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Experimental requirements for Grover’s algorithm in optical quantum computation
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The field of linear optical quantum computation~LOQC! will soon need a repertoire of experimental
milestones. We make progress in this direction by describing several experiments based on Grover’s algorithm.
These experiments range from a relatively simple implementation using only a single nonscalable controlled-
NOT ~CNOT! gate to the most complex, requiring two concatenated scalableCNOT gates, and thus form a useful
set of early milestones for LOQC. We also give a complete description of basic LOQC using polarization-
encoded qubits, making use of many simplifications to the original scheme of Knill, Laflamme, and Milburn
@E. Knill, R. Laflamme, and G. J. Milburn, Nature~London! 409, 46 ~2001!#.
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I. INTRODUCTION

In the next few years, we can expect to see demons
tions of basic quantum gates in several implementation
quantum computation. With this in sight, it is natural to lo
ahead to what interesting quantum circuits can be built ou
a small number of one- and two-qubit gates acting on a
qubits, as these circuits will provide milestones on the way
full-scale quantum computation@1#.

Grover’s search algorithm@2,3# is a good candidate fo
such a milestone. It is a quantum algorithm identifying o
of N elements, marked by an oracle, with orderAN uses of
the oracle. When the search space consists of four elem
the algorithm is guaranteed to produce the marked elem
after one use of the oracle, compared to the 2.25 uses
pected in a classical search. We will see that it can be im
mented using only seven one-qubit gates and two two-q
gates, which makes it an excellent target once one- and
qubit gates have been mastered. Not surprisingly, it was
of the first algorithms to be experimentally implemented
nuclear magnetic-resonance quantum computing~Chuang,
Gershenfeld, and Kubinec@4# and Jones, Mosca, and Hans
@5#!.

A promising quantum computing technology is thelinear
optical quantum computation~LOQC! scheme of Knill,
Laflamme, and Milburn~KLM ! @6# ~see Gottesman, Kitaev
and Preskill@7# for an alternative approach!. In this scheme,
one-qubit gates are relatively straightforward. While imp
menting a scalable universal two-qubit gate such as aCNOT

gate remains a challenge, such a gate is likely to be dem
strated in the next couple of years. Already, a non-scala
CNOT gate has been approximately implemented by Pittm
et al. @8#. For these reasons, it is important to establish so
specific LOQC milestones on the path toward building
large quantum computer, in the form of some simple al
rithms on a few qubits.

This pursuit is dogged by conceptual difficulties asso
ated with quantum algorithms on a very small number
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qubits, summed up in the question: What is the criterion
‘‘quantumness’’? A reasonable criterion, particularly in th
context of Grover’s algorithm, is to require a ‘‘speedup’’ ov
the best classical algorithm. However, this notion can be h
to make sense of when the number of steps is on the orde
ten, rather than hundreds of thousands, and the problem
easily be done by hand~not to mention by a GHz classica
processor!. Furthermore, sometimes the reduction in t
number of steps can be achieved in an implementation wh
physical requirements grow exponentially with the numb
of qubits, trading off time for space. The question of wheth
or not this counts as ‘‘quantum’’ has received much attent
~see, for example, Kwiatet al. @9#, Bhattacharya, van Linden
van den Heuvell, and Spreeuw@10#!.

Perhaps the best solution to this problem is a pragm
one. In the quest to build a quantum computer large eno
to provide a genuine advantage over classical computers,
things must be achieved. First, a fine level of quantum c
trol must be demonstrated for both single qubits and pairs
qubits. Second, it will be necessary to show that the num
of components~qubits and gates! in a circuit can be in-
creased without insurmountable increases in difficulty.
particular, we must avoid exponential increases in
amount of resource usage~either time or space!—the imple-
mentation must bescalable.1

Therefore, the importance of an experimental achie
ment of an early milestone~such as the four-element Grov
er’s algorithm! should be measured primarily on these cri
ria. A demonstration that Grover’s algorithm finds th
marked item in fewer steps than is possible with a class
computer is an important goal, but it is less important th
the fine level of quantum control that it implies. At this ear
stage of development of quantum computers, any such d
onstration is a significant achievement, while a demons
tion of such control in a scalable manner is likely to
significantly more difficult and consequently more impre
sive.

1Blume-Kohout, Caves, and Deutsch@11# give a general charac
terization of the requirements for scalability.
©2003 The American Physical Society28-1
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DODD, RALPH, AND MILBURN PHYSICAL REVIEW A 68, 042328 ~2003!
This is illustrated by the experiment of Kwiatet al. @9#,
which demonstrated the ability to implement the search
gorithm in a quantum optical system, but using an encod
that is not scalable—as they point out, the number of opt
elements that they require grows exponentially in the num
of qubits in their system. Thus, although their techniqu
might be successfully extended to a few qubits, they are
practical as the basis for an approach to building a quan
computer.

In contrast, we are explicitly concerned with developi
experimental milestones on the path toward full-scale qu
tum computation in optical systems. We show that Grove
algorithm on four elements provides several experiments
gradually increase in complexity. The simplest version
quires little more than a single, coincidence-basisCNOT gate
together with a source of entangled photon pairs, while
most complex version requires two scalableCNOT gates and
six photons.

Before describing these experiments and their requ
ments, we give a brief description of Grover’s algorith
~Sec. II! and LOQC~Sec. III!. Since the original proposal o
LOQC, there have been many simplifications and impro
ments to the scheme. We give a concise description of
basics of LOQC making full use of these simplification
focusing on a variant of the original scheme that u
polarization-encoded qubits. In Secs. IV and V, we descr
and compare several optical circuits, all implementing Gr
er’s algorithm on four elements. In Sec. VI we briefly discu
appropriate figures of merit for Grover’s algorithm, and w
conclude in Sec. VII.

II. GROVER’S ALGORITHM ON FOUR ELEMENTS

Grover’s algorithm@2,3# ~see also Nielsen and Chuan
@12# for an elementary treatment on which most of this s
tion is based! is a quantum algorithm that can speed up
solution to certain types of oracle-based computations.
will say more about oracles and their implementation a
describing Grover’s algorithm.

A. Grover’s algorithm

Suppose our search space consists ofN[2n elements, of
which one is a solution to a given problem. Grover’s alg
rithm identifies the solution~with high probability! using
n11 qubits according to the following algorithm.

~1! Prepare the stateu0& ^ nu1&.
~2! Apply R^ n11, whereR51/A2@1 21

1 1 # is the one-qubit
Hadamard gate.~We use the symbolR instead of the usualH
to avoid confusion with the horizontal polarization state.!

~3! Apply the oracle, which flips the ancilla qubit cond
tional on the other qubits being in the state correspondin
the solution.

~4! Apply R^ n.
~5! Apply a phase shift to the data qubits conditional

not being in the stateu0& ^ n, described by the unitary opera
tor 2u0&^0u ^ n2I n where I n is the identity operation on the
data qubits.

~6! Apply R^ n.
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~7! Repeat steps~3!–~6! a specified number of times, the
measure the qubits in the computational basis.

The number of repetitions~which is also the number o
uses of the oracle! that maximizes the probability of obtain
ing the correct answer is the nearest integer to

arccosA1/N

2 arccosA~N21!/N
~1!

~Boyer et al. @13#, see also Ref.@12#!. This number is
bounded above bydpAN/4e, hence the claim that Grover’
algorithm usesO(AN) oracle calls, compared to theO(N)
oracle calls required in the classical case.

For the remainder of this paper, we restrict our attent
to the case where the number of elements in the search s
is N54. In that case, the number of repetitions specified
Eq. ~1! is exactly one. A simplified circuit based on the a
gorithm described above is shown in Fig. 1. It can be verifi
directly that this circuit, using only one oracle call, gives t
correct answer with probability 1, compared to the avera
of 2.25 oracle calls that must be made with a classical circ
For example, if the solution is 10, then the output of t
circuit is a51 andb50.

B. Implementing the oracle

An oracle is a quantum circuit thatrecognizessolutions to
a given problem. For example, suppose we wish to solv
version of the traveling salesman problem, where the goa
to find a route visiting a given collection of cities that
shorter than some specified lengthL. Although it is in gen-
eral hard to find such a route, it is easy to recognize whe
a proposed route solves the problem: simply add up the t
distance the salesman would travel on the proposed ro
and compare it toL.

Specifically, an oracle is a circuit that, given an inp
consisting of a potential solution to a problem, flips the si
of an ancilla qubit if and only if the input is a solution to th
problem. Since the only action of the oracle is to recogn
solutions, its internal structure is unimportant in a test of

FIG. 1. A circuit diagram for the four-element Grover algorithm
based on the figure in Box 6.1 of Ref.@12#. The top two qubits are
the data qubits, initialized in stateu0&u0&, while the bottom qubit is
the ancilla qubit, initialized in stateu1&. The boxes labeledR andZ
represent the one-qubit Hadamard and PaulisZ gates, respectively
The CNOT gate is denoted by the usual symbol, while the gray h
circles represent one-qubit measurements in the computationa
sis, whose output appears on the classical output wires~double
lines!. The finalX gate represents the classicalNOT gate required to
put the output into the correct form. The measurement always g
‘‘1’’ on the ancilla qubit, while the data qubits give ‘‘a’’ and ‘‘ b. ’’ It
is straightforward to show that, in principle,ab is the state marked
by the oracle.
8-2



cl
ib
r
it
r-

le
s
es

e

th

e
i

se
ev
li
h

of
e
f
o
in

er
ll

p-

ts

tial

ve
nter-
g

he
sec-
bit

to
ing
For
ient.

ial
tes,

ec-

ne-

r

ave
as

are
e

e

th
he
d
me
o
to
en

it
ed

EXPERIMENTAL REQUIREMENTS FOR GROVER’S . . . PHYSICAL REVIEW A 68, 042328 ~2003!
algorithm itself. Thus, for our purposes, the choice of ora
is arbitrary, and may be chosen to be as simple as poss

Although the internal workings of the oracle are unimpo
tant for the purposes of testing the algorithm, the complex
of implementingsomeoracle must be included to characte
ize the difficulty of performing the experiment. A simp
implementation of an oracle marking one of the four state
a Toffoli gate, with the control qubits negated where nec
sary to specify any of the states 00, 01, 10, or 11~see the
left-hand side of Fig. 2 for the example where the mark
state is 10!.

If the marked state is 10, the action of the oracle on
three qubits is to take the state (u00&1u01&1u10&
1u11&)(u0&2u1&) to

~ u00&1u01&1u11&)~ u0&2u1&)1u10&~ u1&2u0&)

5~ u00&1u01&2u10&1u11&)~ u0&2u1&) ~2!

~omitting the normalization!. Thus the oracle simply has th
effect of flipping the sign of the marked state. The ancilla
not used again, so it can be discarded at this point.

Toffoli gates are difficult to implement in LOQC becau
there is no known way to implement one without using s
eral CNOT gates. However, for our purposes, a full Toffo
gate is not required because the ancilla qubit plays suc
limited role. The two-qubit circuit on the right-hand side
Fig. 2 illustrates this for the case where the marked stat
10. A single controlled-Z ~CSIGN! gate that flips the sign o
the u11& state, followed byX gates to move the minus sign t
the appropriate state, has the same action as the orig
oracle.

A simplified circuit to implement the four-element Grov
algorithm is given in Fig. 3. This is the circuit that we wi
work with for the remainder of this paper.

III. LOQC WITH POLARIZATION ENCODING

In LOQC, qubits are encoded indual rail logic @6#: Two
modesA andB are used, and logicalu0& andu1& are encoded
asu1&Au0&B andu0&Au1&B , respectively. The modes may re
resent two differentspatialmodes, or two differentpolariza-

FIG. 2. The circuit on the left shows the beginning of the Grov
circuit with an example oracle~inside the dashed box! marking the
item 10. We have implemented the oracle using a variant of
Toffoli gate, where the state of the third qubit is flipped when t
first two qubits are in the stateu10&, as indicated by the closed an
open circles on the control qubits. We have moved the measure
on the third qubit forward since it plays no further role in the alg
rithm. In the text, we show that this circuit is in fact equivalent
the simplification on the right, where the Toffoli gate has be
replaced by a controlled-Z ~CSIGN! operation followed by anX on
the appropriate qubit.
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tion modes of a single spatial mode@30#.
In practice, it is likely that polarization-encoded qubi

will be used, so that logicalu0& and u1& are encoded asuH&
anduV&, respectively, whereH andV refer to horizontal and
vertical polarization one-photon states of the same spa
mode. The main reasons for this are~1! it significantly sim-
plifies the implementation of theCNOT gate~see below!, ~2!
it allows one-qubit gates to be implemented using only wa
plates and phase delays rather than beam splitters and i
ferometers, and~3! it reduces the effects of noise by ensurin
that, unlike with spatial encoding, both states follow t
same path on the quantum wires between gates. In this
tion we describe in some detail the construction of one-qu
gates andCNOT gates in polarization-encoded LOQC.

A. One-qubit gates

To our knowledge, no complete description of how
implement basic quantum gates with polarization encod
has been given in the literature, so we provide one here.
one-qubit gates, wave plates and phase delays are suffic
A wave plate with slow axisuH8& and fast axisuV8& has
action

uH8&→eifuH8&,

uV8&→uV8&, ~3!

where f is the resulting relative phase difference. Spec
cases in common use are the half- and quarter-wave pla
with f equal to half and a quarter of a wavelength, resp
tively. Now supposeuH8& is rotated counterclockwise~with
respect to the direction of travel of the light! by an anglea
from uH&. If the input state is@v

h#[huH&1vuV&, then the
output is given by

F eifcos2a1sin2a ~eif21!cosa sina

~eif21!cosa sina eifsin2a1cos2a GFh

vG . ~4!

Special cases of this transformation for common o
qubit gates are set out in Table I. The Hadamard andp/8
gates, labeledR and T in the table, are a universal set fo
one-qubit quantum computation~Boykin et al. @14#!, and so
any one-qubit gate can be obtained by a sequence of w
plates, although it is convenient to allow phase delays
well. In the Grover circuit, the only one-qubit gates used
the R, X, and Z gates, and thus we only require half-wav
plates.

r

e

nt
-

FIG. 3. Inserting the simplified oracle of Fig. 2 into the circu
of Fig. 1 gives this circuit. Note that the marked state is specifi
inside the oracle~the dashed box! by the values ofx1 andx2 used to
determine whether or not theX gates are applied.~Note that addi-
tion in the exponent of theX gates is modulo 2.! Under ideal cir-
cumstances, the output of the circuit isa5x1 andb5x2 .
8-3
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DODD, RALPH, AND MILBURN PHYSICAL REVIEW A 68, 042328 ~2003!
B. Two-qubit gates

Since the publication of the original LOQC scheme
KLM @6#, many simplifications of theirCSIGN gate have been
developed, with varying tradeoffs between simplicity a
functionality. The different types may be divided into tw
classes, those that are scalable and those that are not. I
section, we describe both types.~Note that theCNOT and
CSIGNgates are related by conjugation by Hadamard gate

TABLE I. Various one-qubit gates and their implementation
polarization-encoded LOQC.a andf refer to the angle of the slow
axis to the horizontal and the relative phase added to light par
to the slow axis, respectively. Note thatT requires a wave plate with
a relative delay of one-eighth of a wavelength.

Gate Optical element

eiuI5eiu F1 0
0 1G Phase delay of2u

R5
1

A2
F1 1
1 21G Wave plate withf5180°, a5267.5°

T5F1 0
0 eip/4G Wave plate withf545°, a590°

X5F0 1
1 0G Wave plate withf5180°, a5245°

Z5F1 0
0 21G Wave plate withf5180°, a590°

Y5F0 2i
i 0 G Two wave plates and a

phase delay@Y5(eip/4I )XZ#

FIG. 4. The simplified KLMCSIGN gate of Ref.@15#. The top
rail contains the control qubit and the bottom rail contains the ta
qubit, both encoded in the polarization of a single photon. A squ
with a diagonal line across it represents a polarizing beam spli
By convention, we always assume that the horizontal polarizatio
100% reflected while the vertical polarization is 100% transmitt
So, for example, after the first polarizing beam splitters, the topm
rail contains the horizontally polarized component of the con
qubit. A thin rectangle represents an ordinary beam splitter, wi
sign change for the mode reflected from the thick black side
reflectivity given by the cosine of the angle written next to it.~If the
input modes to a beam splitter areua& in andub& in , with theb mode
receiving the sign change and with reflectivity given by cosx, then
the outputs are cosxua&out1sinxub&out and sinxua&out2cosxub&out .)
The circuit uses two vertically polarized ancilla photons. It succe
if the first two measurements both count 0 photons and the se
two measurements both count 1 photon.
04232
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the target bit, i.e.,CNOT5(I ^ R)CSIGN(I ^ R). Therefore, in
the context of LOQC where one-qubit gates are relativ
straightforward, these two gates are practically equivale
and we will use the two almost interchangeably.!

1. Scalable two-qubit gates

The KLM scheme@6# has two properties that at first ap
pear contradictory: the LOQCCSIGN gate is nondeterminis
tic, but it is used to do computations in a scalable mann
The nondeterministic nature of the KLMCSIGN gate is es-
sential to engineer a two-photon interaction without us
highly nonlinear materials, but it poses a problem: if its su
cess probability ise,1, then the success probability of
circuit with n CSIGN gates isen, i.e., it decreases exponen
tially with n. A solution to this problem is the technique o
gate teleportationdescribed by Nielsen and Chuang@16# and
Gottesman and Chuang@17#. This technique allows the gate
to be prepared as an offline resource, and then ‘‘telepo
in’’ whenever required for a computation. KLM showed th
the teleportation step can be made near-deterministic usi
sufficiently large number of repetitions. This technique
unlikely to be used in early experiments, however, beca
the extra difficulty involved in teleporting gates will mor
than cancel out the advantages of increasing the suc
probability when the number ofCSIGN gates is small.
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FIG. 5. A further simplified~but still scalable! polarization-
encoded KLMCSIGN gate. A gray rectangle containing ‘‘x°’’ repre-
sents a half-wave plate with slow axis at an angle ofx° to the
horizontal polarization. See Table I for the corresponding one-q
gates. This circuit works similarly to the previous one~Fig. 4!, but
it takes fuller advantage of the orthogonality of the polarizati
states. For a full description, see the text.

FIG. 6. The coincidence-basisCNOT gate of Refs.@21,22#. All
three beam splitters have the same reflectivity 1/3'cos 54.7°. It
can be turned into aCSIGN gate by removing the two half-wave
plates. Note that it is not necessary to have detectors on the
flected modes of the topmost and bottommost beam splitters~even
though measuring a photon in either of these modes would sign
failure!, since other failures of this gate are undetectable until
end of the computation. The gate has worked if exactly one pho
is found in each rail.
8-4
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FIG. 7. An optical implementation of Grover’s algorithm on four elements based on the circuit in Fig. 3. The oracle part is conta
the dashed box. This circuit is essentially the concatenation of the circuits for the scalableCSIGN gate~Fig. 5! and the coincidence-basisCNOT

gate~Fig. 6!, together with a few extra wave plates. The output of the circuit is discarded unless the first measurement counts 0 pho
second two measurements both count 1 photon, and one photon is found in each pair of detectors at the end, i.e.,aH1aV5bH1bV51. Note
that we have omitted the final correctingNOT gate on the classical output in this diagram, but it should still be done. For example,
oracle marks state 10, then the algorithm has successfully identified the marked state if measurements returnaH51, aV50, bH51,
bV50.
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An essential feature required to make this work is tha
must be possible to determine when the gate has succee
The KLM CNOT gate has this property—although it on
succeeds once in 16 attempts, whether or not it has
ceeded is determined by the outcomes of measuremen
ancilla photons. We use the termscalableto describe aCSIGN

~or CNOT! gate that has the property that it is known when
succeeds.

In this paper, we will not work directly with the KLM
CSIGN gate since there are simpler alternatives, such as
closely related simplification proposed by Ralphet al. @15#
and the substantial modification proposed by Knill@18#.
There is also a promising alternative approach using
tangled ancillas discovered by Pittman, Jacobs, and Fra
@19# that we will not consider further here. We focus on t
CSIGN gate of Ralphet al., shown in Fig. 4.2

In fact, there is a further, substantial simplification to th
circuit that is achieved by making fuller use of the polariz
tion encoding, resulting in the circuit in Fig. 5. This gate s
requires two ancilla photons. However, it uses fewer de
tors, beam splitters, and polarizing beam splitters, and el
nates two interferometers. Its effect on qubit states is
changed, up to an unimportant overall phase of21. If we
denote the beam splitter reflectivities ash1[523A2 and
h2[(32A2)/7 ~which are approximated as cos 40.8° a
cos 76.9° in the diagram!, then the action of the gate is th
following:

u00&→Ah1h2~2h221!u00&52Apu00&,

u01&→h1~3h2
222h2!u01&52Apu01&,

2Recent numerical work by Lund, Bell, and Ralph@20# shows that
the simplified KLM CSIGN gate of Ref.@15# is more resilient to
detector and ancilla inefficiencies than the other two, perhaps
cause it acts symmetrically on the two qubits. For example,
fidelity of this gate~calculated as the fidelity of the actual outp
with the ideal output, minimized over input states! is larger than the
fidelities of the other two gates for detector efficiencies up to
proximately 95%. However, it remains to be seen what effects o
sources of error, such as mode-matching errors, and imperfect b
splitter reflectivities, will have on the relative merits of each ga
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u10&→Ah1h2~2h221!u00&52Apu10&, ~5!

u11&→h2u11&5Apu11&,

where the success probabilityp is given by p[h2
25(11

26A2)/49'0.05. Thus the gate works approximately on
out of every 20 attempts. For the remainder of this paper,
will refer to this gate simply as a ‘‘scalableCSIGN gate.’’

2. Coincidence-basis two-qubit gates

An even simpler, but nonscalableCNOT gate was discov-
ered by Hofmann and Takeuchi@21# and Ralphet al. @22#. It
succeeds once in 9 attempts, but it only works in thecoinci-
dence basis, i.e., when the results of the whole computati
are selected to contain an allowed distribution of photo
among detectors. We call this a ‘‘coincidence-basisCNOT

gate.’’ See Fig. 6. This circuit has been designed so tha
exactly one photon is measured in the top rail~in either po-
larization! and one in the bottom rail, it has worked wit
certainty. Otherwise, the result is discarded and the exp
ment is repeated. It cannot, in general, be followed by furt
two-qubit gates, as it is possible for a later gate to mas
failure. Thus it cannot be used to do scalable quantum c
putation.

The useful purpose served by this gate~as well as the
coincidence-basis gate of Ref.@8#! is as a simpler intermedi
ate step before the full complexity of a scalableCNOT gate.
In a general circuit, it may be possible to replace one or m
scalable CNOT gate with a coincidence-basisCNOT gate,
thereby significantly reducing the complexity of circuits co
taining a fewCNOT gates. In the following sections on con
structing optical circuits to perform the four-element Grov
algorithm, we will see some of these ideas in action.

IV. THE TWO-QUBIT GROVER IN LOQC

A simplified circuit for the four-element Grover algorithm
was given in Fig. 3. In Fig. 7, this circuit is translated d
rectly into an optical circuit, using the prescriptions and c
cuits of the preceding section.

The circuit, which succeeds once in approximately 1
52039 ~the product of the number of attempts per succ
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FIG. 8. Grover’s algorithm using a parametric down-conversion input. This circuit works similarly to the previous one, but the o
no longer demarcated from the initial part of the circuit. The dashed box in this figure now contains both the oracle and the initializ
the stateuHH&1uVV&. The advantage of this circuit is that it makes use of a natural source of optical entanglement~parametric down-
conversion! to replace the very difficult scalableCSIGN gate. The outputs from this circuit are accepted under the same conditions a
previous circuit (aH1aV5bH1bV51), and the final classicalNOT gate has again been omitted.
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for eachCNOT gate! attempts, uses 10–12 half-wave plate3

five beam splitters~two of which must be mode matched!,
nine polarizing beam splitters~four of which must be mode
matched!, four photons that must be simultaneously pr
duced in desired polarization states, and seven single-ph
detectors. The secondCNOT gate can be done in the coinc
dence basis since there are no interactions between the
qubits following it. Therefore, if the final measurement co
tains an allowed distribution of photons~exactly one in the
top two detectors and one in the bottom two detectors!, we
know that the secondCNOT gate worked, which is sufficien
for our purposes here.4

However, it is important to note that the output of th
circuit ~before the measurement! could not be used to do
further calculations because of the uncertainty in the o
come of the secondCNOT gate. If, for example, there wer
two photons in the top rail after the secondCNOT, the sys-
tem’s state would no longer be in the ‘‘qubit space.’’ A thi
CNOT gate might bring the system back into the qubit spa
but it is unlikely to have performed the transformation w
expected. In this case, the overall circuit fails, but we ha
no way of detecting the failure~except to compare with the
answer that we can calculate by hand for this simple cas!.

To ensure reliability for further calculations, the seco
CNOT gate should be replaced by a scalableCNOT gate. The
optical circuit for this case would work once in 400 attemp
and would contain of the order of 14–16 wave plates, ei

3Note that the 90° and 67.5° half-wave plates cannot be comb
into a single wave plate: their product 1/A2@1 1

1 21# has terms of
opposite sign in the off-diagonal terms, while the wave plate eq
tion @Eq. ~4!# has these entries equal.

4A small but potentially useful simplification is to remove th
40.8° beam splitter, as described in Ref.@20#. They show that, until
detector and source efficiencies of up to approximately 99.5%
reached, the fidelity of the gate can be substantially increase
removing this beam splitter and adjusting the reflectivity of t
76.9° beam splitter. Given that beam splitter reflectivities are
perfect, removing this beamsplitter is likely to decrease that sou
of error, while also decreasing the complexity of the circuit
removing a detector. There is a catch, however: the probability
success decreases by a factor of 4–5 for efficiencies of 80–95
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polarizing beam splitters~six of which would be mode
matched!, four ordinary beamsplitters~two of which would
be mode matched!, six photons produced in desired polariz
tion states simultaneously, and ten single-photon detec
This would be considerably more difficult to achieve expe
mentally. Since we are~in principle! guaranteed to be in the
qubit space at the end of this circuit, the output of each p
of detectors should contain exactly one photon. Therefore
is possible to simplify the final detection process by simp
blocking out one of the polarizations~horizontal, say!, and
then looking to see if a photon is detected. This would red
the number of polarizing beam splitters to six and the nu
ber of detectors to eight, at the cost of introducing two p
larization filters. However, in practice the number of photo
at the output will sometimes be incorrect. Thus, the incre
in simplicity would have to be weighed against the failur
that would go undetected.

V. SIMPLIFICATIONS

By far the most difficult aspect of the experiments ju
described is implementing the scalableCSIGN gate. However,
the CSIGN gate in the oracle is only used in a very restrict
way, and it turns out that we can replace it with a mu
simpler circuit. Since only one input state is ever us
namely, (uH&1uV&)(uH&1uV&), only one state is ever outpu
from the CSIGN gate, namely,uHH&1uVH&1uHV&2uVV&.
~We will continue to neglect normalization constants.! If a
source of entangled input states were available, then
CSIGN gate could be replaced. In optics, such a source is
fact readily available: a parametric down-conversion sou
can be used to produce the stateuHH&1uVV&, which can be
converted into our desired state by a Hadamard gate on
first qubit, uH&→uH&1uV&, uV&→uH&2uV&. Using this fact,
a much simplified version of Grover’s algorithm is present
in Fig. 8.

The simplicity of this circuit compared with the previou
one is emphasized by comparing the number of compone
This circuit works once in every nine attempts, and requi
6–8 wave plates, six polarizing beam splitters~of which two
must be mode matched!, three ordinary beam splitters~one
of which must be mode matched!, two photons which are

d

-

re
by

-
e

f
.

8-6



io

lic
o

as
n’’
in
e
a
w
le
e
r

er

n
ro
of
t
e
c

s
ri
e
r’
e

le
t

in
as
th
en
b

fa

e
e

, as
to

uc-

p
suc-
s of
bed
of
uit
cle
cur

-

y
al

ap-
is-
set

to
ch

s

of

it
ed
s-

uct-
nor-
put
ust

ite-
le
ble
al

or
as
t
to

y

th

se
t

s-

ng
e-
ifie ere
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produced as the output of a parametric down-convers
source, and four single-photon detectors.

What have we traded for this enormous gain in simp
ity? It turns out that we have compromised the versatility
the algorithm. Most significantly, the oracle is no longer e
ily replaceable. In principle, the oracle should be a ‘‘plug-i
component able to have many different forms correspond
to different potential problems. In this simplified schem
however, we have obscured the line between the oracle
nonoracle parts of the circuit, making it difficult to see ho
to make the circuit solve a problem using a different orac
In Fig. 8, a dashed box outlines the ‘‘oracle’’ part of th
circuit for comparison with the previous diagrams, but the
is in fact no clear line dividing the oracle from the earli
part of the circuit.

This change affects how the circuit could be used. O
example is demonstrating the variation in the success p
ability of Grover’s algorithm as a function of the number
repetitions of steps~3!–~6! described in Sec. II. In the circui
in Fig. 7, the oracle can be reused with some small chang5

On the other hand, in Fig. 8, this is not possible—the ora
can only be used once.6

VI. FIGURES OF MERIT

An important question that has so far not been addres
is what the appropriate figures of merit are for this expe
ment. There are two related but distinct notions of succ
here. The first is to what extent the actual goal of Grove
algorithm has been achieved, i.e., how successfully the
periment distinguishes between the four different orac
The second is how similar the actual operation of circuit is
the ideal operation. This second notion is important for us
these experiments as tests of the ability to combine the b
elements of quantum computation. It is clearly related to
first—if the experiment cannot reliably distinguish betwe
the oracles, then the actual behavior of the circuit must
very far from the ideal operation.

Note that, since the two-qubit gates in these circuits

5The oracle on the right-hand side of Fig. 2 is designed to w
with inputs that are equal superpositions of computational b
states. If the oracle is used twice in the same circuit, then i
unlikely that the input state will always be the same. In order
make the oracle work for an arbitrary input state, it is necessar
simply duplicate theX gates following theCSIGN gate, before the
CSIGN gate. For the example in Fig. 2, where the oracle marks
state u01&, the oracle should consist of the following: anX gate
acting on the bottom qubit, followed by theCSIGN gate, followed by
the X acting on the bottom qubit.

6For a more speculative example, Grover’s algorithm can be u
to obtain upper bounds on an entanglement monotone called
Groverian entanglement, as described by Biham, Nielsen, and O
borne @23#. The basic idea is that if ann-qubit stater ~possibly
mixed! is used as input rather thanu0& ^ n, the square root of 1
minus the success probability gives a good measure of the enta
ment of r. This application requires input states with varying d
grees of entanglement, and thus is not possible in the simpl
circuit.
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the majority of the time, theaverageperformance of the
circuits will be very far from ideal. However, ultimately th
probability of success of two-qubit gates in LOQC will b
boosted arbitrarily close to one using gate teleportation
discussed in Sec. III B 1, and so we restrict our attention
the performance of the circuits when the two-qubit gates s
ceed.

In order to be able to compare experiments~and also to
optimize the performance of a particular experimental setu!,
we need to be more precise about how to measure the
cess of these experiments. We suggest calculating figure
merit reflecting each of the two notions of success descri
above. The first is to simply measure the distinguishability
the distribution of measurement results output by the circ
for different oracles. For example, suppose that for the ora
marking the state 00, the results 00, 01, 10, and 11 oc
with probabilitiesp00[$0.9,0.04,0.02,0.04%, while the corre-
sponding results when the oracle marks state 10 arep10
[$0.01,0.08,0.8,0.11%. A simple indicator of the distinguish
ability of these two distributions is their fidelity

F~p00,p10![(
x

Ap00~x!p10~x!, ~6!

wherex ranges over the measurement outcomes 00, . . . ,11
andpab(x) is the probability of obtaining resultx given that
the oracle marked stateab. This quantity has the propert
that it is 1 precisely when the two distributions are identic
and 0 precisely when the two distributions are nonoverl
ping, that is, when the set of results for which the first d
tribution is nonzero has no elements in common with the
of results for which the second distribution is nonzero.

In the context of Grover’s algorithm, it is desirable
make the fidelity between the distributions arising from ea
pair of oracles as small as possible.~For an introduction to
the fidelity, see, for example, Refs.@12,24#. The relationship
of the fidelity to distinguishability is explored by Wootter
@25# and in Ref.@24#.!

The second figure of merit is related to the similarity
the actual operation implemented (E) to the desired unitary
U. U is obtained by simply multiplying together the circu
elements in Fig. 3.E, on the other hand, must be determin
experimentally. Ideally,E should be determined precisely u
ing a method such as quantum process tomography~Chuang
and Nielsen@26# and Poyatos, Cirac, and Zoller@27#!. Al-
though process tomography can be done using only prod
state inputs and one-qubit measurements, it requires an e
mous number of runs of the experiment since the out
states resulting from 16 different input density matrices m
be determined via quantum state tomography.

A less stringent, but much more easily calculated, cr
rion is that the probability distributions for each orac
should be close to the ideal distributions. Thus, it is desira
to have the fidelity of the actual distribution to the ide
distribution for each oracle as close to 1 as possible.7 This
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d 7Knill et al. @28# have a useful discussion of these issues wh
they advocate theentanglement fidelityto measure the quality of an
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DODD, RALPH, AND MILBURN PHYSICAL REVIEW A 68, 042328 ~2003!
approach certainly does not completely characterize the
havior of the circuit. For example, it does not determi
whether the circuit behaves correctly for inputs other th
uH&uH&. It is an open question to determine whether th
exist methods characterizing how well a circuit implement
desired operation, which are simpler than full process tom
raphy.

VII. A HIERARCHY OF EXPERIMENTS

This collection of different implementations of the sam
algorithm could be used as the basis for a series of exp
ments, each building on the last, each more complicated
the last, each demonstrating improved quantum control.
example, once a basic coincidence-basisCNOT gate is work-
ing, it would be relatively simple to add a small number
wave plates and a source of entangled photons to do
circuit in Fig. 8. Once a scalableCNOT gate is achieved, thes

experimental implementation of the five-qubit code. They desc
a simple way of measuring the entanglement fidelity that could
easily generalized to the setting of Grover’s algorithm.
um
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two differentCNOT gate circuits could be combined to do th
more complicated implementation of Grover’s algorithm
Fig. 7, demonstrating the ability to combine a scalableCNOT

with further nontrivial quantum computations. Finally, in th
more distant future, the implementation using two scala
CNOT gates would make a good testing ground for techniq
for combining LOQC components.
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