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Entanglement, quantum phase transition, and scaling in theXXZ chain
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Motivated by recent development in quantum entanglement, we study relations among concurrenceC,
SUq(2) algebra, quantum phase transition and correlation length at the zero temperature for theXXZ chain. We
find that at the SU~2! point, the ground state possesses the maximum concurrence. When the anisotropic
parameterD is deformed, however, its value decreases. Its dependence onD scales asC5C02C1(D21)2 in
the XY metallic phase and near the critical point~i.e., 1,D,1.3) of the Ising-like insulating phase. We also
study the dependence ofC on the correlation lengthj, and show that it satisfiesC5C021/2j near the critical
point. For different sizes of the system, we show that there exists a universal scaling function ofC with respect
to the correlation lengthj.
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Quantum entanglement, as one of the most intriguing f
ture of quantum theory, has been a subject of much stud
recent years, mostly because its nonlocal connotation@1# is
regarded as a valuable resource in quantum-communica
and Quantum-information processing@2,3#. For example, an
entangled state, such as a singlet state 1/A2(u↑↓&2u↓↑&),
can be used for the realization of teleportation@4#. On the
other hand, as with other resources, such as free energy
information, one would like to know how it can be quantifie
and controlled. For the first problem, all of efforts have be
devoted to develop a quantitative theory of entanglem
including entanglement of formation@5–8#, which is re-
garded as its basic measure. For the second problem, m
authors@9–17# tried to build a bridge between quantum e
tanglement and physical models by investigating their
tanglement in both the ground state@9,16# and thermal state
@14,15#.

Very recently, the intriguing issue of the relation betwe
entanglement and quantum phase transition has been
dressed@17,18#. For a spin-1/2 ferromagnetic chain, Osterl
et al., reported that the entanglement shows scaling beha
in the vicinity of quantum phase transition point@19# as in-
duced by a transverse magnetic field. Vidalet al. tried to
establish a connection between quantum-information
condensed-matter theory by studying the behavior of crit
entanglement in spin systems. So it is believed that the
tanglement of the ground state, like the conductivity in t
Mott-insulator transition@20# and quantum Hall effect, and
magnetization in the external-field-induced phase transit
also plays a crucial role in the understanding of quant
phase transition. On the other hand, group theory as we
symmetry of the system are parts of the foundation of qu
tum mechanics@21,22#, the knowledge of its presence ofte
makes it easy to understand the physics. Thus, the stud
entanglement at the ground state and its relation to the g
theory will not only have a contribution to experimental r
alization, but also enrich our physical intuition of quantu
theory.

*Email address: sjgu@zimp.zju.edu.cn;
URL: http://zimp.zju.edu.cn/;sjgu
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The main focus of the present paper is to study the pr
erties of ground state concurrence of an antiferromagn
XXZ chain. We show that the competition between quant
fluctuation and ordering will lead to maximum value of co
currence at the isotropic point. This observation could a
be clarified from the point of view ofq-deformation theory.
The concurrence’s dependence on anisotropic parameterD is
presented both numerically and analytically. The relation
the concurrence to the correlation lengthj in the Ising-like
insulating phase as well as the scaling behavior around
critical pointD51 where the metal-insulator quantum pha
transition occurs are also discussed. Thus, our result not
manifest interesting physical phenomenon, but also estab
nontrivial connection between the quantities in quantu
information theory and critical phenomenon, correlati
length in condensed-matter physics and quantum gr
theory @22#.

The Hamiltonian of theXXZ chain with periodic bound-
ary conditions reads

H~D!5(
l

N

@s l
xs l 11

x 1s l
ys l 11

y 1Ds l
zs l 11

z #,

sN115s1 , ~1!

whereN is the number of sites,sa(a5x,y,z) are Pauli ma-
trices, andD is a dimensionless parameter characterizing
isotropic interaction. The Hamiltonian is invariant und
translation, therefore, the entanglement between arbit
two neighbor sites is a uniform function of site index. AtD
51, Eq. ~1! has SU~2! symmetry. WhileDÞ1, it becomes
q-deformed SU~2! algebra withD5(q1q21)/2. Together
with theZ2 symmetry, we can have@H,Sz#50, which result
in that the reduced density matrixr l ( l 11) of two neighbor
sites is of the form@9#

r l ( l 11)5S u1 0 0 0

0 w1 z 0

0 z* w2 0

0 0 0 u2

D ~2!
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in the standard basisu↑↑&, u↑↓&, u↓↑&, u↓↓&. Since the en-
ergy of a single pair in the system isE/N5tr@r l ( l 11)Hl #,
whereHl is the part of the Hamiltonian between sitel and
l 11, due to the translational invariance. Considering
definition of entanglement, we can easily find that the c
currence ofXXZ chain can be calculated as@13,23#

C5 1
2 max„0,uE/N2DGl ( l 11)

zz u2Gl ( l 11)
zz 21…, ~3!

where Gl ( l 11)
zz is the correlation function. So we not onl

need to know the energy of the system, but also the beha
of correlation function.

It is well known that the present model can be exac
solved by quantum inverse method@24,25#, and its energy
spectra are determined by a set of spin rapidit
l1 ,l2 , . . . ,lM , which describe the kinetic behavior of
state withM down spins. They are the solution of Beth
ansatz equation

S sinhg~l j1 i !

sinhg~l j2 i ! D
N

5)
lÞ j

M
sinhg~l j2l l12i !

sinhg~l j2l l22i !
, ~4!

where the parameterg arises from the anisotropic scaleD,
i.e.,D5cos 2g. The regime 0,D,1 is characterized by rea
positiveg while the regime 1,D by pure imaginaryg with
positive imaginary part. Wheng→0, the above secula
equations reduce to the well known one for isotropic Heis
berg model.

Taking the logarithm of the above equation, we can ha
a set of transcendental equations for$l j%, in which the en-
ergy level is determined by a set of quantum number$I j%.
For the ground state,$I j% are consecutive integer or half-odd
integer centering around zero andM5N/2. Then the ground-
state energy of the system can be calculated either by sol
the Bethe-ansatz equations numerically for finite-size sys
or by solving integral equation of density function ofl in the
thermodynamic limit. Once theD dependent eigenenerg
E(D) is obtained, the correlation function is simply the fir
derivative ofE(D)/N with respect toD.

For theXXZ model, there exist two different phases at t
ground state, i.e., metallic phase, 0,D<1, and insulating
phase,D.1, which is resulted from that the former is ga
less while the latter is gapful. The critical point of quantu
phase transition locates at the isotropic pointD51 at which
the concurrence is just a simple function of ground-state
ergy per sites, i.e., 0.386. If we regardsz as a ‘coordinate’,
then the first two terms in Eq.~1! represent the ‘‘kinetic
energy’’ causing the quantum fluctuations ofsz, and the last
term represents the ‘‘potential energy’’ that causes the or
ing of sz. In the Ising limitD→`, the ground state has th
Néel long-range order, which results in the concurrence
ing zero. WhenD becomes smaller but still larger than 1, th
quantum fluctuation plays a more and more important ro
then the Ne´el state is no longer an eigenstate of the Ham
tonian. This fluctuation between two neighboring sites
hances the value of off-diagonal termz in their reduced den-
sity matrix r l ( l 11) , then the entanglement becomes larg
and larger. On the other hand, at the free particle (XX) limit
whereD50, the spin-flip term dominates the system co
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pletely and all spins flip freely on lattice sites. For a certa
site j, the probability of spin up and down is the same,
gardless of the spin state of its neighbor. Thus, the stateu↑↑&
will not lower the energy, but share the same probability w
u↓↑& or u↑↓&. This phenomenon will result in a relativel
largeu1 or u2 in the reduced density matrix of two neighbo
sites, as well as a relative smallerC. On the contrary, once
the anisotropic interaction 1.D.0 is turned on, the value
of u1 and u2 is lowered. So the concurrence is enhanc
Hence the competition of quantum fluctuation and order
must result in a maximum concurrence at a certain po
Comparing with the origin of metal-insulator transition in th
present model, which also arises from the competition
fluctuation and ordering, it is natural to infer that the po
we want here is just the isotropic point, i.e.,D51, as illus-
trated in Fig. 1. This case is very similar to the formation
Kondo effect, in which the competition between spin sing
formation and thermal conductivity leads to a minimum co
ductivity at the Kondo temperature. The idea can also
applied to the entanglement of arbitrary two sites, such as
concurrenceClm between sitel andm. Only when the com-
petition between their interaction and fluctuation reache
counterbalance, the concurrenceClm reaches its maximum.

From the quantum group theory point of view, atD51
point, the ground state is SU~2! singlet in which the two
neighboring sites try to form antisymmetric pair, as (u↑↓&
2u↓↑&)/A2. In theq-deformed region, Hamiltonian~1! can
be rewritten in terms of Temperly Lieb operators

H5ND12(
j

N

Tj , j 11 , ~5!

whereTj , j 115$2q21,1;1,2q% in the basisu↑↓&,u↓↑&. De-
fine q-deformed antisymmetric state ufq&5(u↑↓&
2qu↓↑&)/A11q2, then the operatorTj , j 11 can be expressed
as Tj , j 1152(D/2)ufq&^fqu. If D.1, the lowest-energy
state favors the formation ofq-deformed antisymmetric stat
between two neighboring sites@26#, unlike the case ofD
51 where it favors antisymmetric state, which obvious
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FIG. 1. Representation of concurrenceC as a function ofD,
obtained by solving three sets of Bethe-ansatz equations oN
51280 sites system numerically. It is clear that the concurre
reach is maximum at the critical pointD51.
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leads to the decrease of concurrence between two neigh
ing sites. When the deformation parameterq becomes very
large, it tends to the Ne´el state. On the other hand, theufq&
breaks the local translational invariance, from the point
view of spinless fermions model, the formation ofufq& de-
velops charge-density state at the ground state, whic
gapped and low symmetric.

We show the concurrence as a function ofD in Fig. 1,
which is obtained by solving both the Bethe-ansatz equat
for 1280 sites system numerically, and the integral equa
for infinite length system~We obtained the same result!. As
we expected, the ground state at the isotropic point posse
the maximum concurrence. Thus, symmetry of the Ham
tonian plays a central role in determining the concurrence
its ground state. And the trend of curve can be easily un
stood based on the above argument. On the other han
challenging and nontrial problem is to quantify the conc
rence around the critical point. In theXY metallic phase and
near the critical point~i.e., 1,D,1.3) of the Ising-like in-
sulating phase, it is amazing thatC can be described by

C5C02C1~D21!2 ~6!

very well, where

C052 ln 221.0.386,

C152 ln 22
1

2
2

2

p
2

2

p2
.0.047, ~7!

as illustrated in the inset of Fig. 1. Hence aroundD51, the
critical exponents of the anisotropic term is 2. As we kno
the present model can be transformed into spinless ferm
model by Jordan-Wigner transformation. For the free part
case, it is easy to obtain that the ground-state energy and
correlation functionGzz are 4/p, and 4/p2, respectively. In
the largeD limit, we find the concurrence scales likeC
}1/D. One can also expressC in terms of deformation facto
q via the relationq5D6AD221. It has the form

C5C02
C1

4
~q1/22q21/2!4 ~8!

around the critical point. InXY metallic phase, if we define
q5eif, it becomes

C5C024C1sin4
f

2
. ~9!

Now we study the scaling behavior in the Ising-like ins
lating phase by considering the correlation length. Thou
the scaling study of metal-insulator transition based on
analysis of spin stiffness has been proposed recently@27#,
and though everyone believe there must exist some rela
between correlation and entanglement, the scaling of con
rence, and its dependence on the correlation length stil
mains an open and interesting problem. By analyzing
finite chain system, one can obtain the correlation length
function of D in an easy way@27,28#. It has the form
04233
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1/j5g1 (
n51

`
~21!n

n
tanh~2ng!, ~10!

In the D→1 limit, it has a good approximation, as 1/j}(D
21)2. Clearly, the correlation length is independent of sy
tem size, its behavior is shown in the inset of Fig. 2. T
dependence ofC on j is represented in Fig. 2, in which th
solid line is obtained by solving Bethe-ansatz equations
1280 sites system numerically. For the value ofj bigger than
4, i.e., 1/j,0.25, there exists a simple relation betweenC
andj, which scales

C5C02
1

2j
. ~11!

The above equation implies that the concurrence does
have a long-range effect, in another way, we can say th
small system, such asN520, can well describe the behavio
of concurrence of large system, as illustrated in Fig. 3. Co
pared with the scaling of spin stiffness@27#, the present one
is more perfect, that is, the concurrence is almost indep
dent of the system size whenL.10. So we can conclude
that for finite-size system, there exists a scaling functi
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C=0.386-0.5/ξ
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0
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0.1
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ξ

FIG. 2. Representation of concurrenceC as a function of 1/j.
Herej is in unit of lattice constant.
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FIG. 3. Representation of concurrenceC as a function ofj for
different system sizes.
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which is independent ofL and scales like Eq.~11! in largej
limit. Only when L,10, the finite-size effect becomes ve
clear ~See the inset of Fig. 3!. Moreover, for small system
concurrence in even number sites and odd ones is differ
The former is usually larger than the latter due to the fr
tration effect happens in odd sites system with perio
boundary condition. For example, for three sites system,
two singlet formations between sites 1, 2 and between s
2, 3 break singlet formation of sites 3, 1. WhenL becomes
large, these effects can be neglected and the concurren
two cases are the same.

In summary, we have investigated the ground state c
currence of theXXZ chain. We pointed out that the comp
tition between quantum fluctuation and Ne´el ordering will
lead to a maximum value of concurrence at the isotro
Heisenberg point. Based on the Bethe-ansatz solution,
exactly obtained the dependence ofC on the parameterD in
a wide range around the critical point and the numerical
sc
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sult in the whole range. We established the relation betw
the concurrence and deformation factorq of quantum group
in the Ising-like insulating phase. It is now clear th
q-deformed permutation generator favors the formation o
deformed ground state, which has a relatively smaller c
currence. Moreover, the relation between the concurre
and the correlation length was studied both numerically a
analytically. We found that there exists a universal scal
behavior for finite-~not small! size system and it satisfies
simple relationC}1/2j in the region close to the critica
point.
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