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Calculation of the interspeciess-wave scattering length in an ultracold Na-Rb vapor
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We report the calculation of the interspecies scattering length for the sodium-rubiNesRb system. We
present improved hybrid potentials for the singlél * and tripleta®S * ground states of the NaRb molecule,
and calculate the singlet and triplet scattering lengthanda, for the isotopomergNa®’Rb and>Na*Rb.
Using these values, we assess the prospects for producing a stable two-species Bose-Einstein condensate in the
Na-Rb system.
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[. INTRODUCTION source of errors involved in these calculations. In Sec. I, we
introduce two hybrid potentials for the NaRb molecule, and
The sswave scattering length plays a central role in the contrast our potentials with previous results. In Sec. IV, we
description of atom-atom collisions at ultralow temperaturegpresent our calculations fay,_rp, and discuss the feasi-
(T<1 mK). In this regime, the cross section for elastic col-bility of producing a TBEC in the Na-Rb system.
lisions, oo~ wa?, and the cross section for inelastic spin-
exchange collisionsre,~ Tr_(at—as)z, are both exp.r_essed' in Il. SCATTERING LENGTH
terms ofa [1]. The scattering length is also a critically im-
portant parameter in the physics of Bose-Einstein conden- [f the potentialV(r) is known for allr, then the scattering
sated BECS. For a bosonic atomic speciesa BEC is stable lengtha can be calculateffL2]. The procedure is to numeri-
only if 8>0. In addition, efficient evaporative cooling de- cally integrate the radial Schrodinger equation for low colli-
mands thaire> ooy [2]. A priori calculations ofa are thus ~ sion energies to large values ofAt large r the numerical
of fundamental interest, and the quest for BEC in alkali-wave functionu(r) is “matched” to an asymptotic form
metal atoms has spurred on efforts to calculate the scattering(r) by requiring that ¢/dr)Inu(r)=(a/ar)in x(r) at the
length in many atomic species. match pointr=r,,. The asymptotic wave function can be
A majority of the work on scattering lengths has concen-written as
trated on interactions between like alkali-metal atoms. How-
ever, the recent production of Bose-Fermi mixtures in 1
6Li-23Na [3], °Li-’Li [4,5], and *°K-8’Rb [6] and dual- Xi=o(r)~ [sin(kr) +tan( ;) cogkr)], 1
species BEC irf'K-8’Rb [7] has renewed interest in binary

mixtures of ultracold gases. In these systems, the interspeciggerek is the atomic wave vector angj is thes-wave phase
scattering lengtfa,, is the basic quantity parametrizing the shift. In the limit thatk—0, the wave function asymptoti-
interactions between component atomic specégs.deter-  cally approaches a straight line as-c. The scattering
mines the efficiency of sympathetic coolirgrouteto the  |ength is given by the intercept of this lind13], and can be

formation of quantum degenerate mixtures, and in the casgrmally defined in terms of the-wave phase shift as
of two-species BEC$TBECS, a;, determines the stability

and miscibility of these mixture§8]. However, relatively tan( 5,)

few calculations of interspecies scattering lengths exist a=—1lim K 2
[9,10]. This is due, in part, to the incomplete characterization k=0

of diatomic interaction potentials for many pairs of alkali-

metal atoms. For low collision energies;,,, should be large to ensure that

In this paper we calculate the scattering lengths for théhe numerical wave function attains its asymptotic behavior.
Na-Rb system. We construct the NaRb potential from a comThe total integration time can be reduced by calculating the
bination of spectroscopic data and precise long-range inte€orrections to the asymptotic wave function at smaller values
action parameters, and use a simple method for calculatingf the match pointr=r,. For example, Marinescu has
the singlet and triplet scattering lengths for the isotopomershown[14] that the wave function for largemay be written
2Na®’Rb and®Na®®Rb. The Na-Rb system is interesting in @s x(r) = ae€,(r) + Beg(r), where the functiong, 4(r) are
part because its an obvious candidate for TBEC. Both of theolutions  to  the differential  equations €, 4(r)
component species have been condensed and the condensat¢@uV(r)/%]e, s(r) subject to the boundary conditions
have been studied in det4ill1]. The Na-Rb TBEC has been €,(r)—r andeg(r)—1 asr—c. This equation cannot be
treated theoretically, and its properties are sensitive to theolved exactly. However, if an analytic expression for the
value of the interspecies scattering length,_ rp, [8]- long-range potential is known, then the functioags s(r)

This paper is divided into four sections. In Sec. Il, we may be estimated to arbitrary precision using a method of
discuss methods for calculatingy,_g,, and address the successive approximations. The scattering length is then
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given by a=— B/, which can be found by applying the . NaRb POTENTIALS

usual continuity condition at=ry,. Compared to many alkali-metal dimers, the ground states

The uncertainty in the calculated valuezotiepends upon of the NaRb molecule are relatively well known. Rovibra-

Fllg]rﬁgsglIsltk)(os;rfr;ﬁaﬁgerndt:gygr?iéGp(r)Itbe arlnlf[:glgr\;\?h:f:l?glljla;f;n at tional states to within 5% of dissociation have been observed
long range as- C/r®, the scattering length is given by in both the tripleta®> ™ [18] and singletX'S, * potential

wells [19,20. The rotationless interatomic potentialg(r)
and V,(r), corresponding to th&'¥ * and a®y " states,
a=a,[1—tan{®(E=0)— =/8}], (3)  Trespectively, have been determined through RKR analysis,

and a direct fit to the singlet spectry@0] using a modified
Lennard-Jone@MLJ) [21] parametrization has also been per-

where a, is a“mean scattering length,” an@(E) is the  formed. Ab initio ground-state potential curves for NaRb

semiclassical phase, defined as have been calculatef?2]. However, these curves are not

very accurate, so we do not use them in constructing our

interatomic potentials.

= 2u(E-V(1)) At large r, the NaRb interatomic potential is accurately
(I>(E)=f —zdr, (4 represented by a sum of two independent contributions, the
Finner h exchange and dispersion energies. The dispersion energy is

given by a well-known expansion in powers of:

wherer;, e, IS the inner classical turning point of the poten- Ce Cs Cio

tial at energyE and w is the reduced mass of the colliding Vaisp(F) = —(—6+ -7 W) ) (5)
atoms. As can be seen from E®), the scattering length is r r r

infinite if ®(E=0)=(5/8+n)m, where f=1,2,3...).
This situation occurs if thath vibrational state of the poten-
tial V(r) is barely bound aE=0. In general/(r) will not

The coefficientsC,, may be calculated from a knowledge of
atomic polarizabilitie§23]. The exchange interaction is cal-

admit a barely bound state. However, variations of the poculated using the surface integral method of Smirnov and

tential within its estimated uncertainties will shift the ener- CNibisov[24], which yields

gies of its bound states, and states lying closest to dissociav ()= +J(A,B,a, B,r)r )+ 2I8)~[U(a+ B)] - 1o~ (a+ p)r

tion experience the largest shifts. A bound state may even be ¥ U (é)
introduced or removed from the well, depending on the size

of the potential shift and the proximity of a bound or virtual where «2/2 and 82/2 are the ionization energiésm atomic
level to the dissociation energy. As states are added or remijts) of each atom, and is assumed to be in units of Bohr
moved from the well, the scattering length passes througfagii. The functionJ(A,B,a,3,r) can be expanded in a
+o. Therefore, if the interatomic potential is not known power seriesS ,(J,r"(a— 8)")/n! whose coefficients,, are

well enough to predict whether or not a barely bound statexpressed as integrals that must be solved numerically. The

exists, thera cannot be specified within finite bounds. complete long-range potential is then given by
Because of the extreme sensitivity afto the binding
energy of the highest vibrational state of the interatomic po- VLR(IN) = Vyisp(N) = Vey(T). (7)

tential V(r), the most precise calculations afin alkali-

metal atoms typically rely on the spectroscopy of bound The exchange energy is positieegative for the triplet
states near dissociation. Two-color photoassociation or Résingled state. Asr—, the long-range interaction potential
man spectroscopy is used to resolve these lines to high prés dominated by the well-known van der Waals potential
cision[16]. In the absence of near-dissociation spectroscopy;- Cs/r®. The exchange interaction is expected to become
the scattering length may still be calculated, but the accuracymportant inside the LeRoy radiuR croy [25], beyond
and precision of such a calculation is limited by the accuracyhich the potential is well approximated by the dispersion
and precision of the interatomic potenth(r). In the case energy alone. For NaRIR croy~11 A.

of alkali-metal dimers, spectroscopy is sparse and near- The NaRb molecular potentials can be modeled by
dissociation spectroscopy is nonexistent. However, the posmoothly joining RKR data to the long-range interaction po-
tential V(r) may still be “assembled” from RKRRydberg- tentials. Zemke and StwallefZ-S) have constructed such
Klein-Rees [17] data and well-known analytic expressions hybrid potentials for th@3> * andX'S * states of the NaRb
for short- and long-range potentials to create a “hybrid” po- molecule[26]. More complete spectra of the NaRb singlet
tential valid for allr. In assigning error bars ta, care must state[20] and a more precise estimate of tBg coefficient

be taken to ensure that variations of the hybrid potentiafor NaRb[27] have since become available, allowing us to
within its estimated uncertainties do not introduce or removeconstruct new hybrid potentials for both the NaRE: * and
bound states from the well. For example, uncertainties in tha®> * states. For <11 A, we use the recent MLJ potential
C, coefficient of NaK allowed for additional bound states in to model theX'S * state. Our potential for tha® * state is

its hybrid potential, and frustrated attempts to determine thédentical to the Z-S triplet potential far<13.5788 A. Our
scattering length for some isotopomé®d. Fortunately, this long-range potential differs from that used by Z-S in a num-
is not the case for NaRb, as shown below. ber of ways. We use th€g and C,, dispersion coefficients
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TABLE I. Our chosen values for the parameters of the NaRb TABLE Il. The scattering lengths found from our hybrid poten-

long-range potentiaV, (r). tials for 2Na®®Rb and**Na®'Rb.
Parameter Value Isotopomer ag ar
Ce? 1.293x 10 23Na®*Rb 167°35 59" 32
CgP 3.4839%< 10° 2NaRb 553 5172
Cio® 1.1552¢ 1010
ang© 0.61458

sure that our calculated valuesatre stable with respect to

Brb© 0.55409 ) o . ;

Ay © 076752 chgnges |rVSYt(.r).W|th|n the|r known expenrlnelntall or theo-

B, d 0.56945 retical uncertgm-tles. These mcludg uncertainties in the.value
JRbe 141.97>< 10-2 of the dissociation energl., the inner and outer turning

Joe 6'0963>< 10-4 points of the RKR potentials, the binding energy of the ob-

Jle 1.9537>< 108 served vibrational states, and the coefficients of the long-
2 .

range parameters. We estimate our errors by calculating the
change in the semiclassical phaBéE=0) due to the error

in each parameter of our potential. These “phase errdrg”

are then summed in quadrature to give a total phase error
A ¢ioral - We convert this value into a scattering length error
using Eq.(3).

For the triplet state, the error ia was estimated with
respect to changes iD., Cg, and the difference between
RKR turning points €inner—router)- IN the case of the sin-
glet state, the MLJ parametrization allowed us to vary all
parameters simultaneously in a statistically meaningful way.
recommended by Marinescu and Sadeghpf2@], but We treated the MLJ parameters as random variables with a
choose foICg the highly precise value calculated by Derevi- well-defined mean and standard deviation. The phb§éE
ankoet al. [27]. For the exchange energy, we used the het=0) was then calculated for a 100 “random” potentials. The
eronuclear expression of Smirnov and Chibisov given by Eqphase error was determined by examining the distribution of
(6). Both the singlet MLJ and triplet RKR potential curves phases. This phase error was used to calculate the error in
are joined smoothly to our long-range potential as given bya.

Eq. (7). Our complete long-range potential is given in Table As shown in Table I, our error bars are small. This is, in
l. some ways, a fortuitous result. Had a bound or virtual state
been closer to dissociation, variations in the potential may

IV. RESULTS AND DISCUSSION have caused the phase to pass through a region where

—o. Because the scattering lengths are relatively small,
they are more stable with respect to changes in the corre-

To calculate the singlet or triplet scattering lengths, wesponding potential. In addition, our hybrid potentials are rea-
choose the hybrid potentiads(r) or Vi(r) and integrate the sonably well constrained. This is due, in part, to the obser-
radial Schrodinger equation Bt=0 fromr;,,. to the match  vation of bound states relatively close to dissociation in the
point r, using the Numerov algorithmp31]. The reduced NaRb triplet well, which enabled Z-S to reduce the uncer-
massy is given byMy;Mgp/(Mya+Mgp), whereM labels  tainty in the dissociation energy to(D.)=*+0.1 cm %, and
the atomic mass of eithetNa, ®Rb, or Rb. We expect the very precise calculation of tt@ coefficient by Derevi-
the isotopic correction to the internuclear potentdl) to anko[27].

be negligible[20]. Following Ref.[14], the scattering length  One interesting consequence of the new singlet potential

C given in units of cm® A% See Ref[27].

bC4 andCyq given in units of cmit A8 and cm * A9, respectively.
See Ref[28].

“The quantities are expressed in atomic units. See [R8f.

The constants# andB are related to the size of the wave function
of each atom in the region of interaction. See Ra€).

“We found that the exchange energy was adequately represented
our region of interest by the first three terms of the expan$ign
~2.(Jr"(@—B)M/n!. Here we use atomic units. See Rg24].

A. Na-Rb scattering lengths

is given by is the appearance of an additional bound state. We found that
our complete potential for th&!S * state supported 83
_ ue,—Uu'e, bound states, whereas the corresponding Z-S potential only
a= Ue.—u'e |f:fm' (8) supported 82 bound states. This can be understood by exam-
B B

ining Fig. 1, which shows the energy difference between the
whereu(r) is the numerically integrated wave function, and Z-S singlet and MLJ potentials for 6 Ar<16 A. Because
the functionse, g(r) are determined from the long-range the MLJ potential is everywhere deeper, the wave vector
potential, as discussed in Sec. Il. The primes denote derivd E=0) will be larger for allr. In semiclassical terms, the
tives with respect to. We found that a fourth-order approxi- wave function will build up more phasé in this potential.
mation toe,(r) andeg(r) guaranteed convergence to a re-In our case®y, ;—®;_g>m, so that another bound state
liable value ofa at a match point,,=100 A. Our results are appears in the MLJ molecular well. The energy differences
summarized in Table II. between the two curves is due primarily to errors in the ex-
Because the scattering length is very sensitive to the derapolation procedure used by Z-S to connect the short- and
tails of the interatomic potentidl(r), it is important to en- long-range components of their hybrid singlet-state potential.
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30 angular-momentum recoupling of the four quantum numbers
= s Snar Inar Srp, @andlgp by making use of the Wigner 9-
g symbols and standard Clebsch-Gordan algebra. We calcu-
2 2 lated the complete recoupling matricéss,_gr for both
& 15 ZNa®Rb and 2Na®’Rb, and extracted the probabiliti€,
g and P; for all input channels|Fya,Mya;Frp,Mgy. The
m 10 scattering length for an arbitrary input channel is then given
5 by Eq.(9).
Knowledge ofa enables us to calculate the cross section
6 7 8 9 10 11 for elastic collisions o, =4ma?. Elastic collisions mediate
r (Angstroms) the rethermalization of atoms during evaporative cooling and

_ sympathetic cooling. Furthermore, knowledgeagfand a;
 FIG. 1. A plot of the difference between the Z-S and MLJ allows us to characterize the inelastic losses in the system.
X% " potentials . The dominant two-body mechanism for the loss of atoms
_ from a trap is spin-exchange collisions. In these types of
B. Two-species Na-Rb BEC collision, the internal spin states of one or both of the atoms
Having calculated the Na-Rb scattering lengths, we novghanges. In the case of magnetically trapped samples, such
consider the properties of a mixture of Na and Rb condencollisions can cause atoms to be ejected from the mixture by
sates. The interactions in a Na-Rb TBEC are parametrized b§ending them into nontrappable spin states. More generally,
three scattering lengthsiy,, agrp, anday,_gp. The values the atoms may be ejected if the spin reorientation energy is
of arp andaNa are known to h|gh precision, and are gi\/en in converted to kinetic energies greater than the depth of the
Table Ill. We consider a Na-Rb mixture in which the Na (magnetic or opticalpotential confining the mixture. In the
atoms are in the staf y,,My,), and the Rb atoms are in glastlc.approxmatlon we can write the cross section for such
the statdFgp,,Mgy), WhereF is the total angular momentum inelastic processes 485]
of the atom andn is its projection on the quantization axis. )
We represent the two-atom state by the ket Tex=Migm(a—as)%, (10
|FnasMya;Fro.Mgp). TO calculate the scattering lengths we
use the low-energy elastic approximati8#,35, which as-
sumes that elastic collisions dominate the total cross secti
for collisions. This approximation gives for the scattering
lengths 2

M= Cs-0Cs-0—Cs-1Cs-1) | 11
A= 8Pt P, © 1= 2 (Co-0C5-0~Cs-1Coor) | (1D

whereM;; is a factor that depends on the asymptotic hyper-
Ofri1ne states involved in the collision. Letting primes denote
the asymptotic output channel, we have

whereP andP, are the probabilities of the atoms being in a WhereC is the projection coefficient defined above, and the

singlet or triplet state, respectively. To calculate the probindices have been suppressed.
abilties Py and P,, we project the state The achievement of a miscible two-component BEC

|Fna»Mna;Fro. MRy ONto the state$S,mg;1,m;), whereS _places a numbgr 'of constraints on the Fhree relgvant scatter-
and | refer to the total electronic and nuclear spin of theind lengths. Efficient sympathetic cooling requires a large
two-atom system, respectively, whitag, are their projec- Magnitude ofay,_gp. Collisional stability against spin-
tions onto the quantization axis. This basis is useful for charexchange collisions requires small valuesogf, which im-
acterizing the system at smaller internuclear distances whefdies that the difference betweeganda; be small. Dynami-

the exchange energy dominates. In this regleg, andFgy, cal stability of the individual BECs requiresy,>0 and

are no longer “good” quantum numbers, and the singlet and®rp>0. In the Thomas-Fermi approximation, the criteria for

triplet states are labeled §=0,1, respectively. stability implies the existence of a critical value of
To calculate the projections cFna-Ma:Fro MRb |ana_rol =2 above which the two-species condensate can-
Simg, 1 m, not coexist. The criteria is given bylay._ rol=<ac

=(S,mg;l,m|Fna,MnaiFro.Mgy), We perform  the = y\anaars Wherey= VM yaMrd (Mya+Mge) [36]. For
_ ) ana_rb= —a. the attraction between the condensates over-
85RLAZIF58I7L|!.bReceme determined scattering lengths f&iNa,  \heims the repulsive interaction within each condensate and
’ ' they collapse, while foay,_r,=a. the mutual repulsion of
the two condensates is too great for them to overlap at all.

Species % & The single-species scattering lengths are positive for both
2Na? 19.1+2.1 65.3-0.9 BNa*Na and ®'Rb2'Rb collisions, which allows for
85Rp P 2795529 —388+3 single-species BEC in either atomic species. Using (B).
87RpP 90.4+0.2 98.98-0.04 and the scattering lengths given in Tables Il and 11, we cal-
culatea, for all asymptotic states in &Na-*"Rb mixture.
aSee Ref[32]. The near equality ok anda; implies thato, will be ap-
bSee Ref[33]. proximately the same for all states, and that, will be
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small. Therefore interspecies elastic collisions will dominate V. CONCLUSIONS

inelastic spin-exchange collisions. Using the mean values for

the triplet and singlet scattering lengths given in Table Il, we We have derived hybrid potentials for th¢'S ¥ and

find that for all asymptotic two-atom states>a.. Taking a3 " states of the NaRb molecule. We compare them to

into account the known uncertainties in the various scatteringther recently derived potentials, and we discuss why our

lengths, we find that the inequalig>a. still holds. We  potentials are preferred. We have calculated the singlet and

tzhgere1;c7>re conclude that a stable, miscible TBEC in &yiplet scattering lengths from these potentials for both
Na~‘Rb mixture is not po§S|bIeé o o _ ZNa®®Rb and 2°Na®’Rb. Using the elastic approximation,
Next, we consider the mixturéNaRb. This is an in- e have calculated the scattering length for all two-atom

te_rgstmg case, since BEC has only been observ@a:i_b by symptotic hyperfine states for both isotopomers. The cross

utilizing a Feshbach resonance to tune the scattering leng, tions for elastic and inelastic spin-exchange collisions can

of the |[F=2,mg= —2) state[37]. To simplify our analysis, o't using these values. Applying the Thomas-Fermi

we eliminate from consideration those states for which theapproximation criterion for TBEC stability, we find no two-

8Rb single-species scattering length is negative. Of the re-

maining states, we choose states that are lossless with respat?rt?] asymptqtlc sttalt e? ]:;).r Wh]iChlta NelldeN TBREC 'S stablle.
to both homo- and heteronuclear spin-exchange collision urther experimental studies ot uitraco a-~b vapors, n-

Because of the large positive singlet scattering length i luding gﬁ‘orts to produce aTBEC.in the Na}Rb systgm, will
85Rb, there is a large variation i, from state to state. If elp refine our knowledge of the interatomic potentials and

we use the mean values for the interspecies scattering lengtffSt these conclusions.

given in Table Il, we again find no asymptotic states that

satisfy the condition for TBEC stability. However, unlike the

case ofNa*’Rb, the inequalitya<a, is satisfied for nine ACKNOWLEDGMENTS
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