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Classical approach to effective rotational energy and bifurcation in rotational dynamics
of H2X molecules
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A classical method of effective rotational energy describing the molecular rotation is analyzed from the
viewpoint of relative equilibria approach. Explicit formulas for the effective rotational energy up to sixth order
in angular-momentum components are derived and compared with the results of quantum approach. The
method is applied to get the analytical description of bifurcation in rotational dynamics of H2X molecules
without the suggestion of constant bond length.
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I. INTRODUCTION

The classical description of molecular rotation has prov
to be an important tool for understanding the qualitative f
tures of rotational spectra in molecules@1#. The central role
in this description is played by the notions of effective ro
tional energy@2# and rotational energy surface~RES!, intro-
duced by Harter and Patterson@3#. The effective rotational
energy is a function of angular-momentum vectorJ in a
molecule-fixed frame which can be viewed as a general
tion of the rigid body rotational energy incorporating th
effects of centrifugal distortion. In the model of Harter a
Patterson, effective rotational energy defines the dynamic
angular-momentum vectorJ in a molecule-fixed frame
through the equation, analogous to Euler equation for
rigid body rotation@3#. The qualitative features of this dy
namics allow one to explain the structure of rotational m
tiplets in molecular spectra@1,3#

The effective rotational energy can be viewed as a cla
cal analog of the quantum effective rotational Hamiltonia
describing the rotation energy levels for a separate vibro
state in a molecule@4,5#. One can obtain the effective rota
tional energy substituting the operators of angul
momentum components by the corresponding classical v
ables @1#. We will refer to this approach to effectiv
rotational energy as a quantum approach.

Another method of obtaining the effective rotational e
ergy is based on purely classical consideration; it traces b
to the work of Wilson@6#. The centrifugal distortion in a
molecule can be described by means of effective poten
which contains the centrifugal term depending on angu
momentum vectorJ. In this approach the value of effectiv
rotational energy for some vectorJ is defined by the mini-
mum of corresponding effective potential. The applicatio
of this method to different systems were considered
Petrov et al. @7–9#. A similar approach was used also
Ref. @10#.

In this paper we analyze the classical approach to ef
tive rotational energy and discuss its relationship with
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quantum approach. Our main tool is the notion of relat
equilibrium in a molecule@11–14#. Under the relative equi-
librium the system of nuclei rotates around the motionle
axis with constant internuclear distances and angular ve
ity. We find that in the Wilson’s approach the stationa
points on RES correspond exactly to relative equilibria. Co
sidering the relationship between the classical and quan
approaches to effective rotational energy, we find that th
give the same result for the terms up to the sixth order
effective rotational energy. In most cases the qualitative p
ture of relative equilibria at smallJ is completely determined
by these terms@1,10,12#.

In some cases the classical approach can give an a
tional insight into the problem. An example of this provid
the effect of bifurcation in rotational dynamics of H2X mol-
ecules@15#. This effect was predicted in the work of Zhilin
skii and Pavlichenkov@16# on the basis of a classical analy
sis of a rigid bender model in whichX-H bonds are
‘‘frozen.’’ Later the numerical calculations provided mor
detailed description of this bifurcation@8,17,18#.

In this paper we apply the method of effective rotation
energy in order to obtain the analytical description of bifu
cation in H2X molecules without imposing the constraints o
the bonds. The analysis of the rigid bender model brin
forth the conclusion that the leading role in the problem
played by a configuration in which a molecule becomes
accidental symmetric top@1#. In particular, if we consider
this special configuration as an equilibrium configuration
a hypothetical molecule then the bifurcation occurs aJ
50. This hypothetical molecule is a very appropriate e
ample for a more detailed analysis, which we consider h
Using some natural assumptions we find the simple suffic
condition of bifurcation appearance: the frequency of be
ing mode should be less than the frequencies of stretch
modes. On the basis of these results we give the descrip
of the bifurcation in real H2X molecules.

This paper is organized as follows. In Sec. II we analy
the classical construction of effective rotational energy. T
general scheme of its expansion in angular momentum c
ponents is developed in Sec. III in which the comparis
with the results of the quantum approach is done also. S
tion IV is devoted to the problem of bifurcation in H2X mol-
ecules.
©2003 The American Physical Society02-1
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II. EFFECTIVE ROTATIONAL ENERGY

A. Relative equilibria in molecules

The intramolecular dynamics can be described by the
lowing system of equations@13,14#

q̇k5
]H

]pk
,

ṗk52
]H

]qk
, ~1!

J̇5J3
]H

]J
,

where (q1 , . . . ,q3N26)5q are the internal coordinates
(p1 , . . . ,p3N26)5p the conjugated momenta,J the angular-
momentum vector in the molecule-fixed frame, a
H(J,q,p) the Hamilton function. The angular momentumJ
and momentapk can be expressed through the angular
locity in the molecule-fixed framev and q̇k :

J5IS v1(
k

Akq̇kD , ~2!

pk5(
l

gklq̇l1~Ak ,J!, ~3!

where Iab(q) is the inertia tensor in the molecule-fixe
frame,Ak(q) the gauge potential, andgkl(q) the metric ten-
sor of the shape space@19#. The stationary points of system
~1! correspond to relative equilibria@11–14#. As follows
from Eqs.~2! and~3!, relative equilibria are solutions, unde
which the system of nuclei rotates around the motionless
with constant internuclear distances and angular veloc
~We consider the relative equilibria with only noncolline
configurations.!

Using the explicit form of Hamilton functionH(J,q,p),
the conditions on relative equilibria can be obtained. T
can most easily be done using the Hamilton function in
form developed by Herschbach and Laurie@20# ~see also
Ref. @19#!. The resulting conditions are as follows@14#:

~pk!e5„Ak~qe!,Je…, ~4!

I21~qe!Je5lJe , ~5!

]U

]qk
~Je ,qe!50, U~J,q!5

1

2
„J,I21~q!J…1V~q!, ~6!

whereV(q) is the adiabatic potential andU(J,q) the effec-
tive potential. From condition~4! we see that the equilibrium
values of momentape are completely determined by the va
uesqe andJe . Equation~5! implies that the vectorJe should
be directed along the principal axis of inertia of relative eq
librium configuration. Condition~6! tells us that relative
equilibria configurations should correspond to the station
points of effective potential containing the centrifugal ter
04250
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In order to find the relative equilibria it is necessary to so
the system of Eqs.~5! and ~6! @13#.

Condition~6! traces back to the work of Wilson@6#. How-
ever, Wilson uses the conditionspk50 instead ofq̇k50 and
this results in the appearance of effective inverse inertia
sor m(q) instead ofI21(q) in Eq. ~6!. Fortunately, this has
no effect on the terms of fourth order in effective rotation
energy considered in Ref.@6#.

B. Effective rotational energy

Now we turn to the classical construction of effective r
tational energy@6–8,10#. Let (q1

0 , . . . ,q3N26
0 )5q0 be a

nondegenerate minimum point of adiabatic potentialV(q).
For sufficiently smallJ5uJu an effective potentialU(J,q) as
a function ofq has a unique minimum point in the vicinity o
q0. Let (Q1(J), . . . ,Q3N26(J))5Q(J) be the coordinates
of this point andh(J)5U(J,Q(J)) the corresponding mini-
mal value of effective potential which is by the definition
value of effective rotational energy for thisJ @6,8#. For all
the pairs (J,Q(J)) condition ~6! is fulfilled, but to relative
equilibria correspond only those pairs for which also con
tion ~5! holds:

I21
„Q~Je!…Je5lJe . ~7!

On the other hand, from the definition ofh(J) we have

]h

]J
5

]U

]J
„J,Q~J!…1(

k

]U

]qk
„J,Q~J!…

]Qk

]J
5I21

„Q~J!…J.

~8!

Consequently, Eq.~7! can be written in the form

]h

]J
~Je!5lJe . ~9!

Let hJ be the restriction ofh(J) to the sphereuJu5J @as a
function of two angles (u,f)]. We can interpret condition
~9! as a stationary condition for the functionhJ with l being
the Lagrange multiplier.

We arrive at the following conclusion: for sufficientl
smallJ the relative equilibria with configurations nearq0 are
defined by stationary points of functionhJ . Such stationary
points define the orientations of vectorJe ~with fixed J) and
corresponding configurations of relative equilibria are giv
by the equationqe5Q(Je). Thus we see that the method o
effective rotational energy has a natural interpretation
terms of relative equilibria.

It is interesting to compare this result with the model
Harter and Patterson@3#. In this model, effective rotationa
energyh(J) defines the dynamics of vectorJ by means of
equation analogous to Euler equation for the rigid body
tation:

J̇5J3
]h

]J
. ~10!

Since the length of vectorJ is conserved, its dynamics i
completely determined by the corresponding restrict
2-2
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CLASSICAL APPROACH TO EFFECTIVE ROTATIONAL . . . PHYSICAL REVIEW A 68, 042502 ~2003!
hJ(u,f), the radial plot of which in three-dimensional spa
is called rotational energy surface~RES!. The stationary
points ofhJ(u,f) correspond to stationary solutions for ve
tor J. Though this model is only approximate@since in fact
the dynamics of vectorJ is coupled with vibrational dynam
ics by means of a system~1!#, we see that the stationar
solutions of Eq.~10! have anexactmeaning of relative equi-
libria.

In the work of Montaldi and Roberts@12# a rather genera
theory is applied to the analysis of relative equilibria in m
ecules. In particular, they prove that there exists a func
with the properties ofh(J). The Wilson’s approach is per
haps less general, but it provides more explicit and sim
construction.

III. EXPANSION OF EFFECTIVE ROTATIONAL ENERGY

In order to get explicit formulas for effective rotation
energy we consider its expansion in a series in angular
mentum componentsJa . In this section we describe the ge
eral scheme of this expansion and derive explicit formu
for the terms up to sixth order. Then we compare our res
with analogous formulas for the terms in effective rotation
Hamiltonians.

A. The general scheme of expansion

The series expansions for the functionsh(J) and Qk(J)
have the form

h~J!5h~0!1h(2)~J!1h(4)~J!1 . . . , ~11!

Qk~J!5qk
01Qk

(2)~J!1Qk
(4)~J!1 . . . , ~12!

where the numbers in parentheses indicate the orde
angular-momentum components. The invariance ofh(J) and
Qk(J) under inversionJ°2J ~following immediately from
their definition! implies the absence of odd order terms
these expansions.

To derive explicit formulas for the terms in expansio
~11! and ~12! it is convenient to use the following trick: to
proceed as if there is only one internal coordinateq. It will
be obvious from the procedure of derivation that the gen
formulas can be obtained from the simplified ones by add
indices for internal coordinates and sums over them.

We start with the Taylor expansions for effective potent
and its first derivative in the vicinity ofq0:

U~J,q!5C~J,q!1V~q!

5C~J,q0!1V~q0!1C1dq1
1

2
~C21V2!dqdq1•••,

~13!

]U

]q
5C11~C21V2!dq1

1

2
~C31V3!dqdq1•••,

~14!

whereC5 1
2 „J,I21(q)J… is a centrifugal term in effective po

tential, Cn and Vn are derivatives of centrifugal term an
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adiabatic potential respectively, anddq5q2q0. Substituting
expansion~12! into Eq. ~14! and collecting the terms of the
same order in components ofJ, we obtain

]U

]qU
q5Q(J)

5C11V2Q(2)1C2Q(2)1V2Q(4)1
1

2
V3Q(2)Q(2)

1C2Q(4)1V2Q(6)1
1

2
C3Q(2)Q(2)

1V3Q(2)Q(4)1
1

3!
V4Q(2)Q(2)Q(2)1•••. ~15!

By the definition of Q(J) the result of this substitution
should be zero; therefore, the terms of each order in exp
sion ~15! vanish. Using this we find

Q(2)52V2
21C1 ,

Q(4)52V2
21S C2Q(2)1

1

2
V3Q(2)Q(2)D ,

Q(6)52V2
21S C2Q(4)1

1

2
C3Q(2)Q(2)1V3Q(2)Q(4)

1
1

3!
V4Q(2)Q(2)Q(2)D . ~16!

The formulas for the terms in expansion~11! are obtained by
substitution of expansion~12! into Eq. ~13!:

h(2)5C~J,q0!,

h(4)5C1Q(2)1
1

2
V2Q(2)Q(2)52

1

2
V2

21C1C1 ,

h(6)5
1

2
C2Q(2)Q(2)1

1

3!
V3Q(2)Q(2)Q(2), ~17!

h(8)52
1

2
V2Q(4)Q(4)1

1

3!
C3Q(2)Q(2)Q(2)

1
1

4!
V4Q(2)Q(2)Q(2)Q(2).

Now, adding indices for internal coordinates and su
over them, we can get explicit formulas for the terms
effective rotational energy. The terms of the second orde
effective rotational are analogous to the rigid body rotatio
energy:

h(2)~J!5
1

2
„J,I21~q0!J…. ~18!

For the terms of fourth order we obtain

h(4)~J!52
1

8
~V2

21!klS J,
]I21

]qk
JD S J,

]I21

]ql
JD . ~19!
2-3
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For the case of the Eckart frame this result was obtained
Montaldi and Roberts@12#. To calculate these terms it i
necessary to know the matrixV2 of second derivatives o
adiabatic potential in equilibrium configuration. The terms
sixth order require also the third derivatives of potential:

h(6)~J!5
1

238
~V2

21!km~V2
21! lnS J,

]2I21

]qk]ql
JD S J,

]I21

]qm
JD

3S J,
]I21

]qn
JD2

1

638

]3V

]qk]ql]qm
~V2

21!ku~V2
21! lv

3~V2
21!mwS J,

]I21

]qu
JD S J,

]I21

]qv
JD S J,

]I21

]qw
JD .

~20!

In Eqs.~19! and~20! all partial derivatives onq are evaluated
at the equilibrium configurationq0 and also the sums ove
indices of internal coordinates are understood.

Equations~18!–~20! can be used to predict the qualitativ
picture of relative equilibria at lowJ. The examples of this
are given in the work of Montaldi and Roberts@12# and
another example concerning H2X molecules is discussed be
low. It should be noted, however, that at highJ the conver-
gence of effective rotational energy expansion may be pr
lematic. In this case the numerical calculation of effect
rotational energy~without expansion! can be done@8,9#.

B. Comparison with the quantum approach

Now we turn to a comparison of Eqs.~19! and ~20! with
analogous expressions for the terms in effective rotatio
Hamiltonians. The derivation of effective rotational Ham
tonians is usually based on the following conventions@5,21#.
The molecule-fixed frame is defined by Eckart conditio
and its axes in equilibrium configuration coincide with pri
cipal axes of inertia; also the normal coordinates are cho
as internal ones. The effective rotational Hamiltonians
received as a result of~vibrational! contact transformation in
the form of power series in operators of angular-moment
components@22,5#. Then the procedure of second~rota-
tional! contact transformation can be done@22,4#, but since it
does not affect the corresponding classical expressions
not essential to the present consideration. For compariso
have chosen the work of Aliev and Watson@22# in which the
explicit formulas for the terms of sixth order in effectiv
rotational Hamiltonian are derived.

The conventions we noted above allow us to give m
detailed expressions for the terms given by Eqs.~19! and
~20!. Since qk are normal coordinates, the matrixV2

21 is
diagonal:

~V2
21!kl5

1

lk
dkl . ~21!

For the derivatives of inverse inertia tensor we get the
lowing expressions:
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]~I21!ab

]qk
U

0

52
ak

ab

I a
0 I b

0
, ~22!

]2~I21!ab

]qk]ql
U

0

52
1

I a
0 I b

0 (
m

~z lm
a zkm

b 1zkm
a z lm

b !

1
3

4

1

I a
0 I b

0 (
g

1

I g
0 ~ak

agal
gb1al

agak
gb!.

~23!

Here we use the following notation:I a
0 are the general mo

ments of inertia in equilibrium configuration,ak
ab

5]Iab /]qku0 the inertial derivatives, andzkl
a the Coriolis

coupling coefficients@5,21#. We derive Eqs.~22! and~23! in
the Appendix.

Using Eqs.~21!–~23!, we obtain the expressions for th
fourth- and sixth-order terms in effective rotational ener
through the coefficientslk , I a

0 , ak
ab , zkl

a . For the terms of
fourth order we obtain Wilson’s result

h(4)~J!5
1

4 (
abgd

tabgdJaJbJgJd , ~24!

where

tabgd52
1

2I a
0 I b

0 I g
0I d

0 (
k

ak
abak

gd

lk
~25!

is a Wilson-Howard tensor@6,4#. The terms of sixth order
have the form

h(6)~J!5
1

8 (
abgdez

tabgdezJaJbJgJdJeJz , ~26!

where

tabgdez5
1

I a
0 I b

0 I g
0I d

0I e
0I z

0 F3

4 (
lmm

al
amam

mbal
gdam

ez

l llmI m
0

2(
lmn

z ln
a zmn

b al
gdam

ez

l llm
1

1

6 (
lmn

klmnal
abam

gdan
ez

l llmln
G ,

~27!

klmn5
]3V

]ql]qm]qn
U

0

. ~28!

For comparison with the results of Ref.@22# it is also
necessary to transfer to dimensionless normal coordina
angular-momentum components in units of\ and energy in
units ofhc @5#. We find that there is an exact corresponden
between Eqs.~24!, ~26! and corresponding quantum expre
sions, in which the operators of angular momentum are s
stituted by the corresponding classical variables. The sp
2-4
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CLASSICAL APPROACH TO EFFECTIVE ROTATIONAL . . . PHYSICAL REVIEW A 68, 042502 ~2003!
ting of sixth-order terms in Ref.@22# into harmonic, Coriolis,
and anharmonic parts corresponds exactly to our splittin
Eq. ~27!.

IV. RELATIVE EQUILIBRIA IN H 2X MOLECULES

In this section we analyze the bifurcation in rotation
dynamics of H2X molecules. The simplest possible picture
this bifurcation is provided by the rigid bender model, whi
we discuss at first. Then we focus on the hypothetical m
ecule with accidental symmetric-top configuration and a
lyze the qualitative picture of relative equilibria in it at lowJ
using Eq. ~19!. On the basis of these results we give t
description of the bifurcation in the real H2X molecules.

A. Rigid bender model

The rigid bender model, in which theX2H bonds are
assumed to be ‘‘frozen’’ at their equilibrium distances, w
used in many works for the qualitative description of ro
brational dynamics of H2X molecules ~see, e.g., Refs
@17,23,24#!. In the work of Zhilinskii and Pavlichenkov@16#
the rigid bender model was used to predict the bifurcation
the rotational dynamics of H2X molecules.

In Ref. @16# the problem is analyzed using explicit equ
tions of motion analogous to Eq.~1!. An alternative approach
we take here is based on the simple condition of balance
the potential, centrifugal, and reaction forces. LetM and m
be the masses ofX and H, respectively,l the equilibrium
bond distance, andVrb(a) the potential function having the
simplest form with one minimum pointa0. ~We assume a
first thata0.p/2.! Consider the relative equilibria with th
axis of rotationx lying in the plane of a molecule perpen
dicular to theC2 symmetry axis. The presence of the co
straints on the bonds implies that there are reaction for
which we should take into account when considering
balance condition~see Fig. 1!:

uFcentusin
a

2
5uFpotu, ~29!

where

FIG. 1. Relative equilibria in the rigid bender model with th
axis of rotationx. We consider the balance conditions only for the
nuclei since they imply the balance condition for theX nucleus.
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uFcentu5
mM

M12m
v2l cos

a

2
, uFpotu52

1

l

]Vrb

]a
. ~30!

Condition ~29! can be written also as

]

]a S Vrb2
I xv

2

2 D50,
]

]a S Vrb1
J2

2I x
D50, ~31!

whereI x(a) is the general moment of inertia correspondi
to axisx. These equations describe a decrease of the anga
of relative equilibrium configuration with an increase of a
gular momentumJ or angular velocityv. The analogous
conditions can be obtained for the rotation axesy ~coinciding
with the C2 axis! and z ~perpendicular to the plane of
molecule!.

Let us recall that only the principal axes of inertia can
the axes of rotation of relative equilibria.~This can be seen
as a consequence of the conservation of angular momen
vector in space-fixed frame.! The axesx, y, z are the only
principal axes of inertia in a generic case, but when the b
angle equalsacr5arccos@m/(m1M )#,p/2 the general mo-
ments of inertiaI x andI y coincide and the molecule become
an accidental symmetric top. In this case every axis in
plane of a molecule going through the center of mass
comes a principal axis of inertia.

To obtain the full picture of relative equilibria in the rigi
bender model it is necessary to consider this accide
symmetric-top configuration with the axis of rotation lying
the plane of a molecule. Letf be the angle between th
rotation axis and axisx. Let us assume thatf,acr/2. Ana-
lyzing the balance conditions for the two H nuclei we fin
that they are equivalent due to the identity

r1sinS acr

2
1f D5r2sinS acr

2
2f D , ~32!

wherer1 andr2 are distances from the two H nuclei to th
axis of rotation~see Fig. 2!. The proof of this identity is
straightforward: it is necessary to calculate the distancesr1
andr2 as functions of anglef and to use standard trigono
metric formulas. Thus we see that every axis withf
,acr /2 defines a relative equilibrium with certainJ. The

FIG. 2. Relative equilibria in the rigid bender model corr
sponding to accidental symmetric-top configuration. Hereb
5acr/21f andg5acr/22f.
2-5
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A. P. PYSHCHEV PHYSICAL REVIEW A68, 042502 ~2003!
valuef50 corresponds to the critical value of angular m
mentumJcr , which can be found from the condition

]

]a S Vrb1
Jcr

2

2I x
DU

acr

50. ~33!

The anglef increases withJ and at highJ it approaches
acr/2. The equation describing this dependence can be w
ten in the form@cf. Eq. ~6!#

]

]a S Vrb1cos2f
J2

2I x
1sin2f

J2

2I y
D U

acr

50. ~34!

Thus we obtain the description of bifurcation in rotation
dynamics: the number of relative equilibria changes atJcr
due to the appearance of two new axes of rotation, co
sponding to accidental symmetric-top configuration@16#.

The peculiarity of accidental symmetric-top configurati
becomes more clear if we consider the rotation axis withf
5acr/2. This axis goes through the position of one H nucle
and is perpendicular toX-H bond with another H nucleu
~see Fig. 3!. In the hypothetical molecule in which the equ
librium bond anglea0 equalsacr this axis corresponds to
relative equilibria with arbitraryJ since all centrifugal forces
will be balanced by the reaction forces. We can interpret
as an appearance of bifurcation atJcr50. When the equilib-
rium bond anglea0 differs fromacr the bifurcation occurs a
someJcr.0. To prove this the casea0,acr should also be
considered. This can be done in a similar way; we only n
that in this case the roles of the axesx and y are inter-
changed.

B. A hypothetical molecule with accidental
symmetric-top configuration

A hypothetical molecule with accidental symmetric-to
configuration gives the simplest example of bifurcation
the rigid bender model, and the reaction forces play an
portant role in this case. It is very interesting whether
bifurcation in such a hypothetical molecule remains if w
take off the constraints on the bonds. For the analysis of
problem we apply the method of effective rotational ener

FIG. 3. Axis of rotation withf5acr/2 in a hypothetical mol-
ecule with accidental symmetric top configuration.
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To do this we should first choose the molecule-fix
frame and internal coordinates. We use the Eckart frame
express the nuclear position vectors in this frame as lin
combinations of the internal coordinatesqk :

Ra i5Ra i
0 1

1

Ami
(

k
l a i
(k)qk , ~35!

where the constantsl a i
(k) satisfy the equations, originatin

from the Eckart conditions, and also the orthogonality co
dition @see Eqs.~11!–~13! in Ref. @21##. Usually the coordi-
natesqk are chosen to be the normal coordinates, but in
case the latter depend on the force constants due to the
ence of two fully symmetrical modes. This is not very co
venient and instead we use the following definition. W
choose the internal coordinateq1 as corresponding to the
‘‘breathing’’ mode. Another fully symmetrical internal coor
dinateq2 ~bending one! is then defined by the orthogonalit
condition; the asymmetrical coordinateq3 is defined
uniquely up to a sign. The calculation gives the followin
expressions for the coefficientsl a i

(k) :

l (1)5S 2P P 0

2Q 2Q R

0 0 0
D , ~36a!

l (2)5S 2P P 0

Q Q 2R

0 0 0
D , ~36b!

l (3)5S Q Q 2R

P 2P 0

0 0 0
D , ~36c!

where

P5
1

2
, Q5

1

2
A M

M12m
, R5A m

M12m
. ~37!

The first two columns in these matrices correspond to
displacements of H nuclei and the third to the displaceme
of X nucleus. The simplicity of these expressions is anot
surprising peculiarity of symmetric-top configuration, sin
for the general value of bending anglea0 they are much
more complicated. The relationship between these three
placements can be seen if we plot the corresponding vec
at one graphic~see Fig. 4!.

Using these definitions, we calculate the first derivativ
of inverse inertia tensor in equilibrium configuration and u
them to receive the following functions:

S J,
]I21

]q1
JD52tS Jx

21Jy
21

1

2
Jz

2D , ~38a!

S J,
]I21

]q2
JD5t~Jx

22Jy
2!, ~38b!
2-6
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S J,
]I21

]q3
JD522tJxJy , ~38c!

where t5(A2/l 3)@(M1m)/Mm#3/2. Note that there is an
evident resemblance between Eqs.~38a!–~38c! and analo-
gous expressions, obtained for equilateralX3 molecule by
Montaldi and Roberts@12#. This is because theX3 molecule
is in fact a special case of our consideration~with M5m).

The inverse matrix of second derivatives of potential
equilibrium configuration in chosen coordinatesqk has the
general form

V2
215S K1 K12 0

K12 K2 0

0 0 K3

D , ~39!

where the coefficientK12 corresponds to the mixing of th
breathing and bending modes.

Using Eqs.~19!, ~38!, and ~39!, we obtain the following
expression for the terms of fourth order in effective ro
tional energy:

h(4)~J!52 1
8 t2@K1~Jx

21Jy
21 1

2 Jz
2!222K12~Jx

21Jy
21 1

2 Jz
2!

3~Jx
22Jy

2!1K2~Jx
22Jy

2!214K3Jx
2Jy

2#. ~40!

To answer the question about the bifurcation in the hy
thetical molecule it is sufficient to consider the values
effective rotational energy only for the vectorsJ lying in the
planexy:

EJ~f!5h~J cosf,J sinf,0!. ~41!

The terms of second order bring only the scalar part
EJ(f). From Eq.~40! we obtain

EJ
(4)~f!5 1

8 t2J4p~cos2f!, ~42!

where

FIG. 4. Vibrational displacements in accidental symmetric-
configuration. HereP85P/Am, Q85Q/Am, R85R/AM @see Eqs.
~35!–~37!#.
04250
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p~x!54~K32K2!x214~K121K22K3!x2K12K222K12.
~43!

The behavior of the quadratic functionp(x) in the inter-
val @0,1# defines the qualitative picture of relative equilibr
at low J. Obviously, there are four typical situations, whic
are plotted in Fig. 5. The appearance of bifurcation depe
on the following parameter:

l5
K12

K22K3
. ~44!

Providedulu,1 four additional stationary points appear wi
the anglef, defined by the equation

cos2f5 1
2 ~11l!. ~45!

The type of these points is defined by the relationship
tweenK2 andK3: in the caseK2,K3 they are minima, and
in the caseK2.K3 maxima.

Note that minima of functionEJ correspond to the saddl
points of functionhJ ~defined on the whole sphere!, and
maxima ofEJ correspond to maxima ofhJ . ~This is because
the stationary points ofhJ lying on axisz are minima as seen
from the second-order terms.!

There is also the case, whenK25K3 andK1250. In this
case the terms of fourth order give no information on relat
equilibria we are interested in and the terms of sixth or
should be considered. Such a situation is realized in equ
eral X3 molecule~see Ref.@12#!.

C. Comparison with the rigid bender model

Let us compare the results obtained above with the ri
bender model. This model can be considered as a limit c
corresponding to infinitely rigid bonds. To describe this, w
define a family of potentials

V~a,l 1 ,l 2!5Vrb~a!1
Nl

2
~ l 12 l !21

Nl

2
~ l 22 l !2, ~46!

FIG. 5. Typical radial plots of functionsEJ(f) at low J: ~a!
ulu>1 ~or K25K3), K12.0; ~b! ulu>1 ~or K25K3), K12,0; ~c!
ulu,1, K2,K3; ~d! ulu,1, K2.K3.
2-7
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where l 1 , l 2 are the bond distances and the parameterNl
defines the rigidity of the bonds. The rigid bender mod
corresponds to the limitNl→` @25#.

The matrix of second derivatives of the potential given
Eq. ~46! in coordinatesq1 , q2 , q3 has the form

V25S k1 , k12 0

k12 k2 0

0 0 k3

D , ~47!

where

k15~11j!
Nl

m
, k1252j

Nl

m
, k35

112j

11j

Nl

m
,

k25
j2

11j

Nl

m
1

112j

11j

Na

m
, ~48!

j5
m

M
, Na5

2

l 2

]2Vrb

]a2
uacr

. ~49!

Inverting this matrix we find

l5
j

11j S 12
Na

Nl
D 21

, ~50!

K22K35
11j

112j

m

Na
S 12

Na

Nl
D . ~51!

In the limit Nl→` we havel→m/(M1m) and alsoK2
2K3.0, which corresponds to case~d! in Fig. 5. From Eq.
~45! we find that the anglef at which the maxima appea
tends toacr/2. Thus we have the full correspondence w
the rigid bender model.

The potential in the form given by Eq.~46! provides a
good approximation to the quadratic form of potential in t
real H2X molecules. Therefore, we consider also the case
finite Nl . From Eqs.~50! and ~51! we find thatulu,1 and
K2.K3 provided

Nl.
M1m

M
Na . ~52!

This condition gives the lower bound for the rigidity o
bonds at which the qualitative features of the rigid ben
model remain.

The physical meaning of condition~52! becomes more
clear if we consider the frequencies of normal vibrationsvk
instead ofNl and Na . The eigenvalues of the matrixV2
given by Eq. ~47! are exactly the squares of frequenci
~sinceqk are mass-weighted coordinates!. Expandingmvk

2 in
powers of parameterj5m/M , we obtain
04250
l

of

r

mv1
25Nl1Nlj1O~j2!, ~53a!

mv2
25Na1Naj1O~j2!, ~53b!

mv3
25Nl1Nlj1O~j2!. ~53c!

Therefore, in the limitM@m, condition~52! becomes sim-
ply

vstretching.vbending, ~54!

or, more exactly,

v1(3)
2 .v2

2~11j!1O~j2!. ~55!

In the rigid bender model the additional relative equilibr
correspond to accidental symmetric-top configuration. Wh
the constraints are taken off the situation gets different. Fr
Eqs.~16!, ~38!, and~39! we have

Q3
(2)~J!5tK3JxJy . ~56!

Therefore, in additional relative equilibria the bondsX-H
have different length. For the axis withf.0 we haveJx

.0, Jy.0, andQ3
(2).0, which means that the right bon

X-H will be larger than the left~see Fig. 4!. For the axis with
f,0 the situation is inverted.

D. Bifurcation in real molecules

In the real H2X molecules the equilibrium bond anglea0
is larger thanacr . The differencea02acr decreases in the
sequence H2O, H2S, H2Se, H2Te, and for H2Te molecule it
is very small~less then 1°)@26#. To analyze the picture o
relative equilibria in these molecules at smallJ we use the
exact terms of second order in effective rotational energy
the terms of fourth order defined as if in hypothetical m
ecule.

Using this assumption we can write

EJ~f!5~A cos2f1B sin2f!J21EJ
(4)~f!1•••, ~57!

whereA andB are rotational constants and the fourth-ord
terms are given by Eq.~42!. As in the case of hypothetica
molecule the problem reduces to the analysis of the beha
of quadratic function in the interval@0,1#:

EJ~f!5E0~J2!1t2~K22K3!J4pJ~cos2f!1•••, ~58!

pJ~x!52
1

2
x21

1

2
~11l!x1

d

J2
x, ~59!

where

d5
A2B

t2~K22K3!
. ~60!
2-8
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In the real H2X moleculesA is slightly larger thanB, and
we also assume thatulu,1, K2.K3 @since in all H2X mol-
ecules inequality~54! holds#. The qualitative picture of func-
tions EJ(f) is shown in Fig. 6. For the critical valueJcr we
get the following estimate:

Jcr
2 5

2d

12l
. ~61!

Also we obtain the approximate formula for the anglef
describing the position of maxima@cf. Eq. ~45!#:

cos2f5
1

2
~11l!1

d

J2
. ~62!

This qualitative picture agrees with the results of numeri
calculations@9,18#. The appearance of four maxima of fun
tion EJ(f) @and, consequently, of functionhJ(u,f)] at J
.Jcr explains the formation of fourfold clusters in the upp
part of rotational multiplets@15,17#.

The most important parameter of bifurcation is the critic
value of angular momentumJcr . The rigid bender mode
gives the following estimate@15,26#:

Jcr
(rb)5

v2

4A
AA2B

C
. ~63!

It is interesting to compare this result with Eq.~61!. To do
this we consider the limitM@m in Eq. ~61!. Sincea0 is
close toacr we may assume that the relationship between
parameters needed is as in the hypothetical molecule. U
Eqs. ~50!, ~51!, ~53!, and an approximate relationA'2C
'1/2ml2, we find

Jcr5
1

A12
v2

2

v1(3)
2

Jcr
(rb) . ~64!

FIG. 6. Radial plots of functionsEJ(f) at differentJ showing
the bifurcation. Dashed lines correspond to stationary points
EJ(f).
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Since in H2X molecules the ratiov1(3) /v2 is about 2.3, the
valueJcr will be '10% higher thanJcr

(rb) . This result agrees
with the known critical values of angular momentum: 18
~16.9! for H2S, 12.5~11.4! for H2Se, and 9.3~8.5! for H2Te
~values in parentheses correspond to the rigid bender mo!
@18#.

The H2O molecule is a special case in the sequence
H2X molecules. The equilibrium bond anglea0 in this mol-
ecule is sufficiently larger thanacr and this results in a com
paratively high value ofJcr ~35.2! @18#. The main peculiarity
in this molecule is the presence of inverse bifurcation aJ
.50 @9,18,27#. This inverse bifurcation explains the absen
of fourfold clusters in H2O molecule. The analytical descrip
tion of this bifurcation seems to be difficult due to high va
ues of angular momentum involved.

V. CONCLUSION

In this paper we have discussed the method of effec
rotational energy which traces back to the work of Wils
@6#. We have shown that this method has a natural interp
tation in terms of relative equilibria in molecules. We deriv
the explicit formulas for the terms in effective rotational e
ergy up to sixth order in angular-momentum components
found that they are in accordance with the analogous exp
sions for effective rotational Hamiltonians. As an applicati
we have considered the problem of bifurcation in rotatio
dynamics of H2X molecules. We have shown that in the rig
bender model this bifurcation can be described using
balance conditions for the potential, centrifugal, and react
forces. We found also that the method of effective rotatio
energy allows us to give the analytical description of t
bifurcation without the suggestion of constant bond lengt

ACKNOWLEDGMENTS

The author is grateful to S. V. Petrov, V. I. Pupyshev, A.
Scherbinin, and N. F. Stepanov for many helpful discussio

APPENDIX

In this appendix we derive Eqs.~22! and ~23! using the
notation and identities from the work of Watson@21#. First
we note that it is possible to express the derivatives of
verse inertia tensor through the derivatives of inertia tens

]I21

]qk
52I21

]I
]qk

I21, ~A1!

]2I21

]qk]ql
52I21

]2I
]qk]ql

I211I21
]I

]qk
I21

]I
]ql

I21

1I21
]I
]ql

I21
]I

]qk
I21. ~A2!

Using Eq. ~A1! and the definition of coefficientsak
ab , we

obtain Eq.~22!. To prove Eq.~23! we need an explicit for-
mula for the second derivatives of inertia tensor. By the d
nition of inertia tensor, we have

f

2-9
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]2Iab

]qk]ql
U

0

52dab(
g i

l g i ,kl g i ,l2(
i

~ l a i ,kl b i ,l1 l a i ,l l b i ,k!.

~A3!

Next we use the orthogonality condition for the coefficien
l a i ,k ,

(
a i

l a i ,kl a i ,l5dkl ~A4!

and the sum rule
l-
id
.

-

s.

ys

04250
(
m

zkm
a z lm

b 5dabdkl2(
i

l a i ,l l b i ,k2
1

4 (
g

ak
ag 1

I g
0

al
gb .

~A5!

Using Eqs.~A2!–~A5!, we obtain Eq.~23!. It is interesting to
note that the second term in the right-hand side of Eq.~23! is
exactly (]2mab /]qk]ql)u0 as follows from Eq.~31! in Ref.
@5#.
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