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Calculation of the interspeciess-wave scattering length in an ultracold Na-Rb vapor
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We report the calculation of the interspecies scattering length for the sodium-rubidium~Na-Rb! system. We
present improved hybrid potentials for the singletX1S 1 and tripleta3S1 ground states of the NaRb molecule,
and calculate the singlet and triplet scattering lengthsas andat for the isotopomers23Na87Rb and23Na85Rb.
Using these values, we assess the prospects for producing a stable two-species Bose-Einstein condensate in the
Na-Rb system.
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I. INTRODUCTION

The s-wave scattering lengtha plays a central role in the
description of atom-atom collisions at ultralow temperatu
(T!1 mK). In this regime, the cross section for elastic c
lisions, sel;pa2, and the cross section for inelastic spi
exchange collisions,sex;p(at2as)

2, are both expressed i
terms ofa @1#. The scattering length is also a critically im
portant parameter in the physics of Bose-Einstein cond
sates~BECs!. For a bosonic atomic speciesi, a BEC is stable
only if ai.0. In addition, efficient evaporative cooling de
mands thatsel@sex @2#. A priori calculations ofa are thus
of fundamental interest, and the quest for BEC in alka
metal atoms has spurred on efforts to calculate the scatte
length in many atomic species.

A majority of the work on scattering lengths has conce
trated on interactions between like alkali-metal atoms. Ho
ever, the recent production of Bose-Fermi mixtures
6Li- 23Na @3#, 6Li- 7Li @4,5#, and 40K-87Rb @6# and dual-
species BEC in41K-87Rb @7# has renewed interest in binar
mixtures of ultracold gases. In these systems, the interspe
scattering lengtha12 is the basic quantity parametrizing th
interactions between component atomic species.a12 deter-
mines the efficiency of sympathetic coolingenroute to the
formation of quantum degenerate mixtures, and in the c
of two-species BECs~TBECs!, a12 determines the stability
and miscibility of these mixtures@8#. However, relatively
few calculations of interspecies scattering lengths e
@9,10#. This is due, in part, to the incomplete characterizat
of diatomic interaction potentials for many pairs of alka
metal atoms.

In this paper we calculate the scattering lengths for
Na-Rb system. We construct the NaRb potential from a co
bination of spectroscopic data and precise long-range in
action parameters, and use a simple method for calcula
the singlet and triplet scattering lengths for the isotopom
23Na87Rb and23Na85Rb. The Na-Rb system is interesting
part because its an obvious candidate for TBEC. Both of
component species have been condensed and the conde
have been studied in detail@11#. The Na-Rb TBEC has bee
treated theoretically, and its properties are sensitive to
value of the interspecies scattering lengthaNa2Rb @8#.

This paper is divided into four sections. In Sec. II, w
discuss methods for calculatingaNa2Rb , and address the
1050-2947/2003/68~4!/042708~6!/$20.00 68 0427
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source of errors involved in these calculations. In Sec. III,
introduce two hybrid potentials for the NaRb molecule, a
contrast our potentials with previous results. In Sec. IV,
present our calculations foraNa2Rb , and discuss the feasi
bility of producing a TBEC in the Na-Rb system.

II. SCATTERING LENGTH

If the potentialV(r ) is known for allr, then the scattering
lengtha can be calculated@12#. The procedure is to numeri
cally integrate the radial Schrodinger equation for low co
sion energies to large values ofr. At large r the numerical
wave functionu(r ) is ‘‘matched’’ to an asymptotic form
x(r ) by requiring that (]/]r )ln u(r)5(]/]r)ln x(r) at the
match pointr 5r m . The asymptotic wave function can b
written as

x l 50~r !;
1

k
@sin~kr !1tan~do!cos~kr !#, ~1!

wherek is the atomic wave vector anddo is thes-wave phase
shift. In the limit thatk→0, the wave function asymptoti
cally approaches a straight line asr→`. The scattering
length is given by ther intercept of this line@13#, and can be
formally defined in terms of thes-wave phase shift as

a52 lim
k→0

tan~do!

k
. ~2!

For low collision energies,r m should be large to ensure tha
the numerical wave function attains its asymptotic behav
The total integration time can be reduced by calculating
corrections to the asymptotic wave function at smaller val
of the match pointr 5r m . For example, Marinescu ha
shown@14# that the wave function for larger may be written
asx(r )5aea(r )1beb(r ), where the functionsea,b(r ) are
solutions to the differential equations ea,b9 (r )
5@2mV(r )/\#ea,b(r ) subject to the boundary condition
ea(r )→r and eb(r )→1 as r→`. This equation cannot be
solved exactly. However, if an analytic expression for t
long-range potential is known, then the functionsea,b(r )
may be estimated to arbitrary precision using a method
successive approximations. The scattering length is t
©2003 The American Physical Society08-1
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given by a52b/a, which can be found by applying th
usual continuity condition atr 5r m .

The uncertainty in the calculated value ofa depends upon
the reliability of the potentialV(r ). Gribakin and Flambaum
@15# have shown that for diatomic potentials which fall off
long range as2C6 /r 6, the scattering length is given by

a5ao@12tan$F~E50!2p/8%#, ~3!

where ao is a‘‘mean scattering length,’’ andF(E) is the
semiclassical phase, defined as

F~E!5E
r inner

` A2m~E2V~r !!

\2
dr, ~4!

wherer inner is the inner classical turning point of the pote
tial at energyE and m is the reduced mass of the collidin
atoms. As can be seen from Eq.~3!, the scattering length is
infinite if F(E50)5(5/81n)p, where (n51,2,3, . . . ).
This situation occurs if thenth vibrational state of the poten
tial V(r ) is barely bound atE50. In general,V(r ) will not
admit a barely bound state. However, variations of the
tential within its estimated uncertainties will shift the ene
gies of its bound states, and states lying closest to disso
tion experience the largest shifts. A bound state may eve
introduced or removed from the well, depending on the s
of the potential shift and the proximity of a bound or virtu
level to the dissociation energy. As states are added or
moved from the well, the scattering length passes thro
6`. Therefore, if the interatomic potential is not know
well enough to predict whether or not a barely bound st
exists, thena cannot be specified within finite bounds.

Because of the extreme sensitivity ofa to the binding
energy of the highest vibrational state of the interatomic
tential V(r ), the most precise calculations ofa in alkali-
metal atoms typically rely on the spectroscopy of bou
states near dissociation. Two-color photoassociation or
man spectroscopy is used to resolve these lines to high
cision @16#. In the absence of near-dissociation spectrosco
the scattering length may still be calculated, but the accur
and precision of such a calculation is limited by the accur
and precision of the interatomic potentialV(r ). In the case
of alkali-metal dimers, spectroscopy is sparse and n
dissociation spectroscopy is nonexistent. However, the
tential V(r ) may still be ‘‘assembled’’ from RKR~Rydberg-
Klein-Rees! @17# data and well-known analytic expressio
for short- and long-range potentials to create a ‘‘hybrid’’ p
tential valid for all r. In assigning error bars toa, care must
be taken to ensure that variations of the hybrid poten
within its estimated uncertainties do not introduce or remo
bound states from the well. For example, uncertainties in
C6 coefficient of NaK allowed for additional bound states
its hybrid potential, and frustrated attempts to determine
scattering length for some isotopomers@9#. Fortunately, this
is not the case for NaRb, as shown below.
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III. NaRb POTENTIALS

Compared to many alkali-metal dimers, the ground sta
of the NaRb molecule are relatively well known. Rovibr
tional states to within 5% of dissociation have been obser
in both the tripleta3S1 @18# and singletX1S 1 potential
wells @19,20#. The rotationless interatomic potentialsVs(r )
and Vt(r ), corresponding to theX1S 1 and a3S1 states,
respectively, have been determined through RKR analy
and a direct fit to the singlet spectrum@20# using a modified
Lennard-Jones~MLJ! @21# parametrization has also been pe
formed. Ab initio ground-state potential curves for NaR
have been calculated@22#. However, these curves are n
very accurate, so we do not use them in constructing
interatomic potentials.

At large r, the NaRb interatomic potential is accurate
represented by a sum of two independent contributions,
exchange and dispersion energies. The dispersion ener
given by a well-known expansion in powers ofr 21:

Vdisp~r !52S C6

r 6
1

C8

r 8
1

C10

r 10D . ~5!

The coefficientsCn may be calculated from a knowledge o
atomic polarizabilities@23#. The exchange interaction is ca
culated using the surface integral method of Smirnov a
Chibisov @24#, which yields

Vex~r !56J~A,B,a,b,r !r (2/a)1(2/b)2[1/(a1b)] 21e2(a1b)r ,
~6!

wherea2/2 andb2/2 are the ionization energies~in atomic
units! of each atom, andr is assumed to be in units of Boh
radii. The functionJ(A,B,a,b,r ) can be expanded in a
power series(n(Jnr n(a2b)n)/n! whose coefficientsJn are
expressed as integrals that must be solved numerically.
complete long-range potential is then given by

VLR~r !5Vdisp~r !6Vex~r !. ~7!

The exchange energy is positive~negative! for the triplet
~singlet! state. Asr→`, the long-range interaction potentia
is dominated by the well-known van der Waals potenti
2C6 /r 6. The exchange interaction is expected to beco
important inside the LeRoy radiusRLeRoy @25#, beyond
which the potential is well approximated by the dispersi
energy alone. For NaRb,RLeRoy;11 Å.

The NaRb molecular potentials can be modeled
smoothly joining RKR data to the long-range interaction p
tentials. Zemke and Stwalley~Z-S! have constructed suc
hybrid potentials for thea3S1 andX1S 1 states of the NaRb
molecule@26#. More complete spectra of the NaRb singl
state@20# and a more precise estimate of theC6 coefficient
for NaRb @27# have since become available, allowing us
construct new hybrid potentials for both the NaRbX1S1 and
a3S1 states. Forr ,11 Å, we use the recent MLJ potentia
to model theX1S1 state. Our potential for thea3S1 state is
identical to the Z-S triplet potential forr ,13.5788 Å. Our
long-range potential differs from that used by Z-S in a nu
ber of ways. We use theC8 andC10 dispersion coefficients
8-2
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CALCULATION OF THE INTERSPECIESs-WAVE . . . PHYSICAL REVIEW A 68, 042708 ~2003!
recommended by Marinescu and Sadeghpour@28#, but
choose forC6 the highly precise value calculated by Derev
anko et al. @27#. For the exchange energy, we used the h
eronuclear expression of Smirnov and Chibisov given by
~6!. Both the singlet MLJ and triplet RKR potential curve
are joined smoothly to our long-range potential as given
Eq. ~7!. Our complete long-range potential is given in Tab
I.

IV. RESULTS AND DISCUSSION

A. Na-Rb scattering lengths

To calculate the singlet or triplet scattering lengths,
choose the hybrid potentialVs(r ) or Vt(r ) and integrate the
radial Schrodinger equation atE50 from r inner to the match
point r m using the Numerov algorithm@31#. The reduced
massm is given byMNaMRb /(MNa1MRb), whereM labels
the atomic mass of either23Na, 85Rb, or 87Rb. We expect
the isotopic correction to the internuclear potentialV(r ) to
be negligible@20#. Following Ref.@14#, the scattering length
is given by

a5
uea82u8ea

ueb82u8eb

ur 5r m
, ~8!

whereu(r ) is the numerically integrated wave function, an
the functionsea,b(r ) are determined from the long-rang
potential, as discussed in Sec. II. The primes denote der
tives with respect tor. We found that a fourth-order approx
mation toea(r ) and eb(r ) guaranteed convergence to a r
liable value ofa at a match pointr m5100 Å. Our results are
summarized in Table II.

Because the scattering length is very sensitive to the
tails of the interatomic potentialV(r ), it is important to en-

TABLE I. Our chosen values for the parameters of the Na
long-range potentialVLR(r ).

Parameter Value

C6
a 1.2933107

C8
b 3.48393108

C10
b 1.155231010

aNa
c 0.61458

bRb
c 0.55409

ANa
d 0.76752

BRb
d 0.56945

J0
e 1.419731022

J1
e 6.096331024

J2
e 1.953731023

aC6 given in units of cm21 Å6. See Ref.@27#.
bC8 andC10 given in units of cm21 Å8 and cm21 Å10, respectively.
See Ref.@28#.
cThe quantities are expressed in atomic units. See Ref.@29#.
dThe constantsA andB are related to the size of the wave functio
of each atom in the region of interaction. See Ref.@30#.
eWe found that the exchange energy was adequately represent
our region of interest by the first three terms of the expansionVex

;(n(Jnr n(a2b)n)/n!. Here we use atomic units. See Ref.@24#.
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sure that our calculated values ofa are stable with respect to
changes inVs,t(r ) within their known experimental or theo
retical uncertainties. These include uncertainties in the va
of the dissociation energyDe , the inner and outer turning
points of the RKR potentials, the binding energy of the o
served vibrational states, and the coefficients of the lo
range parameters. We estimate our errors by calculating
change in the semiclassical phaseF(E50) due to the error
in each parameter of our potential. These ‘‘phase errors’’Df
are then summed in quadrature to give a total phase e
Df total . We convert this value into a scattering length err
using Eq.~3!.

For the triplet state, the error ina was estimated with
respect to changes inDe , C6, and the difference betwee
RKR turning points (r inner2r outer). In the case of the sin-
glet state, the MLJ parametrization allowed us to vary
parameters simultaneously in a statistically meaningful w
We treated the MLJ parameters as random variables wi
well-defined mean and standard deviation. The phaseF(E
50) was then calculated for a 100 ‘‘random’’ potentials. T
phase error was determined by examining the distribution
phases. This phase error was used to calculate the err
as .

As shown in Table II, our error bars are small. This is,
some ways, a fortuitous result. Had a bound or virtual st
been closer to dissociation, variations in the potential m
have caused the phase to pass through a region whea
→`. Because the scattering lengths are relatively sm
they are more stable with respect to changes in the co
sponding potential. In addition, our hybrid potentials are r
sonably well constrained. This is due, in part, to the obs
vation of bound states relatively close to dissociation in
NaRb triplet well, which enabled Z-S to reduce the unc
tainty in the dissociation energy toD(De)560.1 cm21, and
the very precise calculation of theC6 coefficient by Derevi-
anko @27#.

One interesting consequence of the new singlet poten
is the appearance of an additional bound state. We found
our complete potential for theX1S 1 state supported 83
bound states, whereas the corresponding Z-S potential
supported 82 bound states. This can be understood by ex
ining Fig. 1, which shows the energy difference between
Z-S singlet and MLJ potentials for 6 Å,r ,16 Å. Because
the MLJ potential is everywhere deeper, the wave vec
k(E50) will be larger for allr. In semiclassical terms, th
wave function will build up more phaseF in this potential.
In our case,FMLJ2FZ2S.p, so that another bound stat
appears in the MLJ molecular well. The energy differenc
between the two curves is due primarily to errors in the
trapolation procedure used by Z-S to connect the short-
long-range components of their hybrid singlet-state poten

b

in

TABLE II. The scattering lengths found from our hybrid pote
tials for 23Na85Rb and23Na87Rb.

Isotopomer aS aT

23Na85Rb 167230
150 5929

112

23Na87Rb 5523
13 5126

19
8-3
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B. Two-species Na-Rb BEC

Having calculated the Na-Rb scattering lengths, we n
consider the properties of a mixture of Na and Rb cond
sates. The interactions in a Na-Rb TBEC are parametrize
three scattering lengths:aNa , aRb , andaNa2Rb . The values
of aRb andaNa are known to high precision, and are given
Table III. We consider a Na-Rb mixture in which the N
atoms are in the stateuFNa ,mNa&, and the Rb atoms are i
the stateuFRb ,mRb&, whereF is the total angular momentum
of the atom andm is its projection on the quantization axi
We represent the two-atom state by the k
uFNa ,mNa ;FRb ,mRb&. To calculate the scattering lengths w
use the low-energy elastic approximation@34,35#, which as-
sumes that elastic collisions dominate the total cross sec
for collisions. This approximation gives for the scatteri
lengths

a5asPs1atPt , ~9!

wherePs andPt are the probabilities of the atoms being in
singlet or triplet state, respectively. To calculate the pr
abilities Ps and Pt , we project the state
uFNa ,mNa ;FRb ,mRb& onto the statesuS,mS ;I ,mI&, whereS
and I refer to the total electronic and nuclear spin of t
two-atom system, respectively, whilemS,I are their projec-
tions onto the quantization axis. This basis is useful for ch
acterizing the system at smaller internuclear distances w
the exchange energy dominates. In this region,FNa andFRb
are no longer ‘‘good’’ quantum numbers, and the singlet a
triplet states are labeled byS50,1, respectively.

To calculate the projections CS,mS ,I ,mI

FNa ,mNa ,FRb ,mRb

5^S,mS ;I ,mI uFNa ,mNa ;FRb ,mRb&, we perform the

FIG. 1. A plot of the difference between the Z-S and M
X1S 1 potentials .

TABLE III. Recently determined scattering lengths for23Na,
85Rb, and87Rb.

Species as at

23Na a 19.162.1 65.360.9
85Rb b 27952290

1420 238863
87Rb b 90.460.2 98.9860.04

aSee Ref.@32#.
bSee Ref.@33#.
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angular-momentum recoupling of the four quantum numb
SNa , I Na , SRb , and I Rb by making use of the Wigner 9-j
symbols and standard Clebsch-Gordan algebra. We ca
lated the complete recoupling matricesUSI2FF for both
23Na85Rb and 23Na87Rb, and extracted the probabilitiesPs
and Pt for all input channelsuFNa ,mNa ;FRb ,mRb&. The
scattering length for an arbitrary input channel is then giv
by Eq. ~9!.

Knowledge ofa enables us to calculate the cross sect
for elastic collisions,sel54pa2. Elastic collisions mediate
the rethermalization of atoms during evaporative cooling a
sympathetic cooling. Furthermore, knowledge ofas and at
allows us to characterize the inelastic losses in the syst
The dominant two-body mechanism for the loss of ato
from a trap is spin-exchange collisions. In these types
collision, the internal spin states of one or both of the ato
changes. In the case of magnetically trapped samples,
collisions can cause atoms to be ejected from the mixture
sending them into nontrappable spin states. More gener
the atoms may be ejected if the spin reorientation energ
converted to kinetic energies greater than the depth of
~magnetic or optical! potential confining the mixture. In the
elastic approximation we can write the cross section for s
inelastic processes as@35#

sex5Mi f p~at2as!
2, ~10!

whereMi f is a factor that depends on the asymptotic hyp
fine states involved in the collision. Letting primes deno
the asymptotic output channel, we have

Mi f 5F (
mS ,I ,mI

~CS50CS508 2CS51CS518 !G2

, ~11!

whereC is the projection coefficient defined above, and t
indices have been suppressed.

The achievement of a miscible two-component BE
places a number of constraints on the three relevant sca
ing lengths. Efficient sympathetic cooling requires a lar
magnitude of aNa2Rb . Collisional stability against spin-
exchange collisions requires small values ofsex , which im-
plies that the difference betweenas andat be small. Dynami-
cal stability of the individual BECs requiresaNa.0 and
aRb.0. In the Thomas-Fermi approximation, the criteria f
stability implies the existence of a critical value o
uaNa2Rbu5ac above which the two-species condensate c
not coexist. The criteria is given byuaNa2Rbu<ac

5gAaNaaRb, whereg5AMNaMRb/(MNa1MRb) @36#. For
aNa2Rb<2ac the attraction between the condensates ov
whelms the repulsive interaction within each condensate
they collapse, while foraNa2Rb>ac the mutual repulsion of
the two condensates is too great for them to overlap at a

The single-species scattering lengths are positive for b
23Na-23Na and 87Rb-87Rb collisions, which allows for
single-species BEC in either atomic species. Using Eq.~9!
and the scattering lengths given in Tables II and III, we c
culateac for all asymptotic states in a23Na-87Rb mixture.
The near equality ofas and at implies thatsel will be ap-
proximately the same for all states, and thatsex will be
8-4
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small. Therefore interspecies elastic collisions will domin
inelastic spin-exchange collisions. Using the mean values
the triplet and singlet scattering lengths given in Table II,
find that for all asymptotic two-atom states,a.ac . Taking
into account the known uncertainties in the various scatte
lengths, we find that the inequalitya.ac still holds. We
therefore conclude that a stable, miscible TBEC in
23Na-87Rb mixture is not possible.

Next, we consider the mixture23Na-85Rb. This is an in-
teresting case, since BEC has only been observed in85Rb by
utilizing a Feshbach resonance to tune the scattering le
of the uF52,mF522& state@37#. To simplify our analysis,
we eliminate from consideration those states for which
85Rb single-species scattering length is negative. Of the
maining states, we choose states that are lossless with re
to both homo- and heteronuclear spin-exchange collisio
Because of the large positive singlet scattering length
85Rb, there is a large variation inael from state to state. If
we use the mean values for the interspecies scattering len
given in Table II, we again find no asymptotic states th
satisfy the condition for TBEC stability. However, unlike th
case of23Na-87Rb, the inequalitya,ac is satisfied for nine
of the two-atom states within the bounds of the uncertain
of the various scattering lengths. Of these states, only
state uFNa ,mNa ;FRb ,mRb&5u1,21;2,21& is magnetically
trappable in the weak-field limit.
od
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V. CONCLUSIONS

We have derived hybrid potentials for theX1S 1 and
a3S1 states of the NaRb molecule. We compare them
other recently derived potentials, and we discuss why
potentials are preferred. We have calculated the singlet
triplet scattering lengths from these potentials for bo
23Na85Rb and 23Na87Rb. Using the elastic approximation
we have calculated the scattering length for all two-at
asymptotic hyperfine states for both isotopomers. The cr
sections for elastic and inelastic spin-exchange collisions
be found using these values. Applying the Thomas-Fe
approximation criterion for TBEC stability, we find no two
atom asymptotic states for which a NaRb TBEC is stab
Further experimental studies of ultracold Na-Rb vapors,
cluding efforts to produce a TBEC in the NaRb system, w
help refine our knowledge of the interatomic potentials a
test these conclusions.
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