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Quantum computing with atomic Josephson junction arrays
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We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a
small number of atoms with three internal states and trapped in a far-off-resonant optical lattice. Raman lasers
provide the “Josephson” tunneling, and the collision interaction between atoms represent the “capacitive”
couplings between the modes. The qubit states are collective states of the atoms with opposite persistent
currents. This system is closely analogous to the superconducting flux qubit. Single-qubit quantum logic gates
are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling
between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the
Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoher-
ence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate
operation time.
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[. INTRODUCTION of the superconducting flux qubit7,8] can be realized,
which bears all the qualitative features of the superconduct-

Josephson effects originate from a tunneling of the paring flux qubit.
ticles in the condensed modes between two superfluids and Compared with the superconducting flux qubit, the pa-
reflect the phase difference of the macroscopic wave funcrameters of the atomic flux qubit can be controlled with large
tions between the superfluids. Initially discovered in the su{flexibility and high uniformity. Both the Josephson coupling
perconductor$l,2], Josephson effects have been studied in-and the collision interaction can be adjusted by external elec-
tensively in trapped atoms both theoretically andtromagnetic sources. The Josephson couplings of different
experimentally{3,4]. In the atomic case, Josephson junctionsjunctions can be made to high accuracy with the fine control
can be constructed between two superfluids spatially sepa&f laser. While for superconductors, not only do the junction
rated by a double-well potential and can be constructed bgaarameters fluctuate due to the inaccuracy in fabrication, but
tween atomic internal modes coupled by lasers. Studies imalso the parameters are fixed for one sample. This advantage
clude the macroscopic quantum coherence between twmakes it easier to scale up the number of qubits in the atomic
atomic condensates and the observation of the Josephson dyystems and provides various ways to implement gate opera-
namics[5]. tions. Another merit of the atomic qubit is that a projective

One important application of the Josephson junctions dismeasurement can be performed by adiabatically switching
cussed in recent years is in quantum computing. Various stthe Raman couplings. On the contrary, an efficient readout
perconducting Josephson devices have been proposed fiar the solid-state qubits is a problem many people are study-
implementing a quantum computer, including the charge quing. The drawback of the atomic qubit is the slow gate speed
bit, the flux qubit, and the phase qubit. These qubits havevhich is limited by the strength of the collision interaction.
been experimentally tested and have shown quantum coheMeanwhile, this drawback can be compensated by the long
ent oscillations between macroscopically distinguishablelecoherence time. In the solid-state systems, various elemen-
stated 6-9|. tary excitations can damage the coherence of the quantum

The atomic Josephson junctions can also be explored fagtates in a time that is only one order longer than the gate
quantum computing. In this paper, we present a candidate faime; while we show that in the atomic qubit, the decoher-
implementing an atomic “flux” qubit with a small number of ence time is 1000 times the gate operation time.
atoms in an optical trap. We assume that a Bose-Einstein In the following, the major results are summarized. In
condensate with three atomic states is stored in the lowesSec. I, we briefly review the superconducting flux qubit and
vibrational state of an optical trafd0]. The three internal the experimental achievement for the flux qubit. In Sec. llI,
atomic states correspond to three bosonic modes. Each mode give a detailed description of our proposal for the atomic
is the analog of a superconducting metallic island. Ramarflux qubit and how it can be realized experimentally. We also
lasers generate the Josephson links between the internetharacterize the qubit at different parameter regimes and
modes, while atomic collisions provide an effective capaci-present typical energy scales for the qubit. Also we introduce
tive couplings between the modes. The phase differences b&re phase mode to compare this qubit with the superconduct-
tween lasers play the role of the magnetic field in the supering one, and show that a small number of atoms indeed rep-
conducting loop. With competition between the Josephsomesent the macroscopic behavior of a Josephson junction.
energy and the collision energy, the atoms behave collecFhis section is followed by Sec. IV where the implementa-
tively and the stationary states of the qubit have a coherertion of quantum logic gates is studied. In Sec. V, a projective
particle transfer—the persistent current—between the intemeasurement scheme is constructed via the adiabatic switch-
nal modes. With only 15 aton{41], the atomic counterpart ing of the Josephson couplings. The decoherence of the qubit
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where P=(P,,P,)T are the conjugates of the phase vari-
ables and have the physical meaning of the charges on the
islands. The first term is the capacitive energy with

= (%/2e)%C, whereC is the capacitance matrix of the circuit.
The rest of the terms form the Josephson energy W&ith
=1.(#/2e)? andl, being the critical current of the junctions.
The third junction at the top of the circuit has a Josephson
energy ofaE;, with «=0.75. The magnetic flux in the loop,
f4, in unit of the flux quantumdy,=7/2e is an important
control parameter for the qubit. Both the stationary states and
the one-bit logic gates are controlled via this flux.

The Hamiltonian in Eq(1) describes a phase particle in a
two-dimensional periodic potential as is shown in Fi¢)1
Each unit cell has two energy minima and is a double-well
potential. Atf,;=0.495, the lowest two states of the qubit
localize in one of the two wells, respectively, and have op-
posite circulating currents. Aft; =1/2, the lowest two states
are symmetric and antisymmetric superpositions of the local-
ized flux states, and the energy splitting is due to the tunnel-
ing of the flux states over the potential barrier. Considering
only the lowest states, the qubit can be described by the Pauli
matrices for a 1/2 spirt{ = (eo/2) o, + (to/2) oy, Where the

(© (d) eigenstates ofr, are the localized flux states arg varies
linearly with (f;—1/2). Typically, the Josephson energy is

FIG. 1. The superconducting flux qubi) The circuit of the  E;=200 GHz andE;/E-=80. Numerical calculations of
flux qubit. (b) The potential energy for the qubit. The black centersthe energy and current are shown in Figc)l The energy
are local maxima and the white centers are local minifaThe difference of the qubit states &t =0.495 iquN:LO GHz

energy and the average current of the qubit vs the flux. The arrowgith the average currents of=0.7. at f;=1/2, t,
indicate the qubit states with opposite currents. The double-well_ 10 GHz. ¢ ’

potentials at the corresponding flux are plottéd). The measure-
ment of the qubit by a dc SQUID.

cir

=0

For a quantum circuit to be a good qubit for fault-tolerant
guantum computing, five requirements have to be &}
(1) to identify a scalable quantum systeli®) to perform
is discussed in Sec. VI. The conclusions are given in Seauniversal quantum logic gate&) to prepare the initial state;
VII. (4) to read out the qubit states; aff) to have a decoherence
time longer than 1dquantum operations. The three-junction
loop behaves as an effective two-level system and can be
Il. THE SUPERCONDUCTING FLUX QUBIT mapped onto a 1/2 spin. The qubit can be prepared to the

ground state by cooling it to a temperature ©f 50 mK
Josephson junctions have been proved to be a promisingwq_

building block for quantum computers. Various proposals of

Josephson circuits at different parameter regimes have been

studied [6—8]. Among these, the superconducting flux B. Quantum logic gates

qubit—also named the persistent-current qubit—has been in- 14 achieve universal quantum logic operations, two el-

tensively _studied both th_eoretically _and experimentally. '_”ementary gates are required: single-qubit rotation and two-

the following, we summarize the basic facts of the flux qubitqpit controlled gate. For the superconducting flux qubit, the

in superconducting Josephson junctions to allow the comgjngje-qubit gate is achieved by applying microwave oscilla-

parison _W|th the atomic flux qubit introduced in the follow- tions to the superconducting loop. Typically, the Rabi fre-

Ing section. quency isw, =10-100 MHz in proportion to the amplitude

of the microwave. The two-qubit gate is constructed via the

coupling of the circulating currents of the two qubifs;,;

=M(I11)(1,)| with I , being the currents of the two qubits
The superconducting flux quhit,8] is a superconducting andM ;, being the mutual inductance. The interaction can be

loop with three Josephson junctions in series, as in K@. 1 of order of 1 GHz.

Written in terms of the phase differences and ¢,, the

A. The circuit of the qubit

Hamiltonian[Eq. (11) in [8]] is C. Qubit state readout
th%5TM*15+EJ{2+a—cos<p1—cos(p2 The qubit is measureq by inductively' coupling the qupit
to a dc superconducting quantum interference device
—acog2nfi+o1—¢5)}, (1) (SQUID) magnetometer which is a superconducting loop
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with two Josephson junctions as is shown in Figl)1When
the current that flows through the SQUID increases, the
SQUID stays in the superconducting state until a critical cur-
rent!¢'" is reached, where the SQUID makes a transition to
a finite voltage state. The critical current is varied by the flux
generated by the qubitilS''= =+ 5¢,129sin7fe,, wheref,
is the external flux in the SQUID antt 5¢ are flux of the

® .“o. ®
[ ."l. °

® .".. °
® .".. °

two qubit-states respectively. By measuring the critical cur- (a)

rent, the qubit states are read out. Due to fluctuations, the )

measured critical current has a distribution that is wider than Qe 3¢

5I§ff which results in a nonprojective measurement of the E,

qublt — X5 NEX

@ 2 ©
D. Decoherence M f1
Many factors can result in quantum errors against the su- 1 0 -1
perconducting qubits. First, the errors can come from the
imperfect control of the qubit circuits, for example, off- (b)

resonant transitions during gate operations and unwanted di-

polar couplings between qubits. These errors can be pre- g 2 The atomic Josephson junction qutd. Atoms trapped
vented by the quantum control approach. Second, th§, the cigar-shaped optical potential by laser beathsLeft: the

fluctuations of the environment of the qu't_ can cause decOnternal modes coupled by Raman pulses. Right: the superconduct-
herence of the qubit. In the solid-state qubits, many elemenng flux qubit.

tary excitations exist that can damage the qubit state, includ-
ing the dipolar interactions between the qub|t and the nuclgar The first term in Eq(2) is the single-particle energy in a
spins, the background charge fluctuations, and the noise . . . N 1. 2.9, 1 2,92
coupled to the qubit from the measurement circuits. The dehargnomc trapping potentialV(x) = mwjx“+ ;mw’ (y
coherence time measured in experiments is 100 figgc T Z ), Wherew,  are the trapping frequencies in the trans-
which is about ten times the operation time. This gives aversal direction and the longitudinal direction, respectively.

lower bound for the generic decoherence of the qubit. In particular, we choose a cigar-shaped geomeing o) .
The second term in Ed?2) is the collisional interaction. We

choose for the three internal atomic states the hyperfine lev-
elsF=1, Mg=0,=1. In this case the interaction has the
In this section we present an atomic counterpart of thgorm U=c,F,-F,, with F; being the angular momentum of
superconducting flux qubit. The qubit is made of a mesosthe atoms. Herec,=(g,—go)/3 with gr=4x#%a"/m,
copic Bose-Einstein condensate of three-level atoms trappqgherea(sF) is the swave scattering length in the channel of

in the lowest motional states of an optical trap and interact; angular momenturfi [13,14). The last term in Eq2) is
ing with each other via cold collision. Josephson junctionsge josephson couplings between the internal states gener-
which are the building blocks of this qubit, are constructed,;.q by Raman transitions. Both the amplitudes and the

by laser coupling of the three bosonic modes of the trappef,ases’ of these couplings can be accurately controlled by

atoms. adjusting the laser parameters.
We assume the trapping frequencies to be much larger
A. The physical system and the Hamiltonian than all the other relevant time scal@sg., the qubit energy
and the gate spegdo that the atoms stay in the motional

_ We consider a small number of three-level atoms trappegln states and the qubit can be described by a three-mode
in a one-dimensionallD) optical lattice, as shown in Fig. J5miltonian

2(a). The corresponding Hamiltonian is

Ill. THE ATOMIC FLUX QUBIT

- - h? - - - QLR )2 TR RYZ NP
Ho=2>, J’ dx lﬁz(x)( - ﬁV2+V(X)) ¥, (X) Ho=Uo[ (N1 —=N_1)“+(2Ng—1)(N;+N_1)]
+2Uq(ala’ ;a5+H.c)
3 U | a0 05 (01 () N
ey R pETR — 2 (Q.pala,+0%aka,), 3)
(aB) “ apmp
- ;ﬂ f AX[Top() UL Yp(X)+HE], ()
“ whereN,, is the number operator for the mode The sec-
ond line in this Hamiltonian gives a particle flow term where
where the three internal states are labeledvhg, andmis  two atoms in the stathl-=0 collide to form an atom in the
the mass of atoms. statesMg=+1 andMg=—1. The interaction strength is
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4nhi*(aP-al?)
B 3m

f d3x| p(x)|%, (4)

0

E/U,

where¢(>?) is the motional ground state of the trapping po-
tential. With a fixed number of atoms, the interaction
strength increases with the density of the atoms. The Joseph-
son tunnelings are given by

I/Ie

Qop= f d3X T, 5(X)| (X)) (5)

Specifically, we assume()_;,=Qq,=Q, and Q_;;
=0,e'%, as shown in Fig. @), whereQ,/Q, ranges be-
tween 0.5 and 1.5, and is an important factor for maximizing
the speed of the gate operations. The phasés the analog
of the magnetic fluxf, of the superconducting qubit and is
an effective controlling knob for the quantum logic gates.
The basis element in this qubit is to construct atomic Jo-
sephson junctions with a small number of atoms. The atomic
Josephson junctions have three distinct parameter regimes 7
[3]: (1) the Fock regime withJ ;> QN;; (2) the Josephson “20.02 0,2 ™) 0.02
regime with UgN?>QoN;>U,; and (3) the Rabi regime (b)
with QONt>UONt2. In the Fock regime, the collision energy
dominates over the Josephson couplings. In the Josephson FIG. 3. The energy and average current of the qubit states vs the
regime, the qubit behaves as a phase particle in the Josepbhasep,. (a) N,= 15 atoms. Solid lined),=550 Hz; dashed lines,
son potential energy. In the Rabi regime, the atoms behave @8 =0; and dotted lines, for the symmetric interaction with
noninteracting particles described only by the Josephsor 550 Hz.(b) Energies of the qubit with various numbers of atoms.
couplings. In a superconducting Josephson junction, the Ralgiolid lines, N,=15; thin dotted linesN,=10; dashed linesN,
regime can never be approached with the enormous number30; and dotted lined\,=50.
of Cooper pairs. While for the atomic Josephson junctions,

all three regimes are possible. In this paper, we assume tfap size to beL;=0.85um andL =10L, , which can be
mesoscopic number of atomic qubits in the Josephson regchieved with a far red detuned laser. The trapping frequen-

gime. When compared with a large ensemble of atésay g arew)=3.7 kHz andw} =370 kHz. Leta®—al®=

10° atoms in a superfluid state where the three-mode ap-_ 30 nm. With a density op=3X 10*cm?, the collision
proximation becomes inaccurate during fast gate operation,:o o ction isU,=550 Hz. The Josephson couplings can be
this system has the ad_vantage.that the three-mode mOdeléf’)ntrolled o thaﬂaﬁx/rN,PUo in analogy to the super-
robust against the qubit dynamics. conducting flux qubit. We let Q¢(N,)~110J, and

In the Josephson regime, with>1, Eq.(3) can be ap- _ : : . .
proximated by a phase modgd]. We introduce the phase g,lt/h%OSugéSrCIQnt(;]uectfﬂgomlgEj?éiliafg)(; S In the notations

variablese _, ; that are the conjugate operators of the num-
ber operatorsN_lyl, respectively. Due to particle number
conservation,N, is not an independent operator wift,
=N,—N_;—N;. Omitting the termala’,a3 [15] and ne-
glecting the terms of order {N,, the Hamiltonian is

B. Effective two-level system

We have numerically studied the Hamiltonian in E8§)
with the above parameters. In FigaB we plot the energies
and the average currents of the eigenstates of the qubit versus
the phasep, in the range 0.48-0.58n unit of 27). It is
shown that withc,<0, the energy spectrum of the qubit has
— 2N, codo1— @1+ ), (6)  the same butterfly shape as that of the superconducting qubit
in Fig. 1(c). We define the lowest two states as the effective
where P=[N,-N/8N_,—3N,/8]" and M,,=M_,_, two-level system of a qubit. A$py=0.495, the qubit energy
=1, M, _,=—3. This shows that with a large number of IS wq=1.3 kHz, where the states are labeled by the arrows.
atoms in the qubit, the major part of the Hamiltonian maps to! he stationary states have a coherent transfer of the atoms
Eq. (1) of the superconducting flux qubit withE,  Detween the internal states, which provides a persistent par-
=3|Ug|/4, E;=2Q,N,/3. In the following section, we will ticle current for the qubit, where the current operator is de-
discuss the validity of the phase model for a comparativelyined asi ¢=iQq(ala,—aja;). The currents of the two-
small number of atoms. qubit states flow in opposite directions just as in the
We illustrate our model with the following parameters for superconducting qubit, with(1; o)1 — (11 02| =4.6Q¢. This
N=15 sodium atoms in the trap. F6fNa, we choose the shows that the atoms behave collectively just as the electrons

thase: %l U0| PTM™'P— %NtQO(COSQD1+ CoSg 1)
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in the superconducting wires, which is a result of the inter- T
action between the atoms. For comparison, the energies CVT: 0 @ )
the qubit wherU,=0 are also plotted as the dashed lines in Z° = ]
Fig. 3a). T
At ¢o=1/2, the energy splittinty= 750 Hz, which is the
counterpart of the quantum tunneling in the flux qubitand ang 7@
important feature of the _qublt_that is crucu_al for _the_gate % o, ® @;@ & &
operations. We studied this splitting with various circuit pa- '
rameters. Our result shows a dramatic dependendg of -
the ratio between the Josephson couplings Q,/Qg: at
ro=0.75, t,=1.25 kHz, atro=1, t,=0.1 Hz, and forrg g =
>1, to is almost unchanged ag increases. . . ;'Z'« N @ ® ®
It can be shown that the detailed form of the interaction” @ A &
does not change the main features of the qubit. For example
with a symmetric interactionU=U;SN?+U,(N;N_, ® g T Ko T WMo [ K o W
+ N1NO+ N,lNO), the main physical properties of the qubit
are well preserved. The energy spectrum with this interaction (a) (b) (c) (d)

is plotted as dotted lines in Fig(&, where we choose the FIG. 4. Contour plots of the probability/y(¢;,¢_1)|? of the

interaction to beJ; —U,/2=—U, with ,/Q0=0.75. Note 5, nd-state wave function of the qubit) Uo=55 Hz, ¢ho=1/2:
that the effect of the collisions between different modes onlyp) y =1100 Hz, ¢o=1/2; (¢) Uy=55 Hz, ¢,=0.495; (d) U,

renormalizes the interactidn; and the interaction is equiva- =1100 Hz, ¢,=0.495.
lent toU=U;=N? with U;=U;—U,/2.
o UoNZ/QN,. When UgNZ<QgN,, the qubit enters to the
C. “Finite-size” effect Rabi regime and single-atom behavior starts to dominate

calculate the energies with various numbers of atoms, as ¥t=15 the qubit represents the main features of a phase-
shown in Fig. 80). The plot shows that the energies of the model qubit.

qubit converge as the number of atoms increases. Further-

more, it shows that wheN;= 15 the states of the qubit well IV. GATE OPERATIONS

represents the key features of a superconducting flux qubit—
the features of a qubit in the phase model. The surprising fac
is that with a small number of atoms, the atomic qubit re-
flects the properties of the flux qubit with over!¥@ooper
pairs: the qubit states have opposite persistent currents; the

phase in the Raman coupling induces energy difference that A. One-bit gate

is nearly linear with¢po—1/2; besides, even the wave func- The superconductin bit is onerated with external maa-
tions in the phase space can be described by the localized up ucting qubrt Is op with ex 9

phase states netic fields where microwave pulse in resonance with the

The wave'function in the basis of the phase variables igublt frequency 'S radiated on the superconductl'ng loop. Off-
|)=de,de_| Y 4. In our calculation resonant transitions to other states of the qubit can be ne-
we usegolth%_lnilrr,]gt:érl s(“t);\{:_éasi.s for the states) ' glected since the Rabi frequency is much smaller than the

== c Iny,n_;), wherec is the coefficient detuni_ng_. Lo .
Nn_gvng.n -1/ ERUES A similar scheme can be applied in the case of the atomic

of the wave function. The wave fuglction_in the phase pasis i$ux qubit. If we take a Raman laser coupling of any two of
then (¢1,¢-1|¢)==n n Co € 1M 7'¢-1"1In Fig.  oyr bare atomic states which make up the qubit, and tune
4, [{¢1,0_1|1)|? of the ground state is plotted in the phasethese lasers to match the energy difference of the qubit states,
basis withN;=15, 30, and 60. we can perform Rabi rotations between the states. In order
The phase model predicts thatég=1/2 the wave func- not to excite any higher-lying states, the Rabi frequency
tion to be a superposition of two local flux states. For theshould be less than the level spacings. In the atomic flux
small number of atoms with a weak interaction, Figa)4 qubit, the qubit frequency and the detuning are of the order
shows that the qubit state localizes at the center of the phasef 1 kHz, which makes these gates slow. The first way to
space in contrast to the phase-model prediction, while, witimprove this is to use adiabatic passage, i.e., a sweep of the
N;=60, the state is a superposition of two local states irdetuning across the resonance, which allows a single-qubit
agreement with that of the phase model. Figufe 4hows rotation of the order of the level spacing. Below, we discuss
the same result fotho=0.495. With a stronger interaction, in more detail another scheme based on fast switching of the
Figs. 4b) and 4d) show that the state oN,=15 atoms phase¢, of the Raman coupling? ;.
agrees with the phase-model result. Our study indicates that Assume H,=Hy(¢o=0.495), Hg="Hy(¢$y=0.5), and
the behavior of the qubit depends strongly on the factofH,, Hg]#0. We know from group theory that by switch-

Below, we discuss how to realize quantum logic gates, the
ubit initialization, qubit state readout, and the decoherence
properties of the atomic flux qubit.
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length by several orders of magnituffe7,18 and the gate
speed can be improved.

B. Two-bit gate

Two-bit gates can be constructed by external Josephson
tunneling between neighboring qubits in the optical lattice.
As we mentioned earlier, external Josephson tunneling is the
tunneling of atoms between spatially separated condensates.
With the geometry in Fig. @), where the qubits are aligned
parallel along the longitudinal direction of the cigar-shaped
trap, atoms can tunnel from one lattice site to its neighboring
sites when the trapping potential of the optical lattice is low-
ered for short times. By decreasing the amplitude of the la-
ser, the trapping potential can be decreased and the tunneling
increases exponentially. The tunneling is also enhanced by a
factor of N, of the number of atoms.

We consider the tunneling interaction

H2=Qtz (azlr.aa2a+a£aa1a)! (7)

the indices 1 and 2 in the operators refer to qubits 1 and 2.
The tunneling matrix can be estimated with the WKB ap-
roximation: Q,~ 27)exp(~AUlfw,), with bein
FIG. 5. The absolute value of the elements of the unitary trans;f)he plasma freauéﬁéy (;)thef)(atoms i(;)ll'zhe trap([l))ilng pot%ntial
formations for quantum logic gatebuij|. The transformations are andAU the trapping barrier for the qubit. The single-particle
on the lowest six states of the qubits with the lowest two states th? - - ) .
unneling(), is enhanced by the number of particles and so

|T) and||) states of the qubita) Single-qubitnoT gate. The labels . . .
indicate the lowest-qubit states from 1 to @®) Single-qubit Had- does the speed of t.W°‘.b't logic gates. The tunneling rate can
be controlled by adjusting the laser pulse.

amard gate. Labels are the same a&jn(c) A two-qubit gate by a . ) .
36-pulse sequence. The labels 1-4 are the qubit states The interactionH, can be calculated numerically. The

111,11,17,11). The rest are higher states. matrix elements of the operatoa}()ii is obtained by calcu-
lating the overlap between the 3tatﬁ§+1> for N;+1 atoms

ing the phase alternatively between these two phase valuednd the Statea£|JN[>' Our calculation shows that this inter-
any desired unitary transformation can be constructed withiction as well as that of the single-qubit gate induces cou-
a reasonable number of switchings asU pling to the higher states of the qubits. This problem can be
=g Halang~Heten-1. . . g~ iHal2g - 1M1 by adjusting the du- prevented by the same approach as that of the single-qubit
rationst; of the pulse§16]. For a single-qubit gate, we want gate—_fast-pulse sequence to decouple the lower states from
the unitary transformation to be block diagonal between thd1€ higher states. We apply a(lp)JuIse sequence of 36 pulses
two-qubit states and the other states. A numerical optimizaW'trl‘z)HA:ﬂZ(d’O) and Hg="H¢"(¢o) + H g (o), where
tion of the{t;} is applied to a 12-pulse sequence of thg /o~ are single-qubit Hamiltonian abo. In Fig. Sc), we
andHg operators for the lowest six states of the qubit. WeShow the apsolute values of _the matrix elements fqr a two-bit
construct aNOT gate and a Hadamard gatg UThe elements transformatl_on gtb0=0.5. With a total pulse d““?‘“Of.‘ of 1
of the unitary operator$U;;| are shown in Figs. @), and tmhsecégtr;e fidelity of the gates fod;=15 atoms is higher
5(b). The off-diagonal elementd); ;,U; ,<0.005 shows a an o
high fidelity. The total time for the gates t§ ~2 msec for
both gates. The accuracy of the gate can be improved by
increasing the number of pulses in the sequence while keep-
ing the total gate time shofihich means faster switching of The qubit we studied in the previous sections works in the
the operatorsi, g). Josephson regime wheti,N?>QoN>Uj. In this section,
Note that the above approach relies on the fast and accuve present a projective measurement scheme during which
rate switching of the phaseé, of the lasers, which can be the qubit is switched adiabatically between the Josephson
achieved experimentally with no difficulty. regime and the Rabi regime whegN > UoNf. In contrast
The collision energy is the slowest-energy scale whichto the measurement of solid-state qubit where it takes efforts
limits the speed of the quantum logic gates, while the Ramaio build efficient measurement schemes, our method pro-
couplings can be well controlled by lasers. In practice, Fesvides an easy-to-realize way for qubit readout. The same
hbach resonances can be exploited to adjust the scatterimgproach can also be applied to initialize the qubit.

V. ADIABATIC PROCESS AND MEASUREMENT
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A. Qubit in the Rabi regime 18

In the Rabi regime, when the Josephson energy is muct
larger than the collision energy, we neglect the collision term
and the qubit is described by the single-atom Hamiltonian =

0 Qp Q€% [ a;
Hy=—(a],al,a’)) Qo 0 Qo ap |,
Qe %0 Q 0 a_

20

(b)

®

which describes a three-mode atom where the internal modes FIG. 6. Adiabatic switching of Raman tunnelings) The en-
are coupled by lasers. The eigenstates can be described &gy spectrum of the qubit vs the Raman couplidag The Raman
atomic states as coupling is plotted in units of the Raman couplifly, for the de-
signed qubit. The energy differences between states, andAE,;
are indicated by arrows. The inset shows the average cuirgi
HJZE eiSITSi ) 9 in the same range di. (b) The laser pulsé,, of the projective

- measurement after the adiabatic switching. The coupling constants
as, B2, andy, show the relative phase between the three compo-
Shents of the pulse.

3
i=

whereS,Jr andS; are the operators for the atomic eigenstate
and ¢ are the eigenenergies with;<e,<e; and 2,
—€;)<(e3—€;). The ground state and the lowest excited
states of the qubit witiN, atoms can be described by the
atomic states

This adiabatic process can be exploited for efficiently ini-
tializing the qubit to its ground state. Starting from the large
QO limit, we prepare the qubit in its ground stén;ei), which

T\N is equivalent to preparing all the atoms in sta8) and
J (Sl)t J . . . . .
| )= [0), Ej=Neq, which can be achieved easily. Then, the Raman coupling is
VN¢! adiabatically decreased to the working regime so that the
ground state ) is reached with high fidelity.
S Shshht ,
l4)= ———==10), Ex=(Ni=Dei+e, (10

V(Ng=1)! C. Projective measurement
(SE)Z(ST)NFZ Second, and most important, the adiabatic switching pro-
"2 U E)=(N.—2)e,+2¢ vides a scheme for a projective measurement of the qubit.

| 3) 10), E3=(N{—2)e;+2e;, ' ; :

V(N{—=2)! Starting from the working parameters of the qubit where

_ 3 . 2Q0¢N{/Uy=210 and assuming an initial state|yg)
where in the ground state);), all atoms stay in the lowest +Bly9), Qq is slowly increased to the Rabi regime. When
atomic statgS;). In the first excited statpy3), one atom is QoN>U,, the qubit state evolves ta|y3)+ B|¢3), a su-
excitgd to thg Sz> state and all the others stay in the Iowe_:st erposition of the states in E(LO). As the increase o, is
atomic state. This result is also confirmed by the numerical,gighatic, no transition to the excited state is induced. Then,
calculations. ‘a dark-state measurement scheme is performed on the qubit,
When the collision term cannot be neglected, we numeriyay is, a laser pulse is applied which excites the atomic state
cally solve the Hamiltonian in Eq3). In Fig. 6a), the cal- |5y {5 an excited statge) and does nothing to the atoms in
culated energies for the qubit for a large range(hf are 4 statedS,) and |S;). The statele) emits a photon via
plotted. The inset of this plot shows the persistent currents 0f,onaneous emission which is then detected. As can be seen

qubit states versu€lo. The average currentd; g of the  fom Eq (10), when the laser is applied to the ground state
two-qubit states converge to each othelRgsincreases. |43, no transition occurs and no photon is emitted; when the

laser is applied to the second sté#d), one atom is excited

to the statge) and one photon is emitted. Hence, this ap-
When the Raman couplin@, is tuned slowly, the qubit proach achieves a projective measurement of the qubit.

state can be manipulated adiabatically. Here “slow” means The laser pulse applied after the adiabatic switching is

dQ,
dt

B. Initial-state preparation

Hn=e'S,+ She, (12)

IrEin{E2<Qo>—E1<Qo>}IZ> (12)

0 .
wheree' ande are the operators for the excited stiap. It

wheredQ/dt is how fastQ is tuned, and miﬂo{Ez(Qo) is easy to prove that single-atom statsand S; are dark
—E,(Qg)} is the smallest energy difference between the qubifstates of this operator which cannot be exciteq by this pulse
states during the tuning process. As is shown in Fig),6t  [as they are orthogonal states of the Hamiltonian in(BJj.
reaches its minimum at the leftmost end wHeg is small.  We haveHq|47)=0 andHy|y7)=|(N—1)s,1). By per-
Hence the switching process takes a time of milliseconds. forming a single-photon measurement with the quantum
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=]

jump approach, the probability of the qubit lrdzi), and
hence in|¢J) originally, can be detected.

VI. DECOHERENCE

Yerr (Yo)

A major obstacle in pursuing quantum computation with
solid-state qubits is the strong coupling to noise and the re-
sulting low quality factor. In experiment, the measured deco-
herence time for the superconducting qubits T5
=100 nsec, while the gate time ig,,=10 nsed8].

In the atomic qubit presented in this paper, the quality 1
factor due to decoherence is is higher compared with that of
the superconducting qubit. The qubit is designed to be insen-
sitive to the major factors that can result in decoherence. For
example, all the energies involved in qubit operation are
much lower than the trapping frequency in the longitudinal 2
direction of the trapn=3.7 kHz, which keeps the atoms in
the motional ground state during gate operations. Other fac-
tors such as the inaccuracy in the Raman couplings, the par-
ticle loss from the trap, and the spontaneous emissions can
be well neglected within a time of seconds.

The fluctuation of the number of atoms could induce se-
vere qubit decoherence when the number of atoms is large.
For example, the decoherence rate due to single-particle loss
grows linearly withN; and the decoherence rate due to three-
body collision increases witN?. Our study shows that for
the single-particle loss process with coupling constggt
the decoherence rate ldf{=15 is 1.6y, and the decoherence 5 N 80
due to three-body collision can be neglected. (b)

n

Yeff ('Yo Ntz)

<

A. Effect of single-atom loss FIG. 7. Decoherence rate by Ed5). (a) Single-atom loss rate

. . . vs number of atoms. Upper curve,=0.5; and lower curveg,
Consider, for example, a single-atom loss characterized. g 495 |nset: single-atom loss rate vs the phagat N,=15. (b)

by a loss ratey. The time evolution of the density matrix iS Three-body loss rate units gfNZ vs the number of atoms. Upper

described by the following master equation: curve, ¢o=0.5; and lower curveg,=0.495.
ﬁpt
— =i t L] ¢ L]
0= i),

pMN =125ty >, Ap AL

t -

‘;L; =S (afa,pt+pafa,—2a,0a), (13  Where the matrix AL)ij=(inJallin,1). Starting fromN,
@ atoms in the trap, when one atom leaks out, the qubit state is
a superposition of the eigenstates b 1) atoms. The de-

wherep' is the density matrix of the qubit in the interaction coherence rate is slowed down by the fact that the remaining
picture and the atomic losses in different modes are summeslystem of N;—1) atoms largely overlaps with the original
up. qubit states in theN;—1)-atom basis. The decoherence rate

The density matrix can be decomposed into the Hilberis expressed as
spaces (o)f different numbers of atoms:==p{"in)(jnl,
where p{V=(i,|p'|jn) is the element of the density matrix _ t Froam (2
with n atjoms andi,,j,) are qubit states af atoms. Substi- Yeit= YOT\P%X{E (PIAAY) = [CPIA ), (19
tuting this expression into Eq13) and assuming an initial

. . O .
density matrixp™ with N, atoms, we have where the maximum is derived for any) in the Hilbert

space of the qubit.

In Fig. 7(a), we plot yex versusN, at ¢o=0.5 and 0.495,
which grows linearly whem\, is not very large. AtN,= 15,
vef=1.6y,. As N, increases,ys; at ¢o=0.495 becomes
p(Nt)zpo_&yOz ALAQPO+POAZAQ, (14) sa_lturated, Whilgyeﬁ at ¢0=0.5 keeps increasing linearly

« with N;. In the inset of Fig. @), we plot the dependence of

(Nt—1)

ff N
pii (80 =pf U+ pf Y,
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the decoherence rate on the phdgeat N,= 15, which does ing of Raman pulses, the state initialization, and we have
not vary strongly with¢g in the range of interest. presented a projective measurement scheme by adiabatic
switching of the Josephson coupling and observation of
quantum jumps. Furthermore, we have given a detailed

. ] ] o analysis of possible imperfection and decoherence of the qu-
One of the main decoherences against this qubit is thejt,

three-body collision loss. The three-body procéssA+A The solid-state qubits suffer severely from noise, which
—A,+ A describes that when three atoms collide, two atomsnay become the biggest obstacle in implementing those qu-
form a bounded molecular state with a binding energy of thebits. However, the solid-state proposals are easy to scale up
order ofﬁzlmaﬁ, which is several orders larger than the and control with existing technology. The qubit proposed in
trapping frequency, whera, is thes-wave scattering length. this paper inherits many of the merits of the superconducting
As a result, the molecule and atom gain very large kinetiqqubits. For one thing, almost all the parameters of the qubit
energy after the collision and escape from the trap. This proean be very well controlled by external sources, which in-
cess damages the coherence of the qubit states. The dynaaneases the flexibility of qubit. The system is, in principle,
ics of the qubit is still described by Eq15), with y, re-  scalable by storing the atomic flux qubit in wells of the 1D
placed by the three-body loss rate ()  optical lattice. Compared with superconducting qubit, the
=K3(8p)4/72(37%)%N? , whereK is the three-body colli- atomic Josephson junction qubit has the advantage of not

sion rate in Refs[19,20 and [ d3>?| ¢(§)|6 gives the depen- subjecting to severe environmental disturbance and having a

dence on the density and on the number of atoms, and tHgng decoherence time. Hence, an array of the atomic qubits

operatorh, replaced YA We apply the same approach as (it @ BETEET L SRR B SIS B SO BT B
that for the single-atom loss to calculate the effective deco: P 94 P q g

herence rate and the results are plotted in Fidp).71t is operatlo'ns. Clear!y, one 9f t_he main dlfferenpes to the super-
(N2 . . conducting case is the significantly slower time scale of op-
shown thatyeqs/ vy ’Ni grows linearly withN; at smallN,, erations
= ~0.5/3N2. With p= 43 : :

and at'\_ltzg 15%3 Yeri~0.5yg Ni . With p=3X 101_ e and In summary, our study shows that the atomic systems can
K3=10"" cm"/sec, we havey;=0.02, which gives asmall ¢ gesigned to be a clean realization of the Josephson junc-

decoherence rate. tion circuits and keep the merits of exploring macroscopic/
mesoscopic degrees of freedom and a long decoherence time.

VII. CONCLUSIONS In this system, the Josephson couplings can be controlled

We have presented a scheme for implementing an atomit |th|Iarge Jlex'b'“tY”?y adflgs_tmg.t?e p(iyver and plhasss Og
flux qubit with atomic Josephson junctions, which are gen- ¢ 'aS€r beams. 1he colision nteraction can aiso be ad-
usted to a large extent by magneto-optical means such as

erated by Raman lasers that introduce coupling between iR~
ternal modes of atoms. By trapping three internal modes an hing around the Feshpach re'sonar[@jg. Moreover, 'the
rap geometry and the interaction between neighboring qu-

coupling them with the Raman pulse, a three-junction loop i it be ch : it diff i ) i
constructed. The collision interaction between the atoms pro—I S can be chosen 1o sult diiterent experiments.

vides the analog of the capacitance energy. With a small ACKNOWLEDGMENTS
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