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[. INTRODUCTION This paper is laid out in the following way. We start by
describing the basic principles of the scheme. In Secs. Ill and

Quantum optics has proved a fertile field for experimentallV we describe realistic measurement and resource produc-
tests of quantum information science. However, quantum option techniques, respectively, based on photon counting and
tics was not thought to provide a practical path to efficientlinear opti_cs. In Sec. V we consider error correction and we
and scalable quantum computation. This orthodoxy was chafonclude in Sec. V.
lenged when Knillet al. [1] showed that, given single-
photon sources and single-photon detectors, linear optics Il. BASIC SCHEME
alone would suffice to implement efficient quantum compu-

tation. While this result is surprising, the complexity of the scribed by a coherent stafte), wherea is a complex num-

optical networks required is daunting. ___ ber which determines the average field amplitude. Coherent
More recently it has become clear that other, quite differgiates are defined by unitary transformation of the vacuum
ent versions of this pargdlgm are p.033|ble'. In particular, b)(g], |a)=D(a)|0), whereD(e) is the displacement opera-
encoding the quantum information in multiphoton coherenior. | et us consider an encoding of logical qubits in coherent
states, rather than single-photon states, an efficient schenagytes with|0), =| — ) and|1), =|a), where we taker to
which is elegant in its simplicity has been propo$2l The  pe real[9]. These qubits are not exactly orthogonal, but the
required resource, which may be produced nondeterministiapproximation of orthogonality is good far even moder-
cally, is a superposition of coherent states. Given this, th%ltely large aé,<a|—a)|2=e*4“2. We will assume for most
scheme is deterministic and requires only relatively simpleyt this paper thate=2, which gives (a|—a)|?<1.1
linear optical networks and photon counting. Unfortunately,s 10-7. Measurement of the qubit values can be achieved

the amplitude of the required resource states is prohibitivelyy ;i high efficiency by homodyne detection with respect to a
large. Here we build on this idea and show that with only a5:4] oscillator phase reference.
moderate increase in complexity, a scheme based on much of course, if one wished, an exactly orthogonal qubit

smaller superposition states is possible. . code can easily be defined in terms of the orthogonal parity
The idea of encoding quantum information on continuous . ~

variables of multiphoton field§3] has led to a number of e'ginSttatteSLmL:|a|>+|_.‘“>'|1>L:|.°t“>_|_%.>t' Hct)wever,
proposals for realizing quantum computation in this Waysuc states are only a singfsonunitary qubit gate away

[4—6]. One drawback of these proposals is that “hard,” non_from the code we propose to use. The issue is not so much
linear interactions are required “in-line” of the computation. the orthogonallty of Fhe qubit co_de, b'“'t. rather th_e need to
These would be very difficult to implement in practice. In work outside the qyblt space durmg_qublt processing. As we
contrast, this proposal requires only “easy,” linear in-line sh?;!tr}lc_)w S*;Oﬁhth'ls cgnlbe ldonef with g?gllgltt))lef?rror.d b
interactions. The hard interactions are only required for “off- It-Thp gate The fogical vaiue ol a qubit can be Tlipped by
line” production of resource states. A related proposal is tha elaying it with r.espect to the chal oscillator by half a cycle.
of Gottesmaret al.[7] in which superpositions of squeezed hus theX or “bit-flip” gate is given by

states are used to encode the qubits. In that proposal the hard
interactions are only used for the initial-state preparation.
However, quadratic, squeezing-type interactions are requir
in-line along with linear interactions.

The output of a single-mode, stabilized laser can be de-

X=exp{ira'a}. &)

e‘Ijhis is a unitary gate. As already noted, the Hadamard gate
(or its equivalentswhich effects transformation fromx), to
|x), cannot be unitary. This is because the logical basis states

*Email address: ralph@physics.ug.edu.au are not orthogonal but the statpg, are parity eigenstates
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FIG. 1. Schematics of implementing tR€Z, ) gate.(a) The bare gate; its operation is near deterministic for a sufficiently small value
of 6/«. Repeated application of this gate can build up a finite rotation with high probaltBityThe teleported gate; its operation is
deterministic, however, it may need to be applied several times in order to achieve the correct rotation. Determinism is achieved by preparing
the entangled resource off line and only applying the gate to the qubit when the resource is available. In the diagiaresents a cat-Bell
measurement.

which are orthogonal. For this reason we now consider non- Our remaining gates implement operations which may
unitary gates based on projective measurement. Gates baseshveniently be described by the product operator notation
on projective measurements will be probabilistic in their op- .
eration. R(K;® Kj ,0)= e~ 102K ®K;

Sign-flip gate A bit flip in the superposition basis, i.e., a -
“sign flip” or Z gate, can be achieved via teleportat[dg] =coq 0/2)I®1—isin(0I2)K;®K;, (5
as follows. A resource of coherent superposition statem-

PR hereK; . can take on the value¥, Y, Z, or | (the Pauli
monly referred to as “cat” states 142(|— 2« w i o Ve 0 & O L :
+| \/§ya>) is required. Splitting such a cat statf(el on a go:somgma operators and the idenjitfor single-qubit operations

beam splitter produces the entangled Bell state@qll—a, \(;vl:ab\i/\tnll drop the redundant identityoperation on the second
t;1a>+t|ﬁ16;>)t. A?ellfa&s me%suren;]erl}t |?t';]hen rtnad? gn Phase rotation gateConsider an arbitrary single-qubit ro-
equ ;1 statey| da> V|a>£).an one al ot the Sn :gg €d tation aboutZ, R(Z, ). This can be implemented by shifting
statt;_(w ereuhgnh Vf a;e ?r itrary gglmp ex numbgr ?' dour qubit a small distance out of the computational basis and
pending on which of the four possible outcomes are found,,, , using teleportation to project back. We begin by displac-

the ot_her half of the B_ell state is proje_c_ted into one of theing our arbitrary input qubit by a small amount in the imagi-
following four states with equal probability: nary direction[see Fig. 1a)]

ul—a)+v|a), »
D| | (u|—a)+
el | l= )+ sl
wla)y+v|—a), —e ity g 1_4'_‘92 >+ei0/4ya 1+4'_02 >
(64 o
play—v|—a). 2

(6)
The bit-flip errors in the third and fourth results can be cor-
rected using th& gate. AfterX correction the gate has two Now consider the effect of teleporting this state. Using the
possible outcomes: either the identity has been applied, ifelationship[8]
which case we repeat the process, or else the required trans-

formation (rla)y=exd — 1/2(|7]*+]a|?) + 7 a], (7
Z(pu|—a)+vla))=ul—a)—v|a) (3)  we find that the required projections are approximately given
by
has been implemented. On average, this will take two at-
tempts. We write io
+al Fal 1+——1 ) = e*itlg- 0213202

Z=TY, (4) 4a?
meaning that the teleportation transformatibmvith bit-flip io
correctionX is appliedp times, wherep is outcome depen- Tal+a 1t—) =0, (8)
dent. 4a?
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where we have assumed orthogonality and th&82«?  for certain angles. For example, for the “phase” gate
<1. The outcome of the sequence of displacement followedR(Z,7/2), only X andZ corrections are necessary.

by teleportation is then found to be Controlled phase gateA nontrivial two-qubit gateR(Z
®Z,— ¢) can be implemented in a way similar to the single-
i qubit rotation[see Fig. 2a)]. Consider the beam splitter in-
TxD(E> (| =a)y+v]a)) teraction given by the unitary transformation

22 2 ; ;
:efﬁ 132 e7|0/2 _ +gl 012 . 9
(e "ul—ayre™pfa)). (9 | 12

.0
Uap= exp[. E(ab*+a*b)
The “£” sign depends on the Bell state measurement out-

come and can be corrected by dgate. The transformation \herea andb are the annihilation operators corresponding to

is thenR(Z, 6). two coherent-state i i i
e . . - qubity), and| 8), , with y andg taking
Notice, howgver, that the output state in Eg) is un- . values of—«a or a. It is well known that the output state
normalized. This reflects the fact that because we are prolecﬁ'roduced by such an interaction is

ing back onto the qubit basis from outside, the probability of

success is not unity. In other words, there is a probability p p

P=1-e 1% that the Bell state measurement will return  U_,|v).| 8)y= cos;B+i sing 'y> :

a null result, in which case the gate will fail. In order to make 27/

the probability of failure as small as possible, we require (13

6?<16a. One option would be to let be large[2]. In this

way @ can be a significant angle whiR~1 is still satisfied. ~where co§6/2) [sird(6/2)] is the reflectivity(transmissivity

However, this is undesirable because of the difficulty in pro-of the beam splitter. If both output beams are now projected

ducing cat states with large. using teleportation as for the single-qubit gate we find for an
A second option is to implement the gate with an incre-arbitrary input state

mental phase shift, repeatedly, to build up a significant angle.

Let 6=ng, then aftem rotations by¢ we have TxalxoUan(¥| = @)al — a@)p+ ] a)a — a)p

+ 7'| - a)al a)+ 7’| a)al a)p)

=e 02a2/4(ei 9“2v| —a),|—a)pre! 9“2M| a)a| —a)p

0 " .0
co%y ISII’EB .

0] w1 1)

_ 2 aZ i i . .
= e (e Nz | g) - MRy a)). (10) re 0 g |ad €y )y, (19

The transformation is agaiR(Z, 6). The success probability where, as before, we have assumed orthogonality, and that

is P=e~#"189° which can be made arbitrarily close to one g2,2<1 and the- signs depend on the outcome of the Bell
for small & simply by choosing sufficiently large. For ex-  measurements. If we chooge=260a?= /2, thenR(Z®Z,

ample, witha=2, 6= /4, andn=8 we findP=0.9988(or  — 7/2) is implemented, a gate that can easily be shown to be
n=30 givesP=0.9997). This is basically an application of |ocally equivalent to a&NOT.
the quantum Zeno effe¢t1]. Once again the probability of success is nonunit, and two

A third option is to use the technique of gate teleportationoptions are possible for smadl: repeated iterations of the
[12]. In this case we place the gate inside a second teleportgjate for an incremental value gf can be used to build up to
as shown schematically in Fig(d. TheR(Z, ¢) gate of Eq. 3 total angle ofr/2 with a high probability of success via the
(9) is implemented on one arm of a second Bell-cat state. Ijuantum zeno effect or we can use gate teleportation to guar-
(and only if the gate is successful, a Bell measurement isantee success. To achieve the second gate teleportation we
made between the qubit and the other arm of the entanglegiust now nest the two-qubit gate inside two teleporters as
state. It is straightforward to show that the output state afteshown schematically in Fig.(B). Only X and Z corrections

X andZ corrections is are required.
oo o Superposition gateTo complete our set of gates we now
e "ul—a)+e” "y a). (11)  describe how to implement a rotation @f2 aboutX, i.e.,

R(X,7/2). This gate takes computational basis qubits into
The signs in the arguments of the exponentials depend on ttthe diagonal, or superposition, basis and is locally equivalent
Bell state measurement results. The qubit is teleported witko a Hadamard gate. The gate is shown schematically in Fig.
an equal probability of eitheR(Z,6) or R(Z,— #) applied.  9(a). It is similar to theZ rotation except that now the dis-
The operation is deterministic for the qubit as the seconglacement followed by Bell state measurement on the qubit
teleportation is only carried through if the first one is suc-and one of the Bell state modes is replaced by the beam
cessful. In general, the resd®(Z,— ) can be corrected by splitter interaction used in the(Z® Z, — #/2) gate, followed
applying the gate again, but this time attempting to applyby single(as opposed to Be)l-cat measurements on the out-
R(Z,26). If this again fails, the process is continued by at-put modes from the beam splitter. The interaction produces
tempting to applyR(Z,46), etc. Symmetry can be exploited the following output state from an arbitrary input:
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FIG. 2. Schematics of implementing tREZ® Z, — 7/2) gate.(a) The bare gate; its operation is near deterministic for a sufficiently small
value of #2a> where the reflectivity of the beam splitterds- cos(6/2). Repeated application of this gate can build up te/2rotation with
high probability.(b) The teleported gate; its operation is deterministic. Determinism is achieved by preparing the entangled resource off line
and only applying the gate to the qubits when the resource is available. In the diagtaepsesents a cat-Bell measurement.

CaCoUps( | — @)+ v|a)) lll. CAT-BASIS MEASUREMENTS
— o 02aPlap hiba? —i6a® | _ We define a cat-basis measurement to be some procedure
=e {(e" uxe v)|—a) ) :
that projects the state of an optical mode onto one of the two
+ (= e*iﬁaz,ut e 9“2y)| a)l, (15)  states (142)(|— a)=|a)). If our input state consists only of

an arbitrary superposition of these two states then cat-basis
measurement can be achieved by simply counting the pho-

Si ttons in the mode. An even number of detected photons
gns depend on the outcome of the cat state measurements.
Using X and Z gates we can correct all the's to +'s.  Indicates measurement of the state\@Y(| - @) +a)), and
Choosing @a?= /2 then implementR(X,7/2). As be- &N odd number of photons mdmates m_easureme_nt of
fore, the gate is probabilistic for smad, working with a (1/J_§)(|_0‘>_|“>)- Of course, this will require very high
probability of e~ #®2 1o achieve near determinism using quality photon detectors WhIZCh can reliably distinguish
the quantum Zeno effect, one would replace the beam splittJFom n+1 photons whem~ a*. o
interaction [within the dashed box of Fig.(8)] with the The cat states can alsolbe dlStIthI.Shed' to some extent by
R(Z®Z,— ¢) gate of Fig. 8a), iterated sufficient times to Nomodyne detection looking at the imaginary quadrature.
give ¢= /2 with high probability of success. The rest of the Cat states display fringes in the imaginary quadrature which
gate remains the same and will work deterministically. Asare 7/2 out of phase between the plus and minus £a8.
before, we can also implement the gate deterministically usTherefore a measurement result that falls close to a fringe
ing gate teleportation as depicted in Figb@ Only X andZ ~ maximum can be identified with one or other cat with high
corrections are required. probability. This technique gives inconclusive results some
The gateR(Z,0), R(X,m/2), andR(Z®Z,— m/2) form  of the time (i.e., close to the fringe crossingdut could
a universal set. An arbitrary single-qubit rotation can be conprove useful for initial experimental demonstrations.
structed fromR(Z, ¢)R(X, m/2)R(Z,p)R(X,— m/2) and, as In order to perform a Bell basis measurement on two
commented befordR(Z® Z, — 7/2) is locally equivalent to a modes(say, modes andb) containing coherent-state qubits
CNOT. This completes our basic discussion. In the followingwe can employ the following procedufé4,15. Allow the
section we consider how the required cat and Bell state medwo qubits to interfere at a 50:50 beam splitt8
surements can be performed. =exd(m/4)(—a'b+ab')], wherea andb are the annihila-

whereC, andC,, represent the cat state projections. The
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FIG. 3. Schematics of implementing tR¢X, 77/2) gate.(a) The bare gate; its operation is near deterministic for a sufficiently small value
of #%a?. Replacement of the dashed section with the repeated application of the gate d&F@arBbuild up to &R(X,/2) rotation with
high probability.(b) The teleported gate; its operation is deterministic. Determinism is achieved by preparing the entangled resource off line
and only applying the gate to the qubits when the resource is available. In the diadgiamsiesents a cat-Bell measurement, @nd
represents a cat measurement.

tion operators for modea andb. Then use photon counters where 8= 6/4\2a. Because the qubit in moce was cor-

to measure the number of photons in each mode. We campted by the displacement operator, now it is possible to
then identify the following four possible resultd) an even  detect photons in both modesand b simultaneously. We
number of photons in moda and zero photons in mod&  now detecin, photons in mod& andn,, photons in modé,

(2) an odd number of photons in modend zero photons in  and this measurement leaves madi@ the pure state given
modeb, (3) zero photons in moda and an even number of by
photons in modé, or (4) zero photons in moda and an odd
number of photons in mode corresponding to each of the

) 1 6? 1
following four Bell-cat states(1) |Boo)=(1/2)(|— a,— ) (nal(np|Qp) = —exp( —a?— >—(\/§a)na+nb
+|a,af>), (2) [B1oy=(12) (|~ @,— a)~|a,a)), [(3> Bow ) V2 3202 | \ng!ny!
=(1/ 2)(|—a,a>+|a,—a>), or (4) |Bll>=(1/ 2)(|—a, —i6l4r _ 4\na+n i \Nagi 2\l —
a)—|a,— a)t). Note that there is also a fifth possibility of X[pe - (1=ie)%(ie)™] ~ a)
detecting zero photons in both modasnd b, which indi- +Me*i9/4(ie)na(l_ie)nb|a>

cates a failure of the measurement. Fortunately, this occurs o, h -

. .- . . . — b a b| —
with probability of only ~e~*°. The preceding discussion +re (= 1)M(ie)"(1+ie)™|—a)
assumed that we were only differentiating between states +rel?(—1)"(1+ie)"a(ie)™|a)], (17)
within the computational basis. However, the gates discussed

in Sec. Il involved moving short distances outside this baSis\'Nhere — 0/8a2. and we have ianored the normalization fac-
Nevertheless, we will show in the following that these tyloeStor dug to thoé ,nonorthogonali?y of the computational basis
of measurements are sufficient to implement our gates. states. This state may need to be corrected Wit Z op-

As an example, we will examine the use of this procedure rations and properly normalized before we obtain the final
for the Bell state measurement required when performin properiy 1 ; .
esult of the teleportation, which we will CéﬂQna,nb)- We

R(Z,6). In order to perform this rotation, we must use the ) ) o
displacemenD (i 6/4) on the qubitQ) in modea and ap- ~ Can see that this state is close to our goal by examining the
pend the Bell state (12)(|— a,—a)+|a,a)) in modesb limit when e<1. In this case we are almost certain to mea-
andc. When modesa andb meet in the beam splitter used SUre one oh, or n, to be zero. The number of photons in the

for the Bell state measurement, their interference is incom@ther mode is given by a probability distribution which is
plete and the resulting state is almost exactly equal to the Poisson distribution with a mean

io of 2a2. This leaves us with the state
|QD>: Ba,bDa(E

|Q)Boo . .
~ue "(1—ine)|—a)+ve'’(1+ine)|a) (18

=,u67m/4|—\/§a+i5,—i5,—a>

, ~ e il(08)+ne| _ o\ 1 ail(814)+ne] 1
+,u,e_'0/4|i5, ﬁa—ié,a} ne |—a)+ve ) (19
+Vei0/4|i5,—\/§a—i5,—a> P n

) =R|Z,-| 1+ — —a)+v|a)). 20

042319-5



RALPH et al. PHYSICAL REVIEW A 68, 042319 (2003

W

)
i
i
Nig
)
/

\

W
)
X
W
"
)
i
)
i

0
)
4
0
!
!
5

0.06

N
A0
¢

3
§

)

5

%

)

\)

0
\\
X
VAR
)
)
)
!

()
)
o
0
4

{

0
5ad
(R

§

e
=

Y,
Y
A\,
7\

O'A

Q0K
.0

5
X
X
|

)

AN

&

fole
o

(@)

FIG. 4. Here we plot(a) the probability to detect the pain,, n, when performing theR(Z,w/2) rotation, and(b) F
:|<Qna,nb|nga|>|2 as a function oh, andn,. We use the worst case input qubit andan 2.

To evaluate the effectiveness of this procedure without F=(Qgoal P|Qqgoan- (22
making such severe approximations, we exanf@rea,nb> in

. . . 2
Fig. 4, where we calculate the fidelitfQn, | Qgoa)|* and We plotF(a) for §=m/2 andF(6) for a=2 in Fig. 5. We

the probability to measure, and n,. We usea=2, the o optain a fidelity of 0.99 or above for any desirable angle
input qubit|Q)=(1/2)(| - a)+|a)), and a rotation angle it we can produce qubits withv=3. A second strategy
0=m/2. These choices folQ) and ¢ give the worst case \yoyid be to limit our operation oR(Z,6) to small angles.
scenario, in which we obtain the lowest fidelity with | 5rger rotations could be built from repeated applications of
|Qqoap =R(Z,6)|Q). Because th& operation is equivalent 5 pigh fidelity gate. For example the fidelity fér= /16 is

to R(Z,), we can reach any angle by usﬂgandzR(Z,H), F=0.999 70 wherw=2. Repeating this eight times imple-
where f<m/2. One can see tha{Q_ n [Qgoall® IS VEry  mentsRr(z, #/2) with a fidelity of F =0.999 76=0.997 56.
close to one in the regions where we are most likely to deteaCompare this with the fidelity of 0.980 91 when performing
the pairn,, ny. R(Z,7/2) in a single step.

In order to compute the overall fidelity of this operation,  Yet a third strategy emerges if we are willing to operate
we first construct the mixed staperepresenting the output of the logic gate in a nondeterministic fashion, in which the
the teleportation operation for all measurement results, gate sometimes fails and must be repeated with a new copy

of the qubit. Qubits can be protected from destruction if we
© = use the gate teleportation scheme of R&P] as pictured in
p= 2 2 P(na.mp)|Qn o XQn nl- (21  Fig. 1 and discussed in the preceding section. We can then
Na=0 np=0 simply discardR(Z, §) attempts for which the measurements
of n, and n, yield low values for the product

The fidelity is then given by |<Qna,nb|Q9°a'>|2' Suppose we choose a sgtof (n,,np)

Fidelity Fidelity

1 — 1
0975 © 0.995
095 : 0.99
0925

osts
0.875 ) 9
0.85 0975
0.825 097

. o )
1 2 3 4 5 6 025 05 075 1 125 15

FIG. 5. Here we plot the fidelity of our procedure for performing R{(&, ) rotation as a function of (usingd= 7/2) and as a function
of 6 (usinga=2). The dots show the fidelity after the teleportation and the curve shows the fidelity before teleportation. We use the worst
case input qubit.
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FIG. 7. Schematic diagram for the generation of Sdhrger-
like cat states by means of a conditional photon number measure-
ment on a beam splitter. A single-mode squeezed state is used as an
input into one port of a variable reflectivity beam splitter with the

pairs which are accepted as successful operations of the logft!e" Input being a vacuum state. A definite. measurement of
gate, ancPs is the probability to measure a memigxduring photons(with m>0) on one output port of_ the_beam splitter pre-
the teleportation. The total output of the logic gétéhen it pares the required state to a good approximation.

succeedsis then the mixed state

FIG. 6. Here we ploPg(«), the probability that our implemen-
tation of R(Z, #) succeeds, given that we demand it performs with a
fidelity of 0.99. Here again we use= /2 and the worst case qubit.

computation schemes can be realized using technologies cur-

1 rently available or likely in the near future. More specifically,
PSTh ;) < P(Na.)[Qn_ .0, {Qn, - (23} how do we generate states of the form
aNp) €
We can now operate this logic gate with a fidelity which is 1
very close to one. Of course, this is limited by the maximum W)= [|—a)=|a)], (24)
possible value of(Qy_ n |Qgoal? (0.9999999 fora=2 VN

and 0= 7r/2 with the worst case qubitSuppose we insist on
performingR(Z, §) with a fidelity of 0.99. In Fig. 6 we plot where theN. =2=2e21“*. As we have seen, the ampli-
Pg as a function okx under this restriction. This allows us to tude of these cat states need not be large  is sufficienj.
make estimates of the number of Bell-cat states required tén elegant proposal was made by Dalatal.[16] (see also
perform a singleR(Z,0). In the gate teleportation scheme, Ref. [17]) for generating such states by means of a condi-
each attempt to perforiR(Z, ) requires two Bell-cat states, tional measurement on a beam splitter. Their scheme is de-
so on an average we need”2/Bell cats. Because there is a picted in Fig. 7 and works as follows: A squeezed state of the
50% probability of performingR(Z,—6) during the gate form |Wp=(1—|\[A)¥= [V(2n)!/n!](A/2)"2n) (with
teleportation, we need additionalF2/ Bell cats to correct squeezing parameter) and a vacuum stat) are com-
this, and becausg commutes withR(Z, ) it is not neces- bined on a variable transmissivit§ beam splitter. On the
sary to performZ after each teleportation; instead we cansecond output port from the beam splitter, a definite photon
wait and perform only on& after all teleportations are com- number measurement, which can be modeled by the projec-
plete. This makes a total of B4+ 1 Bell cats on average, or tor |[m)(m|, is performed giving a resuth. The conditional
8.88 fora=1, or 5.78 fora=2. state of the remaining output mode is then

Which of these three strategidp), using very largey, (ii)
using only small6, or (iii) operating the gate probabilisti-
cally and using gate teleportation, is ultimately most efficient
is a complicated question that will depend on the constraints
of Bell-cat production and photon counters. We hope to ad-
dress this further in future research. . _ n+m

The other gates of the preceding section can similarly béN'th cn,m—£n+n;)![1+(§—1)n+m]/[\/ﬁl“([(n+m)/2]
implemented by replacing the projective measurements withl 1)] and Nm_E”C_”vmp‘ cos6/2|"" ™. The mean photon
photon counting measurements. In this way we are able tgumber for Eq(25) is
implement a universal set of quantum gates on the coherent-
state qubits via linear optics, photon counting, and cat and — 1 )
Bell-cat state resources. We now examine how the cat and (M= ; NCn,m
Bell-cat states may be produced. "

)\00520) (n+m)/2
2

1
|\I}m>:\/—7 ; Ch,m |n>, (25

n+m

\ co<H

5 (26)

IV THE GENERATION OF SMALL SCHRO DINGER E_quation(25) can be broken into two cases: the state re-
sulting from an evenm result and the state from an odul
CAT STATES . . .
(which will not be considered hexd=ormeven, Eq(25) has
Let us now turn our attention to how small amplitude only even photon numbers and can be written in the simpli-
Schralinger cat states required for our universal quantunfied form
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FIG. 8. Plot of the fidelity of the state, EqR5), compared with Eq(24) and mean photon number of E@5) vs A cog6 for (i) m
=0, (ii) m=2, (iii) m=4, (iv) m=6, and(v) m=10.

(2n+m)! A cogg)[r(m) m: 1—2>\2 { )\Zsirjzo "
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2
27) “ & (m—2)112(2x co26)? @9

. ) . and is shown in Fig. 9 for various.. As m increases, the
For \ cos'¢ small, this expression can be further approxi- probability of successfully generating our required state sig-
mated as nificantly decreases but the success probability is reasonable
for A=0.6 with eitherm=2 or 4. With such parameters we
can generate a Schiimger cat like state with a fidelity
1+m greater than 95% with a probability of success greater than
|wm>~|o>+>\co§9T|2>+.-.. (28 104
2 Let us now determine if the Dakna cat state can be used to
generate the entangled cat state)|a)+|—a)|—a) re-
Here we observe that as increases, so does the population quired in the teleportation step of the various fundamental
. ) ' X . gates. Such a state can be generated by combining it with the
in the |2) (and highey states compared with th@=0 situ-  y-c,um state on a 50/50 beam splitttere we need to
ation. Thus for smalk cos'd, the mean photon number in- cpsose the amplitudg of the original single-mode cat to be
creases as increases. As a cautionary note, we must ém- 5.y - ysing the Dakna state cat as the input to this beam
phasize that the scheme here requires the de_tecuon .of aplitter, we plot in Fig. 1) the overlap between the result-
exact number of photons to generate the approximate smglqsng two mode-state and the two-mode entangled state. We
mode cat state. Currently, detectors are not that efficient bigpserve that for botm=2,4 we have the fidelity exceeding
good progress is being made. 95% for a wide range of parameters. This indicates that to a
Now let us determine how good an approximation, Eq.very good approximation we can generate the two-mode en-
(25), is with the Schrdinger cat states given by ER4).  tangled cat state required for our basic gate operations. Given
This can be achieved by calculating the overl& this entangled resource we can now investigate one such gate
=¥, |¥.)|? between the two states. To this end, we plotoperation. We consider the operation of tR¢Z,¢) gate
in Fig. 8 both the mean photon number of the state of Eqillustrated in Fig. 1 using the Dakna cat state to generate both
(25) and the fidelity for various evem. It is interesting to  the entangled resource and the s{&@¢. In Fig. 1ab) we
observe that a good fidelityX95%) can be achieved for
quite a range ok cogd andm. In fact, for \cos6<0.3 the
fidelity between the two states we are comparing exceeds

0.15

99%. However, to achieve a cat state with a moderate mean 2
photon number we either needllarge or\ co$6=0.5. Asm =010 1
increases, the overlap between E(4) and (25 for the f§
same mean photon number increases. There is a potential &£ 0.05 i

regime where EQq(25) has moderate mean photon number
and a high overlap with the state in E§4). However, there 0-0800 s oéo A3 0&0
is a trade-off in that the initial probability of generating the ' ‘ ) ’ ’

2,
state in Eq.(25) with \ fixed decreases am increases. The A Cos0
probability of successfully generating the state in &%) is FIG. 9. Plot of the probability of generating E@5) vs \ cosd
given by for A\=0.6 with (i) m=2, (ii) m=4, and(iii)) m=6.
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FIG. 10. Plot of the fidelity for théa) Dakna two-mode cat state V&)|a)+|— a)|— ) and(b) the statee'?|a)+ e '¢|— a) resulting
from the action of the gatR(Z,$) with ¢= /32 vs\ cogd for (i) m=0, (i) m=2, and(ii) m=4.

show the fidelity for performing the gate operation to trans- The Poisson distributed nature of photon loss means that
form the statgQ) to e'?|a)+ ~'¢|— a) for small ¢. These even when no photons are lost from a coherent state, the state
results show the feasibility of performing, in principle, ex- must change. Not seeing a photon emitted up to tinmeli-

periments to demonstrate quantum logic. cates that the state is increasingly likely not to contain any
photons at all, and thus we must continuously adjust our
V. ERROR CORRECTION description of the state to reflect this knowledge.

We can put the description of photon loss on a more for-

Aviable quantum computation scheme must be capable ahal basis by asking for the conditional state of the system,
incorporating error correction. We now briefly discuss thegiven an entire history of photon loss events. This is a list of
issue of error correction. The major sources of error in outimes {t;<t,<--.<t,<t} at which photons are lost. The
scheme are expected to be, in order of increasing signifitun-normalized conditional staté18] is
cance,(i) errors due to nonorthogonal code stat@s,errors
due to moving outside the qubit basigij) errors due to
random optical phase shifts, afig) photon loss.

[ttty ... )

Sourcedi) and(ii) are equivalent. As discussed in Sec. Il = 2" Nt-tpa'arRg =ty —ty-p)a'a2
we could use the cat states as orthogonal code states. These - -
states are a single-qubit gate away from the coherent-state KA. ..o N-t)aary - 7tlaTa/2| #(0)). (30

code. Such a gate must be nonunitary and we have given a

method bgsed'on teleportation to'ach|ev'e this. Slngle'qu'{’he norm of this unconditional state is the probability for
manipulations in the cat state basis require us to move ou{-hiS history.

o the computational basi. We have Shown that errors n. ' e S1at in the coherent stafe) and lose o photons
b ' p to timet, the conditional state isca) wherek=e~ "2,

troduced in this process due to.nonorthogonality .Of cohere#he important fact here is that the state remains a coherent
states are exponentially small in amplitude and in any casg

are heralded by the teleportation process itself. If we see antate even though the amplitude is decreased. This kind of
error, we can repeat the teleportation process .WhiCh as th([arror take_s us out qf the code space, but can be corrected by
’ . . ' Sleportatmn. Consider the state

errors can be made so small, is very likely to succeed after a
couple of trials. We will thus not consider these sources of
error further. |W)=(u|—ra)yr+v|lka))(|a,a)ost|—a,— a)zd).

Optical phase-shift errors will occur due to timing errors (31)
between different qubits and between qubits and the local
oscillator. Such errors may arise from path-length fluctualf we mix modes 1 and 2 on a beam splitter, and count
tions in the circuit. These can be monitored and corrected 0 photons in mode 1 and O photons in mode 2, the condi-
through classical optical interferometric techniques. Suchional state of mode 3 is found to hel — a)+v|a). If « is
locking techniques are a mature technology and can be exmall enough, this will occur with high probability. In fact,

tremely precise. We will assume that sufficient classical conletting k=1— ¢, the probability for this event is very close

trol is exercised to make these errors negligible. to
Photon loss error, however, is a more serious problem as
it is never heralded and increases quadratically within P(nlvﬁo,n2=0)=e’52‘“‘2’2, (32)

this case we must turn to error correction coding to mitigate

the effect. Photons are lost from a coherent state at Poisson . . ) ) o
distributed times at a rate determined pfa’a), wherey is the teleporta_lt_lon projects us bgck into the_ qubit basis with
the single-photon loss rate. Obviously, if a photon is lost, thdligh probability as it is most likely that; is near 2a/.
system has one less photon. The effect of photon loss from Bailure of the protocol is heralded Iy =0,n,#0 and thus
pure state is thus given Hy/)—a|y), wherea is the Bose the gate can be repeated if necessary. The dommr;mt term in
annihilation operator. the failure probability is approximately givee‘zw . In
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fact, this resetting of the amplitude happens as a matter, dhis state is used as the entanglement in a teleportation pro-
course, in all the teleportation-based gates we have digecol, with the smaller amplitude arm being mixed with the
cussed. Thus it may not be necessary to explicitly introducénput state and measured. The result of the teleportation is

additional gates for this purpose. the transformation
If a photon is lost from a coherent state, the state is un-
changed up to a phase aky)= a|a), which when normal- wl = a)+v|a)— ul—V2a)+ v|\2a), (39)

ized produces only a phase shift given by the phase of
[19]. This means that, in the qubit code space, photon l0ss ighere we have assumed that the necessary bit-flip and sign-
equivalent to an erroneous application of thejate, which  flip corrections have been made. That is, the state is ampli-
induces a sign-flip error. A sign flip error may be convertedfied while preserving the superposition. If the amplified state
into a bit-flip error by performing a Hadamard gate andijs then split on a 50:50 beam splitter, an entangled state of
working in the conjugate basis-)=|a)*[-a), (thatis, the same amplitude as the original will be produced. By re-
the cat statgs To prepare a code state to protect sign-flippeating this process many times, multimode encoded states
errors, we thus first prepare the standard three-qubit codgr entangled resource states can be produced deterministi-
[20], cally without the need to produce “large” cats.
Finally, we note that the preceding analysis has ignored

O =[~a,—a,~a), |1} =|a,a,a), B3 the effect of gate errors due to photon loss. For the phase
and then perform a Hadamard gate on each mode separate@)?tf);)?aiieaggf(:?f o?O;rt\?thizz gm;fé”z)r ftlnmtjhzgzdis-
Sign-flip errors will now appear as bit-flip errors and can becus,sed aE)ove for the propagating qubit, that is, it produces

cor_ﬁcted us(|jr_lg the sta_rlld?jrd thr_eequubn let_ﬁmﬂb " sign flips in the computational basis. In reaching this conclu-
€ encoding IS easily done in ineéar oplics by an exteN;,, \ye have considered loss events occurring, to the re-

o

sion of the technique previous!y discuss_ed for producing Bel ource states, at the measurement site and, at the displace-
tentar}glemgnt. Two beam splitters suffice to implement th?nent. Hence errors in these gates can be corrected by the
ransformation code discussed above. However, photon loss events in the
_ superposition gatg@R(X,/2)] can produce bit flips in the
(1= B)1+v1$)1)[0)210) computational basis if they occur at the measurement site. As
—ﬁ> —B> —ﬁ> 8 > 8 > 8 > ) a result, protecting a general circuit will require error correc-
—) |—=) |—=) tv|—=) |—=) |—= . tion for both sign flips and bit flips. This can be achieved by
\/§ 1 \/5 2 \/§ 3 \/§ N3/, \/§ using the standard nine-qubit cod&l] which can be imple-

(34) mented by a straightforward generalization of the techniques

outlined in the preceding discussion.

At the first beam splitter, with reflectivity amplitude of\3, Itis likely that the application of more efficient code2]
modes 1 and 2 are combined, subsequently, modes 2 anggd pptlmlzatlon, in particular, explomng the rarity of bit-flip
are combined at a 50:50 beam splitter. Thus by choosinyS Sign-flip errors in a general circuit, can reduce the com-
B=3a we can immediately prepare the entangled staté)lex'ty of _the reqqlred error correcting cod_es. We leave an
pl— @, — a,— @)+ v|a, e, a). investigation of this and the general question of fault toler-
Any logical operation may be performed on an arbitrary@1Ce 1€vels for future research.
state in the code space,

VI. CONCLUSION

) =ul—a,—a,—a)+v|a,a,a), (35 ) _
In this paper we have presented a quantum computation

by extending the teleportation gates for the single-mode casiheme based on encoding qubits as coherent states of equal
to the multimode case. Displacements can easily be done f@bsolute amplitude but opposite sign. The optical networks
one mode at a time. The teleportation steps in the gates wilequired to manipulate the qubits are conceptually simple

require a six-mode entangled resource of the form and require only linear interactions and photon counting,
provided coherent superposition ancilla states are available

la,a,a,a,a,0)+|—a,—a,—a,—a,—a,—a). (36) (cat states We have shown that qubits with amplitufie|
=2 and resource cat states of amplitydé= /6 would be
Such a state could be prepared by an obvious generalizatigufficient. Accurate photon counting measurements of up to
of the method used in Eq34), however, the amplitude of about ten photons would also be necessary.
the initial cat state is becoming uncomfortably large. We now \We have discussed how the cat-state resources could be

show how to avoid this problem. produced from squeezed sources, linear interactions, and
Consider the resource state photon counting in a simple scheme. This scheme appears
capable of producing states suitable for proof of principle
|—a,— \/§a>+|a,\/§a>, (37 experiments. It seems likely though that more sophisticated
schemes would be necessary for scalable systems.
which can be produced from a cat state of amplity8er by The power of the scheme stems from the ability to gener-

splitting it on a beam splitter of reflectivity 8. Suppose ate entangled states and make Bell basis measurements with
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simple linear interactions. This means teleportation protocolgoal of quantum computation, nearer term applications in
of various forms can be implemented deterministically toquantum communication protocols appear possible.
great effect.
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