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Inseparable positron annihilation and positronium formation in positron-atom collisions:
Description in terms of an absorption potential
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Pair annihilation in the elementary process of positron (e1) collisions with atoms is discussed in terms of an
imaginary, absorption potential. This potential represents the QED effect of both direct annihilation during the
collision and the indirect one via positronium~Ps! formation in a unified manner. These two mechanisms are
inseparable from each other near the threshold for positronium formation, where the collision time becomes
comparable to or even longer than the lifetime of the positronium. The theory is applied to thee1-H collisions.
The dominants-wave annihilation cross section follows the Baz’ threshold law near the thresholdsEth(1s 1,3S)
for the formation of Ps(1s 1,3S). Simple relations between the singlet and triplet cross sections are derived. The
spin-averaged annihilation cross section rises sharply but continuously, first acrossEth(1s 1S), and then across
Eth(1s 3S), which lies at 0.841 meV aboveEth(1s 1S). The cross section would diverge atEth(1s 1S) and
Eth(1s 3S) in the conventional theory where Ps is assumed to have an infinite lifetime. The change of the
annihilation probability as the Ps leaves H1, is studied by decomposing it into the contributions from direct
and indirect annihilation and from the interference between them.

DOI: 10.1103/PhysRevA.68.042716 PACS number~s!: 34.85.1x, 36.10.Dr, 03.65.Nk
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I. INTRODUCTION

When a free positrone1 and a free electrone2 occupy a
common position, they annihilate at some rate emitting t
g-ray photons if they form a singlet pair (S50), and three if
triplet (S51) @1–3#. In a bound hydrogenlike systeme1-e2

or positronium~Ps!, the nonzero value of the wave functio
at the coalescence point causes pair annihilation in anns
state. The lifetimest(ns 1S) of parapositronium Ps(ns 1S)
against 2g annihilation are 1.24310210n3 s. Those of ortho-
positronium Ps(ns 3S) against 3g annihilation are as long a
1.3931027n3 s. Those of non-s states are much longer. An
nihilation occurs also in the field of other particles. Thus
positron colliding with an atom or a molecule may annihila
with a bound electron. This is the direct mechanism of p
annihilation in collision. If a positronium is formed in thi
collision, it also annihilates mainly after the collision is ove
which is the indirect mechanism.

The quantum electrodynamical phenomenon of pair an
hilation may be described quantum mechanically as part
loss due to an effective absorption potential2 iH 8 propor-
tional to d(r ), where r is the distance vector between th
positron and the electron@4,5#. In the standard theory, how
ever, the elementary processes of positron-atom scatte
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are described in terms of the HamiltonianH0 including only
the Coulomb potentials and not the absorption potent
2 iH 8 @3,6#. The scattering wave functionC0 thus obtained
is used to calculate the expectation value ofH8, which is
proportional to the rate of pair annihilation during the col
sion. This approximation is usually justified by the extreme
small probability of pair annihilation during the collision, o
by the much shorter collision timetcoll than the lifetime
t(nl) of a positronium under most experimental condition
a positron with a kinetic energyE.1 eV, e.g., can traverse
a distance of 1 a.u. in less than 10216 s.

In fact, the annihilation cross section due to this meth
diverges as the positron energyE approaches, from below
the thresholdEth for positronium formation@5,7–10#. Just
above Eth , the positronium-formation cross section ris
sharply from zero@5,8–11#, as Wigner’s threshold law pre
dicts @12#. This threshold behavior of the annihilation an
positronium-formation cross sections derives from the
proximation of the infinite positronium lifetime, or from th
neglect of the absorption potential2 iH 8 in the scattering
calculation.

It is theoretically known, however, that a threshold law
changed, in general, if the species formed in the new o
channel has a finite lifetimet @13#. This is because, in this
case, the thresholdEth is blurred by the energy widthG as-
sociated with this lifetime by the uncertainty principleG
5\/t. Thus, Baz’@13# derived a formula
©2003 The American Physical Society16-1
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s0.C0Re@$G~e1 i !%1/2#1C08 ~1!

for the S-wave contribution to the cross section for the ne
channel at energiesE nearEth , where@14#

e[~E2Eth!/~G/2!. ~2!

In Eq. ~1!, C0 andC08 are constants independent ofe. This
equation reproduces the Wigner threshold law@12# for e
@1, and naturally, also forG→0. This equation may be
easily shown to reduce to

s0.C0~G/2!1/2@~e211!1/21e#1/21C08 ,

5C0~G/2!1/2@~e211!1/22e#21/21C08 . ~3!

The account for the finiteG in the derivation of Eqs.~1!
and~3! is equivalent, in terms of positron-atom collisions,
the allowance for2 iH 8 in the positronium-formation chan
nels at large distances between positronium and the res
ion. On the other hand, we recently introduced2 iH 8 di-
rectly into the Schro¨dinger equation to treat positron scatte
ing by the hydrogen atom@5#, as one should do for accura
calculations. In this theory, the annihilation and positroniu
formation in the conventional sense are inseparable. FoE
.Eth , the interference between the direct and indirect an
hilation mechanisms becomes especially important. The c
ventional theory breaks down at these energies, since
effective collision time becomes comparable to or ev
longer than the positronium lifetime whenE.Eth ; the effec-
tive velocity of the relative ion-positronium motion is;uE
2Ethu1/2 a.u. nearEth . The present paper develops furth
detailed theory of the dynamics of pair annihilation due
the potential2 iH 8, illustrating it for positron collisions with
the hydrogen atom.

II. THEORY

A. Absorption potential

The operator2 iH 8 for 2g (S50) and 3g (S51) anni-
hilation of a free electron and a free positron is@1,2#

2 i ~1,3H8!52 i ~\cr0
2!~1,3c!aSd~r !

52 i ~e2/aB!~1,3c!aS13d~r ! ~4!

to the lowest order, if the relative electron-positron motio
i.e., the motion inr , is much slower than the velocity of ligh
c. Here,a is the fine-structure constant,

1c52p and 3c58~p229!/9, ~5!

r 0 (5e2/mec
252.82310213 cm) is the classical electro

radius, andaB is the Bohr radius. The 3g annihilation is
slower than the 2g annihilation by a factor

b13[a21~1c/3c!59p/@4a~p229!#

51.11431035~0.89831023!21. ~6!

The electron and the positron in a positronium mo
much slower than the velocity of light, and hence the pot
04271
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tials ~4! may be used to describe the rates of 2g annihilation
and 3g annihilation in Ps(ns 1,3S) @1,2#. These potentials
introduce an imaginary part

2
i

2
G~ns!52 i ^c~ns!uH8uc~ns!& ~7!

into the energy of Ps(ns) to the first order,c(ns) being its
wave function. The spin is omitted here, and also in
following, when the meaning is clear. The widths are

G~ns1S!5cr0
2/2n355.2931026n23 eV,

G~ns3S!5G~ns1S!/b1354.7531029n23 eV. ~8!

The same absorption potential~4! may be used for low-
energy positron scattering by atoms@4,5#; note that the po-
tential field is weak enough for neglecting another kind
annihilation with emission of only one photon. According
the general theory of scattering by a time-independent c
plex potential at a real-valued energy@15#, an imaginary po-
tential leads to a nonunitary scattering matrix, and hence
the breakdown of the flux conservation. In terms of positr
scattering, the cross section for flux absorption may be in
preted as the pair annihilation cross section1,3s, which can
be determined from the flux loss, calculated from the co
plex phase shift in the case of a single-channel problem
can be easily proved@15# that the same absorption or ann
hilation cross section is calculable also from the formula@16#

1,3s5~2/v\!^1,3Cu1,3H8u1,3C&, ~9!

wherev is the velocity of the incident positron. The scatte
ing wave function1,3C in Eq. ~9! is normalized to the unit
flux of the incident positrons and satisfies the Schro¨dinger
equation

@1,3H2Et#
1,3C5@H02 i ~1,3H8!2Et#

1,3C50 ~10!

for a real-valued total energyEt of the whole system. Equa
tion ~9! is exact within the quantum-mechanical formulatio
It was used in Ref.@5# to calculate the singlet cross sectio
1s for the e11H collisions. Equation~9! also serves as a
basis of various approximations.

For spin-unpolarized positron and atomic beams, the t
annihilation cross section is calculated by@16#

s tot5
1g1s13g3s, ~11!

where1,3g is the statistical weight of the spin state of thee1-
e2 pair, and therefore,

1,3g5~2S11!/4. ~12!

An effective numberZeff of target electrons contributing to
singlet annihilation is customarily defined by

s tot5~c/v !~pr 0
2!Zeff , ~13!

when 3s is negligible in comparison with1s.
6-2
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B. The conventional perturbation theory

Since the absorption potential2 iH 8 usually affects the
collision process only very weakly, the wave function1,3C
in Eq. ~9! may be approximated by the solutionC0 of the
Schrödinger equation for the CoulombN-body problem

~H02Et!C050, ~14!

so that the first-order perturbation approximation@3,6#

1,3s̄ (an)[~2/v\!^C0u1,3H8uC0& ~15!

follows @16,17#. Here, the bar on top ofs is meant to indi-
cate that the absorption potential is neglected in the calc
tion of the scattering wave function. Equation~15! has long
been used as a standard method of calculating the anni
tion cross section.

In the scattering problem~14! for positron energyE, a
positronium Ps(nl) with an internal energyE(nl) may be
formed above a threshold Eth(nl)5I 1E(nl)5I
2(e2/4aBn2), whereI is the ionization potential of the tar
get. In fact, each levelE(nl) is split into fine and hyperfine
levels. In particular, eachS state is split into two hyperfine
levels E(ns1,3S), so that the threshold may be written
Eth(ns1,3S). For the ground state, the hyperfine splittin
is D5E(1s 3S)2E(1s 1S)50.841 meV@G(1s 1,3S) @18#.
Note that no spin-dependent operators are included in
Schrödinger equation~14!, so that the hyperfine splitting ha
to be included artificially by shifting the energy scale for t
triplet cross section byD from that for the singlet cross sec
tion.

Equation~15! is known to diverge as@Eth2E#21/2 as the
energyE tends to the thresholdEth from below. This diver-
gence was confirmed, for example, by Van Reeth and H
berston@7# for singlet positron scattering by the hydroge
atom by variational calculations. Ryzhikh and Mitroy@8#
used a momentum-space Lippmann-Schwinger equation
obtained results that converged to a 1–2% level of accur
Both their results and the hyperspherical close-coup
~HSCC! calculations for Eq.~15! by the present authors@5#
agreed very well with the results of Ref.@7#, reproducing the
threshold divergence of Eq.~15! for the singlet case. The
model annihilation rate postulated by Laricchia and Wilk
@19# also shows the divergence behavior, although more
idly as @Eth2E#21.

C. Threshold behavior

Wigner’s law@12# predicts that theLth partial-wave cross
section for Ps(1s) formation behaves as

s̄L
(Ps)5CL

(Ps)~Ge!L11/21~higher2order terms! ~16!

for e.0 near the threshold in the absence of2 iH 8, where
the spin-dependent widthG(1s 1,3S) is denoted simply byG,
and the spin-dependent reduced energy1,3e by e. The
S-wave first-order annihilation cross sections̄0

(an) , which is

the dominant contribution tos̄ (an), behaves as
04271
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(an)5C0

(an)~G/2!~Gueu!21/21const ~17!

for e,0 near the threshold@5,7–10#. This may be derived
from Eq. ~15! by replacingC0 by its Ps(1s) channel func-
tion, which is the only term inC0 that depends strongly one
near the threshold.

We note that the effect of the imaginary potential on t
scattering process is negligible at energiesE that satisfy the
relation uE2Eth(1s 1,3S)u@G(1s 1,3S), or ueu@1, and there-
fore, it follows that

1,3sL.1,3s̄L
(Ps) for e@1,

1,3sL.1,3s̄L
(an) for e!21. ~18!

We note also that no spin effect is included in the Sch¨-
dinger equation~14! for determining1,3s̄L

(Ps). Furthermore,
the first-order approximation~15! is the same for bothS
50 andS51 except for the coefficient of thed function in
Eq. ~4!. Therefore, we have

1sL

3sL

.
1s̄L

(Ps)

3s̄L
(Ps)

51 ~19!

for E2Eth(1s 1,3S)@G(1s 1S), and

1sL

3sL

.
1s̄L

(an)

3s̄L
(an)

5b13 ~20!

for E2Eth(1s 1,3S)!2G(1s 1S). In these equations, the sin
glet and triplet cross sections are to be compared at a c
mon energy value measured from each respective thres
Eth(1s 1,3S). The cross sections summed overL also satisfy
relations similar to Eqs.~19! and ~20!.

The first term in theS-wave Baz’ threshold formula~3!
satisfies a simple relation

1s0~e!
3s0~e!

.b13
1/2, ~21!

if 1C0.3C0, where the singlet and triplet cross sections a
to be compared at a common value ofe defined for each
respective spin. Indeed, the relation1C0.3C0 follows if we
assume that the cross section~3! satisfies Eq.~19! and that
the first term is dominant in Eq.~3!.

Gribakin and Ludlow@9# introduced an imaginary part
2 iG/2 into the Ps(1s) energy in the derivation of the thresh
old formulas~16! and~17!. They found that the first term in
s̄0

(Ps) of Eq. ~16! for e.0 is modified into the first equality in

Eq. ~3! ~without C08), and the first term ins̄0
(an) of Eq. ~17!

for e,0 into the second equality in Eq.~3! ~without C08).
This led them to conclude that the modified annihilati
cross section belowEth connects smoothly to the modifie
positronium-formation cross section aboveEth , thoughC08
was not proved to be common to the two energy regio
Ludlow and Gribakin@10# used the Ps-channel wave fun
tion with a complex wave number in the conventional fo
6-3
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mula ~15! for the annihilation cross section. This also led
Eq. ~3!. This procedure can now be justified by using Eq.~9!,
which follows from the present formulation in terms of th
absorption potential. Naturally, this argument proves thatC08
is indeed common to bothe,0 ande.0.

To study the validity of theS-wave threshold formula~3!
and the 2g-3g relation derived from it, and to study th
behavior of the higher partial-wave cross sections, a rigor
treatment of the Schro¨dinger equation~10! is indispensable.
A preliminary report of an initial attempt on the 2g annihi-
lation in positron scattering by the hydrogen atom,e11H, is
found in Ref. @5#. Further results will be discussed in th
following section.

III. CALCULATIONS AND RESULTS

A. Hyperspherical close-coupling method

Starting from the independent-particle coordinatesr1 for
e1 and r2 for e2 relative to the protonp, we define the
five-dimensional hyperangleV5„tan21(r 2 /r 1), r̂1 , r̂2… and
the hyperradiusr satisfying

r25r 1
21r 2

2 . ~22!

An advantage of these hyperspherical coordinates (r,V),
not enjoyed by (r1 ,r2), is that only one variable out of th
six-dimensional coordinate space runs over to infinity.

Early development@20–22# revealed the usefulness o
adiabatic hyperspherical potentials, or the potential ene
curves drawn as functions of the hyperradiusr, in under-
standing the physics of bound and resonance states bot
sually and numerically in analogy with adiabatic potent
curves of diatomic molecules. A remarkable improvem
was then achieved by taking the nonadiabatic coupling
account, i.e., by solving the close-coupling equations
terms of (r,V), or the HSCC equations. The HSCC meth
has been used extensively and found to be a powerful
for accurate studies of the dynamics of many kinds of thr
body and even four-body systems; see, e.g., Refs.@22–25#.

The convergence of the HSCC method with respect to
number of coupled channels has been found to be m
faster than the conventional close-coupling method with
independent-particle coordinates. This rapid convergenc
due to the HSCC’s efficient account of the correlation effe
betweenr1 and r2, which are partly included already in th
single-channel approximation.

In general, a hyperradiusrc is defined asrc
25McRc

2

1mcr c
2 using a particular set of Jacobi coordinates (Rc ,r c)

and the reduced masses (Mc ,mc) for the motion inRc and in
r c . This rc turns out to be independent of the choice
Jacobi coordinates (Rc ,r c). For the initial arrangement in
e11H scattering, the appropriate Jacobi coordinates
(r1 ,r2), for which rc coincides withr of Eq. ~22!. The
Jacobi coordinates that are good for the arrangement P1p
are the vectorr from the proton to the center of mass of th
positronium, and the electron-positron distance vectorr5r2

2r1. In this case we haverc
252R21(1/2)r 2, which is equal

to Eq. ~22!. Thus, the transition from the arrangemente1
04271
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1H to the arrangement Ps1p can be described in terms of
single reaction coordinater throughout the collision. This is
not the case if the independent-particle coordinates are u
This justifies the use of hyperspherical coordinates (r,V) for
the whole Schro¨dinger equation~10! for the rearrangemen
collision.

The HamiltonianH in Eq. ~10! may be divided into the
kinetic-energy operator inr, the absorption potentia
2 iH 8, and the rest,had ~see Ref.@20# for its explicit form!,
which is adiabatic inr. Thus, we have

H52
1

2 F d

dr2
1

5

r

d

drG1had2 iH 8. ~23!

The adiabatic channel functions$w i% are defined by the
eigenvalue equation

had~V;r!w i~V;r!5Ui~r!w i~V;r!, ~24!

wherer is treated as the adiabatic parameter. The hype
dius r becomes large when either thee1-H or the Ps-p dis-
tance becomes large. Thus, each eigenvalueUi approaches a
bound-state energy of either the hydrogen atom or the p
tronium asr→`.

In the HSCC method, the total wave functionC in the
Schrödinger equation~10! is expanded as

C~r,V!5(
i

r25/2Fi~r!w i~V;r!, ~25!

which leads to coupled radial equations@23#

F2
1

2

d2

dr2
1Ui~r!2EtGFi~r!1(

j
~Vi j 2 iH i j8 !F j~r!50.

~26!

Here, Et5E21/2, and Vi j is the nonadiabatic coupling
stemming from the differential operators on the right-ha
side of Eq.~23!. Equations~26! for the complex functions
$Fi(r)% are solved up to a large value ofr, where the solu-
tions are matched with the asymptotic form expressed
(r1 ,r2) and satisfying the scattering boundary conditions

The usual formulation for rearrangement collisions
terms of independent-particle coordinates leads to coup
integro-differentialequations because of the different va
ables for describing different arrangements. On the ot
hand, Eqs.~26! are coupleddifferentialequations, which are
much easier to solve.

B. Partial-wave annihilation cross sections

In expansion~25!, we retained only those channels co
verging to H(n51,2) or Ps(n51,2) in the asymptotic limit
since the HSCC expansion is known to converge rapidly,
since we are concerned with energiesE close to the threshold
Eth for the channel Ps(1s 1,3S)1p. In this energy region well
below the H(2p) and Ps(2p) thresholds, the total angula
momentumL is equal to that of the incidente1 and to that of
the asymptotic Ps-p motion.
6-4
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Figure 1 shows the whole picture of the singlet (S50)
and triplet (S51! annihilation cross sections1,3s of Eq. ~9!
near the thresholdsEth(1s 1,3S), together with theirS-wave
components1,3s0. The singlet cross section1s rises sharply
close toEth(1s 1S), and then does the triplet cross secti
3s close to Eth(1s 3S), which lies aboveEth(1s 1S) by
D (50.841 meV). As discussed in Sec. II C, the rati
1s/3s and 1s0 /3s0 approachb13 (51.1143103) on the
left of the threshold@see Eq.~20!#, and they approach 1.0 o
the right @see Eq.~19!#. The magnitudes of the sudden b
smooth rise of3s and 1s near the threshold, therefore, als
have a ratio ofb13.

The S-wave contributions1,3s0 to 1,3s are plotted as full
curves in Fig. 2 versus the reduced energye of Eq. ~2!,
whose meaning is different depending on the spinS. In the
energy region across the thresholde50 covered in Fig. 2,

-10 -5 0 5 10
10-8

10-6

10-4

10-2

C
ro
ss

se
ct
io
n
(a
.u
.)

E - Eth(S=1) (10
-5
a.u.)

S=0

S=1

FIG. 1. The singlet (S50) and triplet (S51) annihilation cross
sections1,3s ~full and broken curves! and theirS-wave components
1,3s0 ~dot-dashed and dotted curves! plotted as functions of the
incident positron energyE measured from the thresholdEth(S51)
of the formation of an ortho~triplet!-positronium. The total annihi-
lation cross section for an unpolarized positron beam is calcul
by (1s13 3s)/4.

-10 0 10
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10-5

10-4

10-3

C
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ct
io
n
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.u
.)

 ε

S=0

S=1

S wave

FIG. 2. The near-thresholdS-wave singlet (S50) and triplet
(S51) annihilation cross sections plotted versus the reduced
ergy e of Eq. ~2!. Note that the threshold energyEth and the width
G in definition ~2! differ depending on the spinS. Full curves:1,3s0

calculated including the absorption potential2 iH 8. Dotted curves

for e.0: positronium formation cross section1,3s̄0
(Ps) calculated

without 2 iH 8 in the conventional manner. Broken curves fore

,0: annihilation cross section1,3s̄0
(an) @see Eq.~15!# calculated in

the conventional manner. Circles: Baz’s threshold formula~3! fitted
to the full curves.
04271
the fitting~represented by the circles! of the Baz’ formula~3!
to the full curves is seen to be quite accurate, and the sim
relation ~21! is observed quite well. The annihilation cros

sections 1,3s̄0
(an) ~broken curves! calculated in the conven

tional manner~15! digress from the full curves close to th
thresholdEth and diverge. The positronium formation cro

sections 1,3s̄0
(Ps) ~dotted curves! calculated in the conven

tional manner start to grow fromEth according to the Wigner
law ~16!, and approach the full curves as well as the Baz’ l
~3!.

The three lowest partial-wave cross sections1,3sL for sin-
glet ~full curves! and triplet~broken curves! annihilation are
shown in Fig. 3 in a broader energy region than Fig. 2 ab
the thresholds. The singlet and triplet thresholds are adju
to lie at the same position in Fig. 3. As is evident from t
data in Fig. 2 at e50, the ratio 1s0(E51Eth)/

3s0(E
53Eth) of the S-wave cross sections isb13

1/2, and the ratio
1s0(E)/3s0(E) approaches 1.0 as the energyE increases;
see Eq.~19!. The higher-partial-wave cross sections st
from a constant value that depends onSandL but satisfying
Eq. ~20!, remain constant near the threshold, and gradu
approach the Wigner-type form~16! independent of the spin
S due to the relation~19!. Because of the Wigner law, th
cross sections for the higher partial waves, which are
smaller close to the threshold, eventually dominate over
lower partial waves asE increases.

The partial-wave cross sections1,3sL below the threshold
are presented in Fig. 4. Here, the triplet cross sections~bro-
ken curves! are multiplied by a factorb13, while the singlet
ones~full curves! are not, since the ratio1sL /3sL should
approachb13 well below the thresholdEth . The P- and
D-wave cross sections become almost independent of
spin after this normalization. TheS-wave cross sections1s0
and b13

3s0 are almost the same at low energies, having
broad minimum and then growing nearly as}(Eth

2E)21/2. The annihilation cross sections1s̄0
(an) andb13

3 s̄0
(an)

~dotted curve! calculated using Eq.~15! diverge in this way
as was explained earlier. The singlet cross section1s0 di-
gresses from the dotted curve around 1027 a.u. below the
threshold, and thenb13

3s0 does so around 10210 a.u. below
the threshold, thus avoiding divergence. TheS-wave cross
sections are dominant close to the threshold, but theP wave

le

n-
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sus the incident positron energyE measured from the thresholdEth

for the production of positronium. Note that the thresholdsEth for
the full and broken curves are different byD50.841 meV.
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dominates over theS wave for 0.15 a.u.,E,Eth25.0
31025 a.u.

The validity of Baz’s threshold formula~3! has been
tested by fitting it to the calculatedS-wave annihilation cross
section and by taking the ratio of the fitted to the calcula
value at eachE. This ratio is plotted in Fig. 5 for the single
~full curve! and triplet ~broken curve! cross sections. Fo
both spins, the formula is found to be fairly accurate foruE
2Ethu,1026 a.u.

C. Annihilation in the positronium channel

A remark is due here on the role of the imaginary co
pling potential2 iH i j8 included in Eq.~26!. This potential is
extremely weak compared with the Coulomb potentia
Nevertheless, this coupling persists up to the asymptotic
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FIG. 4. The partial-wave (L50,1,2) singlet~full curves! and
triplet ~broken curves! annihilation cross sections plotted versus t
incident positron energyE measured from the thresholdEth for the
production of positronium. The triplet cross sections are multipl
by a constantb13.1.1143103. The dotted curve is theS-wave

result 1,3s̄0
(an) obtained in the conventional manner@see Eq.~15!#.

For P andD waves, the full and broken curves are indistinguisha
in the figure. Note that the thresholdsEth for the full and broken
curves are different, and therefore, that the actual positron ene
for the singlet and triplet scattering for a common value of
abscissa are different from each other.
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FIG. 5. The accuracy of the fitting of Baz’s formula~3! to the
calculatedS-wave singlet~full curve! and triplet ~broken curve!
annihilation cross sections. The ratio of the fitted Baz’ formula
the calculated results is plotted against the incident positron en
E measured from the thresholdEth for the production of positro-
nium.
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gion of r, affecting the properties of the asymptotic chann
functions. For Ps-p channels, large values ofr correspond to
large Ps-p distancesR, and the integration overV at larger

corresponds to that over (R̂,r ). Therefore, all the matrix el-
ements

Hi j8 5^Ps~ns!1puH8uPs~n8s!1p&V

that couples-state positronium channels, including the dia
onal elements, approach constants asr→` because of the
nonzeros-state wave functionscPs at r 50.

This leads to two significant consequences. First, for
definition of the asymptotically correct channels, the posit
nium states have to be redefined by diagonalizing the c
pling matrix 2 iH 8 at larger, or by taking linear combina-
tions of the wave functionscPs(ns), so that no coupling
potentials may exist asymptotically between any pair of
redefined channels.

Second, each element of the diagonalized coupling ma
2 iH 8 introduces an imaginary part into the positronium e
ergy. This introduces a small imaginary part into the kine
energy of the relative Ps-p motion: K2/45(G/2)(e1 i ). The
wave numberK is complex even fore.0 and may be writ-
ten asK re1 iK im . It immediately follows thatK reK im5G and
that

K re5G1/2@~e211!1/21e#1/2,

K im5G1/2@~e211!1/22e#1/2. ~27!

The asymptotic positronium-channel function

F5cPs~r ! f ~e!exp~ iKr!/r ~r.R! ~28!

outgoing with an amplitudef (e) decreases withR as
exp(2KimR)/R, meaning that it is now a closed chann
even fore.0. Normal closed channels have no influence
the flux conservation. The closed channels associated
Ps(ns), however, cause flux loss through theH8 coupling
with open channels. There is no well-defined Ps(ns) forma-
tion in the present theory even when the collision is pra
cally over before the positronium annihilates.

The behavior of the annihilation cross section forE
.Eth may be examined by inserting Eq.~28! into the wave
function C in Eq. ~9!, the rest ofC being slowly varying
with E close toEth . After the integration overV, theS-wave
cross section is found to be proportional to

Gu f 0u2E`

dr exp~22K imr!5Gu f 0u2/~2K im!1const

5u f 0u2~K re/2!1const, ~29!

except for a term more slowly varying withe. Here,f 0 is the
S-wave amplitude, which is almost independent ofe close to
e50. The integral~29! combined with Eq.~27! reproduces
Baz’s formula~3!. If C is replaced byC0 as in the conven-
tional method, the extremely smallK im„}@Eth2E#1/2

… at en-
ergiesE below and very nearEth makes the cross sectio
extremely large.
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A procedure in the present time-independent appro
that corresponds to tracking the time evolution of the co
sion system would be to study the annihilation functi
1,3P(R;E) defined by carrying out the integration~9! over
the whole space except forR. Alternatively, one may define
the annihilation function1,3P(r;E) in terms of the hyper-
spherical coordinates by

1,3s~E!5E 1,3P~r;E!dr

5
2

v\E r5dr^1,3Cu1,3H8u1,3C&V . ~30!

The first-order annihilation function may be obtained by
placingC in Eq. ~30! by C0 of Eq. ~14!.

The S- and P-wave annihilation functionsPL(r;E) for
singlet collisions at energiesE nearEth are plotted in Figs.
6~a! and 6~b!. Both the results from the wave function ca
culated with and without the inclusion of the absorption p
tential2 iH 8 are compared with each other. The small-r part
of the annihilation functionsPL(r;E) is contributed mainly
by the direct collision channels inC ~or its approximation
C0) in Eq. ~30!, and is nearly independent ofE close toEth .
The decay of the positronium-channel wave function w
the increase ofr, or R, becomes slower and slower asE
approachesEth from below@see Eq.~29!#, and therefore, the
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FIG. 6. The singlet annihilation function1P(r) of Eq. ~30! as a
function of the hyperradiusr. Full curves: with inclusion of the
absorption potential2 iH 8. Dotted curves: without2 iH 8. The
number on each curve is the positron energyE in a.u. measured
from the threshold1Eth for the production of para-Ps(1s). ~a! L
50. The leftmost full and dotted curves, which are almost indis
guishable from each other, are common to all cited energies ex
for 21021 a.u. ~b! L51.
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contribution toPL(r;E) from this channel extends to a re
gion of larger and largerr ~or R). This contribution to the
S-wave cross section depends strongly onE, which is the
main reason for the rapid increase of the threshold form
~3! acrossEth as is seen in Figs. 1 and 2. For theP wave,K im
in Eq. ~29! is just the same as for theS wave, and therefore
ther dependence ofP1(r;E) looks similar toP0(r;E). The
scattering amplitudef 0, however, is to be replaced byf 1 in
Eq. ~29!. Sinceu f 1u2}uE2Ethu at E nearEth , this prevents
the P-wave cross section to grow large nearEth .

Above Eth , the positronium channel is open in the a
sence of the absorption potential2 iH 8, and the positronium
formed in this channel keeps annihilating at any large d
tancesr or R up to infinity for any partial wave; see th
dotted curves in Figs. 6~a! and 6~b!. On the other hand, in the
presence of2 iH 8, this channel is closed, and the annihil
tion functions for this case~full curves! drop eventually, thus
clearly deviating from the dotted curves.

The annihilation functionP(r;E) in Eq. ~30! may be de-
composed into three contributions, namely, that from
direct-collision channels inC, that from the Ps-formation
channels, and the cross terms~or the interference terms! be-
tween the two kinds of channels. This decomposition is
bitrary to some extent since the channels are well-defi
only in the asymptotic regions of the configuration space
the region where the collision partners lie close to each ot
the total wave function may be expanded in terms of a
complete set of basis functions. Nevertheless, it would
interesting to decomposeP(r;E) using the present definition
of channels in terms of the hyperspherical coordinates.

Figure 7 shows the contributions toP(r;E), thus defined,
from direct annihilation~curve H!, positronium formation
~curve Ps!, and the interference between them, atE slightly
aboveEth . At this energy, the direct annihilation has a lar
peak at small values ofr, and after it decreases, annihilatio
via positronium formation starts to contribute and keeps
ing so until very large values ofr. A significant interference
term is clearly seen at intermediate values ofr. Its absolute
magnitude depends on the particular definition of the ch
nels, but Fig. 7 illustrates at least the inseparability of
two different mechanisms of annihilation at energiesE close
to Eth .
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FIG. 7. The1S-wave annihilation function1P(r) for scattering
at an energy of 1026 a.u. above the positronium formation thres
old Eth , decomposed into the contributions from the direct chan
~H!, positronium formation channel~Ps!, and the interference be
tween the two.
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IV. SUMMARY

In conclusion, the introduction of an imaginary, abso
tion potential into the Schro¨dinger equation has allowed
natural description of the QED effect of pair annihilation
positronium and in positron scattering by atoms. This form
lation is equivalent to the allowance for the finite lifetime
positronium formed either virtually or actually in the pos
tron impact process. Annihilation in the direct collision a
indirect annihilation via the formation of positronium a
thus treated theoretically on equal footing. The direct mec
nism is dominant well below the threshold energyEth for
positronium formation, and well above it the indirect one
dominant. Close toEth , however, the two mechanisms a
inseparable, and the interference between them is found t
strong. Calculations for the systeme11H based on this for-
mulation have reproduced the threshold formula for the p
duction of unstable species derived by Baz’. The expl
allowance for the finite lifetime of positronium washes o
the unphysical divergence of the annihilation cross sec
following from the conventional theory, in which the pos
tronium is assumed as completely stable. Some simple r
tions between the cross sections for the singlet and tri
pair annihilation have been derived from the present form
lation and the Baz’ formula.
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The recent development in the experimental techniq
for the elementary processes of positron-atom/molecule
lisions is remarkable. Measurements with an energy res
tion of the positron beam of;25 meV are now possible
@26#. With the expectation of further progress in the ne
future, rich physics in the dynamics of these elementary p
cesses deserves unraveling also theoretically, as in
present work. The annihilation process may be tracked as
time elapses during the collision if one solves the tim
dependent Schro¨dinger equation with wave-packet propag
tion, as is increasingly popular in atomic and molecular p
cesses in recent years. A wave packet, however, consis
components with a band of kinetic energies, and has a li
tation of easily blurring or washing out and missing narro
resonances and sharp threshold structures such as the
treated in this paper.
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