slower and slower & two different mechanisms of annihilation at enerdieslose
approacheg, from below([see Eq(29)], and therefore, the to Ey,.

2 (E)= f 1% (p;E)dp
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IV. SUMMARY The recent development in the experimental techniques
for the elementary processes of positron-atom/molecule col-

In conclusion, the introduction of an imaginary, absorp- . . . :
ginary P lisions is remarkable. Measurements with an energy resolu-

tion potential into the Schrbinger equation has allowed a . ¢ th . b P iol
natural description of the QED effect of pair annihilation in 100 Of the positron beam of-25 meV are now possible
positronium and in positron scattering by atoms. This formul26]. With the expectation of further progress in the near

lation is equivalent to the allowance for the finite lifetime of future, rich physics in the dynamics of these elementary pro-
positronium formed either virtually or actually in the posi- c€sses deserves unraveling also theoretically, as in the
tron impact process. Annihilation in the direct collision and Present work. The annihilation process may be tracked as the
indirect annihilation via the formation of positronium are time elapses during the collision if one solves the time-
thus treated theoretically on equal footing. The direct mechadependent Schdinger equation with wave-packet propaga-
nism is dominant well below the threshold enery, for  tion, as is increasingly popular in atomic and molecular pro-
positronium formation, and well above it the indirect one iscesses in recent years. A wave packet, however, consists of
dominant. Close td&E,,, however, the two mechanisms are components with a band of kinetic energies, and has a limi-
inseparable, and the interference between them is found to ltetion of easily blurring or washing out and missing narrow
strong. Calculations for the systesn +H based on this for- resonances and sharp threshold structures such as the ones
mulation have reproduced the threshold formula for the protreated in this paper.

duction of unstable species derived by Baz'. The explicit

allowance for the finite lifetime of positronium washes out

the unphysical divergence.of the annihi_lation_ Cross sect?on ACKNOWLEDGMENTS
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