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Range of validity for perturbative treatments of relativistic sum rules

Scott M. Cohen
Department of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282-0321, USA

~Received 28 January 2003; published 9 October 2003!

The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the
second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-
Kuhn ~TRK! sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be
less than 0.5% up to aboutZ570. The total relativistic corrections should then be accurate at least through this
range ofZ, and probably beyond this range if the second-order terms are included. For Rn (Z586), however,
the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small
momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The
first-order corrections to the Bethe sum rule also give better than 0.5% accuracy forZ,70, and inclusion of
the second-order corrections should extend this range, as well.

DOI: 10.1103/PhysRevA.68.042704 PACS number~s!: 34.80.Dp, 34.50.Bw
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I. INTRODUCTION

Oscillator strength sum rules have long played an imp
tant role in studies of atomic and molecular systems. T
are often used to check the accuracy and completenes
approximate basis sets, or to avoid calculation of slowly c
vergent series@1,2#. These sum rules also play a central ro
in the theoretical description of inelastic scattering
charged particles from atoms@3#, particularly in the evalua-
tion of integrated cross sections such as the stopping po
@4–6#.

Evaluation of these sum rules involves the use of clos
to sum over a complete set of final states of the system u
study. When this system consists of atoms with high ato
numberZ a relativistic treatment of the electronic states
necessary. In such a treatment, and from the point of view
Dirac’s hole theory, the sea of negative energy states is fi
in the initial, ground state of the atom. According to Pau
exclusion principle, transitions into these states are then
bidden. If the normally small contributions from pair produ
tion are neglected, only the positive energy states should
included in the theoretical description. However, in the Dir
representation of the electrons, these positive energy s
do not by themselves constitute a complete set for the
space of four-component spinors. Therefore, a direct eva
tion of these sum rules by the use of closure is not poss
due to the lack of completeness of the available final sta

In order to overcome this difficulty, generalizations
these sum rules have utilized various methods of projec
onto the subspace of positive energy states@7–14#. These
methods are perturbative, and the first-order corrections
found to be proportional to the ground-state expectat
value ofKNR /mc2, with KNR the nonrelativistic kinetic en-
ergy operator of the electrons in the target andmc2 the elec-
tron rest energy. For a single target electron within an at
this result is simply proportional toa2Z2, which is recog-
nized as an expansion parameter for these calculations (a is
the fine-structure constant!. As such, one might question th
accuracy of such a perturbative approach, especially if o
the first-order term is retained, unlessZ!1/a. However, for
a many-electron system, the kinetic energy of each elec
1050-2947/2003/68~4!/042704~9!/$20.00 68 0427
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is altered by its interaction with the other electrons, includi
the effects of screening of the nuclear charge. So, particul
for the outer shell electrons, the effective value ofZ will be
significantly reduced. Furthermore, though significant for
analysis of experiments@15,16#, the first-order corrections
are already small, contributing no more than a few percen
the total. For these reasons, one might instead expect tha
first-order corrections are adequate for a description of e
the heaviest atoms. Given these conflicting indicators and
absence of any studies that extend beyond the first-order
question remains: What systems, and in particular, w
range of values ofZ, can be described by these calculation
The answer to this question is the primary aim of the pres
paper.

In a recent paper@17#, we have presented an approach
these sum rules, which can readily be extended to find
corrections at the next order. These results will then yi
direct insight into the range of validity of the first-order co
rections. We show below that the second-order correcti
may also be obtained in terms of ground-state expecta
values, where the operators that appear at this level of
proximation are those of the one-body relativistic terms
the Breit-Pauli HamiltonianHBP . These are the mass varia
tion,

Hmv52
1

8m3c2 (
k51

Z

pk
4 , ~1.1!

the first Darwin,

Hd152
e\2

8m2c2 (
k51

Z

¹W •EW k , ~1.2!

and the spin-orbit terms,

Hso52
e\

4m2c2 (
k51

Z

sW k•~EW k3pW k!, ~1.3!

wherepW k andsW k are the momentum operator and the Pa
spin matrices@18# for the kth electron, andEW k52¹Vk /e is
©2003 The American Physical Society04-1
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the field of the nucleus at that electron’s position. There w
also be contributions from the two-body terms inHBP , those
arising from the electron-electron interactions, but we ha
found ~see Appendix A for an outline of this calculation! that
these contributions appear as ground-state expectation v
of precisely these same two-body operators, and are th
fore two orders of magnitude smaller than those of the o
body terms even for the largest values ofZ @19–21#. There-
fore, these contributions should be small and will not
considered in detail in the main part of this paper.

Expectation values of the above one-body terms are
larger than about 20% that of the nonrelativistic kinetic e
ergy operator

KNR5
1

2m (
k

pk
2 . ~1.4!

Furthermore, expectation values ofHmv and Hd1 are oppo-
site in sign so that their contributions to the energy tend
cancel each other, leaving a total that is well below 10%
the kinetic energy. Thus, one might expect that their con
bution to other quantities, such as the sum rules being c
sidered here, will also be small relative to the correspond
first-order contribution involvingKNR . As shall be seen be
low, the first-order terms are adequate even for fairly largeZ,
but additional terms are needed asZ becomes larger than
about 70, at least if accuracy of 0.5% or better is desir
Nonetheless, the perturbative approach to these sum
should be accurate for a wide range of targets.

In the following section, we discuss the Bethe sum ru
and in Sec. III we describe our approach. Then, in Sec.
the results are discussed, followed by our conclusions.

II. THE BETHE SUM RULE

Let us consider the Bethe sum, defined as,

S1~Q!5Z21(
all

En0(
j 51

Z

u^nueiqW •rW j /\u0&u2, ~2.1!

whereEn05En2E0 is the difference between the energy
the groundu0& and excited statesun& of the atom withZ
electrons. The recoil energy,Q5Aq2c21m2c42mc2, is the
kinetic energy of an electron with momentumqW . The sum-
mation in Eq.~2.1! is to be taken over all positive energ
states of the many-electron atom.

Though other methods are available, such as the introd
tion of projection operators to exclude contributions to t
sum from the negative energy states, we have found that
advantageous to use the Foldy-Wouthuysen transforma
~FWT! @22# for this purpose. In Refs.@14# and @17#, a for-
mally exact expression in terms of an initial-state expecta
value has been derived forS1(Q), using an FWT to a repre
sentation in which the positive energy states are by th
selves a complete set. The result found there may be wr
as
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S1~Q!5
1

2Z (
j 51

Z

^0̃u„2Rj †H̃~qW !Rj2$Rj †Rj ,H̃%…u0̃&,

~2.2!

where $A,B%5AB1BA, u0̃&5eiU u0& is the initial state in
the new representation, andRj and H̃ are the projections of
e2 iqW •rW j /\eiUeiqW •rW j /\e2 iU5eiU (qW )e2 iU and eiUHe2 iU onto
the subspace of positive energy eigenstates, respectively
operator written explicitly as a function ofqW represents a
momentum boost, such asH̃(qW )5e2 iqW •rW j /\H̃eiqW •rW j /\ and the
FWT operatorU(qW ) introduced in the preceding sentence
the definition ofRj .

For H, we use a many-electron Dirac Hamiltonian,

H5 (
k51

Z

HD
k 1Vee, ~2.3!

where

HD
k 5bkmc21caW k•pW k1Vk ~2.4!

is the single-electron Dirac Hamiltonian,bk and aW k are the
usual Dirac matrices@23#, and Vk and Vee represent the
nuclear and electron-electron interactions, respectively@24#.
Following Sucher@25#, we take,

Vee5L1S (
k. l

Z

VklDL1 , ~2.5!

with L15)k51
Z L1(k), andL1(k) is the projection operato

onto the space of positive energy states ofHD
k . As has been

mentioned previously, the contributions from the two-bo
terms arising fromVee are negligible, so the specific form
chosen forVkl is unimportant for us here~a common choice
would be the sum of Coulomb and Breit interactions; s
Appendix A for further details!.

We will write,

S1~Q!5S1
0~Q!@12D~Q!#, ~2.6!

with S1
0(Q)5Q(11Q/2mc2)/(11Q/mc2) the result origi-

nally found by Bethe for a free electron at rest.D(Q) then
represents the corrections arising from a treatment of
electrons as bound, relativistic particles.

For the purpose of calculation, it is convenient to separ
out the various parts which areO(V). The transformed
Hamiltonian will have the form~see following section!,

H̃5eiUHe2 iU5 (
k51

Z

ek1H̃
V
, ~2.7!

with ek5Apk
2c21m2c4. We may also write

Rj5Rf
j 1R

V

j , ~2.8!

yielding
4-2
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2Rj †H̃~qW !Rj2$Rj †Rj ,H̃%5$Rf
j †Rf

j ,e j~qW !2e j%

1$Rf
j †R

V

j 1R
V

j †Rf
j ,e j~qW !2e j%

1$Rf
j †Rf

j ,H̃
V
~qW !2H̃

V
%

1Rf
j †
„@e j~qW !,R

V

j #

1@H
V
~qW !,Rf

j #…1„@R
V

j †,e j~qW !#

1@Rf
j †,H

V
~qW !#…R

V

j , ~2.9!

whereRf
j and the first term in the latter equation areV50 or

‘‘free’’ parts, and the other terms areO(V). After averaging
over the direction ofqW , or equivalently, the orientation of th
target, the calculations described in the following sect
yield

D~Q!5D f~Q!1D
V
~Q!, ~2.10!

with

D f~Q!5
2

3mc2Z~11Q/mc2!2 F11
3

2~11Q/mc2!2G
3^0̃uKNRu0̃&1

7

mc2Z~11Q/mc2!8
^0̃uHmvu0̃&,

~2.11!

and

D
V
~Q!52

2~11Q/3mc2!

mc2Z~11Q/mc2!4~11Q/2mc2!
^0̃uHsou0̃&.

~2.12!

Note that inD
V
(Q), the coefficient ofHd1 vanishes identi-

cally. This is somewhat surprising, given the complica
nature of the calculations leading to this result. It is a
important, since the expectation value ofHd1 is ordinarily
significantly larger than that ofHso . In fact, expectation val-
ues of the latter are usually smaller than some of the t
body terms inHBP that have already been neglected. The
fore, to the present level of approximation, we have

D
V
~Q!50, ~2.13!

and the potential energy of the electrons does not ap
explicitly in the result, entering only through its effects o
the ground-state wavefunction of the target system.

These results giveD(Q) to O(p4), O(p2V), and to all
orders inQ. The methods used to obtain them are descri
in the following section. Those readers not interested in s
cifics concerning the methods may skip directly to Sec. I

III. METHOD OF CALCULATION

The object of the FWT is to eliminate by a canonic
transformation all operators in the Hamiltonian that cou
04270
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upper and lower components of the four-component, sing
particle spinors. These types of operators are denoted as
operators, whereas even operators do not couple the diffe
components. Apart from the case of free electrons, where
exact FWT operatorU is known, the approach is to follow a
step-by-step procedure, yielding a suitable approximation
the exact Hamiltonian. The approximation used in Ref.@17#
to obtain results valid for allQ is an expansion@26–28# in
powers of the potential energy operatorV5(kVk1Vee. This
may be written as

eiU5•••eiU 3eiU 2eiU 1, ~3.1!

whereUn is O(Vn21). For the many-electron treatment b
ing used here, we choose

eiU 15)
k51

Z

eiU f
k
, ~3.2!

whereU f
k is the free-electron FW operator@22#

e6 iÛ k5
1

A2ek~ek1mc2!
~ek1mc26bkcaW k• p̂k!. ~3.3!

Note that to obtain detailed results, an expansion in pow
of the momentum operator is helpful in the sense that it le
to results in the form of expectation values that are availa
in the literature~see Sec. IV, below!. However, if thepW j
expansion is implemented prior to the boost transformat
of the operators, M→M(qW )5e2 iqW •rW j /\MeiqW •rW j /\

5MupW j→pW j 1qW , then the replacement ofpW j by pW j1qW will

transform the expansiona01aW 1•pW j1••• directly into an ex-
pansion in powers ofq @17#. Since we wish to include a
description of the large-q behavior of these sums, thepW j
expansion must be delayed until after the boost is introduc

The Hamiltonian after the first step in the FWT is found
be

H15eiU 1He2 iU 15 (
k51

Z Xbkek1Vk1
1

2mc
@bkaW k•pW k ,Vk#

1
1

8m2c2
†bkaW k•pW k ,@bkaW k•pW k ,Vk#‡C

1eiU 1Veee
2 iU 1. ~3.4!

The next step is to identify the FW operatorU2. This is to be
chosen such that it eliminates odd operators fromH1 to
O(V). Thus, withU25(kU2

k , we require

eiU 2
k
bkeke

2 iU 2
k
5bkek2to

k , ~3.5!

where

to
k5

ie\

2mc
bkaW k•EW k ~3.6!
4-3
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is the odd part of thekth-electron terms inH1 ~we have
assumed thatVk is itself an even operator, such as the un
tarded Coulomb interaction with the nucleus or a simi
effective potential!. To first-order inU2

k , this is

@ iU 2
k ,bkek#52to

k . ~3.7!

The fact thatto
k is O(pV) implies thatU2

k is also, so that to
O(p2V), ek may be approximated asmc2 in this equation.
Noting thatU2

k is odd and hence anticommutes withbk , this
yields

U2
k5

e\

4m2c3
aW k•EW k , ~3.8!

which is in agreement with the original work of Foldy &
Wouthuysen@22#. Using this result, one findsH̃5(k51

Z H̃k ,
where to the desired level of approximation,

H̃k5ek1Vk2
e\2

8m2c2
¹W •EW k2

e\

4m2c2
sW k•~EW k3pW k!1Ṽee,

~3.9!

with Ṽee5eiUVeee
2 iU .

The above results cannot be used to obtainH̃(qW )
5e2 iqW •rW/\H̃eiqW •rW/\, since an expansion in powers ofpk has
already been taken. Instead, withH̃(qW )5(kÞ j

Z H̃k1H̃ j (qW )

being the even part ofH1(qW )5eiU 1(qW )H(qW )e2 iU 1(qW ), one
finds directly that

H̃ j~qW !5e j~qW !1Vj1e\2k~qW •¹W j !qW •EW j

2
e\2Q

4q2eq
X¹W j•EW j1

2

\
sW j•@EW j3~pW j1qW !#22ia1sW j

•~qW 3¹j !FqW •EW j2
2i

e\
VjqW •pW j G C1Ṽee~qW !, ~3.10!

with eq5Aq2c21m2c45Q1mc2,

k5
Q

4q4eq

2
m2c6

8q2eq
4

, ~3.11!

and

a15
mc4

2Qeq
2

2
1

q2
. ~3.12!

To find U2(qW )5U2
j (qW )1(kÞ jU2

k , which is needed to obtain
Rj , we start with the analog of Eq.~3.7!,

@ iU 2
j ~qW !,b je j~qW !#52to

j ~qW !. ~3.13!

Here to
j (qW ) is the odd part of thej th-electron potential term

in H1(qW ), which is given by
04270
-
r

to
j ~qW !5

c

2

1

Ae j~qW !
F b jaW j•~pW j1qW !

Ae j~qW !1mc2
Vj

Ae j~qW !1mc2

2Ae j~qW !1mc2 Vj

b jaW j•~pW j1qW !

Ae j~qW !1mc2
G 1

Ae j~qW !
.

~3.14!

This is seen to vanish whenpj50, so thatU2
j (qW ), like U2

j

itself, is O(pV). Expanding in powers ofp, Eq. ~3.13! may
be solved to yield

U2
j ~qW !5

b j

2i eq
to

j ~qW !1
ic2b j

4eq
3 $to

j ~qW !,pW j•qW %. ~3.15!

An explicit expression forU2
j (qW ), along with expressions fo

other relevant quantities needed for the Bethe sum rule,
~2.9!, may be found in Appendix B.

With this result forU2
j (qW ), we may findRj , which is the

even part ofeiU (qW )e2 iU and may be written,

Rj5 1
2 ~eiU 2

j (qW )eiU f
j (qW )e2 iU f

j
e2 iU 2

j

1b je
iU 2

j (qW )eiU f
j (qW )e2 iU f

j
e2 iU 2

j
b j !. ~3.16!

Given thatb je
6 iU f

j
b j5e7 iU f

j
and similarly foreiU f

j (qW ); and
that we need keep only first order inU2

j , we find

Rj5Rf
j 1R

V

j , ~3.17!

with the V50 part ofRj given by the expression

Aeq1mc2

2eq
Rf

j 5
eq1mc2

2eq
1

q2c2

4meq
3
qW •pW j

1
i

4meq
sW j•~qW 3pW j !, ~3.18!

while theO(V) part is given toO(pV) as

A2eq

Q
R

V

j 52
ie\

4m2c3qeq
3 @~eq

31m3c6!qW •EW j

1 iq2c2eqsW j•~qW 3EW j !#. ~3.19!

One may note thatR
V

j is needed toO(p2V) in the second
term on the right-hand side of Eq.~2.9!; the required expres
sion is given in Appendix B. We also point out that

Rf
j †Rf

j 5
1

2
1

e j

2e j~qW !
1

c2qW •pW j

2e je j~qW !
~3.20!

is an exact expression for the free part ofRj †Rj @14#. Com-
bining all these results yields Eqs.~2.10!–~2.13!.
4-4
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IV. DISCUSSION

In this section, we consider these results to ascertain
range ofZ over which they will be valid. We first note tha
Eqs. ~2.10!–~2.13! involve expectation values ofKNR and
Hmv ~omitting the small contributions fromHso and Vee)
with respect to the ground state in the FWT-transformed r
resentation. SinceeiU 1 commutes with these operators a
U2 is O(pV), we see that e2 iUpneiU

5e2 iU 2e2 iU 1pneiU 1eiU 25pn1O(pn11V). Therefore, since
we work only toO(p2V),

^0̃uKNRu0̃&5^0̃ueiU~e2 iUKNReiU !e2 iU u0̃&5^0uKNRu0&,
~4.1!

plus small corrections, and similarly forHmv . The required
expectation values may be evaluated withu0&5e2 iU u0̃& in-
stead of the transformed ground state, the differences b
higher-order in the relativistic corrections. This will allow u
to use data calculated in the Dirac representation.

Next, we separate out the first- and second-order rela
istic corrections in a way that allows use of data available
the literature. Identifying the nonrelativistic part of th
ground-state wavefunction asu0NR&, and writing

^0uKNRu0&5^0NRuKNRu0NR&1~^0uKNRu0&

2^0NRuKNRu0NR&!, ~4.2!

the first term on the right-hand side divided bymc2 is seen to
be O(a2), while the terms in parentheses give higher-ord
corrections. The latter may be rewritten by approximat
the nonrelativistic kinetic energy operator asKNR5K
2Hmv in the first term, so that

^0uKNRu0&5^0NRuKNRu0NR&1~^0u~K2Hmv!u0&

2^0NRuKNRu0NR&!. ~4.3!

This accomplishes the separation of the first-order rela
corrections from higher corrections, and is in terms of exp
tation values available in the literature. Thus, from E
~2.10!–~2.13!, we have

D~Q!5D1~Q!1D2~Q! ~4.4!

with the first-order contributions given by

D1~Q!5
2

3mc2Z~11Q/mc2!2 F11
3

2~11Q/mc2!2G
3^0NRuKNRu0NR&, ~4.5!

while the second-order corrections are
04270
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D2~Q!5
2

3mc2Z~11Q/mc2!2 F11
3

2~11Q/mc2!2G
3~^0u~K2Hmv!u0&2^0NRuKNRu0NR&!

1
7

mc2Z~11Q/mc2!8
^0uHmvu0&. ~4.6!

also note that the TRK sum, defined as

S15
2m

\2Z
(
all

En0u(
j 51

Z

^nuzj u0&u2, ~4.7!

may be obtained directly from our results for the Bethe su
as

S15 lim
q→0

2m

q2
S1~Q!512D, ~4.8!

whereD5D11D2, with

D15
5

3mc2Z
^0NRuKNRu0NR&, ~4.9!

and

D25
5

3mc2Z
~^0uKu0&2^0NRuKNRu0NR&!

1
16

3mc2Z
^0uHmvu0&. ~4.10!

One may note that the above result forD1 has long been
known @7–11#, but thatD2 does not seem to have been giv
in the literature, previously. Also, while there have been
few studies of the corrections to the Bethe sum rule that h
given results as an expansion in powers ofQ @12–14#, the
exact Q dependence forD1(Q) in Eq. ~4.5! was only re-
cently obtained@17#. The small-Q limit of Eq. ~4.5! is in
agreement with the earlier works utilizing the FWT approa
@12,14#. It is not easy, however, to make a direct comparis
to theD1(Q) derived in Ref.@13#, since their result is still in
the form of a sum over final states, while all our results a
given simply as ground-state expectation values. The exp
sion for D2(Q) is new.

Data for all expectation values appearing in these eq
tions may be found in the literature for a wide range
atoms. For̂ 0NRuKNRu0NR&, values are obtained as the di
ference between the total nonrelativistic energy and the s
of the individual electron potential energies, as given in R
@29#; for ^0uKu0&, the results of Ref.@30# will be used; and
values for^0uHmvu0& are calculated from the data of Re
@31#. In Fig. 1, our results in Eqs.~4.9! and~4.10! are plotted
as a function ofZ to illustrate the relative magnitudes of th
two correction terms in the TRK sum rule~the equations
have been evaluated forZ52, integer multiples of 10 up to
80, and 86; the lines in the figure are interpolated from th
values!. One may note thatD1 andD2 are opposite in sign,
4-5
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so tend to cancel, making the total correction always sma
than the first-order corrections. It is seen thatD1 is less than
0.5% forZ,30 and the total correctionD differs little from
this in that range.D2 is smaller than 0.5% in magnitude ou
almost toZ570. Therefore, our results forD should offer
reasonable accuracy at least through this range ofZ, and
probably beyond if the second-order corrections are
cluded.

In Fig. 2, we plot the relativistic corrections to the Bet
sum rule as a function ofQ/mc2 for Ytterbium, Z570. We
see thatD1(Q) decreases monotonically with increasingQ,
while D2(Q) has its largest magnitude atQ50 and changes
sign whenQ is a relatively small fraction ofmc2. The total
correctionD(Q) is very well approximated byD1(Q), ex-
cept perhaps at the smallest values ofQ. Similar trends are
observed for other atoms, as well. In Fig. 3, the second-o
corrections to the Bethe sum rule are plotted as a functio
Q/mc2 for a few of the heavier atoms. One may note th

FIG. 1. The relativistic corrections to the TRK sum rule, plott
as a function ofZ to illustrate the relative magnitudes of the tw
correction terms~the equations have been evaluated forZ52, in-
teger multiples of 10 up to 80, and 86; the lines in the figure
interpolated from these values!.

FIG. 2. Comparison of the first- and second-order and total r
tivistic corrections to the Bethe sum rule, plotted as a function
Q/mc2, for Ytterbium (Z570).
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even for Rn (Z586), these corrections are small, except
the lower range ofQ, sayQ,mc2/25. The perturbative re-
sults for the Bethe sum rule should therefore be quite ac
rate, except for largeZ and smallQ.

V. CONCLUSION

In this paper, we have extended previous calculations
the Bethe and TRK sum rules to include second-order r
tivistic corrections from an expansion in powers of the bin
ing energy of the target electrons. A many-electron treatm
of the atoms has been used in an approach that is valid
spective of the size of the recoil energyQ. The results pre-
sented here indicate that perturbative calculations of th
sum rules yield accurate results over a wide range ofZ. Fur-
ther work is needed, however, whenZ.70 andQ is small, if
one wishes to achieve an accuracy of 0.5% or better.

We now close with some observations about electr
electron interactions in many-electron systems, and th
contributions to these calculations. It is well known that in
nonrelativistic treatment of the target, the Bethe sum is fou
to be proportional to a ground-state expectation value o
constant

S1~Q!5Z21(
all

(
j 51

Z

^0ue2 iqW •rW j /\un&^nu@HNR ,eiqW •rW j /\#u0&

5^0uQ~11Q/2mc2!u0&5Q~11Q/2mc2!. ~5.1!

This means, of course, that the result is independent of
ground state of the target, and different systems—free e
trons, a single bound electron, or a system of many inter
ing, bound electrons—all yield the sameS1(Q). Thus one
concludes that electron-electron interactions, if present,
not alter the result at all. As is discussed in the followi
paragraph, however, this conclusion no longer holds fo
relativistic treatment.

Earlier studies of the relativistic case have generally rel
upon an independent-particle approximation~IPA! @12–
14,32#, for which the electron-electron interactions@Vee in
Eq. ~2.3!# are dropped from the Hamiltonian of the syste
~though these interactions have previously been discusse

e

-
f

FIG. 3. The second-order corrections to the Bethe sum r
plotted as a function ofQ/mc2, for Z560, 70, 80, 86.
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the context of an effective potential@13#!. The approach pre
sented here formally avoids use of the IPA and offers a c
picture of the effects of includingVee in the HamiltonianH.
We have indicated in the Introduction that, apart from th
effects on the ground-state wavefunction~which are, of
course, important! these two-body interactions lead to su
rule corrections which are much smaller than those from
one-body terms included in our calculations. In fact, by
cluding the two-body terms explicitly in the calculation
these sum rules, we have been able to show~see Appendix
A! that the additional terms that arise are all proportiona
expectation values of the same two-body operators that
pear in the Breit-Pauli HamiltonianHBP, such as the secon
Darwin, orbit-orbit, and other operators~the operatorVee,
by itself, does not appear!. Since it is known that expectatio
values of these two-body operators inHBP are quite small
relative to those of the corresponding one-body opera
@19–21#, their contributions to the sum rules should then a
be quite small. Therefore, our results would be unchange
H were replaced by an independent-particle Hamiltonian
long as the electron-electron interactions are still included
the ground-state wavefunction. One can therefore see
the IPA leads to good agreement with experiment in R
@32#. Nonetheless, it is important to remember that the
fects of these interactions on the wavefunctions are imp
tant in the relativistic case considered in this paper. Tho
these effects are important, it should also be noted that
ferent choices forVee are not expected to alter our numeric
results significantly.
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APPENDIX A

In this Appendix, we outline how contributions from th
two-body terms in the Hamiltonian may be calculated. F
this discussion, we take@see Eq.~2.5!#

Vkl5Vkl
C 1Vkl

B , ~A1!

whereVkl
C 5e2/r kl is the Coulomb interaction between ele

tronsk and l, and

Vkl
B 52

e2

2r kl
~aW k•aW l1aW k• r̂ klaW l• r̂ kl!, ~A2!

is the Breit operator.
We now wish to introduce the FWT. Once again we wr

eiU5•••eiU 3eiU 2eiU 1, ~A3!

and chooseU15)kU f
k and U2 to eliminate the odd parts

from theVk terms inH15eiU 1H1e2 iU 1, as before@see Eqs.
~3.2!–~3.7!#. One might expect that this will leave odd op
erators that arise fromVkl that would then also need to b
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eliminated. However, it turns out thatU2 along with the
presence of the projection operatorL1 suffices to eliminate
all such odd operators.

This latter conclusion may be seen as follows: First, n
that sinceL1(k) are projection operators onto the space
positive energy states of the single-electron Hamiltonia
HD

k , then the FWT of these projection operators must
equal to the projection operators in the transformed repre
tation. That is,

eiU 2
k
eiU f

kL1~k!e2 iU f
k
e2 iU 2

k
5 1

2 ~11bk!. ~A4!

Of course, this is only completely correct if the exactU2 is
used, but the error incurred by approximatingU2 as we have
done throughout this paper will be higher order in sm
quantities, and so may be ignored. Therefore,

eiU 2eiU 1L1~k!L1~ l !VklL1~k!L1~ l !e2 iU 1e2 iU 2

5 1
16 ~11bk!~11b l !~eiU 2eiU 1Vkle

2 iU 1e2 iU 2!

3~11b l !~11bk!. ~A5!

Thus, since (11b l)Ml(11b l)50 whenMl is an odd op-
erator, no odd operators fromVkl survive. This is, of course
not surprising. The projection operators serve the function
eliminating these odd operators, so there is no need to d
within the FWT, itself.

What this means, then, is that to obtain the relativis
corrections to the Bethe sum rule for this no-pair model,
choice of FWT operatorU is identical to that which was use
to transform the HamiltonianH in the main part of this pa-
per. Then, sinceU has noVkl parts, neither willRj , which is
therefore still given by Eqs.~3.18! and ~3.19!. The trans-
formed Hamiltonians,H̃ andH̃(qW ), will now have additional
terms arising fromVkl added to the results found above
Eqs.~3.9! and ~3.10!. Then, consideration of Eq.~2.2! leads
to the conclusion thatS1(Q) for the no-pair model will be
given by the results found in the main text plus addition
terms arising from theVkl terms inH̃ andH̃(qW ). With a fair
amount of effort, one can show that these additional ter
are proportional to expectation values of the various tw
body operators appearing in the Breit-Pauli Hamiltonian~ex-
cludingVkl itself!, as has been noted elsewhere in this pap

There is one final, rather technical point that needs to
mentioned to forestall questions that might be raised by th
readers familiar with the work of Chraplyvy@33,34# on
FWT-type transformations for Hamiltonians including tw
body operators. He found that when two interacting partic
have equal masses, it is not generally possible to transf
the Hamiltonian into an even operator~actually, the desired
transformation for us here is to an ‘‘even-even’’ form; that
such thatH̃ commutes with the Diracb operators of both
particles!. He then introduced more general transformatio
which leave the Hamiltonian in a form that he refers to
‘‘ uU separating’’@34#, where even-even operators are a su
set of theuU-separating ones. At first glance, it would see
that the case discussed in this Appendix, where the two-b
terms are treated explicitly, must be treated using Chrap
4-7
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vy’s methods. However, since the presence of the projec
operators inH already serves to eliminate all but the eve
even operators inVee, there is in fact no need to introduc
his generalization of the FWT.

APPENDIX B

In this Appendix, we present explicit expressions f
some of the quantities used in the calculation of the Be
sum rule.

For Eq.~3.15!, U2
j (qW ) is given as
.

ia

04270
n
-

r
e

4eq
2

\c
U2

j ~qW !5aW j•EW j2
Q

q2eq

qW •aW jqW •EW j1a1$pW j•aW j ,qW •EW j%

1S a12
c2

2eq
2D $qW •pW j ,aW j•EW j%

1
c4~4eq13mc2!

2eq
3~eq1mc2!2

qW •aW j$qW •pW j ,qW •EW j%

2
Q

2q2eq

qW •aW j$pW j ;EW j%, ~B1!

where$AW ;BW %5AW •BW 1BW •AW anda1 is given in Eq.~3.12!.
For Eq.~2.9!, the following expressions are used:
Rf
j †R

V

j 1R
V

j †Rf
j 5

e\q2

4m2eq
3
sW j•~qW 3EW j !1

e\c4

8eq
5 $sW j•~qW 3pW j !,qW •EW j%2

e\2q2c2

8m2eq
5 ~qW •¹j !qW •EW j

2
e\

8m2eq
5 F eq

22
2m2c2

q2
~eq

21q2c2!1
m3c6

Q G $sW j•~qW 3EW j !,qW •pW j%. ~B2!

Rf
j †@e j~qW !,R

V

j #1@Rf
j †,e j~qW !#R

V

j 52
e\2

4m2eq
5 ~eq

31m3c6!~qW •¹W j !qW •EW j . ~B3!

Rf
j †@H

V
~qW !,Rf

j #1@Rf
j †,H

V
~qW !#Rf

j 52
e\2Q

8m2c2eq
2 ~Q13mc2!¹W j•EW j1

e\2c2Q

8q2eq
5 ~eq

21q2c212eq
3/mc2!~qW •¹W j !qW •EW j

2
e\

2meq
sW j•~qW 3EW j !2

e\Q

4m2q2c2eq
2 ~Q13mc2!qW •~EW j3pW j !s j•qW

2
e\Q

8m2q2c2eq
2 ~Q13mc2!$sW j•~qW 3pW j !,qW •EW j%

2
e\Q

8m2q2c2eq
3 ~Q223m2c4!$sW j•~qW 3EW j !,qW •pW j%. ~B4!
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