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Experimental requirements for Grover’s algorithm in optical quantum computation
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The field of linear optical quantum computatighOQC) will soon need a repertoire of experimental
milestones. We make progress in this direction by describing several experiments based on Grover’s algorithm.
These experiments range from a relatively simple implementation using only a single nonscalable controlled-
NOT (CNOT) gate to the most complex, requiring two concatenated scataldle gates, and thus form a useful
set of early milestones for LOQC. We also give a complete description of basic LOQC using polarization-
encoded qubits, making use of many simplifications to the original scheme of Knill, Laflamme, and Milburn
[E. Knill, R. Laflamme, and G. J. Milburn, Natuteondon 409, 46 (2001)].
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I. INTRODUCTION qubits, summed up in the question: What is the criterion for
“quantumness”? A reasonable criterion, particularly in the
In the next few years, we can expect to see demonstrazontext of Grover’s algorithm, is to require a “speedup” over
tions of basic quantum gates in several implementations athe best classical algorithm. However, this notion can be hard
quantum computation. With this in sight, it is natural to look to make sense of when the number of steps is on the order of
ahead to what interesting quantum circuits can be built out ofen, rather than hundreds of thousands, and the problem can
a small number of one- and two-qubit gates acting on a feweasily be done by hanghot to mention by a GHz classical
qubits, as these circuits will provide milestones on the way tqrocessor Furthermore, sometimes the reduction in the
full-scale quantum computatidr]. number of steps can be achieved in an implementation whose
Grover’s search algorithrfi2,3] is a good candidate for physical requirements grow exponentially with the number
such a milestone. It is a quantum algorithm identifying oneof qubits, trading off time for space. The question of whether
of N elements, marked by an oracle, with ord@ uses of  or not this counts as “quantum” has received much attention
the oracle. When the search space consists of four elemenisee, for example, Kwiat al.[9], Bhattacharya, van Linden
the algorithm is guaranteed to produce the marked elemewtan den Heuvell, and Spreelu0)).
after one use of the oracle, compared to the 2.25 uses ex- Perhaps the best solution to this problem is a pragmatic
pected in a classical search. We will see that it can be implesne. In the quest to build a quantum computer large enough
mented using only seven one-qubit gates and two two-qubiio provide a genuine advantage over classical computers, two
gates, which makes it an excellent target once one- and twahings must be achieved. First, a fine level of quantum con-
qubit gates have been mastered. Not surprisingly, it was ongol must be demonstrated for both single qubits and pairs of
of the first algorithms to be experimentally implemented inqubits. Second, it will be necessary to show that the number
nuclear magnetic-resonance quantum computi@guang, of components(qubits and gatgsin a circuit can be in-
Gershenfeld, and Kubindd] and Jones, Mosca, and Hansencreased without insurmountable increases in difficulty. In

[5]). particular, we must avoid exponential increases in the
A promising quantum computing technology is fireear  amount of resource usageither time or spage—the imple-
optical quantum computatiofLOQC) scheme of Knill, mentation must becalable!

Laflamme, and MilburKLM) [6] (see Gottesman, Kitaev, Therefore, the importance of an experimental achieve-
and Preskil[7] for an alternative approaghin this scheme, ment of an early milestonésuch as the four-element Grov-
one-qubit gates are relatively straightforward. While imple-er’s algorithm should be measured primarily on these crite-
menting a scalable universal two-qubit gate such asi@ar  ria. A demonstration that Grover’s algorithm finds the
gate remains a challenge, such a gate is likely to be demomarked item in fewer steps than is possible with a classical
strated in the next couple of years. Already, a non-scalableomputer is an important goal, but it is less important than
CNOT gate has been approximately implemented by Pittmarhe fine level of quantum control that it implies. At this early
et al.[8]. For these reasons, it is important to establish somatage of development of quantum computers, any such dem-
specific LOQC milestones on the path toward building aonstration is a significant achievement, while a demonstra-
large quantum computer, in the form of some simple algotion of such control in a scalable manner is likely to be
rithms on a few qubits. significantly more difficult and consequently more impres-
This pursuit is dogged by conceptual difficulties associ-sive.
ated with quantum algorithms on a very small nhumber of

1Blume-Kohout, Caves, and Deutsghl] give a general charac-
*Electronic address: www.physics.uq.edu.au/people/jdodd terization of the requirements for scalability.
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This is illustrated by the experiment of Kwiat al. [9], ] ZHzE] e
which demonstrated tKe abilitypto implement the search al- 10) 7] *
gorithm in a quantum optical system, but using an encoding |0 —@—Oracle > D “p
that is not scalable—as they point out, the number of optical ) _@ N
elements that they require grows exponentially in the number @ L4
of qubits in their system. Thus, although their techniques
might be successfully extended to a few qubits, they are not FIG. 1. Acir_cuit d_iagram for the four-element Grover algorithm,
practical as the basis for an approach to building a quanturf@sed on the figure in Box 6.1 of R¢1.2]. The top two qubits are
computer. the data qubits, initialized in sta}6)|0), while the bottom qubit is

In contrast, we are explicitly concerned with developingthe ancilla qubit, initiali.zed in statel). The bo?<es labele® an.dZ
represent the one-qubit Hadamard and Paglpates, respectively.

experimental milestones on the path toward full-scale quanThe CNOT gate is denoted by the usual symbol, while the gray half

tum computation in optical systems. We show that Grover’s . . . .
ctlrcles represent one-qubit measurements in the computational ba-

algorithm on four elements provides several experiments thaSIS‘ whose output appears on the classical output widesble

gradually increase in complexity. The simplest version re'Iines). The finalX gate represents the classis@lT gate required to

quires Ilttle_ more than a single, commdence-bas_usw ga_te put the output into the correct form. The measurement always gives
together with a source of entangled photon pairs, while the;» . the ancilla qubit, while the data qubits givea® and * b.” It

most complex version requires two scalabkoT gates and s gtraightforward to show that, in principlab is the state marked
six photons. by the oracle.

Before describing these experiments and their require-
(SeC. ID and LOQC(SeC ”I) Since the Original proposal of measure the qub|ts in the Computationa| basis.
LOQC, there have been many simplifications and improve- The number of repetitionéwhich is also the number of
ments to the scheme. We give a concise description of thgses of the oracjethat maximizes the probability of obtain-

basics of LOQC making full use of these simplifications, jng the correct answer is the nearest integer to
focusing on a variant of the original scheme that uses

D
\J

«]”

polarization-encoded qubits. In Secs. IV and V, we describe arccos/1/N
and compare several optical circuits, all implementing Grov- 1)
b b b g 2 arccos/(N—1)/N

er’s algorithm on four elements. In Sec. VI we briefly discuss
appropriate figures of merit for Grover’s algorithm, and we

conclude in Sec. VI (Boyer et al. [13], see also Ref[12]). This number is

bounded above byr\/N/4], hence the claim that Grover’s

algorithm usesO(\/N) oracle calls, compared to tH@(N)
Il. GROVER'S ALGORITHM ON FOUR ELEMENTS oracle calls required in the classical case.

, . : For the remainder of this paper, we restrict our attention
Grover’s algorithm[2,3] (see also Nielsen and Chuang )
) . to the case where the number of elements in the search space
[12] for an elementary treatment on which most of this sec-

ion is baseflis a quantum algorithm that can speed u the'S N=4. In that case, the number of repetitions specified by
q 9 b b Eq. (1) is exactly one. A simplified circuit based on the al-

solution to certain types of oracle-based computations. VVeorithm described above is shown in Fig. 1. It can be verified

will say more about oracles and their implementation aftery. o . i
. : : directly that this circuit, using only one oracle call, gives the
describing Grover’s algorithm.

correct answer with probability 1, compared to the average
of 2.25 oracle calls that must be made with a classical circuit.
A. Grover's algorithm For example, if the solution is 10, then the output of the

Suppose our search space consisthlsf2" elements, of Cireuitisa=1andb=0.

which one is a solution to a given problem. Grover’s algo-

rithm identifies the solutionwith high probability using B. Implementing the oracle
n+1 qubits according to gge following algorithm. An oracle is a quantum circuit that¢cognizesolutions to
(1) Prepare the stat®)®"|1). a given problem. For example, suppose we wish to solve a

(2) Apply R®"*1, whereR=1/y/2[1 *,] is the one-qubit version of the traveling salesman problem, where the goal is
Hadamard gatgWe use the symbdR instead of the usuél  to find a route visiting a given collection of cities that is
to avoid confusion with the horizontal polarization state.  shorter than some specified lendthAlthough it is in gen-

(3) Apply the oracle, which flips the ancilla qubit condi- eral hard to find such a route, it is easy to recognize whether
tional on the other qubits being in the state corresponding ta proposed route solves the problem: simply add up the total
the solution. distance the salesman would travel on the proposed route,

(4) Apply R®". and compare it td..

(5) Apply a phase shift to the data qubits conditional on  Specifically, an oracle is a circuit that, given an input
not being in the statf0)®", described by the unitary opera- consisting of a potential solution to a problem, flips the sign
tor 2|0)(0|*"—1,, wherel, is the identity operation on the of an ancilla qubit if and only if the input is a solution to the
data qubits. problem. Since the only action of the oracle is to recognize

(6) Apply R®", solutions, its internal structure is unimportant in a test of the
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FIG. 3. Inserting the simplified oracle of Fig. 2 into the circuit
of Fig. 1 gives this circuit. Note that the marked state is specified
FIG. 2. The circuit on the left shows the beginning of the Groverinside the oracléthe dashed boxby the values ok, andx, used to

circuit with an example oraclénside the dashed boxnarking the  determine whether or not thé gates are appliedNote that addi-
item 10. We have implemented the oracle using a variant of thdion in the exponent of th& gates is modulo 2.Under ideal cir-
Toffoli gate, where the state of the third qubit is flipped when thecumstances, the output of the circuitds-x; andb=x,.

first two qubits are in the statd0), as indicated by the closed and

open circles on the control qubits. We have moved the measuremetibn modes of a single spatial modia0].

on the third qubit forward since it plays no further role in the algo-  In practice, it is likely that polarization-encoded qubits
rithm. In the text, we show that this circuit is in fact equivalent to will be used, so that logicdD) and|1) are encoded al$H)

the simplification on the right, where the Toffoli gate has beenand|V>, respectively, wheréf andV refer to horizontal and
replaced by a controlled-(csicN) operation followed by arX on yertical polarization one-photon states of the same spatial
the appropriate qubit. mode. The main reasons for this df it significantly sim-

) . . lifies the implementation of theNOT gate(see below, (2)
algorithm itself. Thus, for our purposes, the choice of oraclq[: allows one-qubit gates to be implemented using only wave

is arbitrary, and may be chosen to be as simple as poS‘S'bl‘ftflates and phase delays rather than beam splitters and inter-

Although the internal Wor}<|ngs of the pracle are unimpor-¢q . meters, angB) it reduces the effects of noise by ensuring
tant for the purposes of testing the algorithm, the complexn){hat’ unlike with spatial encoding, both states follow the

.Of wg;:lerg_?f_rlnr;?sorpeora;cle F”“SEhbe mcluo_led t? c:ar_act?r- same path on the quantum wires between gates. In this sec-
Iz€ the dillicully of performing e experiment. A SIMPIE 4, e describe in some detail the construction of one-qubit

implementation of an oracle marking one of the four states '%ates anctNoT gates in polarization-encoded LOQC
a Toffoli gate, with the control qubits negated where neces- '

sary to specify any of the states 00, 01, 10, or(4de the )

left-hand side of Fig. 2 for the example where the marked A. One-qubit gates

state is 10 To our knowledge, no complete description of how to
If the marked state is 10, the action of the oracle on thémplement basic quantum gates with polarization encoding

three qubits is to take the state|0Q)+[01)+|10) has been given in the literature, so we provide one here. For

+]11))(]0)—|1)) to one-qubit gates, wave plates and phase delays are sufficient.
A wave plate with slow axigH’) and fast axis|V') has
~(00+/0n-[10-+1D)(0)-[1) @ o dH,

(omitting the normalization Thus the oracle simply has the
effect of flipping the sign of the marked state. The ancilla is V')—[V"), (©)
not used again, so it can be discarded at this point.

Toffoli gates are difficult to implement in LOQC because Where ¢ is the resulting relative phase difference. Special
there is no known way to implement one without using sev-ases in common use are the half- and quarter-wave plates,
eral cNOT gates. However, for our purposes, a full Toffoli With ¢ equal to half and a quarter of a wavelength, respec-
gate is not required because the ancilla qubit plays such tvely. Now supposgH’) is rotated counterclockwisgvith
limited role. The two-qubit circuit on the right-hand side of respect to the direction of travel of the lighty an anglex
Fig. 2 illustrates this for the case where the marked state ifom [H). If the input state i ]=h|H)+v|V), then the
10. A single controlled (csIGN) gate that flips the sign of output is given by
the|11) state, followed byX gates to move the minus sign to

the appropriate state, has the same action as the original e'%cofa+sirfa  (e'?—1)cosasina][h @
oracle. (e?—1)cosasina € ?sifa+cofa ||v|
A simplified circuit to implement the four-element Grover
algonth_m is given in F!g. 3. Thls_ls the circuit that we will Special cases of this transformation for common one-
work with for the remainder of this paper. qubit gates are set out in Table I. The Hadamard ai@l
gates, labeled®R and T in the table, are a universal set for
ll. LOQC WITH POLARIZATION ENCODING one-qubit quantum computatiqBoykin et al. [14]), and so

any one-qubit gate can be obtained by a sequence of wave
In LOQC, qubits are encoded tual rail logic [6]: Two  plates, although it is convenient to allow phase delays as
modesA andB are used, and logic#) and|1) are encoded well. In the Grover circuit, the only one-qubit gates used are
as|1),|0)g and|0)4|1)g, respectively. The modes may rep- the R, X, andZ gates, and thus we only require half-wave
resent two differenspatialmodes, or two differenpolariza-  plates.
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TABLE |. Various one-qubit gates and their implementation in
polarization-encoded LOQG: and ¢ refer to the angle of the slow
axis to the horizontal and the relative phase added to light parallel
to the slow axis, respectively. Note thatequires a wave plate with
a relative delay of one-eighth of a wavelength.

control

Gate Optical element

FIG. 5. A further simplified(but still scalabl¢ polarization-
encoded KLMcsIGN gate. A gray rectangle containingc®” repre-
sents a half-wave plate with slow axis at an anglexdfto the
171 1 . s . horizontal polarization. See Table | for the corresponding one-qubit
= EL _J Wave plate with¢=180°, a=—67.5 gates. This circuit works similarly to the previous offiég. 4), but
it takes fuller advantage of the orthogonality of the polarization
states. For a full description, see the text.

Phase delay of- 6

an=e; |

01

T= L ,97/4 Wave plate with¢p=45°, «=90°
0¢ the target bit, i.e.cNOT= (I @ R)csSIGN(l ® R). Therefore, in
01 the context of LOQC where one-qubit gates are rel_atively
X=1 o Wave plate with¢p=180°, o= —45° straightforward, these two gates are practically equivalent,
and we will use the two almost interchangeably.
zZ= é _01} Wave plate with¢=180°, «=90° 1. Scalable two-qubit gates
) The KLM schemd 6] has two properties that at first ap-
v|© —I} Two wave plates and a pear contradictory: the LOQCSIGN gate is nondeterminis-
i 0 phase delayY=(e'™*)XZ] tic, but it is used to do computations in a scalable manner.

The nondeterministic nature of the KLMISIGN gate is es-
sential to engineer a two-photon interaction without using
highly nonlinear materials, but it poses a problem: if its suc-
cess probability ise<1, then the success probability of a
Since the publication of the original LOQC scheme of circuit with n cSIGN gates ise", i.e., it decreases exponen-
KLM [6], many simplifications of theicsiIGN gate have been tially with n. A solution to this problem is the technique of
developed, with varying tradeoffs between simplicity andgate teleportatiordescribed by Nielsen and Chuafig] and
functionality. The different types may be divided into two Gottesman and Chuan7]. This technique allows the gates
classes, those that are scalable and those that are not. In thisbe prepared as an offline resource, and then “teleported
section, we describe both type@Jote that thecNoT and  in” whenever required for a computation. KLM showed that
CSIGN gates are related by conjugation by Hadamard gates otine teleportation step can be made near-deterministic using a
sufficiently large number of repetitions. This technique is
unlikely to be used in early experiments, however, because
control 2082 the extra difficulty involved in teleporting gates will more

lv)mm than cancel out the advantages of increasing the success
probability when the number afsiGN gates is small.

o %) }é—D: “ 457
target Y 76.99
' 54.7°

B. Two-qubit gates

“«q

FIG. 4. The simplified KLMcsIGN gate of Ref[15]. The top control D J
rail contains the control qubit and the bottom rail contains the target
qubit, both encoded in the polarization of a single photon. A square 54.7°

with a diagonal line across it represents a polarizing beam splitter.
By convention, we always assume that the horizontal polarization is N
100% reflected while the vertical polarization is 100% transmitted. target A it NG

So, for example, after the first polarizing beam splitters, the topmost

rail contains the horizontally polarized component of the control

qubit. A thin rectangle represents an ordinary beam splitter, with a FIG. 6. The coincidence-bastvoT gate of Refs[21,22. All

sign change for the mode reflected from the thick black side andhree beam splitters have the same reflectivity=1¢8s 54.7°. It
reflectivity given by the cosine of the angle written next tdlitthe can be turned into &sIGN gate by removing the two half-wave
input modes to a beam splitter da®;, and|b);,, with theb mode  plates. Note that it is not necessary to have detectors on the re-
receiving the sign change and with reflectivity given by xothen  flected modes of the topmost and bottommost beam spliéeen

the outputs are coga)y,+ Sinx|b)y,: and sinx|a)qy— cosx|byoy:.) though measuring a photon in either of these modes would signal a
The circuit uses two vertically polarized ancilla photons. It succeeddailure), since other failures of this gate are undetectable until the
if the first two measurements both count O photons and the seconehd of the computation. The gate has worked if exactly one photon
two measurements both count 1 photon. is found in each rail.
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|H) — —67.5° :

FIG. 7. An optical implementation of Grover’s algorithm on four elements based on the circuit in Fig. 3. The oracle part is contained in
the dashed box. This circuit is essentially the concatenation of the circuits for the scamlgate(Fig. 5 and the coincidence-basisioT
gate(Fig. 6), together with a few extra wave plates. The output of the circuit is discarded unless the first measurement counts 0 photons, the
second two measurements both count 1 photon, and one photon is found in each pair of detectors at thegrdjeb,+b,=1. Note
that we have omitted the final correctingT gate on the classical output in this diagram, but it should still be done. For example, if the
oracle marks state 10, then the algorithm has successfully identified the marked state if measuremenrds, +ctyra,=0, by=1,
b,=0.

An essential feature required to make this work is that it |10)— /71 72(279,— 1)|00) = — \/p| 10), (5)
must be possible to determine when the gate has succeeded.
The KLM cNoOT gate has this property—although it only 111)— 5,]11) = Vp| 1),

succeeds once in 16 attempts, whether or not it has suc-
ceeded is determined by the outcomes of measurements
ancilla photons. We use the tespalableto describe &SIGN

(or cNOT) gate that has the property that it is known when it
succeeds.

In this paper, we will not work directly with the KLM
CSIGN gate since there are simpler alternatives, such as the
closely related simplification proposed by Ralphal. [15]
and the substantial modification proposed by Knillg]. An even simpler, but nonscalabtaioT gate was discov-
There is also a promising alternative approach using enered by Hofmann and Takeud#l] and Ralphet al.[22]. It
tangled ancillas discovered by Pittman, Jacobs, and Frans@ucceeds once in 9 attempts, but it only works indbinci-

[19] that we will not consider further here. We focus on thedence basisi.e., when the results of the whole computation
CSIGN gate of Ralptet al, shown in Fig. £ are selected to contain an allowed distribution of photons

In fact, there is a further, substantial simplification to thisamong detectors. We call this a “coincidence-basieT
circuit that is achieved by making fuller use of the polariza-gate.” See Fig. 6. This circuit has been designed so that if
tion encoding, resulting in the circuit in Fig. 5. This gate still exactly one photon is measured in the top (aileither po-
requires two ancilla photons. However, it uses fewer deteclarization and one in the bottom rail, it has worked with
tors, beam splitters, and polarizing beam splitters, and elimieertainty. Otherwise, the result is discarded and the experi-
nates two interferometers. Its effect on qubit states is unment is repeated. It cannot, in general, be followed by further
changed, up to an unimportant overall phase-df. If we  two-qubit gates, as it is possible for a later gate to mask a
denote the beam splitter reflectivities gs=5—3y2 and failure. Thus it cannot be used to do scalable quantum com-
7,=(3—2)/7 (which are approximated as cos40.8° andputation.
cos 76.9° in the diagramthen the action of the gate is the ~ The useful purpose served by this gdss well as the

Qhere the success probability is given by p= n§=(11
—64/2)/49~0.05. Thus the gate works approximately once
out of every 20 attempts. For the remainder of this paper, we
will refer to this gate simply as a “scalabtesiGN gate.”

2. Coincidence-basis two-qubit gates

following: coincidence-basis gate of R¢8]) is as a simpler intermedi-
ate step before the full complexity of a scalakieoT gate.
|00)— \/771 72(277,— 1)|00) = — \/p| 00), In a general circuit, it may be possible to replace one or more
scalablecnoT gate with a coincidence-basisNOT gate,
|02)— 7,(373—27,)|01)=— \/p|01), thereby significantly reducing the complexity of circuits con-

taining a fewcNoT gates. In the following sections on con-
structing optical circuits to perform the four-element Grover

2Recent numerical work by Lund, Bell, and Ral#0] shows that algorithm, we will see some of these ideas in action.

the simplified KLM csiGN gate of Ref.[15] is more resilient to

detector and ancilla inefficiencies than the other two, perhaps be- IV. THE TWO-QUBIT GROVER IN LOQC

cause it acts symmetrically on the two qubits. For example, the . . o )
fidelity of this gate(calculated as the fidelity of the actual output A Simplified circuit for the four-element Grover algorithm
with the ideal output, minimized over input statéslarger than the Was given in Fig. 3. In Fig. 7, this circuit is translated di-
fidelities of the other two gates for detector efficiencies up to apJ€ctly into an optical circuit, using the prescriptions and cir-
proximately 95%. However, it remains to be seen what effects otheguits of the preceding section.

sources of error, such as mode-matching errors, and imperfect beam The circuit, which succeeds once in approximately 180
splitter reflectivities, will have on the relative merits of each gate. =20X 9 (the product of the number of attempts per success
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i —67.5° |—|—45° + T g00
P ifz; =01
P s (HH) :
E +HVV)) '
; ifzs =0
: —45° :
| =45

FIG. 8. Grover’s algorithm using a parametric down-conversion input. This circuit works similarly to the previous one, but the oracle is
no longer demarcated from the initial part of the circuit. The dashed box in this figure now contains both the oracle and the initialization to
the stated HH)+|VV). The advantage of this circuit is that it makes use of a natural source of optical entang(parantetric down-
conversion to replace the very difficult scalabtesign gate. The outputs from this circuit are accepted under the same conditions as the
previous circuit &y +ay=by+by=1), and the final classicaloT gate has again been omitted.

for eachcNOT gate attempts, uses 10—12 half-wave plates, polarizing beam splittergsix of which would be mode
five beam splittergtwo of which must be mode matched matched, four ordinary beamsplitter&éwo of which would
nine polarizing beam splitterdour of which must be mode be mode matchedsix photons produced in desired polariza-
matched, four photons that must be simultaneously pro-tion states simultaneously, and ten single-photon detectors.
duced in desired polarization states, and seven single-photdrhis would be considerably more difficult to achieve experi-
detectors. The secortNOT gate can be done in the coinci- mentally. Since we arén principle) guaranteed to be in the
dence basis since there are no interactions between the twguibit space at the end of this circuit, the output of each pair
qubits following it. Therefore, if the final measurement con- of detectors should contain exactly one photon. Therefore, it
tains an allowed distribution of photoriexactly one in the is possible to simplify the final detection process by simply
top two detectors and one in the bottom two dete¢tase  blocking out one of the polarization$orizontal, say, and
know that the secondNOT gate worked, which is sufficient then looking to see if a photon is detected. This would reduce
for our purposes herk. the number of polarizing beam splitters to six and the num-
However, it is important to note that the output of this ber of detectors to eight, at the cost of introducing two po-
circuit (before the measurementould not be used to do larization filters. However, in practice the number of photons
further calculations because of the uncertainty in the outat the output will sometimes be incorrect. Thus, the increase
come of the secondNoOT gate. If, for example, there were in simplicity would have to be weighed against the failures
two photons in the top rail after the secoadorT, the sys- that would go undetected.
tem’s state would no longer be in the “qubit space.” A third
CNOT gate might bring the system back into the qubit space,
but it is unlikely to have performed the transformation we V. SIMPLIFICATIONS
expected. In this case, the overall circuit fails, but we have
no way of detecting the failuréexcept to compare with the de
answer that we can calculate by hand for this simple )case
To ensure reliability for further calculations, the second
CNOT gate should be replaced by a scalableT gate. The
optical circuit for this case would work once in 400 attempts,
and would contain of the order of 14—-16 wave plates, eigh

By far the most difficult aspect of the experiments just
scribed is implementing the scalab®GN gate. However,
the CsIGN gate in the oracle is only used in a very restricted
way, and it turns out that we can replace it with a much
simpler circuit. Since only one input state is ever used,
amely, (H)+|V))(JH)+]|V)), only one state is ever output
rom the CSIGN gate, namely|HH)+|VH)+|HV)—|VV).
(We will continue to neglect normalization constajpts$.a
source of entangled input states were available, then the
sion gate could be replaced. In optics, such a source is in
fact readily available: a parametric down-conversion source
can be used to produce the sthtH)+|VV), which can be

4A small but potentially useful simplification is to remove the qonvertgd into our desired state by a Hadamard gate on the
40.8° beam splitter, as described in R&0]. They show that, until first qult_’|H>___>|H>+ |V> |V>_>|H>,_ V). U.Smg.thls fact,
detector and source efficiencies of up to approximately 99.5% ar& ml_JCh simplified version of Grover's algorithm is presented
reached, the fidelity of the gate can be substantially increased bY? Fig. 8-_ o L . .
removing this beam splitter and adjusting the reflectivity of the  The simplicity of this circuit compared with the previous
76.9° beam splitter. Given that beam splitter reflectivities are im-One is emphasized by comparing the number of components.
perfect, removing this beamsplitter is likely to decrease that sourcd his circuit works once in every nine attempts, and requires
of error, while also decreasing the complexity of the circuit by 6—8 wave plates, six polarizing beam splittés§ which two
removing a detector. There is a catch, however: the probability omust be mode matchgdthree ordinary beam splitteene
success decreases by a factor of 45 for efficiencies of 80—95 %0f which must be mode matchgdwo photons which are

3Note that the 90° and 67.5° half-wave plates cannot be combine
into a single wave plate: their product\®[} ;'] has terms of
opposite sign in the off-diagonal terms, while the wave plate equa

tion [Eq. (4)] has these entries equal.
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produced as the output of a parametric down-conversiothe majority of the time, theaverageperformance of the
source, and four single-photon detectors. circuits will be very far from ideal. However, ultimately the
What have we traded for this enormous gain in simplic-probability of success of two-qubit gates in LOQC will be
ity? It turns out that we have compromised the versatility ofboosted arbitrarily close to one using gate teleportation, as
the algorithm. Most significantly, the oracle is no longer eas-discussed in Sec. 1l B 1, and so we restrict our attention to
ily replaceable. In principle, the oracle should be a “plug-in” the performance of the circuits when the two-qubit gates suc-
component able to have many different forms correspondingeed.
to different potential problems. In this simplified scheme, In order to be able to compare experimeftdsd also to
however, we have obscured the line between the oracle armptimize the performance of a particular experimental setup
nonoracle parts of the circuit, making it difficult to see how we need to be more precise about how to measure the suc-
to make the circuit solve a problem using a different oraclecess of these experiments. We suggest calculating figures of
In Fig. 8, a dashed box outlines the “oracle” part of the merit reflecting each of the two notions of success described
circuit for comparison with the previous diagrams, but thereabove. The first is to simply measure the distinguishability of
is in fact no clear line dividing the oracle from the earlier the distribution of measurement results output by the circuit
part of the circuit. for different oracles. For example, suppose that for the oracle
This change affects how the circuit could be used. Onenarking the state 00, the results 00, 01, 10, and 11 occur
example is demonstrating the variation in the success prolwith probabilitiespy;={0.9,0.04,0.02,0.04 while the corre-
ability of Grover’s algorithm as a function of the number of sponding results when the oracle marks state 10 page
repetitions of step&3)—(6) described in Sec. Il. In the circuit ={0.01,0.08,0.8,0.31 A simple indicator of the distinguish-
in Fig. 7, the oracle can be reused with some small chahgesability of these two distributions is their fidelity
On the other hand, in Fig. 8, this is not possible—the oracle

ly b d onée. Vo) D X)
c¢an only be used on F(pomplo)EzX: Poo(X) P1o(X), (6)

VI. FIGURES OF MERIT
wherex ranges over the measurement outcomes. 00,11

An important question that has so far not been addresseghdp,,(x) is the probability of obtaining resuk given that
is what the appropriate figures of merit are for this experithe oracle marked statb. This quantity has the property
ment. There are two related but distinct notions of succesgat it is 1 precisely when the two distributions are identical
here. The first is to what extent the actual goal of Grover'sand 0 precise|y when the two distributions are nonover]ap_
algorithm has been achieved, i.e., how successfully the exing, that is, when the set of results for which the first dis-
periment distinguishes between the four different oraclesgribution is nonzero has no elements in common with the set
The second is how similar the actual operation of circuit is togf results for which the second distribution is nonzero.
the ideal operation. This second notion is important for using |n the context of Grover's algorithm, it is desirable to
these experiments as tests of the ability to combine the basjgake the fidelity between the distributions arising from each
elements of quantum Computation. Itis Clearly related to th%air of oracles as small as possibdgor an introduction to
first—if the experiment cannot reliably distinguish betweenthe fidelity, see, for example, Refd.2,24. The relationship
the oracles, then the actual behavior of the circuit must bef the fidelity to distinguishability is explored by Wootters
very far from the ideal operation. [25] and in Ref[24].)
Note that, since the two-qubit gates in these circuits fail The second figure of merit is related to the similarity of
the actual operation implemented)(to the desired unitary
U. U is obtained by simply multiplying together the circuit
°The oracle on the right-hand side of Fig. 2 is designed to workelements in Fig. 3€, on the other hand, must be determined
with inputs that are equal superpositions of computational basigxperimentally. Ideallys should be determined precisely us-
states. If the oracle is used twice in the same circuit, then it iﬁng a method such as quantum process tomogré@hyang
unlikely that the input state will always be the same. In order tognq Nielsen[26] and Poyatos, Cirac, and Zoll27]). Al-
make the oracle work for an arbitrary input state, it is necessary tcfhough process tomography can be done using only product-
simply duplicate theX gates following thecSIGN gate, before the  iqi6'innyts and one-qubit measurements, it requires an enor-
CSIGN gate. For the example in Fig. 2, where the qracle marks themous number of runs of the experiment since the output
staFe|01>, the oracle ShQUId consist of the following: angate states resulting from 16 different input density matrices must
acting on the bottom qubit, followed by tlusigN gate, followed by be determined via quantum state tomography.

the X acting on the bottom qubit. Al tri t but h i lculated. crit
SFor a more speculative example, Grover’s algorithm can be used €ss stringént, but much more easily caiculated, crite-

to obtain upper bounds on an entanglement monotone called tH&2N IS that the probability distributions for each oracle
Groverian entanglements described by Biham, Nielsen, and Os- should be close to the ideal distributions. Thus, it is desirable

borne[23]. The basic idea is that if an-qubit statep (possibly ~ t0 have the fidelity of the actual distribution to the ideal
mixed) is used as input rather thd8)®", the square root of 1 distribution for each oracle as close to 1 as possitieis
minus the success probability gives a good measure of the entangle-

ment of p. This application requires input states with varying de-

grees of entanglement, and thus is not possible in the simplified ’Knill et al. [28] have a useful discussion of these issues where
circuit. they advocate thentanglement fidelitto measure the quality of an
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approach certainly does not completely characterize the bewo differentcNOT gate circuits could be combined to do the
havior of the circuit. For example, it does not determinemore complicated implementation of Grover’s algorithm in
whether the circuit behaves correctly for inputs other tharFig. 7, demonstrating the ability to combine a scalatieT

[H) H). It is an open question to determine whether therewith further nontrivial quantum computations. Finally, in the
exist methods characterizing how well a circuit implements anore distant future, the implementation using two scalable
desired operation, which are simpler than full process tomogeNOT gates would make a good testing ground for techniques
raphy. for combining LOQC components.

VII. A HIERARCHY OF EXPERIMENTS
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