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Geometrical conditions for completely positive trace-preserving maps and their application
to a quantum repeater and a state-dependent quantum cloning machine
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We address the problem of finding optimal CPTP~completely positive trace-preserving! maps between a set
of binary pure states and another set of binary generic mixed state in a two-dimensional space. The necessary
and sufficient conditions for the existence of such CPTP maps can be discussed within a simple geometrical
picture. We exploit this analysis to show the existence of an optimal quantum repeater which is superior to the
known repeating strategies for a set of coherent states sent through a lossy quantum channel. We also show that
the geometrical formulation of the CPTP mapping conditions can be a simpler method to derive a state-
dependent quantum~anti! cloning machine than the study so far based on the explicit solution of several
constraints imposed by unitarity in an extended Hilbert space.
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I. INTRODUCTION

Suppose that we receive a quantum state which is dr
from a parametrized set$ f̂ i% with known a priori probabili-
ties $pi% and that we have another set of states$ĝi%, which
we call templates, at our disposal. Our task is to output a
appropriate state function of the templates that best mat
the input. The meaning ofbest matchingdepends on the tas
that we are going to pursue. For example, we may cons
an eavesdropping strategy in a quantum cryptosystem
action of a quantum repeater in a communication channe
state-dependent cloning process, and so on.

The best matching process is generally described b
completely positive trace-preserving~CPTP! map from the
input to the output state sets. Unfortunately, however,
problem of finding the optimal CPTP mapping betwe
given sets of quantum states is still poorly understood.
example, the necessary and sufficient conditions for the
istence of a CPTP mapping between generic mixed state
known only for binary sets of states in a two-dimension
space,$ f̂ 1 , f̂ 2% and $ĝ1 ,ĝ2% @1# ~with ĝi[@ Î 1gi

W
•ŝ#/2 and,

without lack of generality,g1
W 25g2

W 25g2, and gP@0,1#).
This result has never been exploited for practical purpose
quantum information processing.

In this paper, we derive a simple geometrical framewo
for the general theorem on the existence of CPTP mappi
and then apply it to the problem of designing a quant
optimal repeater for relaying classical information over
lossy quantum channel, and to describe a special kind
state-dependent quantum cloning machine. From here on
will always implicitly consider only two-dimensional~2D!
systems, represented either by binary linearly independ
coherent states~e.g.,u6a&, see Sec. III and the end of Se
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IV !, or by identical copies of a binary set of qubits~e.g.,
u f 1,2&

^ N and ug1,2&
^ M, see Sec. IV!.

Let us suppose that we are at an intermediate station
receive very weak coherent statesf̂ 15ua&^au and f̂ 2
5u2a&^2au and that we must replace these weak sign
with stronger ones consisting of the templatesĝ15ub&^bu
and ĝ25u2b&^2bu ~where the strict inequalityubu.uau
holds! to improve the transmission performance through
second channel which is assumed to be lossy.

We consider CPTP mappings from the inputs to not o
the given template elements but also a classical mixture
them. This setting is especially motivated by a practical s
nario where one should find appropriate repeating states
the second lossy channel and design the optimal mapping
outputting those states. Actually, such states will be more
less semiclassical ones based on Gaussian states be
there will be no much merit to use any nonclassical states
a long-haul lossy channel, as nonclassical states will de
here rapidly and result in semiclassical ones. What rema
in practice is then to find an appropriate mixture of cohere
state templates. Thus, we are to design the optimal CP
map acting on the inputf̂ i that outputs a quantum stater̂ i of
the form

f̂ i° r̂ i5(
j

pi j ĝ j . ~1!

Another ansatz is then that of quantum cloning. We are c
cerned with the special case where, givenN identical inputs
f̂ i

^ N , we are only able to construct outputs which are clas

cal mixtures of the templates consisting ofM copiesĝi
^ M .

This is a more restricted model than the ones studied in
literature to date. However, as seen in Sec. IV, our mo
provides a reasonable cloning performance compared
that of more general models known so far. In particul
when one considers the use of quantum cloning for a lo
©2003 The American Physical Society27-1
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FIG. 1. The model of the quantum repeater for relaying classical binary signals through a quantum channel with linear energy
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quantum channel based on Gaussian states, our model c
a good practical scenario as mentioned in the preceding p
graph. An advantage of our method is that we just have
maximize the chosen figure of merit along a certain cu
specifying the boundary of the allowed CPTP mappings,
like the conventional methods that rely on dealing with
the inequalities for the constraints imposed by unitarity o
extended Hilbert spaces with ancilla@2#.

II. CPTP MAPPING EXISTENCE CONDITION

The necessary and sufficient conditions for the existe
of a CPTP mapping between the sets of 2-dim states der
by Alberti and Uhlmann@1# are expressed in the form

dtr~ f̂ 1 ,t f̂ 2!>dtr~ r̂1 ,t r̂2! ; tPR1, ~2!

where the trace norm distance between two operatorsÂ and
B̂ is defined asdtr(Â,B̂)[Tr@(Â2B̂)†(Â2B̂)#1/2.

Let us then write the output states as

r̂15pug1&^g1u1~12p!ug2&^g2u,

r̂25qug2&^g2u1~12q!ug1&^g1u, ~3!

with the output probabilities (p,q)P@0,1#. The above con-
dition, Eq. ~2!, implies a complicated set of constraints o
the parameters describing generical mixed input and ou
states, and on the probability distributionsp,q, but it can be
explicitly calculated within a nice geometrical framework.

In particular, in the most general model of mixed ‘‘initial
and ‘‘template’’ states defined by an arbitrary vector in t
Bloch sphere,f̂ i[@ Î 1 f i

W
•ŝ#/2 andĝi[@ Î 1gi

W
•ŝ#/2, respec-

tively, Alberti and Uhlmann’s condition can be rewritten a

h~ p̂,q̂; f i
W ,gi

W ;t ![hB2uhBu2R~hA2uhAu!>0 ; tPR1,
~4!

where, using the new coordinatesp̂[p21/2, q̂[q21/2
„( p̂,q̂)P@21/2,1/2#… to simplify the notation, we have intro
duced the parabolic functions oft as

hA~X;t ![X22~21X!t1Xt2,

hB~ p̂,q̂;Y0 ;t ![~Y024p̂2!22~Y014p̂q̂!t1~Y024q̂2!t2,
~5!

and the parameters
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R[
f 2sin2f

g2sin2u
>0,

X[
12 f 2

f 2sin2f
>0,

Y0[11
12g2

g2sin2u
>1, ~6!

with 2sin2u[12g1
W
•g2
W/g2, 2sin2f[12f1

W
•f2
W/f2, and f,u

P@0,p#.
Now let us turn to the analysis of condition~4!. This can

be seen to reduce to the following constraints:

Dt1[t1
A 2t1

B >0,

Dt2[t2
B 2t2

A >0, ~7!

where t6
A and t6

B are the zeros ofhA and hB, respectively,
and

H~ p̂,q̂,R,X,Y0 ;t !5~Y0X24p̂2!22@Y2X14p̂q̂#t

1~Y0X24q̂2!t2>0 for t2
B <t<t1

B ,

~8!

where, for ease of presentation, we have definedYnX[Y0
2(n1X)R. After some algebra and the analysis of a fe
geometrical constraints in the parameter space (p,q), one
finally obtains that the Alberti-Uhlmann condition can b
satisfied in certain geometrically simple (p,q) parameter re-
gions, classified according to the values ofR,X, andY0 ~see
the Appendix!.

III. REPEATER IN LOSSY QUANTUM CHANNEL

Our model for the repeater in a lossy quantum channe
shown in Fig. 1. At the intermediate station, we receive we
coherent states$ua&,u2a&%, and relay the signals by replac
ing ua& and u2a& with the statesr̂1 and r̂2, respectively,
where

r̂1[pub&^bu1~12p!u2b&^2bu,

r̂2[qu2b&^2bu1~12q!ub&^bu, ~9!

with the given, stronger coherent states$ub&,u2b&% (ubu
.uau). The statesr̂1 andr̂2 are further input into the secon
channel which is a simple lossy channel described by

L̂~ u6b&^6bu!5u6hb&^6hbu ~0,h,1!. ~10!
7-2
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The final output states arer̂ i8[L̂( r̂ i) ( i 51,2). The problem
is to find the optimal repeater, that is, the optimal
(popt,qopt) in the mapping

ua&° r̂1 ,

u2a&° r̂2 . ~11!

We consider two kinds of measures of the transmission
formance, i.e., the average bit error ratePe and the Holevo
capacityx(E) for the output ensemble from the channel,E
5$r̂18 ,r̂28 ;12j,j%, where 12j andj are the prior probabili-

ties for r̂18 and r̂28 , respectively, as well as forua& and
u2a&.

The allowed region of (p,q) is specified by the CPTP
mapping existence condition described in Sec. II. Since
input states are pure, the condition can be greatly simpli
as the well-known fidelity criterion@3#

F~ f̂ 1 , f̂ 2!<F~ r̂1 ,r̂2!. ~12!

Given the output states~3!, it is easy to evaluate the fidelitie
so that the CPTP mapping existence condition~12! can be
explicitly rewritten as

pq1~12p!~12q!2R<2Ap~12p!q~12q!, ~13!

where we have introduced the parameters

R[
12k2

12K2
,1, k[^au2a&, K[^bu2b&. ~14!

Inequality~13! is trivially satisfied when its left hand side i
negative definite, i.e., when

q>
1

2 F2R21

2p21
11G S 0,p,

1

2D ~15!

@and similarly for 1/2,p,1, provided one makes the sub
stitutionsq→12q andp→12p in Eq. ~15!#. Otherwise,

D~p,q![~p1q1R21!224Rpq<0 ~16!

should hold. Collecting these two cases together, we fin
conclude that the CPTP mapping existence condition~13! is
satisfied for the range of parameters (p,q) contained within
the shaded area shown in Fig. 2. The upper boundar
specified by

q51~0<p<R!,

q512R2~122R!p12AR~12R!p~12p!

~R<p<1!, ~17!

0<q<R ~at p51!,

while the lower boundary is given by similar expressio
provided one makes the substitutionsp→12p and q→1
2q in Eq. ~17!.
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Now we apply the above results to derive the optim
repeater. Let us first consider minimizing the average e
probability Pe for the output ensembleE with respect to a
positive-operator-valued measures$P̂1 ,P̂2%,

Pe
min[ min

$P̂1 ,P̂2%

@~12j!Tr~P̂1r̂18!1jTr~P̂2r̂28!#

512j1min
P̂1

@Tr~P̂1L̂ !#, ~18!

where L̂[jr̂282(12j) r̂18 and we have used the proper

P̂11P̂25 Î . The minimum error is then found by takin
P̂15ul2&^l2u, where ul2& is the negative eigenvalu
eigenstate of the operatorL̂. We then have

2Pe
min~p,q!512A~2j21!2K821S2~p,q!~12K82!,

~19!

with S(p,q)[@2jq12(12j)p21# and K8[^hbu2hb&.
SinceS(p,q) is an increasing function in bothp andq, it can
be maximized under the CPTP map existence constraint
use of the standard Lagrange multiplier method. Exploit
Eq. ~16! and Fig. 2, it is readily shown that the optimal b
error rate is obtained for

popt5
1

2 F11
c2

Ac
G , qopt5

1

2 F11
c1

Ac
G , ~20!

for 0,R,1 and 0,j,1, where

c6[R6~2j21!~12R!,

c[124j~12j!~12R!. ~21!

Furthermore, for the optimal pair~20! we have

Sopt5C1D@Ac21#/2. ~22!

1

1

0
p

q

FIG. 2. The allowed (p,q) region ~shaded area! for the exis-
tence of a CPTP mapping between two input pure states and
output mixed states (R50.25).
7-3
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A. CARLINI AND M. SASAKI PHYSICAL REVIEW A 68, 042327 ~2003!
Note that in the particular case of equiprobably distribu
inputs, i.e., whenj51/2, we have thatc15c25c5R and
then the optimal point for 0,R,1 explicitly readspopt

5qopt5(11AR)/2.
With (p,q) evaluated as the optimal pair~20! we get

2Pe, CPTP
min 512A124j~12j!@12~12K82!R#. ~23!

We compare this with the average bit error rate in the cas
no action by the repeater, i.e., with final states given
u6ha&^6hau, which is expressed by

2Pe, NO ACT[12A124j~12j!k82, ~24!

wherek8[^hau2ha&. As it can be simply proved and di
rectly seen from Fig. 3, the minimum error probabili
Pe, CPTP

min is always smaller thanPe, NO ACT for any choice of
initial probability distributionsj, 0,h,1, and ubu.uau.
That is, the intermediate action of the repeater with optim
CPTP mapping on the initial states reduces the final e
probability of detecting the original states.

Now we turn our attention to the problem of maximizin
the Holevo capacity

x~E![S~ r̂8!2(
k

jkS~ r̂k8!5(
k

jkD~ r̂k8uur̂8!, ~25!

wherer̂85(kjkr̂k8 , S( r̂8) is the von Neumann entropy an

D( r̂k8uur̂8) is the relative entropy. First notice thatx(E) is
maximized at the extreme points of the convex set (p,q) of
the region allowed by the Alberti-Uhlmann condition, b
causex(E) is a downward convex function with respect
the pair (p,q). In fact, let (pE,qE) and (pA ,qA) be extreme
and interior points, respectively. Define the correspond
ensembles asE E5$r̂k

E;jk% and E A5$r̂k
A ;jk%. Then for an-

other interior point

r̂k
B5~12z!r̂k

E1zr̂k
A ~26!

~where 0,z,1), we have

2

∆
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FIG. 3. ~Color online! The difference in the error probabilitie
for Bob, DPe[Pe, NO ACT2Pe, CPTP

min , as a function ofua/bu2 and
ubu2 in the caseh51/A2, j51/2.
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x~E B!<~12z!x~E E!1zx~E A!, ~27!

due to the joint convexity of the relative entropy.
The problem of maximization of the Holevo capaci

xCPTP along the~elliptic! boundary of the CPTP allowed re
gion in the (p,q) parameter space for general initial pro
ability distributionsj is still quite cumbersome but can b
solved numerically. For the sake of clarity we explicit
show here a practical case of equiprobably distributed inp
j51/2 ~maximum amount of information encoded in the i
puts!. It is quite easy to check that in this case the chan
capacity is zero along the lineq512p and symmetric with
respect to the linesq5p and q512p, and monotonically
increasing towards the points (1,1) and (0,0). In particu
its maximum is achieved at the optimal pointpopt5qopt

5(11AR)/2 on the boundary of the allowed region. Its b
havior as a function of the inputs overlapk5^au2a&,
xCPTP(k), is shown by the dashed line in Fig. 4. It can b
compared with the channel capacity

xNO ACT~k![2~l18 ln l18 1l28 ln l28 !, ~28!

where l68 [@16k8(k)#/2 and k8(k)5^hau2ha&5kh2
,

for the case of no action by the repeater~the dotted line in
Fig. 4!, and the one for the original states$ua&,u2a&% re-
ceived at the intermediate station~the solid line in Fig. 4!,
i.e.,

x INPUT~k![2~l1ln l11l2ln l2!, ~29!

wherel6[(16k)/2. As one can see, there are both para
eter (b/a,h) regions wherexCPTP(k).xNO ACT(k) and
xCPTP(k),xNO ACT(k). In particular, definingk0 as the in-
tercept point between the curvesxCPTP(k) and xNO ACT(k)
@i.e., such thatxCPTP(k0)[xNO ACT(k0)] for 0,k,k0,1
the accessible information is bigger when amplifying the s
nals at the repeater, while fork0,k,1 the best performance
is obtained without amplification. This behavior can be e

FIG. 4. The Holevo capacitiesxCPTP ~dashed line!, xNO ACT

~dotted line!, andx INPUT ~continuous line! as a function of the in-
puts overlapk for the equiprobable inputs case (j51/2), ub/au
52, andh51/A2.
7-4
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GEOMETRICAL CONDITIONS FOR COMPLETELY . . . PHYSICAL REVIEW A68, 042327 ~2003!
plained as follows: for smallk the inputs tend to be mor
orthogonal and the quantum repeater helps; on the o
hand, for largerk, the inputs tend to overlap and there is
gain in using the quantum repeater. Furthermore, one
easily check that, ash decreases~the channel becomes mor
lossy!, although the absolute channel capacity performa
decreases, the range ofk for which xCPTP(k).xNO ACT(k)
also becomes larger (k0 increases!: for very noisy channels
the amplification by the repeater is essential even for the c
when the inputs are almost completely overlapping.

It should be stressed that the minimum bit error rate
always improved by using the optimal repeater, i.
Pe, CPTP

min ,Pe, NO ACT, while the Holevo capacity gets wors
by using the optimal repeater for more nonorthogonal in
states$ua&,u2a&% ~largerk). This different behavior may be
interpreted in the following way. The bit error rate specifi
the performance of a single-shot measurement on each s
state, while the Holevo capacity is a measure of commu
cation performance when the coding by a large-scale qu
tum collective measurement is used. Thus in the latter c
there is a quantum process on block sequences made o

final states$r̂18 ,r̂28% ~or $uha&,u2ha&%), where the coher-
ence involved in block sequences must be fully used to
tract as much information as possible. In this sense, the
rity of the output states is an important factor in the cont
of the Holevo capacity. The repeater replaces the block
quences of pure states$uha&,u2ha&% with the sequences o
the mixed states$r̂18 ,r̂28%. This spoils the coherence involve
in the sequences. In fact, quantum collective measurem
exhibits its superiority to separable measurement when
signal states are more quantum, i.e., more pure and no
thogonal @5,6#. In the region 0,k,k0 ~more orthogonal!
the orthogonality of the signal states is more importa
while in the regionk0,k,1 ~more nonorthogonal! the pu-
rity of the signal states is more important. Thus relaying
signals by the pure states without any repeater action so
times works better than amplifying them in the mixed stat
In contrast, the bit error rate is only affected by the orthog
nality of the final statesr̂18 andr̂28 regardless of the purity o
the states.

It should be noted that the above discussion only app
for a channel with linear loss. If the channel is subject a
to, e.g., dephasing, etc., things will change. For example,
expects that the Holevo capacity with no action of the
peaterxNO ACT(k) will degrade much faster than the on
with the repeaterxCPTP(k).

R

Uab

α

0

a

b R

FIG. 5. The network which realizes the optimal CPTP mapp

for the repeater, with Ûab[exp$u0&a^1u@u2u0&b^1u1u1u1&b^0u#
2H.c.%.
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We finally consider physical realizations of the optim
repeater. Since the bit error rate is of greater interest in
near future optical communications which will be based
classical coding consisting of separable measurements
optimal repeater derived here will be useful, in practice, a
in terms of the bit error rate, it will be always superior to th
case of no repeater action. One possible implementatio
given by the quantum network shown in Fig. 5. The comp
tational basis is made up of the so-called even and odd
herent states,

u0&[
1

A2~11k!
~ ua&1u2a&),

u1&[
1

A2~12k!
~ ua&2u2a&). ~30!

In particular, an ancilla is initialized in the even cohere
stateu0&b , where the subscriptb refers to a certain mode o
the coherent template states. Then, a unitary operation

Ûab~u6![exp@~ u0&^1u!a^ ~u2u0&^1u1u1u1&^0u!b2H.c.#,
~31!

where 2u6[arcsinK/k6p/2 is performed on the joint stat
u6a&au0&b . As shown in Fig. 5, the unitaryÛab involves
two ~local! NOT operations, two controlled-NOT operations,
and a couple of controlled rotations with

R̂~u6![S cosu6 2sinu6

sinu6 cosu6
D , ~32!

acting on the two modesa andb of the coherent states. Th
repeating states are finally obtained at the output por
modeb by tracing out the states in modea. Unfortunately,
this type of quantum circuit still requires hypothetical no
linear processes to generate the even and odd coherent
as well as the cross Kerr effect between modea andb @7,8#.

In practice, however, a much simpler strategy often s
fices. In particular, when the template states$ub&,u2b&% can
be prepared with enough power such asK;0, then the op-
timal repeating strategy is simply realized by the interce
resend~IR! strategy. That is, we first discriminate$ua&,u
2a&% by the minimum error measurement, and then ass
an appropriate template state based on the measureme
sults. In the case ofj51/2, the repeating states are specifi
by Eq. ~9! with the parameters

p5q5 1
2 ~11A12k2!, ~33!

and the final bit error rate is

2Pe, IR
min 512A~12k2!~12K82!. ~34!

IV. STATE-DEPENDENT QUANTUM CLONING

Another interesting application of the CPTP mapping
sults is in state-dependent cloning. As it is well known,
arbitrary unknown quantum state cannot be cloned@9#. It is

g

7-5
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A. CARLINI AND M. SASAKI PHYSICAL REVIEW A 68, 042327 ~2003!
possible, however, to produce imperfect copies of quan
states, both deterministically~when the cloning machine ca
only perform unitary operations! and probabilistically~where
via postselection measurements in an ancillary space, fait
copies of the input are obtained with nonzero success p
ability!. Several results on quantum cloning are alrea
known by now~for a selected, though not exhaustive, bib
ography, see, e.g., Ref.@10#!.

In this section we will exploit the geometric results co
cerning the existence of a CPTP map between 2D quan
systems section to describe anN→M ~anti! cloning state-
dependent machine. In particular, we assume that the i
states are pure and given as anN-fold tensor productu f i&

^ N,
while the templatesĝi are pure (g51) andM-copies clones
(M>N>1) of the input statesu f i&, i.e.,

u f i&→u f̃ i&[u f i&
^ N, ugi&[u f i&

^ M. ~35!

We then restrict our analysis to the special case in which
assumed that we are only able to construct outputs which
classical mixtures of these templates, that is, the outputs
given again by Eq.~3!. More general cloner models~includ-
ing the state-dependent copiers which unitarily map pure
tial states to a pure state superposition of clones as in R
@11,12#! will be considered elsewhere. In our ansatz, then
is straightforward to see, by using the Bloch sphere par
etrization forĝi and noting that the states$ugi&% ~as well as
the states$u f i&%) span a 2D Hilbert space, that the overla
must be

u^ f̃ 1u f̃ 2&u5cosNf, u^g1ug2&u5cosu5cosMf. ~36!

The case of pureugi& can be also immediately handled with
the framework discussed in the preceding section provi
that we takeY051 @see Eq.~21!#. Therefore, for the param
eterR of Eq. ~6!, we obtain

R5
12cos2Nf

12cos2Mf
, ~37!

with RP@N/M ,1#. In order to evaluate the efficiency of th
cloning machine, we can now either choose as the figur
merit the ‘‘global’’ fidelity ~see, e.g., Refs.@11,12#!

F̄G[~12j!^ f̃ 1ur̂1u f̃ 1&1j^ f̃ 2ur̂2u f̃ 2&, ~38!

which can be easily seen to correspond@taking g5Y051,
andu andR as defined in Eqs.~36! and ~37!# to

F̄G5ZM1~12ZM !@~12j!p1jq#, ~39!

with Z[cos2f, and then essentially the same as the sc
S(p,q) of the preceding section, with the same maximum
the optimal points (popt ,qopt) of Eq. ~20!, finally giving
@note that for cloning,R,1, see Eq.~37! and Fig. 2, and the
conditionY051 also implies thatj050]
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F̄G,opt~Z;j,N,M !

512
~12ZM !

2 F12A124j~12j!
~ZN2ZM !

~12ZM !
G . ~40!

Otherwise, we could choose the ‘local’ fidelity~see, e.g.,
Refs.@11,12#!

F̄L[~12j!F1~ f̂ 1 , f̂ 1
out!1jF2~ f̂ 2 , f̂ 2

out!, ~41!

whereFi( f̂ i , f̂ i
out) is the fidelity between the reduced dens

operator for one single copy of the initial state~i.e., f̂ i) and
the reduced density operator for one single copy of the fi
state~i.e., f̂ i

out , obtained tracing out anyM21 qubits from

r̂ i , and which is independent of the choice of the remain
copy!. Since the output reduced density operators@cf. Eq.
~3!# are given by

f̂ 1
out5p f̂11~12p! f̂ 2 ,

f̂ 2
out5q f̂21~12q! f̂ 1 , ~42!

a short calculation shows that

F̄L5Z1~12Z!@~12j!p1jq#, ~43!

which is again optimized by the parameters of Eq.~20! and
finally reads

~12ZM !@12F̄L,opt~Z;j,N,M !#

5~12Z!@12F̄G,opt~Z;j,N,M !#. ~44!

Since the local and global fidelities are linearly correlated
is enough in the following to study the behavior of one
them, e.g.,F̄L . First of all, cloning is not allowed for the se
of parameters (p,q) outside the shaded region of Fig.
Then, considered as a function ofj, F̄L,opt is further maxi-
mized ~as expected! for the trivial choicesj50 or j51
~only one ‘‘input’’ state!, for which F̄L,opt51. It is also easy
to see that the optimalF̄L,opt(j) is bounded below by
F̄L,opt(j51/2), i.e., for the choice of equiprobabilisticall
distributed input states$u f i&%. This case is important becaus
for j51/2 the maximum amount of information is encod
in the input states. It is easily seen that this fidelity is
increasing function ofN and a decreasing function ofM. As
a function ofZ at fixedN,M it decreases from the maximum
F̄L,opt(Z;1/2,N,M )51 at f50 ~the case for maximally in-
distinguishable initial states! until it reaches a minimum
around fmin>p/4 ~for N51 and M52, at which F̄L,opt
.0.95) and then again increases towar
F̄L,opt(Z;1/2,N,M )51 at f5p/2 ~the case for orthogonal
classical inputs!. In the asymptotic case ofM→` the local
fidelity has a similar shape, with the minimum~for N51)
F̄L,opt525/27.0.92 at fmin5arccosA5/9<p/4. The opti-
mal ‘‘local’’ average fidelityF̄L,opt(Z;1/2,N,M ) is plotted as
7-6
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a function ofZ for N51 andM52,̀ in Fig. 6. Also note
that, in the asymptotic limit ofM→`, the global fidelity
reaches the Helstrom bound@4#

2F̄Helstrom[11@124j~12j!^ f̃ 1u f̃ 2&#1/2, ~45!

which is the maximum probability to distinguish the tw
statesu f̃ 1& and u f̃ 2&. Quantum cloners with state-depende
fidelity were already considered in the literature, see, e
Refs. @11–13#. One of their most important practical use
for eavesdropping strategies in some quantum cryptogra
system. As Fig. 6 shows, our local and global fidelities
j51/2 are smaller than, respectively, the optimal eavesd
ping strategy fidelity described in Ref.@11# and the global
one of Ref.@12#. As we have already stressed, this is jus
consequence of the peculiarity of our output states, which
a classical mixture of the perfect clonesu f i&

^ M, while in
Refs. @11,12# the optimization is over a unitary transform
tion between arbitrary initial and final pure states. The e
dent advantage of our optimal CPTP mapping method i
general cloning machine relies in not having to deal with
the inequalities which derive from the constraints on the u
tarity of transformations over extended Hilbert spaces w
ancilla qubits, as we just have to maximize the chosen fig
of merit along a certain curve specifying the boundary of
allowed CPTP mappings between the initial and the out
~mixed! states.

The importance and relation of different ‘quality’ me
sures for cloning other than fidelity, and, for instance,
realization that generally copiers quantum optimized w
respect to fidelity are not optimal with respect to informati
transfer measures, and viceversa, was stressed, e.g., in
@14,15#. In particular, another measure of the quality of t
performance of our copier can be given in terms of
Holevo bound on the copied information for the reduc
density outputs~42!, i.e. @for the optimal point given by Eq
~20!#,

FIG. 6. The optimal average scoreF̄opt(Z;0.5,1,M ) for the pa-
rameters:~a! M52 ~dotted line!; ~b! M5` ~continuous line!; and
the optimal local eavesdropping strategy fidelityFl ,3 in Eq. ~51! of
Ref. @11# for N51 andM52 ~dashed line!.
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I H~Z;j,N,M ![SS (
i

pi f̂ i
outD 2(

i
piS~ f̂ i

out!

5 (
a56; i 51,2,3

Pi l ialn l ia , ~46!

where

2l16[16$@c2
2 14j2R~12R!Z#/c%1/2,

2l26[16$@c1
2 14~12j!2R~12R!Z#/c%1/2,

2l36[16$@~122j!214j~12j!RZ#/c%1/2, ~47!

P1512j,P25j,P3521, andc6 ,c and R are given, re-
spectively, by Eqs.~21! and ~37!. This should be compared
with the maximum information extractable from the origin
states given by

I H
in~Z;j![SS (

i
pi f̂ i D 52 (

a56
l inaln l ina , ~48!

with

2l in6[16@~122j!214j~12j!Z#1/2. ~49!

These figures of merit are shown in Fig. 7 forj51/2, N
51, andM52,̀ , and compared with the Holevo bound o
the Wooters and Zurek model@9# ~which, in this sense, is
nearly optimal as it allows us to extract as much informat
from the copies as from the originals@14#!.

Completely similar considerations can be extended to
case in which the input and the template states are, res
tively, the coherent statesu6a& andu6b&, just by replacing
in the previous formulas forZ→k25u^au2a&u25exp
@24uau2#. Furthermore, with the same methods we can a
consider a special type of copier calledN→K1L ~with K
1L>N) ‘‘anti-cloning’’ machine@16#. In this ansatz, a set o
unknown input states$u f i&

^ N% is transformed into the tenso
product ofK copies of the inputu f i& timesL copies of a state

FIG. 7. The Holevo bound on the copied informatio
I H(Z;0.5,1,M ), for the parametersM52 ~dashed line! andM5`
~continuous line!, compared to the Holevo bound for the Wooter
Zurek cloner~dot-dashed line! and the maximal information ex
tractable from the input states,I H

in(Z;0.5) ~dotted line!.
7-7
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A. CARLINI AND M. SASAKI PHYSICAL REVIEW A 68, 042327 ~2003!
u2 f i&[b̄ i u0&2ā i u1&, which has opposite spin directio
with respect to the input one. This type of cloning is phy
cally interesting for a number of information theoretic re
sons~see, e.g., Refs.@17#!.

The pure templates are thus chosen asugi&
[u f i&

^ Ku2 f i&
^ L, such that nowu^g1ug2&u5cosK1Lf and

R5@12cos2Nf#/@12cos2(K1L)f#, with RP@N/(K1L),1#.
The analysis of the optimal efficiency of the anticloning m
chine then follows similar lines to those of the previous clo
ing machine case, just provided that one makes the subs
tion M→K1L.

V. DISCUSSION

We have considered the constraints on the existenc
CPTP mappings between two arbitrary initial pure states
two arbitrary final mixed states using Uhlmann’s theorem@3#
and interpreting them within a simple geometrical pictu
Exploiting these results, we then studied the model o
quantum communication channel where a set of cohe
states are sent by Alice, eventually transformed by an in
mediate repeater who can perform an optimal CPTP map
and, after going through a lossy channelL, are finally re-
ceived by Bob with a certain error probability. We ha
shown that when the intermediate repeater performs the
timally CPTP mapping, the final error probability is alwa
smaller than in the case when no action is taken at the in
mediate stage. In other words, we can have a gain when
optimal mapping strategy is applied to repeat or amplify
input signals in the channel. This is a new and intrigui
result for quantum communication, showing the poten
relevance of the optimal CPTP mapping strategy.

Furthermore, the optimal CPTP mapping constraints h
been used to analyze state-dependent optimal cloners w
the output is a classical mixture of exact copies of the ini
inputs, and the local and global fidelity between the cop
and the input, and an information theoretic quality meas
given by the Holevo bound on the mutual information b
tween the density operators for the input and the copies
duced states have been discussed. Although our copier
not achieve the performance of other state-dependent clo
known in the literature~because of the special choice of o
outputs!, our results~which are new for the anticloning ma
chine case! are still interesting as they show that the CP
mapping ‘‘geometrical’’ methods are simpler and more dir
than the study of the several constraints inherent to the
tended Hilbert space approaches. It would be interestin
compare our results on cloning with the conditions discus
in Ref. @18# for Pauli cloning machines, which seem to d
rive, albeit using a different analysis, an intriguingly simil
geometric picture.

Finally, It should be also mentioned that the use
squeezers has been studied as another kind of repeate
coherent states@19#. In particular, it was shown that by op
timizing a cascade of squeezers the communication pe
mance of the coherent-state channel can be improved.
method is based on the unitary transformation of
squeezer as a noiseless amplifier. Therefore the state ov
between the signal states is not changed, which means
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the Helstrom bound cannot be improved. However, cons
ering homodyne detection~which is a practical detection
scheme with the present technology!, the improvement in the
signal-to-noise ratio brought by the cascade of the squee
will be very useful. It would be an interesting problem
study quantum repeaters combining our nonunitary repe
with the squeezer repeater for a lossy channel with hom
dyne detection.
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APPENDIX

The solutions to constraints~7! and~8! for the variablesp
andq in terms of the parametersR,X, andY0 given by Eq.
~6! can be summarized, after some lengthy but straight
ward algebra, by the geometrical pictures shown in Fi
8–12. In particular, the allowed regions for the existence
the CPTP maps between arbitrary mixed initial and fin
states are the shaded regions in these figures, bounded b
following sets of curves.

~a! The lines:

q̂1 6~ p̂![2
X6

X
~AY01X6p̂!,

q̂2 6~ p̂![
X6

X
~AY02X6p̂! ~A1!

1
p

q

1

0

A

B

C

D

FIG. 8. The allowed (p,q) region ~shaded area! for the exis-
tence of a CPTP mapping between two input mixed states and
output mixed states for the set of parameters:Y054, X51, R
50.5 ~case 1!. PointsA,B,C,D represent, in order, the intersection
of ellipse ~A3! with the boundariesq51, p51, p50, andq50.
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~where we have definedX6[16A11X) and

q̂3 6[6
AY0X

2
. ~A2!

~b! The conic@an ellipse forR,Y0 /(11X)]:

DM~ p̂,q̂![Y0X~ p̂21q̂2!12Y2Xp̂q̂2RY1X . ~A3!

H

A

B

C

D

E

F

G

q

p

1

0 1

FIG. 9. The allowed (p,q) region ~shaded area! for the exis-
tence of a CPTP mapping between two input mixed states and
output mixed states for the set of parameters:Y054, X55.5,
R50.52 ~case 2!. Lines ~A1! intersect with the boundariesq51,
p51, p50, and q50 at the pointsA,D,E,H, and with ellipse
~A3! at the pointsB,C,F,G.

FIG. 10. The allowed (p,q) region ~shaded area! for the exis-
tence of a CPTP mapping between two input mixed states and
output mixed states for the set of parameters:Y054, X510, R

50.32 ~case 3!. Lines ~A1! intersect with the horizontal linesq̂3 6

at the pointsB,I and with the boundariesp50, p51 at F,E; the

horizontal linesq̂3 6 intersect with the boundariesp50, p51 at
A,L; ellipse~A3! intersects with lines~A1! at the pointsC,D,G,H.
04232
The allowed regions for the variablesp and q can then be
classified in different sets, defined by certain ranges for
values of the parametersR,X, andY0, and depending on the
type of intersections among the above curves and the gl
geometrical shape of the allowed region itself. For the s
of simplicity, we define the further parametersXn[X
1n, Yn[Y1n and X1,2[X211, Yn,1/2[AY01n. Then,
we distinguish among the following sets of parameters~case
1!:

o

o

FIG. 11. The allowed (p,q) region ~shaded area! for the exis-
tence of a CPTP mapping between two input mixed states and
output mixed states for the set of parameters:Y054, X510, R
50.38 ~case 4!. Lines ~A1! intersect with the the horizontal line

q̂3 6 at the pointsB,E and with the boundariesp50, p51 atD,C;

the horizontal linesq̂3 6 intersect with the boundariesp50, p51
at A,F.

q

A B

C

D

E

F

G

H

1

0 1
p

FIG. 12. The allowed (p,q) region ~shaded area! for the exis-
tence of a CPTP mapping between two input mixed states and
output mixed states for the set of parameters:Y054, X530, R
50.123~case 5!. Lines ~A1! intersect with the the horizontal line

q̂3 6 at the pointsB,H, with the boundariesp50, p51 atA,E, and
with the ellipse at the pointsC,D,F,G.
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Y22.0, 0,X,Y22 , 0,R,1, ~A4!

max~Y22 ,0!,X,Y21 , 0,R,
Y0

X2
, ~A5!

Y21,X,Y0,1/2Y2,1/2, 0,R,
Y21

X1
, ~A6!

X.Y0,1/2Y2,1/2, 0,R,
Y0,1/2Y21,1/2

X1,2
~A7!

~see Fig. 8! or ~case 2!

X.Y21 ,
Y0,1/2Y21,1/2

X1,2
,R,

Y21

X
~A8!

~see Fig. 9! or ~case 3!

Y21,X,X0 ,
Y21

X
,R,

Y0

X1
~A9!

~see Fig. 10! or ~case 4!

X.4Y0,1/2Y21,1/2,
Y0

X1
,R,

Y0

X
~A10!

~see Fig. 11! or ~case 5!
ry

A

e

R

04232
X.X0 , R0,R,
Y0

11X
~A11!

~see Fig. 12! or ~case 6!

Y22.0, 0,X,Y22 , 0,R,1, ~A12!

max~Y22 ,0!,X,Y21 ,
Y21

X
,R,

Y0

X
, ~A13!

Y21,X,4Y0,1/2Y21,1/2, R0,R,
Y0

X
~A14!

~for which the allowed region is within the rectangle forme
by the linesq̂36 and their intercepts with the boundariesp
50 andp51), or finally ~case 7!

Y22.0, 0,X,Y22 , 0,R,1, ~A15!

max~Y22 ,0!,X,Y21 , 1,R,
Y21

X
~A16!

@for which the whole (p,q)P@0,1# region is allowed#. The
values ofX0 and R0 are to be determined numerically. Fo
instance, in the caseY054 we obtainX0.20 andR0(X)
5@3X214(X22)A11X28#/X3.
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