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Entanglement, quantum phase transition, and scaling in thexXZ chain
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Motivated by recent development in quantum entanglement, we study relations among conc@rence
SU,(2) algebra, quantum phase transition and correlation length at the zero temperaturetéZtbieain. We
find that at the S(2) point, the ground state possesses the maximum concurrence. When the anisotropic
parameten\ is deformed, however, its value decreases. Its dependendeseales a=Cy,— C;(A—1)? in
the XY metallic phase and near the critical poine., 1<A<1.3) of the Ising-like insulating phase. We also
study the dependence Gfon the correlation lengtf, and show that it satisfies= Cy— 1/2¢ near the critical
point. For different sizes of the system, we show that there exists a universal scaling func@iavitbfrespect
to the correlation lengtlg.
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Quantum entanglement, as one of the most intriguing fea- The main focus of the present paper is to study the prop-
ture of quantum theory, has been a subject of much study ierties of ground state concurrence of an antiferromagnetic
recent years, mostly because its nonlocal connotatigis X XZ chain. We show that the competition between quantum
regarded as a valuable resource in quantum-communicaticfuctuation and ordering will lead to maximum value of con-
and Quantum-information processif@3]. For example, an  currence at the isotropic point. This observation could also
entangled state, such as a singlet stat@2q//|)—[11)).  be clarified from the point of view ofi-deformation theory.
can be used for the realization of teleportati@l. On the  The concurrence’s dependence on anisotropic parameter
other hand, as with other resources, such as free energy apgssented both numerically and analytically. The relation of
information, one would like to know how it can be quantified {ye concurrence to the correlation lenglin the Ising-like

3nd c;ogtt[ollt(ajd. Flor the first r;_rtotg_lem,tr?ll of ef;ortsthav:a beennqylating phase as well as the scaling behavior around the
evoted to develop a quantitative theory of entanglement, ;. pointA=1 where the metal-insulator quantum phase

including entanglement of formatiof—8], which is re- transition occurs are also discussed. Thus, our result not only

garded as its basic measure. For the second problem, maly. . . . . .
authors[9—17] tried to build a bridge between quantum en- annfe;t mteresﬂng physical phenomenon., .bUI glso establish
nontrivial connection between the quantities in quantum-

tanglement and physical models by investigating their en: X ~- .

tanglement in both the ground std&16] and thermal state |nformanon theory and critical phenomenon, correlation

[14,15. length in condensed-matter physics and quantum group
Very recently, the intriguing issue of the relation betweentheory[22]. o o

entanglement and quantum phase transition has been ad- The Hamiltonian of théXXZ chain with periodic bound-

dressed17,18. For a spin-1/2 ferromagnetic chain, Osterloh ary conditions reads

et al, reported that the entanglement shows scaling behavior N

in the vicinity of quantum phase transition poji9] as in- _ X x 7 7

duced by a transverse magnetic field. Vidalal. tried to H(A)_Z [otofsstotol Mooy,

establish a connection between quantum-information and

condensed-matter theory by studying the behavior of critical ONL1=071, (1)

entanglement in spin systems. So it is believed that the en-

tanglement of the ground state, like the conductivity in thewhereN is the number of sitesr®(e=x,y,z) are Pauli ma-

Mott-insulator transition20] and quantum Hall effect, and trices, andA is a dimensionless parameter characterizing an-

magnetization in the external-field-induced phase transitionisotropic interaction. The Hamiltonian is invariant under

also plays a crucial role in the understanding of quantuniranslation, therefore, the entanglement between arbitrary

phase transition. On the other hand, group theory as well asvo neighbor sites is a uniform function of site index. At

symmetry of the system are parts of the foundation of quan=1, Eq.(1) has SU2) symmetry. WhileA # 1, it becomes

tum mechanic$21,22, the knowledge of its presence often g-deformed SWR2) algebra withA=(q+q~1)/2. Together

makes it easy to understand the physics. Thus, the study efith the Z? symmetry, we can hayeH,S?]=0, which result

entanglement at the ground state and its relation to the group that the reduced density matrpq .1 of two neighbor

theory will not only have a contribution to experimental re- sites is of the forni9]

alization, but also enrich our physical intuition of quantum

theory. u" 0 0 O
0O wg, z O @
Pia+1)= % 2
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in the standard basig 1), |T1), [LT), |1 l). Since the en-
ergy of a single pair in the system E/N=tr{p(1)H],
whereH, is the part of the Hamiltonian between sltand
[+1, due to the translational invariance. Considering the
definition of entanglement, we can easily find that the con-
currence ofXXZ chain can be calculated §§3,23

0.4

0.39

T T
SU(2) point

0.3

— Numerical results
_, 2
o— C=C;C,(5-1)

C:%ma)(0,|E/N—AG,Z(Z|+l)|— G+~ D, ) o
where G{. 4 is the correlation function. So we not only
need to know the energy of the system, but also the behavior 0
of correlation function.

It is well known that the present model can be exactly 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
solved by quantum inverse methf24,25, and its energy 0 5 10 15 20
spectra are determined by a set of spin rapidities
NN, ... Ay, Which describe the kinetic behavior of a  FIG. 1. Representation of concurren€eas a function ofA,
state withM down spins. They are the solution of Bethe- obtained by solving three sets of Bethe-ansatz equationsl of
ansatz equation =1280 sites system numerically. It is clear that the concurrence
reach is maximum at the critical poiat=1.
(sinhy()\j+i))N IM[ sinhy(\; =\, +2i) ,
sinhy(x;—1) L sinhy(y,—x—2i)° 4 pletely and all spins flip freely on lattice sites. For a certain

site j, the probability of spin up and down is the same, re-

where the parametey arises from the anisotropic scalg ~ 9ardless of the spin state of its neighbor. Thus, the $tdte
i.e., A=cos 2y. The regime 8<A<1 is characterized by real will not lower the energy, but share the same probability with
positive y while the regime ¥ A by pure imaginaryy with |1 1) or [T]). This phenomenon will result in a relatively
positive imaginary part. Wheny—0, the above secular largeu™ oru™ in the reduced density matrix of two neighbor
equations reduce to the well known one for isotropic HeisenSites, as well as a relative small€r On the contrary, once
berg model. the anisotropic interaction>2A>0 is turned on, the value
Taking the logarithm of the above equation, we can havéf U andu™ is lowered. So the concurrence is enhanced.
a set of transcendental equations faf}, in which the en- Hence the competition of quantum fluctuation and prder{ng
ergy level is determined by a set of quantum numgey. must result in a maximum concurrence at a certain point.
For the ground staté|;} are consecutive integer or half-odd- Comparing with the origin of metal-insulator transition in the
integer centering around zero akt= N/2. Then the ground-  Present model, which also arises from the competition of
state energy of the system can be calculated either by solvinf‘ctuation and ordering, it is natural to infer that the point
the Bethe-ansatz equations numerically for finite-size syster¥® want here is just the isotropic point, i.a=1, as illus-
or by solving integral equation of density functiomofn the ~ trated in Fig. 1. This case is very similar to the formation of
thermodynamic limit. Once thé dependent eigenenergy Kondo effect, in which the competition between spin singlet
E(A) is obtained, the correlation function is simply the first formation and thermal conductivity leads to a minimum con-
derivative ofE(A)/N with respect toA. ductivity at the Kondo temperature. The idea can also be
For theXXZ model, there exist two different phases at the@pplied to the entanglement of arbitrary two sites, such as the
ground state, i.e., metallic phase<@ <1, and insulating CONCUITeNce&, between sitd andm. Only when the com-
phase A>1, which is resulted from that the former is gap- petition between their interaction and fluctuation reaches a
less while the latter is gapful. The critical point of quantum counterbalance, the concurrerCg, reaches its maximum.

phase transition locates at the isotropic pdint 1 at which From the quantum group theory point of view, at-1
the concurrence is just a simple function of ground-state enPCNt, the ground state is $2) singlet in which the two
ergy per sites, i.e., 0.386. If we regand as a ‘coordinate’, "€ighboring sites try to form antisymmetric pair, ds |(
then the first two terms in Eq(l) represent the “kinetic _|H>)/_\/§- In the g-deformed region, Hamiltoniafi) can
energy” causing the quantum fluctuationsa and the last P€ rewritten in terms of Temperly Lieb operators

term represents the “potential energy” that causes the order- N

ing of o In the Ising limitA—c, the ground state has the _ .

Neel long-range order, which results in the concurrence be- H NA+2; ey ©
ing zero. Whem\ becomes smaller but still larger than 1, the

quantum fluctuation plays a more and more important rolewhereT; ; 1={—q %,1;1,~q} in the basig1|),|| T). De-
then the Nel state is no longer an eigenstate of the Hamil-fine  g-deformed  antisymmetric ~ state |¢q)=(|11])
tonian. This fluctuation between two neighboring sites en~—q|m>)/\/1+q2, then the operatof; ;, ; can be expressed
hances the value of off-diagonal temin their reduced den- as Tj,j+1=—(A/2)|¢q><¢q|. If A>1, the lowest-energy
sity matrix p;+1), then the entanglement becomes largerstate favors the formation afdeformed antisymmetric state
and larger. On the other hand, at the free parti®&) limit between two neighboring sitd®6], unlike the case ofA
whereA=0, the spin-flip term dominates the system com-=1 where it favors antisymmetric state, which obviously
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leads to the decrease of concurrence between two neighbor- 04
ing sites. When the deformation parametgelbbecomes very

large, it tends to the Na state. On the other hand, the,)

breaks the local translational invariance, from the point of 03
view of spinless fermions model, the formation|af,) de-
velops charge-density state at the ground state, which is
gapped and low symmetric.

We show the concurrence as a functionfofin Fig. 1,
which is obtained by solving both the Bethe-ansatz equations
for 1280 sites system numerically, and the integral equation
for infinite length systentfWe obtained the same resulés
we expected, the ground state at the isotropic point possessed 0 ‘ |
the maximum concurrence. Thus, symmetry of the Hamil- ' 1%
tonian plays a central role in determining the concurrence of
its ground state. And the trend of curve can be easily under- FIG. 2. Representation of concurrenCeas a function of 4.
stood based on the above argument. On the other hand,Hegre¢ is in unit of lattice constant.
challenging and nontrial problem is to quantify the concur-

0.1

00.2

0.1
— Numerical Result
e—o C=0.386-0.5

rence around the critical point. In tR€Y metallic phase and Z(—1)"
near the critical pointi.e., 1<A<1.3) of the Ising-like in- Ue=y+ >, tanh(2nvy), (10
sulating phase, it is amazing th@tcan be described by =1 N
C=Cy—Cy(A—1)2 (6) In the A—1 limit, it has a good approximation, as¢¥(A
—1)2. Clearly, the correlation length is independent of sys-
very well, where tem size, its behavior is shown in the inset of Fig. 2. The

dependence of on ¢ is represented in Fig. 2, in which the
solid line is obtained by solving Bethe-ansatz equations for
1280 sites system numerically. For the value dfigger than

Cp=21In2-1=0.386,

1 2 2 4, i.e., 1£<0.25, there exists a simple relation betwe@n
Ci=2In2=5-2- —2=0.047, () andé, which scales
as illustrated in the inset of Fig. 1. Hence arouke 1, the 1
critical exponents of the anisotropic term is 2. As we know, C=Co— 2 (11

the present model can be transformed into spinless fermions
model by Jordan-Wigner transformation. For the free particl
case, it is easy to obtain that the ground-state energy and t
correlation functionG?? are 44, and 442, respectively. In
the largeA limit, we find the concurrence scales like
«1/A. One can also expressin terms of deformation factor
q via the relationg=A = \AZ—1. It has the form

e above equation implies that the concurrence does not
have a long-range effect, in another way, we can say that a
small system, such d&¢=20, can well describe the behavior
of concurrence of large system, as illustrated in Fig. 3. Com-
pared with the scaling of spin stiffnef27], the present one
is more perfect, that is, the concurrence is almost indepen-
dent of the system size whdn>10. So we can conclude

C
C=Cy— Tl(ql’z—qfl’z)4 (8)  that for finite-size system, there exists a scaling function,
around the critical point. XY metallic phase, if we define 0.4 ‘ ‘ ; "
q=e€'?, it becomes I 0s —— —
4 d) 0.3+ 0.4 -
C=Cy—4C;sin 5 9 I e Le20
= ]

Now we study the scaling behavior in the Ising-like insu- ooz e L g 11
lating phase by considering the correlation length. Though g T L=640 il ceLlo
the scaling study of metal-insulator transition based on the oal e 80017 1]
analysis of spin stiffness has been proposed rec¢gfy, ' |
and though everyone believe there must exist some relation o | | |
between correlation and entanglement, the scaling of concur- owd ! 0 i R

rence, and its dependence on the correlation length still re- 0 2 e 6

mains an open and interesting problem. By analyzing the

finite chain system, one can obtain the correlation length as a FIG. 3. Representation of concurren€eas a function of¢ for
function of A in an easy way27,2§. It has the form different system sizes.
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which is independent df and scales like Eq11) in largeé¢  sult in the whole range. We established the relation between
limit. Only whenL <10, the finite-size effect becomes very the concurrence and deformation factpof quantum group
clear (See the inset of Fig.)3Moreover, for small system, in the Ising-like insulating phase. It is now clear that
concurrence in even number sites and odd ones is differeng-deformed permutation generator favors the formation of a
The former is usually larger than the latter due to the frusdeformed ground state, which has a relatively smaller con-
tration effect happens in odd sites system with periodiccyrrence. Moreover, the relation between the concurrence
boundary condition. For example, for three sites system, thgnq the correlation length was studied both numerically and
two singlet formations between sites 1, 2 and between sitegnaytically. We found that there exists a universal scaling
2, 3 break singlet formation of sites 3, 1. Wherbecomes  pehavior for finite-(not smal) size system and it satisfies a

large, these effects can be neglected and the concurrenceg’nnme relationC=1/2¢ in the region close to the critical
two cases are the same. oint.

In summary, we have investigated the ground state conr-)
currence of theXXZ chain. We pointed out that the compe-  This work was supported in part by the Earmarked Grant
tition between quantum fluctuation and @&leordering will  for Research from the Research Grants CouiR@C) of the
lead to a maximum value of concurrence at the isotropiHKSAR, China (Project No. CUHK 4246/01P and by
Heisenberg point. Based on the Bethe-ansatz solution, W§SFC Grant Nos. 90103022 and 10225419. S.J.G is grateful
exactly obtained the dependence@bn the parametek in  for the hospitality of the Physics Department at CUHK. We
a wide range around the critical point and the numerical rethank X. Wang and H. Q. Zhou for helpful discussions.
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