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Classical approach to effective rotational energy and bifurcation in rotational dynamics
of H,X molecules
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A classical method of effective rotational energy describing the molecular rotation is analyzed from the
viewpoint of relative equilibria approach. Explicit formulas for the effective rotational energy up to sixth order
in angular-momentum components are derived and compared with the results of quantum approach. The
method is applied to get the analytical description of bifurcation in rotational dynamicsXfnblecules
without the suggestion of constant bond length.
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[. INTRODUCTION quantum approach. Our main tool is the notion of relative
equilibrium in a moleculd11-14. Under the relative equi-

The classical description of molecular rotation has provedibrium the system of nuclei rotates around the motionless
to be an important tool for understanding the qualitative fea2Xis with constant internuclear distances and angular veloc-

tures of rotational spectra in moleculgs. The central role [ty We find that in the Wilson's approach the stationary
in this description is played by the notions of effective rota-POints on RES correspond exactly to relative equilibria. Con-
tional energy[2] and rotational energy surfa¢BES), intro- sidering the relatlonshlp betvyeen the classmal'and guantum
duced by Harter and Pattersé@]. The effective rotational a_pproaches to effective rotational energy, we find that these

energy is a function of angular-momentum vecgin a give the same result for the terms up to the sixth order in

molecule-fixed frame which can be viewed as a generaliz effective rotational energy. In most cases the qualitative pic-

. . : : . ure of relative equilibria at smallis completely determined
tion of the rigid body rotational energy incorporating the by these term§1,10,17
effects of centrifugal distortion. In the model of Harter and e

. . : , In some cases the classical approach can give an addi-
Patterson, effective rotational energy defines the dynamics g, 4 insight into the problem. An example of this provides
angular-momentum vectod in a molecule-fixed frame

i ) the effect of bifurcation in rotational dynamics ofX mol-
through the equation, analogous to Euler equation for th@cyleg[15]. This effect was predicted in the work of Zhilin-

rigid body rotation[3]. The qualitative features of this dy- sji and Pavlichenkoy16] on the basis of a classical analy-
namics allow one to explain the structure of rotational mul-gijs of a rigid bender model in whictk-H bonds are
tiplets in molecular spectri,3] “frozen.” Later the numerical calculations provided more
The effective rotational energy can be viewed as a classidetailed description of this bifurcatidi8,17,18.
cal analog of the quantum effective rotational Hamiltonians In this paper we apply the method of effective rotational
describing the rotation energy levels for a separate vibronienergy in order to obtain the analytical description of bifur-
state in a moleculg4,5]. One can obtain the effective rota- cation in H,X molecules without imposing the constraints on
tional energy substituting the operators of angularthe bonds. The analysis of the rigid bender model brings
momentum components by the corresponding classical varforth the conclusion that the leading role in the problem is
ables [1]. We will refer to this approach to effective played by a configuration in which a molecule becomes an
rotational energy as a quantum approach. accidental symmetric topl]. In particular, if we consider
Another method of obtaining the effective rotational en-this special configuration as an equilibrium configuration of
ergy is based on purely classical consideration; it traces back hypothetical molecule then the bifurcation occursJat
to the work of Wilson[6]. The centrifugal distortion in @ =0. This hypothetical molecule is a very appropriate ex-
molecule can be described by means of effective potentiample for a more detailed analysis, which we consider here.
which contains the centrifugal term depending on angulartsing some natural assumptions we find the simple sufficient
momentum vectod. In this approach the value of effective condition of bifurcation appearance: the frequency of bend-
rotational energy for some vectdris defined by the mini- ing mode should be less than the frequencies of stretching
mum of corresponding effective potential. The applicationsmodes. On the basis of these results we give the description
of this method to different systems were considered byof the bifurcation in real KX molecules.
Petrov et al. [7-9]. A similar approach was used also in  This paper is organized as follows. In Sec. Il we analyze
Ref.[10]. the classical construction of effective rotational energy. The
In this paper we analyze the classical approach to effecgeneral scheme of its expansion in angular momentum com-
tive rotational energy and discuss its relationship with theponents is developed in Sec. lll in which the comparison
with the results of the quantum approach is done also. Sec-

tion IV is devoted to the problem of bifurcation in,l mol-
*Electronic address: app@phys016-amdl.chem.msu.ru ecules.
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Il. EFFECTIVE ROTATIONAL ENERGY In order to find the relative equilibria it is necessary to solve
the system of Eqg5) and(6) [13].

Condition(6) traces back to the work of Wilsdi6]. How-
ever, Wilson uses the conditiopg=0 instead ofg,=0 and
this results in the appearance of effective inverse inertia ten-

A. Relative equilibria in molecules

The intramolecular dynamics can be described by the fol
lowing system of equationsl 3,14

9H sor u(q) instead ofl~1(q) in Eq. (6). Fortunately, this has
W=, no effect on the terms of fourth order in effective rotational
9Pk energy considered in Ref6].
b =— ﬁ 1) B. Effective rotational energy
k aqk ’

Now we turn to the classical construction of effective ro-
_ tational energy[6—8,10. Let (g2, ...,03y_s)=0o be a
J=J><ﬁ, nondegenerate minimum point of adiabatic potentédy).

For sufficiently small=|J| an effective potentidl (J,q) as

a function ofg has a unigue minimum point in the vicinity of
Oo- Let (Q1(J), ..., Qan_6(J))=Q(J) be the coordinates
of this point andh(J)=U(J,Q(J)) the corresponding mini-
mal value of effective potential which is by the definition a
value of effective rotational energy for this[6,8]. For all
the pairs ¢,Q(J)) condition (6) is fulfilled, but to relative
equilibria correspond only those pairs for which also condi-
tion (5) holds:

where (@, ...,0anv-6)=0q are the internal coordinates,
(p1, - - - ,P3n_g) =P the conjugated momentdthe angular-
momentum vector in the molecule-fixed frame, and
H(J,q,p) the Hamilton function. The angular momentum
and momentg, can be expressed through the angular ve

locity in the molecule-fixed frame» andq:

=1 ot 2, Aqu)* @ 173QJe)Je=Ne. @)
_ On the other hand, from the definition b{J) we have
Pk= 2 Gudli+ (Ay.d), 3
I dh  oU 5 U &Qk—rl M3
3= 7GR+ 2 a_(qk(J’Q(J))ﬁ_ (Q(I)J.

where 1,4(q) is the inertia tensor in the molecule-fixed ®)
frame, A (q) the gauge potential, argl,(q) the metric ten-

sor of the shape spa¢&9]. The stationary points of system consequently, Eq7) can be written in the form

(1) correspond to relative equilibrigll-14. As follows

from Egs.(2) and(3), relative equilibria are solutions, under

which the system of nuclei rotates around the motionless axis 77 (Je) =N de. 9
with constant internuclear distances and angular velocity.

(We consider the relative equilibria with only noncollinear et h; be the restriction oh(J) to the spheréJ|=J [as a

configurations. function of two angles ¢, #)]. We can interpret condition

Using the explicit form of Hamilton functiot(J,q,p),  (9) as a stationary condition for the functiby with A being
the conditions on relative equilibria can be obtained. Thishe Lagrange multiplier.

can most easily be done using the Hamilton function in the we arrive at the following conclusion: for sufficiently
form developed by Herschbach and LaufRO] (see also  smallJ the relative equilibria with configurations negy are

Ref.[19]). The resulting conditions are as followsAl: defined by stationary points of functidry. Such stationary
points define the orientations of vectdy (with fixed J) and
(P)e=(A(Ce), Je), (4 corresponding configurations of relative equilibria are given
4 by the equatiorg,=Q(Je). Thus we see that the method of
177(ge)Je=NJe, 5 effective rotational energy has a natural interpretation in
U . terms of relative equilibria.
_ _ -1 It is interesting to compare this result with the model of
a_qk(‘]e’qe)_o’ vid.a)= E(J’]I (@)J)+V(a), (6) Harter and Pattegrso[ﬁ]. Inpthis model, effective rotational

energyh(J) defines the dynamics of vectdrby means of
whereV(q) is the adiabatic potential arld(J,q) the effec-  equation analogous to Euler equation for the rigid body ro-
tive potential. From conditiod) we see that the equilibrium tation:
values of momenta, are completely determined by the val-
uesq, andJ.. Equation(5) implies that the vectad, should 3= Jx@ (10
be directed along the principal axis of inertia of relative equi- RN
librium configuration. Condition(6) tells us that relative
equilibria configurations should correspond to the stationangince the length of vectad is conserved, its dynamics is

points of effective potential containing the centrifugal term.completely determined by the corresponding restriction
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h;(6,¢), the radial plot of which in three-dimensional spaceadiabatic potential respectively, add=q—q,. Substituting
is called rotational energy surfad®RES. The stationary expansion(12) into Eqg.(14) and collecting the terms of the
points ofh;(6,¢) correspond to stationary solutions for vec- same order in components &f we obtain

tor J. Though this model is only approximafsince in fact

the dynamics of vectad is coupled with vibrational dynam- 9V

1
_ = (2) (2) (€O - (2)(2)
ics by means of a systerfi)], we see that the stationary gq CirVoQH G+ VLQ™ 2V3Q Q

solutions of Eq(10) have arexactmeaning of relative equi- 9=Q0)
libria. %) © Lc.0@o®
In the work of Montaldi and Rober{4.2] a rather general +CQMHVLQ™ §C3Q Q
theory is applied to the analysis of relative equilibria in mol-
ecules. In particular, they prove that there exists a function 1
with the properties oh(J). The Wilson’s approach is per- +VaQEQM+ §V4Q(2)Q(2)Q(2)+ e (19
haps less general, but it provides more explicit and simple
construction. By the definition of Q(J) the result of this substitution
should be zero; therefore, the terms of each order in expan-
Ill. EXPANSION OF EFFECTIVE ROTATIONAL ENERGY sion (15) vanish. Using this we find
In order to get explicit formulas for effective rotational Q®¥= —V2‘1C1,

energy we consider its expansion in a series in angular mo-

mentum component, . In this section we describe the gen- 1

eral scheme of this expansion and derive explicit formulas QW= —Vz_l(CzQ(z)+ §V3Q(2)Q(2)).

for the terms up to sixth order. Then we compare our results

with analogous formulas for the terms in effective rotational 1

Hamiltonians. Q)= —vzl( C,Q¥W+ §C3Q(2)Q(2)+V3Q(2)Q(4)

A. The general scheme of expansion

1
—_ (2)0(2)p(2)
The series expansions for the functidmgl) and Q,(J) +3! VaQTRER ) (16)

have the form
The formulas for the terms in expansi(iil) are obtained by

h(3)=h(0)+h@ () +h® I+ ..., (1)  substitution of expansiofiL2) into Eq.(13):
QN =qj+ QPN+ QI+ ..., (12 h®=c(J,q0),

where the numbers in parentheses indicate the order in 1 1
angular-momentum components. The invarianck(d) and h®=c,;Q®)+ EVzQ(Z)Q(Z)z —5V2 C1Cy,
Q«(J) under inversion)— —J (following immediately from
their definition implies the absence of odd order terms in 1 1
these expansions. . ' h(G)ZECZQ(Z)Q@)Jr §V3Q(2)Q(2)Q(2), (17)
To derive explicit formulas for the terms in expansions ‘
(11 and(12) it is convenient to use the following trick: to 1 1
proceed as if there is only one internal coordingtét will ‘) _ _ = @O L — 22 (2)
be obvious from the procedure of derivation that the general h ZVZQ Qi 3! CQQTQ
formulas can be obtained from the simplified ones by adding
indices for internal coordinates and sums over them. + iv QRQ@QRQ®@
We start with the Taylor expansions for effective potential 4174 '

and its first derivative in the vicinity ofjy: S ) )
Now, adding indices for internal coordinates and sums

U(J,q)=C(J,q)+V(q) over them, we can get explicit formulas for the terms in
effective rotational energy. The terms of the second order in

=C(J,q0)+V(qo)+C15q+§(C2+V2) 598G+ - - -, effective rotational are analogous to the rigid body rotational

energy:
(13 o 1
h®(J3)= (3,17 %(qe)J). 18
" . (9)=5@.17(d0)) (18)
99 (14) For the terms of fourth order we obtain
_1.77-1 ; ; - . 1 It gt
whereC=3(J,I"*(q)J) is a centrifugal term in effective po- h#(J)=— —(V, Yl 3, —3l13,—3]. (@9
tential, C,, and V,, are derivatives of centrifugal term and 8 Iqk aq
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For the case of the Eckart frame this result was obtained by (L ap
. s ( )aﬂ‘ ay
Montaldi and Robert§12]. To calculate these terms it is == <% (22
necessary to know the matriX, of second derivatives of 9k |o i
adiabatic potential in equilibrium configuration. The terms of
sixth order require also the third derivatives of potential: ,;Z(H—l)aﬁ‘
= 2 (Liinélim* Gt i)
aqea |, 10
21-1 -1 5
<6>(J)— ! g V2 Yem(Vo b ( 7 J)(J i J) 3
2 Jkm{V2 Jin ) 1 1
" A J @
dxoq Um Z E _0 ak7a|’/ﬁ+a, yagﬁ)'
x| J ﬂ_la ! il Vo (V2! "
T 6><8<?qk<9q|&qm( 2 k(Y2 iy (23
1 gt gt gt Here we use the following notation® are the general mo-
X (V5 ) mul I, J|1, J||J, JJ. - B
aqy ad, Iy ments of inertia in equilibrium configuration,ay
(20) =dl,z/90q|o the inertial derivatives, andy; the Coriolis
coupling coefficient$5,21]. We derive Egs(22) and(23) in
_ o the Appendix.
In Eqs.(19)_§n(_j(20) all partlal_derlvatlves oig are evaluated Using Egs.(21)—(23), we obtain the expressions for the
at the equilibrium configuration), and also the sums over fourth- and sixth-order terms in eﬁective rotational energy
indices of internal coordinates are understood. through the coefficients,, 19, ag?, ¢% . For the terms of

Equationg18)—(20) can be used to predict the qualitative fourth order we obtain Wllson S result
picture of relative equilibria at lowd. The examples of this

are given in the work of Montaldi and Roberf42] and 1
another example concerningX molecules is discussed be- h(4)(3)= 1 Y Tapysdadpdds, (24
low. It should be noted, however, that at higlthe conver- py?
gence of effective rotational energy expansion may be prob-

lematic. In this case the numerical calculation of effective" where
rotational energywithout expansioncan be dong8,9]. 1 achay’
TaByoT T 51010100 £ X @9
B. Comparison with the quantum approach a By o K

Now we turn to a comparison of Eq&l9) and(20) with s a Wilson-Howard tensof6,4]. The terms of sixth order
analogous expressions for the terms in effective rotationghave the form
Hamiltonians. The derivation of effective rotational Hamil-
tonians is usually based on the following conventigfh21].
The molecule-fixed frame is defined by Eckart conditions,
and its axes in equilibrium configuration coincide with prin-
cipal axes of inertia; also the normal coordinates are chosenh
as internal ones. The effective rotational Hamiltonians aré’ ¢ ©
received as a result ¢¥ibrationa) contact transformation in
the form of power series in operators of angular-momentum _ 1
components[22,5]. Then the procedure of secor{dota- Tapysel 191919191910
tional) contact transformation can be dd#2,4], but since it cpyoe
does not affect the corresponding classical expressions it is LB aract kimnaiPal’act
not essential to the present consideration. For comparison we T 5 T
have chosen the work of Aliev and Wats®?] in which the mn mn 1Fmn
explicit formulas for the terms of sixth order in effective (27)
rotational Hamiltonian are derived.

The conventions we noted above allow us to give more BV
detailed expressions for the terms given by Ed®) and klmn:a—

H H vy~ 1 QIan‘?qn

(20). Sinceqy are normal coordinates, the matix, = is
diagonal:

h®)(J

OOII—‘

; Tapyoecdadpd dsdds,  (26)

ap B ySa€el
3 afag"a ‘ay

4 fmu xlxmlﬁ

(28)

0
For comparison with the results of RgR2] it is also
necessary to transfer to dimensionless normal coordinates,
(Vil)k|:)\—5k|- (21)  angular-momentum components in unitsfofind energy in
k units ofhc [5]. We find that there is an exact correspondence
between Eqs(24), (26) and corresponding quantum expres-

For the derivatives of inverse inertia tensor we get the fol-sions, in which the operators of angular momentum are sub-
lowing expressions: stituted by the corresponding classical variables. The split-
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FIG. 1. Relative equilibria in the rigid bender model with the  FIG. 2. Relative equilibria in the rigid bender model corre-
axis of rotatiornx. We consider the balance conditions only for the H sponding to accidental symmetric-top configuration. Hege

nuclei since they imply the balance condition for tewucleus. =ayl2+ ¢ and y= ay/2— ¢.
ting of sixth-order terms in Ref22] into harmonic, Coriolis, m ) a 1 dVy
and anharmonic parts corresponds exactly to our splitting in ~ |Feenl = 335 @1 €085+ [Fpol=— 7 -~ (30
Eq. (27).
Condition(29) can be written also as
IV. RELATIVE EQUILIBRIAINH ,X MOLECULES P w2 72
X
In this section we analyze the bifurcation in rotational @(Vfb_ 2 )_0’ da Vrb+2_|X =0, @3

dynamics of HX molecules. The simplest possible picture of

this bifurcation is provided by the rigid bender model, whichwherel,(«) is the general moment of inertia corresponding
we discuss at first. Then we focus on the hypothetical molto axisx. These equations describe a decrease of the angle
ecule with accidental symmetric-top configuration and anaof relative equilibrium configuration with an increase of an-
lyze the qualitative picture of relative equilibria in it at lalv ~ gular momentumJ or angular velocityw. The analogous
using Eq.(19). On the basis of these results we give theconditions can be obtained for the rotation axésoinciding

description of the bifurcation in the real,M molecules. with the C, axig and z (perpendicular to the plane of a
moleculse.
A. Rigid bender model Let us recall that only the principal axes of inertia can be

the axes of rotation of relative equilibriéThis can be seen

The rigid bender model, in which th€—H bonds are as a consequence of the conservation of angular momentum
assumed to be “frozen” at their equilibrium distances, wasyector in space-fixed frameThe axesx, y, z are the only
used in many works for the qualitative description of rovi- principal axes of inertia in a generic case, but when the bond
brational dynamics of kX molecules (see, e.g., Refs. angle equalst,=arccom/(m+M)]< /2 the general mo-
[17,23,24). In the work of Zhilinskii and PavlichenkoM 6]  ments of inertid, andl, coincide and the molecule becomes
the rlgld bender model was used to prEdiCt the bifurcation |rhn accidental symmetric top In this case every axis in the
the rotational dynamics of $X molecules. plane of a molecule going through the center of mass be-

In Ref. [16] the problem is analyzed using eXp"Cit equa- comes a principa| axis of inertia.
tions of motion analogous to E€l). An alternative approach  To obtain the full picture of relative equilibria in the rigid
we take here is based on the simple condition of balance fasender model it is necessary to consider this accidental
the potential, centrifugal, and reaction forces. Mandm  symmetric-top configuration with the axis of rotation lying in
be the masses ok and H, respectivelyl the equilibrium  the plane of a molecule. Lap be the angle between the
bond distance, antf;;(«) the potential function having the rotation axis and axig. Let us assume thap< a/2. Ana-
simplest form with one minimum poinky. (We assume at |yzing the balance conditions for the two H nuclei we find
first thatay>w/2.) Consider the relative equilibria with the that they are equivalent due to the identity
axis of rotationx lying in the plane of a molecule perpen-
dicular to theC, symmetry axis. The presence of the con-

.| Qer . er
straints on the bonds implies that there are reaction forces, p1SIN 7+ c/)) =p25|n<7—¢), (32
which we should take into account when considering the
balance conditiorisee Fig. 1 wherep, andp, are distances from the two H nuclei to the
axis of rotation(see Fig. 2 The proof of this identity is
IF Jsing=|F | (29) straightforward: it is necessary to calculate the distapges
cemt="2 po andp, as functions of angleb and to use standard trigono-

metric formulas. Thus we see that every axis with
where <ag /2 defines a relative equilibrium with certaih The
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To do this we should first choose the molecule-fixed
frame and internal coordinates. We use the Eckart frame and
express the nuclear position vectors in this frame as linear
combinations of the internal coordinatgg:

L
T

where the constants®) satisfy the equations, originating
from the Eckart conditions, and also the orthogonality con-
dition [see Eqs(11)—(13) in Ref.[21]]. Usually the coordi-
Feent natesq, are chosen to be the normal coordinates, but in our
case the latter depend on the force constants due to the pres-
FIG. 3. Axis of rotation with¢)=a,/2 in a hypothetical mol- ence of two fully symmetrical modes. This is not very con-
ecule with accidental symmetric top configuration. venient and instead we use the following definition. We
choose the internal coordinaty as corresponding to the
value ¢=0 corresponds to the critical value of angular mo- “breathing” mode. Another fully symmetrical internal coor-
mentumJ,,, which can be found from the condition dinateq, (bending ongis then defined by the orthogonality
condition; the asymmetrical coordinatg; is defined

Rai = Rgi + Ek: I (akl)qk ’ (35)

d Jgr uniquely up to a sign. The calculation gives the following
da rb+2_|X =0. (33 expressions for the coefficients :
. . . . -P P O
The angle¢ increases with) and at highJ it approaches
a/2. The equation describing this dependence can be writ- W= -Q -Q R, (363
ten in the form[cf. Eq. (6)] 0 0O 0
2 2
| Vet co§¢>2J—|+sin?¢2JT) —0. (34 PP 0
o x v o, = Q Q -R|, (36b)
Thus we obtain the description of bifurcation in rotational 0 0 0
dynamics: the number of relative equilibria changes] at Q Q -R
due to the appearance of two new axes of rotation, corre-
sponding to accidental symmetric-top configuratia6]. ®=\ P =P 0 |, (360
The peculiarity of accidental symmetric-top configuration 0O 0

becomes more clear if we consider the rotation axis with

= a/2. This axis goes through the position of one H nucleuswvhere

and is perpendicular tX-H bond with another H nucleus

(see Fig. 3 In the hypothetical molecule in which the equi- 1 1 M m

librium bond anglea, equalsea,, this axis corresponds to P=3 Q=3N\wiam R Vmiam (37)
relative equilibria with arbitraryl since all centrifugal forces

will be balanced by the reaction forces. We can interpret thiSThe first two columns in these matrices correspond to the
as an appearance of bifurcationJat=0. When the equilib- displacements of H nuclei and the third to the displacements
rium bond angley, differs from «, the bifurcation occurs at of X nucleus. The simplicity of these expressions is another
somelJ.>0. To prove this the case,< a., should also be surprising peculiarity of symmetric-top configuration, since
considered. This can be done in a similar way; we only notdor the general value of bending anglg they are much
that in this case the roles of the axgsandy are inter- more complicated. The relationship between these three dis-

changed. placements can be seen if we plot the corresponding vectors
at one graphidsee Fig. 4.
B. A hypothetical molecule with accidental Using these definitions, we calculate the first derivatives
symmetric-top configuration of inverse inertia tensor in equilibrium configuration and use

. . _ ) them to receive the following functions:
A hypothetical molecule with accidental symmetric-top

configuration gives the simplest example of bifurcation in
the rigid bender model, and the reaction forces play an im-
portant role in this case. It is very interesting whether the
bifurcation in such a hypothetical molecule remains if we g1
take off the constraints on the bonds. For the analysis of this (J, _J) = 7(J2—J?), (38b)
problem we apply the method of effective rotational energy. Zop) Y

-t , 5 1,
J,qu\] =—T Jx+‘]y+§‘]z , (383
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M *

—_
2]
~—

FIG. 4. Vibrational displacements in accidental symmetric-top  FIG. 5. Typical radial plots of function&;(¢) at low J: (a)
configuration. Herd®' =P/\/m, Q'=Q/\Jm, R’'=R/\M [see Egs. |\|=1 (or K,=Kj), K1,>0; (b) [\|=1 (or K,=K3), K1,<0; (c)
(39—(37)]. IN<1, Ko<Kg; (d) [N|<1, Ky>Kaj.

-1

J X)=4(K3—K,) X2+ 4(K 1+ Ko —K)X— K, — K, — 2K 4.
(va‘]>:_27‘3x‘]y- (380 p(x) (K3 2) (Kq 2 3) 1 2 12
3

(43

The behavior of the quadratic functiqr(x) in the inter-
val [0,1] defines the qualitative picture of relative equilibria
at low J. Obviously, there are four typical situations, which
are plotted in Fig. 5. The appearance of bifurcation depends
on the following parameter:

where 7= (2/13)[(M +m)/Mm]*¥2 Note that there is an
evident resemblance between E¢383—(38¢0 and analo-
gous expressions, obtained for equilatexal molecule by
Montaldi and Robert§12]. This is because th¥; molecule
is in fact a special case of our consideratignth M =m).

The inverse matrix of second derivatives of potential in

equilibrium configuration in chosen coordinatgs has the = K12 44
general form KKy (44)
Ki Ky O Provided|\ | <1 four additional stationary points appear with
V§1= K K, 0] (39) the angle¢, defined by the equation

0 0 Kg co2p=1(1+\). (45)
where the coefficienK, corresponds to the mixing of the
breathing and bending modes.

Using Egs.(19), (38), and(39), we obtain the following
expression for the terms of fourth order in effective rota-
tional energy:

The type of these points is defined by the relationship be-
tweenK, andKj: in the case&K,<K; they are minima, and
in the caseK,>K3; maxima.

Note that minima of functiort; correspond to the saddle
points of functionh; (defined on the whole sphereand
maxima ofE; correspond to maxima df;. (This is because

h(J)= = § P Ky (I3 + 35+ 330)2 = 2K 1 I3+ 95+ 332) the stationary points di; lying on axisz are minima as seen
from the second-order terms.
2 12 2 q2\2 242
X(J=J9) + Ka(J—=3y) "+ 4K 335y 1. (40) There is also the case, wh&3=K; andK,=0. In this

To answer the question about the bifurcation in the hypogase the terms of fourth order give no information on relative
thetical molecule it is sufficient to consider the values Ofequilibria we are interested in and the terms of sixth order
effective rotational energy only for the vectatdying in the  should be considered. Such a situation is realized in equilat-
planexy: eral X3 molecule(see Ref[12]).

Ey(¢)=h(Jcose,Ising,0). (41) C. Comparison with the rigid bender model

h ¢ . v th | . Let us compare the results obtained above with the rigid
The terms of second order bring only the scalar part ienger model. This model can be considered as a limit case,
E,(¢). From Eq.(40) we obtain corresponding to infinitely rigid bonds. To describe this, we
define a family of potentials
ES"(4)=§723%p(cos'¢), (42

V(a,l{,l,)=V +MI—I2+MI—I2 46
where (a,l1,1)=V(a) 2(1 ) 2(2 )5, (46)
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wherel,, |, are the bond distances and the paraméter

PHYSICAL REVIEW A68, 042502 (2003

defines the rigidity of the bonds. The rigid bender model

corresponds to the limitl;— o [25].

The matrix of second derivatives of the potential given by

Eq. (46) in coordinatesy;, g,, g3 has the form

k11 k12 0
Vo=| ki ko 0|, (47)
0 0 ks
where
. N, . N, 142N,
1_(1+§)E’ 12——55, 15 m’
£ N, 1+2&N,
k2_1+§ﬁ 1+& m’ “8)
_ m _2 &ZVrb 49
g_ma a_l_z 0,)0[2 g ( )
Inverting this matrix we find
A= ¢ (1 Na | ~* 50
_1_’__5 _WI ’ ( )
K,—Kz= 1+E m 1 N 51
2 3_1+2§N_a WI . ( )

In the limit Nj—~ we havex—m/(M+m) and alsoK,
—K3>0, which corresponds to cagd) in Fig. 5. From Eq.
(45) we find that the angleb at which the maxima appear
tends toa/2. Thus we have the full correspondence with
the rigid bender model.

The potential in the form given by Ed46) provides a

good approximation to the quadratic form of potential in the

mw?=N,+N,£+0(£?), (533
mws=N,+N,&+O(£?), (53b)
mw3=N,+N,£+0(&?). (530

Therefore, in the limitM>m, condition(52) becomes sim-
ply

Wstretching” @bending: (54

or, more exactly,

o3> w5(1+£)+0(£2). (55)

In the rigid bender model the additional relative equilibria
correspond to accidental symmetric-top configuration. When
the constraints are taken off the situation gets different. From
Egs.(16), (38), and(39) we have

QP(I) = K3,y . (56)
Therefore, in additional relative equilibria the bonxsH
have different length. For the axis with>0 we haveJ,
>0, J,>0, andQ¥>0, which means that the right bond
X-H will be larger than the leftsee Fig. 4. For the axis with
$»<0 the situation is inverted.

D. Bifurcation in real molecules

In the real BX molecules the equilibrium bond anglg
is larger thana.. The differenceay— a. decreases in the
sequence kD, H,S, H,Se, B Te, and for HTe molecule it
is very small(less then 1°)26]. To analyze the picture of
relative equilibria in these molecules at smalve use the
exact terms of second order in effective rotational energy and
the terms of fourth order defined as if in hypothetical mol-
ecule.

Using this assumption we can write

Ey(¢)=(Acodp+Bsirtg)I2+ES (o) +---, (57)

real H,X molecules. Therefore, we consider also the case of

finite N,. From Eqgs.(50) and(51) we find that|\|<1 and
K,>Kj3 provided

M+m

>
N, v

N

(52

a-

This condition gives the lower bound for the rigidity of

bonds at which the qualitative features of the rigid bender

model remain.

The physical meaning of conditio(b2) becomes more
clear if we consider the frequencies of normal vibratians
instead ofN; and N,. The eigenvalues of the matrix,
given by Eq.(47) are exactly the squares of frequencies
(sinceqy are mass-weighted coordinaleExpandingnwﬁ in
powers of parametef=m/M, we obtain

whereA and B are rotational constants and the fourth-order
terms are given by Eq42). As in the case of hypothetical
molecule the problem reduces to the analysis of the behavior
of quadratic function in the interv,1]:

Ei(¢)=Eo(I*)+ *(Ky—Kg)I*py(cos'e) + - - -, (58)

__leld 1+\ o 59
py(x)= >X +§( + )XJr?X, (59
where
- A—B 60)
(Ky—Kg)
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Since in BX molecules the rati, 3,/ w, is about 2.3, the
valueJ., will be ~10% higher than](crrb). This result agrees
with the known critical values of angular momentum: 18.9
(16.9 for H,S, 12.5(11.4 for H,Se, and 9.38.5) for H,Te
(values in parentheses correspond to the rigid bender model
[18].

The H,O molecule is a special case in the sequence of
H,X molecules. The equilibrium bond anglg in this mol-
ecule is sufficiently larger than, and this results in a com-
paratively high value of, (35.2 [18]. The main peculiarity
in this molecule is the presence of inverse bifurcatiod at
>50[9,18,27. This inverse bifurcation explains the absence
of fourfold clusters in HO molecule. The analytical descrip-
tion of this bifurcation seems to be difficult due to high val-
pes of angular momentum involved.

FIG. 6. Radial plots of function&;(¢) at differentd showing
the bifurcation. Dashed lines correspond to stationary points o
Ei(¢).

V. CONCLUSION

In the real BX moleculesAis slightly larger tharB, and In this paper we have discussed the method of effective

we also assume thak|<1, Ko>K; [since in all BX mol-  aiional energy which traces back to the work of Wilson
ecules inequality54) holds|. The qualitative picture of func-  g) e have shown that this method has a natural interpre-
tionsE,(¢) is shown in Fig. 6. For the critical valuk; We  ta5i0n in terms of relative equilibria in molecules. We derived

get the following estimate: the explicit formulas for the terms in effective rotational en-
ergy up to sixth order in angular-momentum components and
, 26 found that they are in accordance with the analogous expres-

o\ (61 sjons for effective rotational Hamiltonians. As an application

we have considered the problem of bifurcation in rotational
Also we obtain the approximate formula for the ange dynamics of HX molecules. We have shown that in the rigid
describing the position of maxinfaf. Eq. (45)]; bender model this bifurcation can be described using the

balance conditions for the potential, centrifugal, and reaction

forces. We found also that the method of effective rotational

1 ) energy allows us to give the analytical description of the
cos'¢p= §(1+)\)+ J_z (62) bifurcation without the suggestion of constant bond length.
This qualitative picture agrees with the results of numerical ACKNOWLEDGMENTS

calculationd9,18]. The appearance of four maxima of func-
tion E;(¢) [and, consequently, of functioh;(6,¢)] at J
>J., explains the formation of fourfold clusters in the upper
part of rotational multiplet$15,17).

The author is grateful to S. V. Petrov, V. |. Pupyshey, A. V.
Scherbinin, and N. F. Stepanov for many helpful discussions.

The most important parameter of bifurcation is the critical APPENDIX
value of angular momenturd,,. The rigid bender model In this appendix we derive Eq$22) and (23) using the
gives the following estimatgl5,26: notation and identities from the work of Watsga1]. First
we note that it is possible to express the derivatives of in-
w, [A—B verse inertia tensor through the derivatives of inertia tensor:
=2 [ (63)
4A C -1
al al
—=—1"1—= (A1)
It is interesting to compare this result with E@1). To do Ik 9k
this we consider the limiM>m in Eq. (61). Since «q is
close toa., we may assume that the relationship between the 21t 1 31 P al o al )
parameters needed is as in the hypothetical molecule. Using 99,d0 - 99,dd, +1 (9—qu1 (9_q|ﬂ
Egs. (50), (51), (53), and an approximate relatioA~2C
~ 2 i al al
1/2ml4, we find I i S Bl B | (A2)
aq;  dGk
3= 1 () 64) Using Eq.(Al) and the definition of coeﬁicientaﬁﬁ, we
er w2 obtain Eq.(22). To prove EQq.(23) we need an explicit for-
1- 22 mula for the second derivatives of inertia tensor. By the defi-
W1(3) nition of inertia tensor, we have
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log
kI,

:25a,32i Lyi il yi,l_Z (i id i i i) -
V!
(A3)

Next we use the orthogonality condition for the coefficients

| ai ks

2 il ai 1= Okl (A4)

al

and the sum rule

PHYSICAL REVIEW A68, 042502 (2003

1 1
> §ﬁlm§|ﬁm:5aﬁ5k|—z Iai,llﬂi,k_ZE aﬁ”—oaf/ﬁ.
m i y |y
(A5)

Using Eqs(A2)—(A5), we obtain Eq(23). It is interesting to
note that the second term in the right-hand side of(E8). is
exactly (az,uaﬁl(?qkaq,ﬂo as follows from Eq.(31) in Ref.
[5].
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