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We address the problem of finding optimal CP(EBmpletely positive trace-preservingiaps between a set
of binary pure states and another set of binary generic mixed state in a two-dimensional space. The necessary
and sulfficient conditions for the existence of such CPTP maps can be discussed within a simple geometrical
picture. We exploit this analysis to show the existence of an optimal quantum repeater which is superior to the
known repeating strategies for a set of coherent states sent through a lossy quantum channel. We also show that
the geometrical formulation of the CPTP mapping conditions can be a simpler method to derive a state-
dependent quanturtanti) cloning machine than the study so far based on the explicit solution of several
constraints imposed by unitarity in an extended Hilbert space.
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[. INTRODUCTION IV), or by identical copies of a binary set of qubits.g.,
|f1 N and|g;, »®M, see Sec. V.
Suppose that we receive a quantum state which is drawn Let us suppose that we are at an intermediate station and

from a parametrized séf;} with knowna priori probabili-  receive very weak coherent statds=|a)(a| and f,

ties{p;} and that we have another set of stafgg, which ~ =|—a)(—a| and that we must replace these weak signals
we call templates at our disposal. Our task is to output an with stronger ones consisting of the templatgs=|3){|
appropriate state function of the templates that best matchegd g,=|— B)(— | (where the strict inequalityB|>|«/|
the input. The meaning dfest matchinglepends on the task holdg to improve the transmission performance through the
that we are going to pursue. For example, we may considegecond channel which is assumed to be lossy.
an eavesdropping strategy in a quantum cryptosystem, an We consider CPTP mappings from the inputs to not only
action of a quantum repeater in a communication channel, the given template elements but also a classical mixture of
state-dependent cloning process, and so on. them. This setting is especially motivated by a practical sce-
The best matching process is generally described by fario where one should find appropriate repeating states for
completely positive trace-preservit@PTH map from the  the second lossy channel and design the optimal mapping for
input to the output state sets. Unfortunately, however, theutputting those states. Actually, such states will be more or
problem of finding the optimal CPTP mapping betweenjess semiclassical ones based on Gaussian states because
given sets of quantum states is still poorly understood. Fothere will be no much merit to use any nonclassical states for
example, the necessary and sufficient conditions for the exa long-haul lossy channel, as nonclassical states will deco-
istence of a CPTP mapping between generic mixed states apere rapidly and result in semiclassical ones. What remains
known only for binary sets of states in a two-dimensionalin practice is then to find an appropriate mixture of coherent-
space{f,,f,} and{g;.9,} [1] (with g;=[1+g;-o]/2 and, state templates. Thus, we are to design the optimal CPTP
without lack of generality,g;2=g,2=g? and ge[0,1]).  map acting on the inpdt that outputs a quantum stgig of
This result has never been exploited for practical purposes dhe form
guantum information processing.
In this paper, we derive a simple geometrical framework A A -
for the general theorem on the existence of CPTP mappings, fi>pi= 2 pijg;- 1)
and then apply it to the problem of designing a quantum .
optimal repeater for relaying classical information over a : .
lossy quantum channel, and to describe a special kind d?\nother ?”Sﬂtz IS the_n that of q“a”t“”_‘ cI_onmg. W_e are con-
state-dependent quantum cloning machine. From here on Lned with the special case where, gnNandent}caI Inputs )
will always implicitly consider only two-dimensiondkD) i, we are only able to construct outputs which are classi-
systems, represented either by binary linearly independemfal mixtures of the templates consisting Mfcopies{:]?”'.
coherent state.g.,|* a), see Sec. lll and the end of Sec. This is a more restricted model than the ones studied in the
literature to date. However, as seen in Sec. IV, our model
provides a reasonable cloning performance compared with
*Electronic address: carlini@qci.jst.go.jp that of more general models known so far. In particular,
Electronic address: psasaki@crl.go.jp when one considers the use of quantum cloning for a lossy
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FIG. 1. The model of the quantum repeater for relaying classical binary signals through a quantum channel with linear energy loss.

guantum channel based on Gaussian states, our model can be f2sirt ¢
a good practical scenario as mentioned in the preceding para- R= g7 =0
. i g°sine
graph. An advantage of our method is that we just have to
maximize the chosen figure of merit along a certain curve 1—f2
specifying the boundary of the allowed CPTP mappings, un- = _>—— =0,
like the conventional methods that rely on dealing with all fsir e
the inequalities for the constraints imposed by unitarity over o2
extended Hilbert spaces with ancill2]. Yo=1+ 2;n20 =1 (6)

II. CPTP MAPPING EXISTENCE CONDITION with ZsirFazl—g_l)-@gz, 25ir?¢zl—f?f§/f2, and ¢,6

The necessary and sufficient conditions for the existence [0,7].
of a CPTP mapping between the sets of 2-dim states derived NOw let us turn to the analysis of conditig4). This can

by Alberti and Uhimanrj1] are expressed in the form be seen to reduce to the following constraints:
I . . At, =t} —t8=0,
dir(F1,tF2)=dy(py1,tp2) V teRY, )] o
) At_=t®—tA=0, 7
where the trace norm distance between two operatcasd A 5
B is defined agl, (A,B)=Ti[(A—B)T(A—B)]*2 wheret? andt? are the zeros oh” and h®, respectively,
; = :

Let us then write the output states as and

. H(P,q,R,X,Yo;t)=(Yox—4p®) —2[ Yox+4pq]t

p1="P[91){(91]+ (1 p)[g2)(Tal, X
+(Yox—40)t?=0 fort® <t<t®

P2=0]02)(02| +(1—0)|g1){(01], (3) (8)

where, for ease of presentation, we have defiMgg=Y,
—(n+X)R. After some algebra and the analysis of a few
eometrical constraints in the parameter spacg), one
inally obtains that the Alberti-Uhlmann condition can be

satisfied in certain geometrically simplp,]) parameter re-

» gions, classified according to the valuesRHK, andY, (see

the Appendix.

with the output probabilitiesg,q) €[ 0,1]. The above con-
dition, Eq. (2), implies a complicated set of constraints on
the parameters describing generical mixed input and outp
states, and on the probability distributiopgy, but it can be
explicitly calculated within a nice geometrical framework.
In particular, in the most general model of mixed “initial
and “template” states defined by an arbitrary vector in the
Bloch spheref;=[1+f;-¢]/2 andg,=[i+g; - 0]/2, respec-

tively, Alberti and Uhlmanns condition can be rewritten as Il REPEATER IN LOSSY QUANTUM CHANNEL

Our model for the repeater in a lossy quantum channel is
h(p.q;f;,gi;t)=hB—|hB|—-R(h*—|h*)=0 V teR", shown in Fig. 1. At the intermediate station, we receive weak
(4)  coherent state§ «),| — a)}, and relay the signals by replac-
ing |@) and|—a) with the statesp; and p,, respectively,
where, using the new coordinatgs=p—1/2, q=q—1/2 Where

((p,q) e[ —1/2,1/2)) to simplify the notation, we have intro- -
duced the parabolic functions bfas p1=PIB)BI+(1-p)|=B)~Al,

hAX; 1) =X —2(2+ X)t+ Xt2, p2=0d|—B)(—Bl+(1-q)|B)Bl, 9

o A - A with the given, stronger coherent statfg),|—8)} (||
h®(p,q;Yo:t)=(Yo—4p®) —2(Yo+4pqt+(Yo—4g°)t?, >|al). The statep, andp, are further input into the second
(5)  channel which is a simple lossy channel described by
and the parameters L =B =B == 7B+ 7B (0<y<1). (10
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The final output states ay€ = £(p;) (i=1,2). The problem
is to find the optimal repeater, that is, the optimal set
(Popt:Gopy in the mapping

|a’>HZ)1,

|— a)—>p,. (11)

We consider two kinds of measures of the transmission per-
formance, i.e., the average bit error rétg and the Holevo
capacity y(&) for the output ensemble from the channgl,
={p}.ps;1— & &}, where 1- £ andé are the prior probabili-
ties for p; and p5, respectively, as well as fofa) and p 1

|=a).

The allowed region of §,q) is specified by the CPTP FIG. 2. The allowed §§,q) region (shaded ar@afor the exis-
mapping existence condition described in Sec. Il. Since théence of a CPTP mapping between two input pure states and two
input states are pure, the condition can be greatly simplifie@utput mixed statesR=0.25).
as the well-known fidelity criteriofi3]

o o Now we apply the above results to derive the optimal
F(fi,f2)<F(p1,p2). (120  repeater. Let us first consider minimizing the average error
probability P for the output ensemblé€ with respect to a

Given the output state8), it is easy to evaluate the fidelities positive-operator-valued measurdd; , 1},

so that the CPTP mapping existence conditi@@) can be

explicitly rewritten as min . .. L~
Pe''= min [(1—&)Tr(Il1py)+ETr(1l,p5)]

Pg+(1-p)(1-a)—R<2Vp(1-p)a(l-q), (13 {11y 11z}
where we have introduced the parameters =1-¢+ ijin[Tf(ﬁlf\)], (18)
o i,
R= 1fK2<1’ «=(al=a), K=(p]-f). (4 where A=¢p,—(1—¢)p; and we have used the property

[1,+11,=1. The minimum error is then found by taking
I,=|N_)(\_|, where |\_) is the negative eigenvalue
eigenstate of the operatdr. We then have

Inequality (13) is trivially satisfied when its left hand side is
negative definite, i.e., when

+1

1/2R-1
q=3
2|2p—-1

1
(°<p<z) 19 2PI(p,q)=1-\(2E-1)2K'Z+ sz(p,q><1fK'2>,( |
19
[and similarly for 1/2<p<1, provided one makes the sub-
stitutionsq—1—q and p—1—p in Eq. (15)]. Otherwise, with S(p,q)=[2£q+2(1-¢)p—1] and K'=(9B|— 7B).
SinceS(p,q) is an increasing function in boyhandg, it can
A(p,q)=(p+g+R—1)*~4Rpg<0 (16)  be maximized under the CPTP map existence constraints by
use of the standard Lagrange multiplier method. Exploiting

should hold. Collecting these two cases together, we finally- (16) and Fig. 2, it is readily shown that the optimal bit
conclude that the CPTP mapping existence conditi®) is  grror rate is obtained for

satisfied for the range of parameteys ) contained within

the shaded area shown in Fig. 2. The upper boundary is 1 c c
e - +
specified by Pop=5 1+ \/C] Gop=75 1+ % , (20)
g=1(0=p=<R),
for 0<R<1 and 0<£é<1, where
q=1-R—(1-2R)p+2yR(1-R)p(1—p)
c.=R*(26—-1)(1-R),
(Rsp=1), 17 - (2= )
0=q<R (at p=1). c=1-4£1-§)(1-R). (21)
while the lower boundary is given by similar expressionsFurthermore, for the optimal pai20) we have
provided one makes the substitutiops-1—p and q—1
—qin Eq. (17). Sep=C+D[Vc—1]/2. (22)
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FIG. 3. (Color onling The difference in the error probabilities \\\\
for Bob, AP=P¢ noacT Pa tpre a@s a function ofla/g]? and 0 3 \
| 8|2 in the casep=1/\2, £=1/2. Ko K 1

d FIG. 4. The Holevo capacitiegcprp (dashed ling xno act
(dotted ling, and y,yput (continuous ling as a function of the in-
puts overlapx for the equiprobable inputs cas€=1/2), |5/ «|

Note that in the particular case of equiprobably distribute
inputs, i.e., wheré=1/2, we have that, =c_=c=R and

then the optimal point for &R<1 explicitly readspo  _, andy=112.
:qop_t:(1+ \/ﬁ)/Z_ ) ,
With (p,q) evaluated as the optimal pa20) we get VEBY=(1— ) x(EE)+ Ix(EM) 27)

2P e 1-V1-4£(1-6[1-(1-K')R]. (23 due to the joint convexity of the relative entropy.
The problem of maximization of the Holevo capacity
We compare this with the average bit error rate in the case of-prpalong the(elliptic) boundary of the CPTP allowed re-
no action by the repeater, i.e., with final states given bygion in the (p,q) parameter space for general initial prob-

| = na){ = na|, which is expressed by ability distributions¢ is still quite cumbersome but can be
solved numerically. For the sake of clarity we explicitly
2Pe noacT=1—V1—4&(1— Ek'?, (24) show here a practical case of equiprobably distributed inputs,

&=1/2 (maximum amount of information encoded in the in-
where k' =(na|— na). As it can be simply proved and di- puts. It is quite easy to check that in this case the channel
rectly seen from Fig. 3, the minimum error probability capacity is zero along the ling=1—p and symmetric with
Pl eprpis always smaller tha®, o act for any choice of ~ respect to the lineg=p andg=1-p, and monotonically
initial probability distributions¢, 0<5<1, and|B|>|a|.  increasing towards the points (1,1) and (0,0). In particular,
That is, the intermediate action of the repeater with optimaitS maximum is achieved at the optimal poipt,= Jop
CPTP mapping on the initial states reduces the final error (1+R)/2 on the boundary of the allowed region. Its be-

probability of detecting the original states. havior as a function of the inputs overlap=(a|—a),
Now we turn our attention to the problem of maximizing xcpre{«), is shown by the dashed line in Fig. 4. It can be
the Holevo capacity compared with the channel capacity

. . . a xnoact(k)=—(Ni NN\ +N"Ink"), (28)
X(O=8(p") =2 &S(p)=2 &D(pillp"), (29 ]
“ : where \.=[1*«'(k)]/2 and k'(k)=(na|—na)=«k",
. - " for the case of no action by the repeatdre dotted line in
wherep’ =2 &y, S(p') is the von Neumann entropy and Fig. 4), and the one for the original statés),|— a)} re-
D(pillp") is the relative entropy. First notice thg(€) is  ceived at the intermediate stati¢the solid line in Fig. 4,
maximized at the extreme points of the convex segj of i.e.,
the region allowed by the Alberti-Uhlmann condition, be-
causey(&) is a downward convex function with respect to Xinput(K)=—=(NgINN+N_Ink_), (29
the pair (0,q). In fact, let (pg,qe) and (Pa,ga) be extreme

and interior points, respectively. Define the correspondingY"there)‘/iE(1i K)[2. As ohne can see, tiere are both padram-
ensembles agF=1{pE; &} and£A={p2;&). Then for an-  © o (Bl ) regions. wherexcerd1) > Xno act(x) an

. . . xcptd K) <xno act( k). In particular, defininggy as the in-
other interior point tercept point between the curvggprtd k) and xno act(«)
[i.e., such that’(CPTliKO)EXNOACT(KO)] for 0<k< K0<1

pe=(1=0)pe+ipk (26)  the accessible information is bigger when amplifying the sig-
nals at the repeater, while fa,< «<1 the best performance
(where 0<¢<1), we have is obtained without amplification. This behavior can be ex-
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<o, va P We finally consider physical realizations of the optimal
repeater. Since the bit error rate is of greater interest in the
U. near future optical communications which will be based on
classical coding consisting of separable measurements, the
optimal repeater derived here will be useful, in practice, and,
- in terms of the bit error rate, it will be always superior to the
case of no repeater action. One possible implementation is
FIG. 5. The network whiizh realizes the optimal CPTP mappinggiven by the quantum network shown in Fig. 5. The compu-
for the repeater, with U,,=exp{|0)(1l[6_|0)(1]+6.|1), (0[]  tational basis is made up of the so-called even and odd co-
—H.c}. herent states,

| 0, R, R

plained as follows: for smalk the inputs tend to be more 0)= 1 (|a)+]—a))
orthogonal and the quantum repeater helps; on the other V2(1+ k) '
hand, for larger, the inputs tend to overlap and there is no
gain in using the quantum repeater. Furthermore, one can 1
easily check that, ag decreaseghe channel becomes more 11)= Wd@_ |—a)). (30)
lossy), although the absolute channel capacity performance “
decreases, the range effor which xcpre{ )>xnoacT(4)  In particular, an ancilla is initialized in the even coherent
also becomes larger(, increaseg for very noisy channels state|0),, where the subscrigi refers to a certain mode of
the amplification by the repeater is essential even for the cag@e coherent template states. Then, a unitary operation
when the inputs are almost completely overlapping. R

It should be stressed that the minimum bit error rate isU,u( 0. )=exd (|0)(1]),®(6-]0)(1]|+ 6,|1)(0|),—H.c],
always improved by using the optimal repeater, i.e., (3D
Pe Cp1e< Pe,no acT, While the Holevo capacity gets worse
by using the optimal repeater for more nonorthogonal inpu
stateq|a),| — @)} (largerx). This different behavior may be . :
interpreted in the following way. The bit error rate specifiestWO (loca) NoOT operations, two.contro.IIeNOT operations,

. .—and a couple of controlled rotations with

the performance of a single-shot measurement on each signal
state, while the Holevo capacity is a measure of communi- . cosf. —sind.
cation performance when the coding by a large-scale quan- R( Hi)z( B )
tum collective measurement is used. Thus in the latter case,

there is a quantum process on block sequences made of theting on the two modes andb of the coherent states. The
final states{p;,ps} (or {|na),|— na)}), where the coher- repeating states are finally obtained at the output port in
ence involved in block sequences must be fully used to exmodeb by tracing out the states in mode Unfortunately,

tract as much information as possible. In this sense, the puhis type of quantum circuit still requires hypothetical non-
rity of the output states is an important factor in the contextinear processes to generate the even and odd coherent states
of the Holevo capacity. The repeater replaces the block seas well as the cross Kerr effect between madendb [7,8].
quences of pure staténa),| — 7a)} with the sequences of  In practice, however, a much simpler strategy often suf-
the mixed state§p}, p3}. This spoils the coherence involved fices. In particular, when the template stafs),| — 8)} can

where 29, =arcsirK/kx /2 is performed on the joint state
fia>a|0>b. As shown in Fig. 5, the unitary ., involves

. 32
sinf.  cosf. (32

signal states are more quantum, i.e., more pure and nondi€SeNd(IR) strategy. That is, we first discriminatga),| -
thogonal[5,6]. In the region G<x<x, (more orthogonal —a)} by th.e minimum error measurement, and then assign
the orthogonality of the signal states is more important@" @PPropriate template state based on the measurement re-
while in the regionk,< k<1 (more nonorthogonatthe pu- sults. In the.case af=1/2, the repeating states are specified
rity of the signal states is more important. Thus relaying the?Y Ed-(9) with the parameters

signals by the pure states without any repeater action some- 1

tir%es wo?ks be‘t)ter than amplifying thgm irF: the mixed states. P=0=3(1+V1-«%),
In contrast, the bit error rate is only affected by the orthogo

nality of the final stateéi and Z)é regardless of the purity of '
the states. 2P =1-(1-x?)(1-K'?). (34)
It should be noted that the above discussion only applies
for a channel with linear loss. If the channel is subject also
to, e.g., dephasing, etc., things will change. For example, one
expects that the Holevo capacity with no action of the re- Another interesting application of the CPTP mapping re-
peater yno act(k) will degrade much faster than the one sults is in state-dependent cloning. As it is well known, an
with the repeatefcprd «)- arbitrary unknown gquantum state cannot be clof@d |t is

(33

“and the final bit error rate is

IV. STATE-DEPENDENT QUANTUM CLONING
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possible, however, to p.roduce imperfect copies of. quantu@@,opt(Z:S,N.M)
states, both deterministicallyvhen the cloning machine can

only perform unitary operationsnd probabilisticallfwhere (1—2zM) (ZN—2zM)
via postselection measurements in an ancillary space, faithful =1- 5 1-\/1-4¢&1-¢) v | (40)
copies of the input are obtained with nonzero success prob- (1-2%)

ability). Several results on quantum cloning are already . . Y ey
known by now(for a selected, though not exhaustive, bibli- gtr;ew{'fi’ we could choose the ‘local’ fidelitgee, e.g.,
ography, see, e.g., Rdf10]). efs.[11,12)

In this section we will exploit the geometric results con-
cerning the existence of a CPTP map between 2D quantum
systems section to describe &M (anti) cloning state- 2 2ouh - o _
dependent machine. In particular, we assume that the inpdfnereFi(fi,fi™) is the fidelity between the reduced density

states are pure and given ashfold tensor productf;)®N, operator for one single copy of the initial stdtee., f;) and
while the templateg; are pure §=1) andM-copies clones the reducgd density operator for one single copy of the final
(M=N=1) of the input state$f;), i.e., state(i.e., f?"!, obtained tracing out anyl —1 qubits from
pi,» and which is independent of the choice of the remaining
|fi>_>|"fi)z|fi>®'\', lgi)=|f;)eM. (35) copy). Since the output reduced density operafafs Eq.
(3)] are given by

We then restrict our analysis to the special case in which we

FL=(1-9F (1, 19" +era(fo 19", @)

assumed that we are only able to construct outputs which are fU=ph+(1-pf,,
classical mixtures of these templates, that is, the outputs are R ~ R
given again by Eq(3). More general cloner mode({gclud- foU=qf,+(1—q)f,, (42

ing the state-dependent copiers which unitarily map pure ini-

tial states to a pure state superposition of clones as in Ref8. short calculation shows that

[11,12) will be considered elsewhere. In our ansatz, then, it _

is straightforward to see, by using the Bloch sphere param- FL=Z+(1-2)[(1-§p+&al, (43

etrization forg; and noting that the statd$g;)} (as well as
the stateq|f;)}) span a 2D Hilbert space, that the overlaps
must be

which is again optimized by the parameters of E2f) and
finally reads

_7M = .
(Faffa)l=cod's,  [(gilan)|=coso=coe. (36 (1= Frop(z:&NM)]

=(1-2)[1~Fg opt(Z:EN,M)]. (44)
The case of purfg;) can be also immediately handled within
the framework discussed in the preceding section provide&ince the local and global fidelities are linearly correlated, it
that we takeY,=1 [see Eq(21)]. Therefore, for the param- is enoughin the following to study the behavior of one of
eterR of Eq. (6), we obtain them, e.g.F_ . First of all, cloning is not allowed for the set
of parameters ({,q) outside the shaded region of Fig. 2.
1—cosNg Then, considered as a function &f F_,, is further maxi-
R= 1-cogMg’ 37 mized (as expectedfor the trivial choicesé=0 or é=1
(only one “input” state, for whichF_,,=1. Itis also easy
with Re[N/M, 1]. In order to evaluate the efficiency of the to see that the optimaF, ,,(¢) is bounded below by
cloning machine, we can now either choose as the figure o ,,(£{=1/2), i.e., for the choice of equiprobabilistically

merit the “global” fidelity (see, e.g., Ref$11,12) distributed input state§f;)}. This case is important because
for ¢=1/2 the maximum amount of information is encoded
EGE(l—§)<71|[)1|~f1>+§<~f2|/32|?2>, (39 in the input states. It is easily seen that this fidelity is an

increasing function oN and a decreasing function df. As

which can be easily seen to correspditaking g=Y,=1 a function ofZ at fixedN,M it decreases from the maximum
=Yo=1,

and 6 andR as defined in Eq936) and (37)] to ELvopt(Z;1/2,N,M)=1 at =0 (the case for maximally in-
distinguishable initial statgsuntil it reaches a miﬂimum
Fe=ZM+(1-Z")[(1- &)p+£q], (39) around ¢pin=m/4 (for N=1 andM =2, at whichF_

=0.95) and then again increases towards

with Z=cog¢, and then essentially the same as the scor&L.opt(Z;1/2N,M)=1 at =m/2 (the case for orthogonal,
S(p,q) of the preceding section, with the same maximum agassical inputs In the asymptotic case dfl —o= the local
the optimal points fp:.0ep) Of Eq. (20), finally giving fidelity has a similar shape, with the minimufor N=1)
[note that for cloningR<1, see Eq(37) and Fig. 2, and the Fr opt=25/27=0.92 at ¢nin=arccos/5/9<m/4. The opti-
conditionYy=1 also implies tha&,=0] mal “local” average fidelityF ,,(Z;1/2N,M) is plotted as
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FIG. 7. The Holevo bound on the copied information
FIG. 6. The optimal average sco?%pt(Z;O.S,lM) for the pa-  114(Z;0.5,1M), for the parametert =2 (dashed lingand M =o
rametersia) M =2 (dotted ling; (b) M=o (continuous ling and  (continuous ling compared to the Holevo bound for the Wooters-
the optimal local eavesdropping strategy fideffys in Eq. (51) of Zurek cloner(dot-dashed lineand the maximal information ex-

Ref.[11] for N=1 andM =2 (dashed ling tractable from the input stateéj‘(Z;O.S) (dotted ling.
a function ofZ for N=1 andM =2,= in Fig. 6. Also note lu(Z EN.M)=S gout| _ g(fout
that, in the asymptotic limit oM —s, the global fidelity W(ZENM)=S| 2 pf? = 20 piS(E)

reaches the Helstrom bouhd]
= 2PN, (46)
a=*;i=123

2Fpesror=1+[1—4E(1— &) (F,[T)1Y2 (49
where

_ 2 /
which is the maximum probability to distinguish the two 2Ny =1+{[c2 +4¢°R(1-R)Z]/c}?,
states|f;) and[f,). Quantum cloners with state-dependent
fidelity were already considered in the literature, see, e.g.,
Refs.[11-13. One of their most important practical use is _ o2 B 12
for eavesdropping strategies in some quantum cryptographic 285 =12{[(1-2§)"+4£(1-HRZJIc}™™,  (47)
system. As Fig. 6 shows, our local and global fidelities forP1:1_§’p2:§'p3:_1’ andc. ,c andR are given, re-

§=1/2 are smaller than, respectively, the optimal eavesdrops ; ;

, el > : pectively, by Eqs(21) and (37). This should be compared
ping strategy fidelity described in Refl1] and the global  \yith the maximum information extractable from the original
one of Ref.[12]. As we have already stressed, this is just agiateg given by

consequence of the peculiarity of our output states, which are

a classical mixture of the perfect clongl)®™, while in .

Refs.[11,17 the optimization is over a unitary transforma- 15(Z;¢)

tion between arbitrary initial and final pure states. The evi-

dent advantage of our optimal CPTP mapping method in §in

general cloning machine relies in not having to deal with all

the inequalities which derive from the constraints on the uni- 2Nin+

tarity of transformations over extended Hilbert spaces with

ancilla qubits, as we just have to maximize the chosen figurdhese figures of merit are shown in Fig. 7 fé=1/2, N

of merit along a certain curve specifying the boundary of the=1, andM =2, and compared with the Holevo bound of

allowed CPTP mappings between the initial and the outputhe Wooters and Zurek modg®] (which, in this sense, is

(mixed) states. nearly optimal as it allows us to extract as much information
The importance and relation of different ‘quality’ mea- from the copies as from the origingl$4]).

sures for cloning other than fidelity, and, for instance, the Completely similar considerations can be extended to the

realization that generally copiers quantum optimized withcase in which the input and the template states are, respec-

respect to fidelity are not optimal with respect to informationtively, the coherent statés: a) and|= ), just by replacing

transfer measures, and viceversa, was stressed, e.g., in Refs. the previous formulas forZ— «x?=|{a|—a)|?=exp

[14,15. In particular, another measure of the quality of the[ —4|af?]. Furthermore, with the same methods we can also

performance of our copier can be given in terms of theconsider a special type of copier callé—K+L (with K

Holevo bound on the copied information for the reduced+L=N) “anti-cloning” machine[16]. In this ansatz, a set of

density outputg42), i.e. [for the optimal point given by Eq. unknown input state§ f;)®N} is transformed into the tensor

(20)], product ofK copies of the inputf;) timesL copies of a state

2Ny =1+{[c? +4(1-¢)’R(1-R)Z]/c}*?,

S(E pi?i):_ Z NinelMNing, (48

1+[(1-28)%+4¢(1—&)Z]Y2 (49
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|- fy=8i|0)—a;|1), which has opposite spin direction 1 A
with respect to the input one. This type of cloning is physi-
cally interesting for a number of information theoretic rea-
sons(see, e.g., Ref§17)).

The pure templates are thus chosen 4g;)
=|f)®K|—f,)®L, such that now|(g:|g,)|=cos* ¢ and
R=[1-cosNp)[1—cogK D], with Re[N/(K+L),1].

The analysis of the optimal efficiency of the anticloning ma-
chine then follows similar lines to those of the previous clon- g
ing machine case, just provided that one makes the substitu-
tion M—K+L.

V. DISCUSSION

We have considered the constraints on the existence of
CPTP mappings between two arbitrary initial pure states and
two arbitrary final mixed states using Uhlmann’s theof&h 0
and interpreting them within a simple geometrical picture. D p
Exploiting these results, we then studied the model of a
guantum communication channel where a set of coherent FIG. 8. The allowed |,q) region (shaded argafor the exis-
states are sent by Alice, eventually transformed by an intertence of a CPTP mapping between two input mixed states and two
mediate repeater who can perform an optimal CPTP mappingutput mixed states for the set of parameterg=4, X=1,R
and, after going through a lossy chanmgl are finally re- =0.5(case 1. PointsA,B,C,D represent, in order, the intersections
ceived by Bob with a certain error probability. We have Of ellipse (A3) with the boundaries)=1, p=1, p=0, andq=0.
shown that when the intermediate repeater performs the op-
timally CPTP mapping, the final error probability is always the Helstrom bound cannot be improved. However, consid-
smaller than in the case when no action is taken at the intering homodyne detectiofwhich is a practical detection
mediate stage. In other words, we can have a gain when tHcheme with the present technologie improvement in the
optimal mapping strategy is applied to repeat or amplify thesignal-to-noise ratio brought by the cascade of the squeezers
input signals in the channel. This is a new and intriguingWwill be very useful. It would be an interesting problem to
result for quantum communication, showing the potentialStudy quantum repeaters combining our nonunitary repeater
relevance of the optimal CPTP mapping strategy. with the squeezer repeater for a lossy channel with homo-

Furthermore, the optimal CPTP mapping constraints havéyne detection.
been used to analyze state-dependent optimal cloners where
Fhe output is a classical mixture of exgct copies of the init_ial ACKNOWLEDGMENTS
inputs, and the local and global fidelity between the copies
and the input, and an information theoretic quality measure The authors acknowledge Professor R. Jozsa for provid-
given by the Holevo bound on the mutual information be-ing the original motivation of this work and for crucial com-
tween the density operators for the input and the copies renents. They also thank Dr. A. Chefles and Professor O. Hi-
duced states have been discussed. Although our copiers deta for valuable comments.
not achieve the performance of other state-dependent cloners
known in the Iiterature{pecause of the special phoige of our APPENDIX
outputs, our results(which are new for the anticloning ma-
chine casgare still interesting as they show that the CPTP  The solutions to constraintg) and(8) for the variablep
mapping “geometrical” methods are simpler and more directandq in terms of the parametef8, X, andY, given by Eq.
than the study of the several constraints inherent to the ex8) can be summarized, after some lengthy but straightfor-
tended Hilbert space approaches. It would be interesting teard algebra, by the geometrical pictures shown in Figs.
compare our results on cloning with the conditions discusse8—12. In particular, the allowed regions for the existence of
in Ref. [18] for Pauli cloning machines, which seem to de-the CPTP maps between arbitrary mixed initial and final
rive, albeit using a different analysis, an intriguingly similar states are the shaded regions in these figures, bounded by the
geometric picture. following sets of curves.

Finally, It should be also mentioned that the use of (& The lines:
squeezers has been studied as another kind of repeater for
coherent statefl9]. In particular, it was shown that by op- . . X, R
timizing a cascade of squeezers the communication perfor- a1 =(p)=- j(\/ﬂ*xi p),
mance of the coherent-state channel can be improved. This
method is based on the unitary transformation of the X
squeezer as a noiseless amplifier. Therefore the state overlap ~ A As -
between the signal states is not changed, which means that 92 i(p)=7(\/7°_xip) (A1)
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D D

q
q (¢
E F
(o] 1

p
0 1
H p FIG. 11. The allowed {§,q) region (shaded argafor the exis-

tence of a CPTP mapping between two input mixed states and two
FIG. 9. The allowed §§,q) region (shaded argafor the exis-  output mixed states for the set of parameterg=4, X=10,R

tence of a CPTP mapping between two input mixed states and twe-0.38 (case 4. Lines (A1) intersect with the the horizontal lines
output mixed states for the_ set of parameterg=4, X=5.5, g, . at the points,E and with the boundarigs=0, p=1 atD,C;
R=0.52 (case 2 Lines (A1) mtersect with the bound_arleﬁ 1, the horizontal Iines'.5|3 + intersect with the boundarigs=0, p=1
p=1, p=0, andg=0 at the pointsA,D,E,H, and with ellipse atAFE.
(A3) at the pointsB,C,F,G. '

The allowed regions for the variabl@gsand g can then be

(where we have defined.=1+1+X) and classified in different sets, defined by certain ranges for the
values of the parameteRs X, andY,, and depending on the
~ \/Yiox type of intersections among the above curves and the global
O +== 2 (A2) geometrical shape of the allowed region itself. For the sake
of simplicity, we define the further parametebs,=X
(b) The conic[an ellipse forR<Yy/(1+ X)]: +n, Yo.=Y+n and X; _=X_+1,Y, 1= VYo+n. Then,

L o . we distinguish among the following sets of parameteese
Ap(p,Q)=Yox(P*+0*) +2Yxpqd—RYix. (A3) 1)

FIG. 10. The allowed [§,q) region(shaded areafor the exis- P
tence of a CPTP mapping between two input mixed states and tWo F|G. 12, The allowed 1,q) region (shaded areafor the exis-
output mixed states for the set of parameterg=4,X=10,R  (gnce of a CPTP mapping between two input mixed states and two
=0.32(case 3. Lines (A1) intersect with the horizontal line$; = output mixed states for the set of parameters=4, X=30,R
at the pointsB,| and with the boundarieg=0, p=1 atF,E; the = =0.123(case 5. Lines (A1) intersect with the the horizontal lines

horizontal Iinesmﬁ3 + intersect with the boundarigs=0, p=1 at (13 . at the point®,H, with the boundariep=0, p=1 atA,E, and
A,L; ellipse(A3) intersects with line¢Al) at the point<C,D,G,H. with the ellipse at the point€,D,F,G.

042327-9



A. CARLINI AND M. SASAKI

Y_,>0, 0<X<Y_,, 0<R<1, (A4)
Y
maxY_,,00<X<Y_, o<R<X—°, (A5)
2
Y_
Y _1<X<Yo12Y 212 0<R<X_11’ (A6)
Yo10Y -
X>Yo12Y212, 0< R<%m (A7)
1,-
(see Fig. 8 or (case 2
Y0 1/2Y7 1,1/2 Y_ 1
I e -
X>Y_q, X1 R< < (A8)
(see Fig. 9 or (case 3
Y_ <X<X E<R<E (A9)
-1 0 X Xl
(see Fig. 1Dor (case 4
Yo Yo
X>4Y o 12Y — 112, X_< R<Y (A10)
1

(see Fig. 11 or (case 5

PHYSICAL REVIEW A 68, 042327 (2003

Yo
X>Xo, R°<R<1+x (A11)
(see Fig. 12or (case 6

Y_,>0, 0<X<Y_,, O0<R<I1, (A12)

) Yo
max’Y_,,0)<X<Y_q, 7<R<Y, (A13)

Yo
Y_1<X<4Yq 1Y _1.112, R0<R<7 (A14)

(for which the allowed region is within the rectangle formed

by the Iinesa3i and their intercepts with the boundarips
=0 andp=1), or finally (case 7

Y_,>0, 0<X<Y_,, 0<R<1, (A15)

Y.
maxyY_,,00<X<Y_;, 1< R<71 (A16)

[for which the whole p,q) €[0,1] region is allowed The
values ofXy and R, are to be determined numerically. For
instance, in the cas¥,=4 we obtainX,=20 andRy(X)
=[3X2+4(X—2)J1+X—8]/X5.
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