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Range of validity for perturbative treatments of relativistic sum rules
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The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the
second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-
Kuhn (TRK) sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be
less than 0.5% up to abordt=70. The total relativistic corrections should then be accurate at least through this
range ofZ, and probably beyond this range if the second-order terms are included. F@=R86§, however,
the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small
momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The
first-order corrections to the Bethe sum rule also give better than 0.5% accuragy #f, and inclusion of
the second-order corrections should extend this range, as well.
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[. INTRODUCTION is altered by its interaction with the other electrons, including
the effects of screening of the nuclear charge. So, particularly
Oscillator strength sum rules have long played an imporfor the outer shell electrons, the effective valueZowill be
tant role in studies of atomic and molecular systems. Thepignificantly reduced. Furthermore, though significant for the
are often used to check the accuracy and completeness apalysis of experimentgl5,16], the first-order corrections
approximate basis sets, or to avoid calculation of slowly conare already small, contributing no more than a few percent of
vergent serie§l,2]. These sum rules also play a central rolethe total. For these reasons, one might instead expect that the
in the theoretical description of inelastic scattering offirst-order corrections are adequate for a description of even
charged particles from atonfi8], particularly in the evalua- the heaviest atoms. Given these conflicting indicators and the
tion of integrated cross sections such as the stopping pow@bsence of any studies that extend beyond the first-order, the
[4-6]. question remains: What systems, and in particular, what
Evaluation of these sum rules involves the use of closuréange of values oZ, can be described by these calculations?
to sum over a complete set of final states of the system unddme answer to this question is the primary aim of the present
study. When this system consists of atoms with high atomigaper.
numberZ a relativistic treatment of the electronic states is In a recent papelrl7], we have presented an approach to
necessary. In such a treatment, and from the point of view ofhese sum rules, which can readily be extended to find the
Dirac’s hole theory, the sea of negative energy states is fillegorrections at the next order. These results will then yield
in the initial, ground state of the atom. According to Pauli’s direct insight into the range of validity of the first-order cor-
exclusion principle, transitions into these states are then forections. We show below that the second-order corrections
bidden. If the normally small contributions from pair produc- may also be obtained in terms of ground-state expectation
tion are neglected, only the positive energy states should b¢alues, where the operators that appear at this level of ap-
included in the theoretical description. However, in the Diracproximation are those of the one-body relativistic terms in
representation of the electrons, these positive energy stat#e Breit-Pauli HamiltoniaiHgp. These are the mass varia-
do not by themselves constitute a complete set for the fultion,
space of four-component spinors. Therefore, a direct evalua- .
tion of these sum rules by the use of closure is not possible 1 S e
due to the lack of completeness of the available final states. N = P 1.0
In order to overcome this difficulty, generalizations of
these sum rules have utilized various methods of projectinghe first Darwin,
onto the subspace of positive energy stdfés14]. These
methods are perturbative, and the first-order corrections are eh?
found to be proportional to the ground-state expectation Hai=—
value of Kygr/mc, with Kyg the nonrelativistic kinetic en-
ergy operator of the elec_trons in the target am&_ the elec-  4nd the spin-orbit terms,
tron rest energy. For a single target electron within an atom,
this result is simply proportional ta*Z2, which is recog- oh
nized as an expansion parameter for these calculatiens ( Hgo=—
the fine-structure constagniAs such, one might question the 4m
accuracy of such a perturbative approach, especially if only . R
the first-order term is retained, unle@s<1/a. However, for ~ Wherepy and o, are the momentum operator and the Pauli
a many-electron system, the kinetic energy of each electrospin matriceg18] for the kth electron, and,=—VV,/e is

> > V-Ey, (1.2
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the field of the nucleus at that electron’s position. There will 1
also be contributions from the two-body term&Hgp, those S(Q)= 27
arising from the electron-electron interactions, but we have
found (see Appendix A for an outline of this calculatiothat

these contributions appear as ground-state expectation value?1 B = iU . I .
of precisely these same two-body operators, and are therdNere{A,.B}=AB+BA, [0)=e"|0) is the initial state in
fore two orders of magnitude smaller than those of the onethe new representation, ail andH are the projections of
body terms even for the largest valuesZof19—-21. There- e~ 14 Tj/hglVgidTj/ig=iU=gilU(@)e=1U gnd eVHe 'Y onto

fore, these contributions should be small and will not bethe subspace of positive energy eigenstates, respectively. An

considered in detail in the main part of this paper. operator written explicitly as a function af represents a
Expectation values of the above one-body terms are NQ omentum boost. such &(a):e_iq‘.;j /ﬁﬁeid.Fj I and the

larger than about 20% that of the nonrelativistic kinetic en- 2T . , )
er FWT operatotJ(q) introduced in the preceding sentence in
gy operator el .
the definition ofR’.
For H, we use a many-electron Dirac Hamiltonian,

1
KNR:m ; pZ. (1.9 z
H=> HE+Vee, (2.3
k=1

z
> 2, (0RH(GR —{RITRLA}[O),
P
(2.2

Furthermore, expectation values Idf,, andHy, are oppo-

site in sign so that their contributions to the energy tend tgvhere

cancel each other, leaving a total that is well below 10% of . L.

the kinetic energy. Thus, one might expect that their contri- Hp=BMc+ Cay- Pt Vi (2.4

bution to other quantities, such as the sum rules being con- R

sidered here, will also be small relative to the correspondings the single-electron Dirac HamiltoniagB, and «, are the

first-order contribution involvindKyg. As shall be seen be- usual Dirac matrice$23], and V, and V. represent the

low, the first-order terms are adequate even for fairly latge nuclear and electron-electron interactions, respectiVady.

but additional terms are needed Ashecomes larger than Following Suchef25], we take,

about 70, at least if accuracy of 0.5% or better is desired.

Nonetheless, the perturbative approach to these sum rules

should be accurate for a wide range of targets. Vee=L
In the following section, we discuss the Bethe sum rule,

and in Sec. lll we describe our approach. Then, in Sec. 1\{ith L. =

the results are discussed, followed by our conclusions.

z

> Vi
s

[’+ ’ (25)

HE: 1L£:(K), andL, (k) is the projection operator
onto the space of positive energy statest-léf. As has been
mentioned previously, the contributions from the two-body

Il. THE BETHE SUM RULE terms arising fromV,, are negligible, so the specific form
_ _ chosen forV,, is unimportant for us heréa common choice
Let us consider the Bethe sum, defined as, would be the sum of Coulomb and Breit interactions; see

Appendix A for further details
We will write,

z
SUQ)=Z""2 En2, Knle?i™0)% (2.1 .
alt =1 S1(Q)=S1(Q)[1-A(Q)], (2.9
whereE, = E,— E, is the difference between the energy of With S1(Q) =Q(1+Q/2mc?)/(1+Q/mc?) the result origi-
the ground|0) and excited statefn) of the atom withZ nally found by Bethe for a free electron at reAfQ) then
electrons. The recoil energ@= \g2c?+ m2c*—md, is the represents the corrections arising from a treatment of the

Kineti f lect ith i Th electrons as bound, relativistic particles.
INeuc energy ot an electron with momentum 1he sum- For the purpose of calculation, it is convenient to separate
mation in Eq.(2.1) is to be taken over all positive energy

out the various parts which aré®(V). The transformed
states of the many-electron atom.

Though other methods are available, such as the introduc'tl":lmIltonlan will have the formsee following sectiop

tion of projection operators to exclude contributions to the z
sum from the negative energy states, we have found that it is H=eYHe V=D ¢ +H., 2.7
advantageous to use the Foldy-Wouthuysen transformation k=1 v

(FWT) [22] for this purpose. In Refd.14] and[17], a for-

mally exact expression in terms of an initial-state expectationith €,=/pic®+m?c*. We may also write

value has been derived f&(Q), using an FWT to a repre- o

sentation in which the positive energy states are by them- RI=R{+R/, (2.8
selves a complete set. The result found there may be written

as yielding
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ZRjTﬁ(a)Rj_{Rj‘er H}:{RHR] E_(a)_e,} upper and lower components of the four-component, single-
’ U : particle spinors. These types of operators are denoted as odd
+{RI'RI +RI 'R} ,ej(a)_ €1 operators, whereas even operators do not couple the different
VooV components. Apart from the case of free electrons, where the
+{RIRL A (q)-F} exact FWT operatot is known, the approach is to follow a
v v step-by-step procedure, yielding a suitable approximation to
+RIT( 6](5),R{,] the exact Hamiltonian. The approximation used in R&7)

to obtain results valid for alQ is an expansiof26—28 in
powers of the potential energy operatbe 2,V + Vge. This
may be written as

+[RJ}T,HV(5)])R{,7 2.9 gU=. .. eUsgiVogils. 3.0)

+[H, (), R+ (R, ()]

whereR"f and the first term in the latter equation &fe 0 or whereU,, is O(V""1). For the many-electron treatment be-
“free” parts, and the other terms ax®(V). After averaging ing usedn here. we choose

over the direction of], or equivalently, the orientation of the

target, the calculations described in the following section , Z
yield eVi=[] €'Y, (3.2
k=1
A(Q)=A+Q)+A (Q), (2.10 ‘-
whereUs is the free-electron FW operatp22]
with
i 1 - -
3 e*'Uk=—(Ek+mC2i,8kCak-pk). (33)
Af(Q)z 1+ \26k(6k+m2; )
3mc?Z(1+Q/mdc?)? 2(1+Q/mc)?
Note that to obtain detailed results, an expansion in powers
~ ~ 7 ~ ~ of the momentum operator is helpful in the sense that it leads
X(O|KnrI0) + mc22(1+Q/mcz)8<o|HmU|0>’ to results in the form of expectation values that are available

(2,10 in the I_iteratu_re(see Sec. IV,_ beloy However, if thef)j _
expansion is implemented prior to the boost transformation
and of the operators, M—M(q)=e 9" \Meld i/
=M{|j 5+, then the replacement @; by p;+q will

2(1+Q/3mc?) - - . > > . :
AV(Q): (0|H¢,|0). transform the expansiaay+a,-p;+ - - - directly into an ex-

mc*Z(1+Q/mc*)*(1+Q/2mc?) pansion in powers of] [17]. Since we wish to include a
(2.12 description of the large behavior of these sums, trfe;

Note that inA _(Q), the coefficient ofH; vanishes identi- expansion must be delayed until after the boost is introduced.
v The Hamiltonian after the first step in the FWT is found to

cally. This is somewhat surprising, given the complicatedb
nature of the calculations leading to this result. It is also

important, since the expectation value l8f; is ordinarily z 1
significantly larger than that dfig,. In fact, expectation val- H,=eY1He V1= 2 Brer+ Vit [Bk&k' 5k Vi
ues of the latter are usually smaller than some of the two- k=1 2mc

body terms inHgp that have already been neglected. There-
fore, to the present level of approximation, we have

A,(Q)=0, (2.13

+ T[Bk&k' PiL Brarc- P, Vil
8m-c
. +eV1v, e V1, (3.9
and the potential energy of the electrons does not appear
explicitly in the result, entering only through its effects on The next step is to identify the FW operatds. This is to be
the ground-state wavefunction of the target system. chosen such that it eliminates odd operators freim to

These results give\(Q) to O(p®), O(p?V), and to all (). Thus, withU,==, U, we require
orders inQ. The methods used to obtain them are described

in the following section. Those readers not interested in spe- eiU;,B e*iU5:3 i 3.5
cifics concerning the methods may skip directly to Sec. IV. k€k k€k™ o '
where
I1l. METHOD OF CALCULATION
The object of the FWT is to eliminate by a canonical tk= ieh Byay-E (3.6)
transformation all operators in the Hamiltonian that couple o 2mclkTk Tk '
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By (p+d)
L : J EJ(q)+mC2
tarded Coulomb interaction with the nucleus or a similar 2 Jei(a) | Ve (g +me?

effective potential To first-order inU%, this is

(p;+a)
[1U5.Bred =t 37 Ve@+me v, Biaj- (pi+d

\/e(q)+mc2

is the odd part of thekth-electron terms irH; (we have
assumed tha¥, is itself an even operator, such as the unre- t{)(q)—

c 1

1

\/e,(q
(3.19

The fact thatt is O(pV) implies thatU¥ is also, so that to
O(p?V), €, may be approximated aac® in this equation.
Noting thatU'§ is odd and hence anticommutes wigh, this

. . _ P j
yields This is seen to vanish whem =0, so thatU;(q), like U;

itself, is O(pV). Expanding in powers gp, Eq. (3.13 may

be solved to yield

k= G E (3.9
=—a-E, .
2 4mecd B

ua®—megm> pi-dh (319

which is in agreement with the original work of Foldy &
Wouthuyser{22]. Using this result, one finddl=>¢_H,,

where to the desired level of approximation, An explicit expression fol5(q), along with expressions for

other relevant quantities needed for the Bethe sum rule, Eq.

2 (2.9, may be found in Appendix B.
Hie= et Vi =5V - BEv— — 20'k (ExX Pi) + Ve, With this result forub(q), we may findR!, which is the
8m°c 4m iU(a)-iu ;
(3.9 even part ofe'~'"e™"Y and may be written,

With V= eV, e U, Ri= 1 (eUh@glUl@g-Ulg-iU

The above results cannot be used to obtﬁlmﬁ)
=e 19hHela 7 since an expansion in powers pf has
already been taken. Instead, with(q)==¢,;Hc+Hi(@)  Given thatg;e +|uf’3 —e%1U} and similarly foreVH@: and

being the even part ofH;(q)=eV1DH(q)e V1D, one that we need keep only first order W, , we find
finds directly that

ey cnieey il i
+Bje|U2(Q)e|Uf(q)e iUt 'Uzﬁj). (3.16

o i o RizRierRiv, (3.17
H;(q)=€(a)+V;+eh’x(q-V))q-E; ,

with the V=0 part of R' given by the expression
ehZQ( 5 p g y p

V. E + 75 [E X(p]-f-q)] 2Ia10J

402 +mc¢® +mc  g%?. .
A%eq i Ri= % A% 4.5,
i o L o 2¢€q 2¢q 4me,
(qXVJ) q E] _thQ‘pj +Vee(Q)u (3-1@ i
+m5;~(ﬁ><|5;), (3.18
with e,=g?c?+m*c*=Q+m¢e, q
0 M2 o1 while the O(V) part is given toO(pV) as
K= y .
aq'e; 8q’e 2eq iefi 3
e} R =— —3[(6 +m3c®)q- E;
and m?c q
mct 1 +ig®c er'j-(qXEj)]. (3.19
= 5~ 5 (3.12 o oo
2Qe; ¢ One may note thaR{/ is needed taO(p“V) in the second

) o term on the right-hand side of E(R.9); the required expres-
To find U2(q)=U’2(q)+Ek#]—U'§, which is needed to obtain sion is given in Appendix B. We also point out that
R!, we start with the analog of E43.7),

Ul - g RITRI= R B <*q-p, (3.20

[(U3(a),Bj€j(a)]=—to(a). (3.13 2" 26/(d) 2¢j€(q) '
Heretégd’) is the odd part of th¢th-electron potential term s an exact expression for the free partRIfRI [14]. Com-
in H,(q), which is given by bining all these results yields EgR.10—-(2.13.
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IV. DISCUSSION 3

o 2(1+Q/mc)?

A(Q)=

In this section, we consider these results to ascertain the
range ofZ over which they will be valid. We first note that
Egs. (2.10—(2.13 involve expectation values dfyg and X ({0(K—=H,)|0) = (Onr| KnrlOng))
Hp, (omitting the small contributions frong, and V)
with respect to the ground state in the FWT-transformed rep- n
resentation. Since'Vt commutes with these operators and mc2Z(1+Q/mc?)8
U, is O(pVvV), we see that e 'VpneV
=e V2 V1pnelVielVo=p"+ O(p"*1V). Therefore, since also note that the TRK sum, defined as
we work only toO(p?V),

3mcAZ(1+Q/mc?)?

(0[Hm,|0). (4.6

z
2m
S Si=2, 2 Enol 2, (nlz[0)/? @7
(0|KnRI0)=(0le" (e VK yre'Y)e Y [0)=(0|Kyg[0),
may be obtained directly from our results for the Bethe sum,

as
plus small corrections, and similarly fét,,, . The required
. _—iUIR . 2m
expectation values may be evaluated with=e™'|0) in- S,=Ilm=—S,(Q)=1—-A, (4.8
stead of the transformed ground state, the differences being a—00°
higher-order in the relativistic corrections. This will allow us )
to use data calculated in the Dirac representation. whereA=A;+A;, with
Next, we separate out the first- and second-order relativ-
istic corrections in a way that allows use of data available in A= ° (Onrl KnrlOng) 4.9
the literature. Identifying the nonrelativistic part of the 1 gmazz | NRITNRIENR/ '
ground-state wavefunction &yg), and writing
and
(0|Knrl0) =(Onr|KnrIONR) + ((O|KngIO) A 0/K[0)— (O fK O
_<ONR|KNR|0NR>), (42) 2 3mCZZ(< > < NRITNR NR>)
the first term on the right-hand side divided tme? is seen to + (0|H 1, |0). (4.10
be O(a?), while the terms in parentheses give higher-order 3mc’z

corrections. The latter may be rewritten by approximating
the nonrelativistic kinetic energy operator a§yg=K
—Hp, in the first term, so that

One may note that the above result fdg has long been
known[7-11], but thatA, does not seem to have been given
in the literature, previously. Also, while there have been a
few studies of the corrections to the Bethe sum rule that have

(0K yrl0Y=(OnrIKNRIONR) + ((O](K—H )| 0) given results as an expansion in powers@f12-14, the
exact Q dependence foA;(Q) in Eq. (4.5 was only re-
—(OnRIKNRIONR))- (4.3 cently obtained17]. The smallQ limit of Eq. (4.5 is in

agreement with the earlier works utilizing the FWT approach

This accomplishes the separation of the first-order relativélz’lzq' Itis not easy, however, to' make a direct c'ompa.rison
to theA;(Q) derived in Ref[13], since their result is still in

corrections from higher corrections, and is in terms of expec:

tation values available in the literature. Thus, from Eqs the form of a sum over final states, while all our results are
(2.10—(2.13, we have ' ' ‘given simply as ground-state expectation values. The expres-

sion for A,(Q) is new.
Data for all expectation values appearing in these equa-
A(Q)=A1(Q)+A,(Q) (4.9 tions may be found in the literature for a wide range of
atoms. For(Oyr|KnrlOnr), Values are obtained as the dif-
ference between the total nonrelativistic energy and the sum
of the individual electron potential energies, as given in Ref.
[29]; for (0|K]|0), the results of Refl.30] will be used; and
3 values for(O|H,,|0) are calculated from the data of Ref.
1+ [31]. In Fig. 1, our results in Eq$4.9) and(4.10 are plotted
3mcZ(1+Q/mc*)? 2(1+Q/mc*)? as a function of to illustrate the relative magnitudes of the
two correction terms in the TRK sum rulghe equations
X(OnrlKnrlOnR), (49 ave been evaluated f@=2, integer multiples of 10 up to
80, and 86; the lines in the figure are interpolated from these
while the second-order corrections are valueg. One may note thah; andA, are opposite in sign,

with the first-order contributions given by

A(Q)=

042704-5
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FIG. 3. The second-order corrections to the Bethe sum rule,

FIG. 1. The relativistic corrections to the TRK sum rule, plotted plotted as a function o/mc, for Z=60, 70, 80, 86.

as a function ofZ to illustrate the relative magnitudes of the two
correction termgthe equations have been evaluatedZer2, in-
teger multiples of 10 up to 80, and 86; the lines in the figure ar
interpolated from these values

Lven for Rn £=86), these corrections are small, except at
the lower range of), sayQ<mc?/25. The perturbative re-
sults for the Bethe sum rule should therefore be quite accu-

_ . rate, except for larg€ and smallQ.
so tend to cancel, making the total correction always smaller

than the first-order corrections. It is seen thatis less than V. CONCLUSION
0.5% forZ<30 and the total correctioa differs little from
this in that rangeA, is smaller than 0.5% in magnitude out  In this paper, we have extended previous calculations of
almost toZ=70. Therefore, our results fak should offer  the Bethe and TRK sum rules to include second-order rela-
reasonable accuracy at least through this rang&,oéind  tivistic corrections from an expansion in powers of the bind-
probably beyond if the second-order corrections are ining energy of the target electrons. A many-electron treatment
cluded. of the atoms has been used in an approach that is valid irre-
In Fig. 2, we plot the relativistic corrections to the Bethe Spective of the size of the recoil ener@ The results pre-
sum rule as a function db/mc? for Ytterbium,Z=70. We sented here indicate that perturbative calculations of these
see thatA,(Q) decreases monotonically with increasilg ~ Sum rules yield accurate results over a wide rangg. ¢fur-
while A,(Q) has its largest magnitude @=0 and changes ther work is needed, however, whgn-70 andQ is small, if
sign whenQ is a relatively small fraction omc2. The total ~One wishes to achieve an accuracy of 0.5% or better.
correctionA(Q) is very well approximated by ;(Q), ex- We now close with some observations about electron-
cept perhaps at the smallest valuesQfSimilar trends are electron interactions in many-electron systems, and their
observed for other atoms, as well. In Fig. 3, the second-ordegontributions to these calculations. It is well known that in a
corrections to the Bethe sum rule are plotted as a function ofonrelativistic treatment of the target, the Bethe sum is found

Q/mc for a few of the heavier atoms. One may note that,t0 be proportional to a ground-state expectation value of a
constant

Z
81<Q>=z-1§T JEl (0le™ i |ny(n|[Hyg,e'9 " /"7|0)

=(0|Q(1+Q2mc?)|0)=Q(1+Q/2mc?). (5.1

This means, of course, that the result is independent of the
ground state of the target, and different systems—free elec-
trons, a single bound electron, or a system of many interact-
ing, bound electrons—all yield the san$g(Q). Thus one
concludes that electron-electron interactions, if present, do
not alter the result at all. As is discussed in the following
paragraph, however, this conclusion no longer holds for a
relativistic treatment.

Earlier studies of the relativistic case have generally relied
upon an independent-particle approximatidiPA) [12—

FIG. 2. Comparison of the first- and second-order and total relal4,32, for which the electron-electron interaction¥ in
tivistic corrections to the Bethe sum rule, plotted as a function ofEQ. (2.3)] are dropped from the Hamiltonian of the system
Q/m¢, for Yiterbium Z=70). (though these interactions have previously been discussed in

Relativistic Corrections
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the context of an effective potentigl3]). The approach pre- eliminated. However, it turns out thaf, along with the
sented here formally avoids use of the IPA and offers a cleapresence of the projection operatfr suffices to eliminate
picture of the effects of includiny.. in the HamiltonianH. all such odd operators.

We have indicated in the Introduction that, apart from their  This latter conclusion may be seen as follows: First, note
effects on the ground-state wavefunctigwhich are, of that since£ (k) are projection operators onto the space of
course, importantthese two-body interactions lead to sum positive energy states of the single-electron Hamiltonians,
rule corrections which are much smaller than those from the4¥, then the FWT of these projection operators must be
one-body terms included in our calculations. In fact, by in-equal to the projection operators in the transformed represen-
cluding the two-body terms explicitly in the calculation of tation. That is,

these sum rules, we have been able to slese Appendix

A) that the additional terms that arise are all proportional to eiu‘;eiu'f‘£+(k)e—iu',‘e—iu§: L1+ By). (A4)
expectation values of the same two-body operators that ap-

pear in the Breit-Pauli HamiltoniaHgp, such as the second of course, this is only completely correct if the exabt is
Darwin, orbit-orbit, and other operatofthe operatoNVee,  ysed, but the error incurred by approximatidg as we have

by itself, does not appeprSince it is known that expectation gone throughout this paper will be higher order in small

values of these two-body operators e are quite small  gyantities, and so may be ignored. Therefore,
relative to those of the corresponding one-body operators

[19-21], their contributions to the sum rules should then also eV2elVis (K) L, (VL (K) Ly (1)e Ve V2
be quite small. Therefore, our results would be unchanged if o _ _
H were replaced by an independent-particle Hamiltonian, as =& (14 B)(1+B))(eV2eV1v, e Vg 1Vz)

long as the electron-electron interactions are still included in
the ground-state wavefunction. One can therefore see why

the IPA leads to good agreement with experiment in RefThus, since (3 B,)M,(1+ 8,)=0 whenM, is an odd op-

[32]. Nonetheless, it is important to remember that the ef- : ad tors f ve. This is. of
fects of these interactions on the wavefunctions are impor-era or, no odd operators r_om, survive. This IS, of course,
ot surprising. The projection operators serve the function of

tant in the relativistic case considered in this paper. Thoug liminating th dd ¢ there | dtod
these effects are important, it should also be noted that giff''minating these odd operators, so there 1S no need to do so
within the FWT, itself.

ferent choi foW..are n X Iter our numerical . . .
erent choices foW, are not expected to alter our numerica What this means, then, is that to obtain the relativistic

results significantly. corrections to the Bethe sum rule for this no-pair model, the
choice of FWT operatod is identical to that which was used
ACKNOWLEDGMENTS to transform the Hamiltoniahi in the main part of this pa-
pgler. Then, sinc&) has noV,, parts, neither wilR!, which is

The author wishes to acknowledge the donors of The IS
troleum Research Fund, administered by the ACS, for suptherefore still given by Eqs(3.18 and (3.19. The trans-

port of this research. formed HamiltoniansH andH(q), will now have additional
terms arising fromV,, added to the results found above in
Egs.(3.9 and(3.10. Then, consideration of E@2.2) leads
to the conclusion tha®,(Q) for the no-pair model will be
In this Appendix, we outline how contributions from the given by the results found in the main text plus additional

two-body terms in the Hamiltonian may be calculated. Fofterms arising from th&/,, terms inH andH(q). With a fair

X(1+B)(1+By). (A5)

APPENDIX A

this discussion, we takesee Eq(2.5)] amount of effort, one can show that these additional terms
c B are proportional to expectation values of the various two-
Vi=Vii+ Vi, (A1) body operators appearing in the Breit-Pauli Hamiltor(ex-

cludingV,, itself), as has been noted elsewhere in this paper.
whereVy;=e?r,, is the Coulomb interaction between elec-  There is one final, rather technical point that needs to be
tronsk andl, and mentioned to forestall questions that might be raised by those
readers familiar with the work of Chraplyv{33,34 on
FWT-type transformations for Hamiltonians including two-
body operators. He found that when two interacting particles
have equal masses, it is not generally possible to transform
is the Breit operator. the Hamiltonian into an even operat@ctually, the desired

We now wish to introduce the FWT. Once again we write transformation for us here is to an “even-even” form; that is,
. o such thatH commutes with the Dirag3 operators of both

eV=...eYseV2elV1 (A3)  particles. He then introduced more general transformations,

which leave the Hamiltonian in a form that he refers to as

and chooseUlzl'IkU'f‘ and U, to eliminate the odd parts “uU separating134], where even-even operators are a sub-

from theV, terms inH;=¢e'Y1H,e "Y1, as befordsee Eqs. set of theuU-separating ones. At first glance, it would seem
(3.2—(3.7]. One might expect that this will leave odd op- that the case discussed in this Appendix, where the two-body
erators that arise fror,, that would then also need to be terms are treated explicitly, must be treated using Chraply-

eZ

VE|=_T(&k'&ﬁ&k'?m&r?m), (A2)
ki
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vy’s methods. However, since the presence of the projection 45 Q
operators inH already serves to eliminate all but the even- —Uz(q) ozJ Ei———0-9;9-Ej+a,{p;- «;.,q-E;}
even operators iV, there is in fact no need to introduce o€ q
his generalization of the FWT. 2\ .. . .
+|la;— — |19 pj. ;- E;
1 265 { ] ] ]}

APPENDIX B

In this Appendix, we present explicit expressions for
some of the quantities used in the calculation of the Bethe

sum rule.
For Eq.(3.15, sz(ﬁ) is given as

2

RjTRJ +RI TRi —
Y v o

- . . ehc* . . -
30'j'(qXEj)+E{UJ"(qxpj)vq'Ej}_

c*(4eq+3mc) . .

mq i{a-p;.a-Ej}

—Tzeqqﬂj{pi Ej} (B1)

where{A;B}=A-B+B-A anda, is given in Eq.(3.12.
For Eqg.(2.9), the following expressions are used:

- eh’q’c® . _ . .
gmzes (0 V9 E

€q
eh | , 2m’c® , R B
T amies| 7 (€g+q°co)+ {oy-(aXE;j),q-pj}- (B2
. . . . en? 5y g
R ej(q),RI+[RI" ()R = — ——— (e3+m°c®)(q-V))q-E (B3)
€q
. eh’Q eh?c’Q .
RITH (q),RI+[RY, Hv(q)]Rlz—W(QJrSmcz)V E+—— 807 ( €5+ 0°c?+2e:/mc)(q-V))q- E;
eh . . . ehQ A (EXE -
_m("j'(qXEj) W(Q+3m )q-(EjXpj)oj-q
ehQ
W(QJF?MCZ){UJ (axp;),q-Ej}
ehQ
T(QZ 3mPch){oj-(aXE)),q-pj}- (B4)

8m?q2c?e

[1] H. Agrenet al, Phys. Rev. A47, 3810(1993.

[2] Z.-C. Yan, J.-M. Zhu, and B.-L. Zhou, Phys. Rev. @2,
034501(2000.

[3] M. Inokuti, Rev. Mod. Phys43, 297 (1971).

[4] H. Bethe, Ann. Phys(Parig 5, 325(1930.

[5] H. Bethe, inHandbuch der Physijledited by H. Geiger and K.

Scheel(Springer, Berlin, 1933 Vol. 24, p. 273.

[6] U. Fano, Annu. Rev. Nucl. Sci3, 1 (1963.

[7] J.S. Levinger, M.L. Rustgi, and K. Okamoto, Phys. RE6,
1191(195%.

[8] H.O. Dogliani and W.F. Bailey, J. Quant. Spectrosc. Radiat.

Transf.9, 1643(1969.
[9] T. Matsuura and K. Yazaki, Phys. Lett6B, 17 (1973.

[10] J.L. Friar and S. Fallieros, Phys. Rev.1T, 274 (1975.

[11] K.-M. Schmitt and H. Arenheel, Z. Phys. A320, 311(1985.

[12] P.T. Leung, M.L. Rustgi, and S.A.T. Long, Phys. Rev33
2827(1986.

[13] G.A. Aucar, J. Oddershede, and J.R. Sabin, Phys. R&2 A
1054(1995.

[14] S.M. Cohen and P.T. Leung, Phys. ReV5A 4994 (1998.

[15] H. Bichsel, Radiat. Resl53 208 (2000.

[16] J. Ziegler, J. Appl. Phys35, 1249(1999.

[17] S.M. Cohen, Phys. Rev. 88, 012720(2003.

[18] E. MerzbacherQuantum Mechanics2nd ed. (Wiley, New
York, 1970.

[19] B. Lo, K. Saxena, and S. Fraga, Theor. Chim. A2 97
(1972.

042704-8



RANGE OF VALIDITY FOR PERTURBATIE . . . PHYSICAL REVIEW A 68, 042704 (2003

[20] K. Saxena, B. Lo, and S. Fraga, J. Phys5,B768(1972. states that do not include the electron-electron interactions.
[21] B. Lo, K. Saxena, and S. Fraga, Theor. Chim. A2t 300 Nonetheless, expectation values of operators arising ¥gm
(1972. through the application of the FWT, such as the second Darwin
[22] L.L. Foldy and S.A. Wouthuysen, Phys. R&8, 29 (1950. and orbit-orbit terms, are small and will be dropped throughout
[23] J. Sakurai,Advanced Quantum Mechani¢8ddison-Wesley, the paper.
Reading, MA, 1982 [25] J. Sucher, Phys. Rev. 22, 348(1980.

[24] Various approximate models could be consideredvigrand  [26] M. Douglas and N. Kroll, Ann. PhygN.Y.) 82, 89 (1974.
our whole procedure involving the FWT can still be carried [27] B.A. Hess, Phys. Rev. 83, 3742(1986.
through[33,34]. As has been mentioned previously, however, [28] G. Jansen and B.A. Hess, Phys. Re\3% 6016(1989.
these terms should lead to small correcti¢ee our Appendix [29] C.F. Fischer, At. Datd, 301 (1972.
A). Therefore, discussion of such issues will not be entered30] K. Huanget al, At. Data18, 243(1976.
into here. We keel, in H for the sake of consistency, since [31] F. Herman and S. SkillmanAtomic Structure Calculations
our final results will be found using data from calculations (Prentice-Hall, Englewood Cliffs, NJ, 1963
involving eigenstates of the full, many-electron Hamiltonian. [32] D.Y. Smith, Phys. Rev. /85, 3381(1987.
This is important, since expectation values using many-33] Z. Chraplyvy, Phys. Re\01, 388(1953.
electron eigenstates can differ significantly from those using34] Z. Chraplyvy, Phys. Re02, 1310(1953.

042704-9



