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Quantum computation with optical coherent states
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We show that quantum computation circuits using coherent states as the logical qubits can be constructed
from simple linear networks, conditional photon measurements, and ‘‘small’’ coherent superposition resource
states.
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I. INTRODUCTION

Quantum optics has proved a fertile field for experimen
tests of quantum information science. However, quantum
tics was not thought to provide a practical path to efficie
and scalable quantum computation. This orthodoxy was c
lenged when Knill et al. @1# showed that, given single
photon sources and single-photon detectors, linear op
alone would suffice to implement efficient quantum comp
tation. While this result is surprising, the complexity of th
optical networks required is daunting.

More recently it has become clear that other, quite diff
ent versions of this paradigm are possible. In particular,
encoding the quantum information in multiphoton coher
states, rather than single-photon states, an efficient sch
which is elegant in its simplicity has been proposed@2#. The
required resource, which may be produced nondetermin
cally, is a superposition of coherent states. Given this,
scheme is deterministic and requires only relatively sim
linear optical networks and photon counting. Unfortunate
the amplitude of the required resource states is prohibitiv
large. Here we build on this idea and show that with only
moderate increase in complexity, a scheme based on m
smaller superposition states is possible.

The idea of encoding quantum information on continuo
variables of multiphoton fields@3# has led to a number o
proposals for realizing quantum computation in this w
@4–6#. One drawback of these proposals is that ‘‘hard,’’ no
linear interactions are required ‘‘in-line’’ of the computatio
These would be very difficult to implement in practice.
contrast, this proposal requires only ‘‘easy,’’ linear in-lin
interactions. The hard interactions are only required for ‘‘o
line’’ production of resource states. A related proposal is t
of Gottesmanet al. @7# in which superpositions of squeeze
states are used to encode the qubits. In that proposal the
interactions are only used for the initial-state preparati
However, quadratic, squeezing-type interactions are requ
in-line along with linear interactions.

*Email address: ralph@physics.uq.edu.au
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This paper is laid out in the following way. We start b
describing the basic principles of the scheme. In Secs. III
IV we describe realistic measurement and resource prod
tion techniques, respectively, based on photon counting
linear optics. In Sec. V we consider error correction and
conclude in Sec. VI.

II. BASIC SCHEME

The output of a single-mode, stabilized laser can be
scribed by a coherent stateua&, wherea is a complex num-
ber which determines the average field amplitude. Cohe
states are defined by unitary transformation of the vacu
@8#, ua&5D(a)u0&, whereD(a) is the displacement opera
tor. Let us consider an encoding of logical qubits in coher
states withu0&L[u2a& and u1&L[ua&, where we takea to
be real@9#. These qubits are not exactly orthogonal, but t
approximation of orthogonality is good fora even moder-
ately large asu^au2a&u25e24a2

. We will assume for most
of this paper thata>2, which gives u^au2a&u2<1.1
31027. Measurement of the qubit values can be achiev
with high efficiency by homodyne detection with respect to
local oscillator phase reference.

Of course, if one wished, an exactly orthogonal qu
code can easily be defined in terms of the orthogonal pa

eigenstates,u0&̃L5ua&1u2a&,u1&̃L5ua&2u2a&. However,
such states are only a single~nonunitary! qubit gate away
from the code we propose to use. The issue is not so m
the orthogonality of the qubit code, but rather the need
work outside the qubit space during qubit processing. As
shall now show, this can be done with negligible error.

Bit-flip gate. The logical value of a qubit can be flipped b
delaying it with respect to the local oscillator by half a cyc
Thus theX or ‘‘bit-flip’’ gate is given by

X5exp$ ipâ†â%. ~1!

This is a unitary gate. As already noted, the Hadamard g
~or its equivalents! which effects transformation fromux&L to

ux&̃L cannot be unitary. This is because the logical basis st

are not orthogonal but the statesux&̃L are parity eigenstate
©2003 The American Physical Society19-1
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FIG. 1. Schematics of implementing theR(Z,u) gate.~a! The bare gate; its operation is near deterministic for a sufficiently small v
of u/a. Repeated application of this gate can build up a finite rotation with high probability.~b! The teleported gate; its operation
deterministic, however, it may need to be applied several times in order to achieve the correct rotation. Determinism is achieved by
the entangled resource off line and only applying the gate to the qubit when the resource is available. In the diagrams,B represents a cat-Bel
measurement.
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which are orthogonal. For this reason we now consider n
unitary gates based on projective measurement. Gates b
on projective measurements will be probabilistic in their o
eration.

Sign-flip gate. A bit flip in the superposition basis, i.e.,
‘‘sign flip’’ or Z gate, can be achieved via teleportation@10#
as follows. A resource of coherent superposition states~com-
monly referred to as ‘‘cat’’ states!, 1/A2(u2A2a&
1uA2a&), is required. Splitting such a cat state on a 50
beam splitter produces the entangled Bell state, 1/A2(u2a,
2a&1ua,a&). A Bell basis measurement is then made
the qubit state,mu2a&1nua&, and one half of the entangle
state~wherem and n are arbitrary complex numbers!. De-
pending on which of the four possible outcomes are fou
the other half of the Bell state is projected into one of t
following four states with equal probability:

mu2a&1nua&,

mu2a&2nua&,

mua&1nu2a&,

mua&2nu2a&. ~2!

The bit-flip errors in the third and fourth results can be c
rected using theX gate. AfterX correction the gate has tw
possible outcomes: either the identity has been applied
which case we repeat the process, or else the required t
formation

Z~mu2a&1nua&)5mu2a&2nua& ~3!

has been implemented. On average, this will take two
tempts. We write

Z5TX
p , ~4!

meaning that the teleportation transformationT with bit-flip
correctionX is appliedp times, wherep is outcome depen
dent.
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Our remaining gates implement operations which m
conveniently be described by the product operator notati

R~Ki ^ K j ,u!5e2 iu/2Ki ^ K j

5cos~u/2!I ^ I 2 i sin~u/2!Ki ^ K j , ~5!

whereKi , j can take on the values,X, Y, Z, or I ~the Pauli
sigma operators and the identity!. For single-qubit operations
we will drop the redundant identityI operation on the secon
qubit.

Phase rotation gate. Consider an arbitrary single-qubit ro
tation aboutZ, R(Z,u). This can be implemented by shiftin
our qubit a small distance out of the computational basis
then using teleportation to project back. We begin by displ
ing our arbitrary input qubit by a small amount in the imag
nary direction@see Fig. 1~a!#,

DS iu

4a D ~mu2a&1nua&)

5e2 iu/4mU2aS 12
iu

4a2D L 1eiu/4nUaS 11
iu

4a2D L .

~6!

Now consider the effect of teleporting this state. Using t
relationship@8#

^tua&5exp@21/2~ utu21uau2!1t* a#, ~7!

we find that the required projections are approximately giv
by

K 6aU6aS 16
iu

4a2D L 5e6 iu/4e2u2/32a2
,

K 7aU6aS 16
iu

4a2D L 50, ~8!
9-2
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QUANTUM COMPUTATION WITH OPTICAL COHERENT STATES PHYSICAL REVIEW A68, 042319 ~2003!
where we have assumed orthogonality and thatu2/32a2

!1. The outcome of the sequence of displacement follow
by teleportation is then found to be

TXDS iu

4a D ~mu2a&1nua&)

5e2u2/32a2
~e2 iu/2mu2a&6eiu/2nua&). ~9!

The ‘‘6 ’’ sign depends on the Bell state measurement o
come and can be corrected by theZ gate. The transformation
is thenR(Z,u).

Notice, however, that the output state in Eq.~9! is un-
normalized. This reflects the fact that because we are pro
ing back onto the qubit basis from outside, the probability
success is not unity. In other words, there is a probab
P512e2u2/16a2

that the Bell state measurement will retu
a null result, in which case the gate will fail. In order to ma
the probability of failure as small as possible, we requ
u2!16a2. One option would be to leta be large@2#. In this
way u can be a significant angle whileP'1 is still satisfied.
However, this is undesirable because of the difficulty in p
ducing cat states with largea.

A second option is to implement the gate with an inc
mental phase shift, repeatedly, to build up a significant an
Let u5nf, then aftern rotations byf we have

FTXDS if

4a D Gn

~mu2a&1nua&)

5e2nf2/32a2
~e2 inf/2mu2a&6einf/2nua&). ~10!

The transformation is againR(Z,u). The success probability
is P5e2u2/16na2

, which can be made arbitrarily close to on
for small a simply by choosingn sufficiently large. For ex-
ample, witha52, u5p/4, andn58 we findP50.9988~or
n530 givesP50.9997). This is basically an application o
the quantum Zeno effect@11#.

A third option is to use the technique of gate teleportat
@12#. In this case we place the gate inside a second telepo
as shown schematically in Fig. 1~b!. TheR(Z,u) gate of Eq.
~9! is implemented on one arm of a second Bell-cat state
~and only if! the gate is successful, a Bell measuremen
made between the qubit and the other arm of the entan
state. It is straightforward to show that the output state a
X andZ corrections is

e7 iu/2mu2a&1e6 iu/2nua&. ~11!

The signs in the arguments of the exponentials depend on
Bell state measurement results. The qubit is teleported w
an equal probability of eitherR(Z,u) or R(Z,2u) applied.
The operation is deterministic for the qubit as the seco
teleportation is only carried through if the first one is su
cessful. In general, the resultR(Z,2u) can be corrected by
applying the gate again, but this time attempting to ap
R(Z,2u). If this again fails, the process is continued by
tempting to applyR(Z,4u), etc. Symmetry can be exploite
04231
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for certain angles. For example, for the ‘‘phase’’ ga
R(Z,p/2), only X andZ corrections are necessary.

Controlled phase gate. A nontrivial two-qubit gateR(Z
^ Z,2f) can be implemented in a way similar to the sing
qubit rotation@see Fig. 2~a!#. Consider the beam splitter in
teraction given by the unitary transformation

Uab5expF i
u

2
~ab†1a†b!G , ~12!

wherea andb are the annihilation operators corresponding
two coherent-state qubitsug&a andub&b , with g andb taking
values of2a or a. It is well known that the output state
produced by such an interaction is

Uabug&aub&b5Ucos
u

2
g1 i sin

u

2
b L

a

Ucos
u

2
b1 i sin

u

2
g L

b

,

~13!

where cos2(u/2) @sin2(u/2)# is the reflectivity~transmissivity!
of the beam splitter. If both output beams are now projec
using teleportation as for the single-qubit gate we find for
arbitrary input state

TXaTXbUab~nu2a&au2a&b1mua&au2a&b

1tu2a&aua&b1gua&aua&b)

5e2u2a2/4~eiua2
nu2a&au2a&b6e2 iua2

mua&au2a&b

6e2 iua2
tu2a&aua&b1eiua2

gua&aua&b , ~14!

where, as before, we have assumed orthogonality, and
u2a2!1 and the6 signs depend on the outcome of the B
measurements. If we choosef52ua25p/2, thenR(Z^ Z,
2p/2) is implemented, a gate that can easily be shown to
locally equivalent to aCNOT.

Once again the probability of success is nonunit, and t
options are possible for smalla: repeated iterations of the
gate for an incremental value off can be used to build up to
a total angle ofp/2 with a high probability of success via th
quantum zeno effect or we can use gate teleportation to g
antee success. To achieve the second gate teleportatio
must now nest the two-qubit gate inside two teleporters
shown schematically in Fig. 8~b!. Only X andZ corrections
are required.

Superposition gate. To complete our set of gates we no
describe how to implement a rotation ofp/2 aboutX, i.e.,
R(X,p/2). This gate takes computational basis qubits in
the diagonal, or superposition, basis and is locally equiva
to a Hadamard gate. The gate is shown schematically in
9~a!. It is similar to theZ rotation except that now the dis
placement followed by Bell state measurement on the q
and one of the Bell state modes is replaced by the be
splitter interaction used in theR(Z^ Z,2p/2) gate, followed
by single~as opposed to Bell-! cat measurements on the ou
put modes from the beam splitter. The interaction produ
the following output state from an arbitrary input:
9-3
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FIG. 2. Schematics of implementing theR(Z^ Z,2p/2) gate.~a! The bare gate; its operation is near deterministic for a sufficiently sm
value ofu2a2 where the reflectivity of the beam splitter isd5cos2(u/2). Repeated application of this gate can build up to ap/2 rotation with
high probability.~b! The teleported gate; its operation is deterministic. Determinism is achieved by preparing the entangled resource
and only applying the gate to the qubits when the resource is available. In the diagrams,B represents a cat-Bell measurement.
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CaCbUBS~mu2a&1nua&)

5e2u2a2/4$~eiua2
m6e2 iua2

n!u2a&

1~6e2 iua2
m6eiua2

n!ua&%, ~15!

whereCa andCb represent the cat state projections. The6
signs depend on the outcome of the cat state measurem
Using X and Z gates we can correct all the6 ’s to 1 ’s.
Choosing 2ua25p/2 then implementsR(X,p/2). As be-
fore, the gate is probabilistic for smalla, working with a
probability of e2u2a2/2. To achieve near determinism usin
the quantum Zeno effect, one would replace the beam spl
interaction @within the dashed box of Fig. 3~a!# with the
R(Z^ Z,2f) gate of Fig. 3~a!, iterated sufficient times to
give f5p/2 with high probability of success. The rest of th
gate remains the same and will work deterministically.
before, we can also implement the gate deterministically
ing gate teleportation as depicted in Fig. 3~b!. Only X andZ
corrections are required.

The gatesR(Z,u), R(X,p/2), andR(Z^ Z,2p/2) form
a universal set. An arbitrary single-qubit rotation can be c
structed fromR(Z,c)R(X,p/2)R(Z,f)R(X,2p/2) and, as
commented before,R(Z^ Z,2p/2) is locally equivalent to a
CNOT. This completes our basic discussion. In the followi
section we consider how the required cat and Bell state m
surements can be performed.
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III. CAT-BASIS MEASUREMENTS

We define a cat-basis measurement to be some proce
that projects the state of an optical mode onto one of the
states (1/A2)(u2a&6ua&). If our input state consists only o
an arbitrary superposition of these two states then cat-b
measurement can be achieved by simply counting the p
tons in the mode. An even number of detected phot
indicates measurement of the state (1/A2)(u2a&1ua&), and
an odd number of photons indicates measurement
(1/A2)(u2a&2ua&). Of course, this will require very high
quality photon detectors which can reliably distinguishn
from n11 photons whenn;a2.

The cat states can also be distinguished to some exten
homodyne detection looking at the imaginary quadratu
Cat states display fringes in the imaginary quadrature wh
arep/2 out of phase between the plus and minus cats@13#.
Therefore a measurement result that falls close to a fri
maximum can be identified with one or other cat with hi
probability. This technique gives inconclusive results so
of the time ~i.e., close to the fringe crossings! but could
prove useful for initial experimental demonstrations.

In order to perform a Bell basis measurement on t
modes~say, modesa andb) containing coherent-state qubi
we can employ the following procedure@14,15#. Allow the
two qubits to interfere at a 50:50 beam splitterBa,b
5exp@(p/4)(2a†b1ab†)#, wherea andb are the annihila-
9-4
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FIG. 3. Schematics of implementing theR(X,p/2) gate.~a! The bare gate; its operation is near deterministic for a sufficiently small v
of u2a2. Replacement of the dashed section with the repeated application of the gate of Fig. 8~a! can build up to aR(X,p/2) rotation with
high probability.~b! The teleported gate; its operation is deterministic. Determinism is achieved by preparing the entangled resource
and only applying the gate to the qubits when the resource is available. In the diagrams,B represents a cat-Bell measurement, andC
represents a cat measurement.
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tion operators for modesa andb. Then use photon counter
to measure the number of photons in each mode. We
then identify the following four possible results:~1! an even
number of photons in modea and zero photons in modeb,
~2! an odd number of photons in modea and zero photons in
modeb, ~3! zero photons in modea and an even number o
photons in modeb, or ~4! zero photons in modea and an odd
number of photons in modeb; corresponding to each of th
following four Bell-cat states:~1! uB00&5(1/A2)(u2a,2a&
1ua,a&), ~2! uB10&5(1/A2)(u2a,2a&2ua,a&), ~3! uB01&
5(1/A2)(u2a,a&1ua,2a&), or ~4! uB11&5(1/A2)(u2a,
a&2ua,2a&t). Note that there is also a fifth possibility o
detecting zero photons in both modesa and b, which indi-
cates a failure of the measurement. Fortunately, this oc
with probability of only ;e2a2

. The preceding discussio
assumed that we were only differentiating between sta
within the computational basis. However, the gates discus
in Sec. II involved moving short distances outside this ba
Nevertheless, we will show in the following that these typ
of measurements are sufficient to implement our gates.

As an example, we will examine the use of this proced
for the Bell state measurement required when perform
R(Z,u). In order to perform this rotation, we must use t
displacementD( iu/4a) on the qubituQ& in modea and ap-
pend the Bell state (1/A2)(u2a,2a&1ua,a&) in modesb
andc. When modesa andb meet in the beam splitter use
for the Bell state measurement, their interference is inco
plete and the resulting state is

uQD&5Ba,bDaS iu

4a D uQ&uB00&

5me2 iu/4u2A2a1 id,2 id,2a&

1me2 iu/4u id,A2a2 id,a&

1neiu/4u id,2A2a2 id,2a&

1neiu/4uA2a1 id,2 id,a&, ~16!
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where d5u/4A2a. Because the qubit in modea was cor-
rupted by the displacement operator, now it is possible
detect photons in both modesa and b simultaneously. We
now detectna photons in modea andnb photons in modeb,
and this measurement leaves modec in the pure state given
by

^nau^nbuQD&5
1

A2
expS 2a22

u2

32a2D 1

Ana!nb!
~A2a!na1nb

3@me2 iu/4~21!na1nb~12 i e!na~ i e!nbu2a&

1me2 iu/4~ i e!na~12 i e!nbua&

1neiu/4~21!nb~ i e!na~11 i e!nbu2a&

1neiu/4~21!nb~11 i e!na~ i e!nbua&], ~17!

wheree5u/8a2, and we have ignored the normalization fa
tor due to the nonorthogonality of the computational ba
states. This state may need to be corrected withX or Z op-
erations and properly normalized before we obtain the fi
result of the teleportation, which we will calluQna ,nb

&. We
can see that this state is close to our goal by examining
limit when e!1. In this case we are almost certain to me
sure one ofna or nb to be zero. The number of photons in th
other mode is given by a probability distribution which
almost exactly equal to the Poisson distribution with a me
of 2a2. This leaves us with the state

'me2 iu/4~12 ine!u2a&1neiu/4~11 ine!ua& ~18!

'me2 i [(u/4)1ne] u2a&1nei [(u/4)1ne] ua& ~19!

5RFZ,
u

4 S 11
n

2a2D G ~mu2a&1nua&). ~20!
9-5
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FIG. 4. Here we plot ~a! the probability to detect the pairna , nb when performing theR(Z,p/2) rotation, and ~b! F
5u^Qna ,nb

uQgoal&u2 as a function ofna andnb . We use the worst case input qubit and ana52.
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To evaluate the effectiveness of this procedure with
making such severe approximations, we examineuQna ,nb

& in

Fig. 4, where we calculate the fidelityu^Qna ,nb
uQgoal&u2 and

the probability to measurena and nb . We usea52, the
input qubit uQ&5(1/A2)(u2a&1ua&), and a rotation angle
u5p/2. These choices foruQ& and u give the worst case
scenario, in which we obtain the lowest fidelity wit
uQgoal&5R(Z,u)uQ&. Because theZ operation is equivalen
to R(Z,p), we can reach any angle by usingZ andR(Z,u),
where u<p/2. One can see thatu^Qna ,nb

uQgoal&u2 is very
close to one in the regions where we are most likely to de
the pairna , nb .

In order to compute the overall fidelity of this operatio
we first construct the mixed stater representing the output o
the teleportation operation for all measurement results,

r5 (
na50

`

(
nb50

`

P~na ,nb!uQna ,nb
&^Qna ,nb

u. ~21!

The fidelity is then given by
04231
t

ct

F5^QgoaluruQgoal&. ~22!

We plot F(a) for u5p/2 andF(u) for a52 in Fig. 5. We
can obtain a fidelity of 0.99 or above for any desirable an
if we can produce qubits witha53. A second strategy
would be to limit our operation ofR(Z,u) to small angles.
Larger rotations could be built from repeated applications
a high fidelity gate. For example the fidelity foru5p/16 is
F50.999 70 whena52. Repeating this eight times imple
mentsR(Z,p/2) with a fidelity of F50.999 70850.997 56.
Compare this with the fidelity of 0.980 91 when performin
R(Z,p/2) in a single step.

Yet a third strategy emerges if we are willing to opera
the logic gate in a nondeterministic fashion, in which t
gate sometimes fails and must be repeated with a new c
of the qubit. Qubits can be protected from destruction if
use the gate teleportation scheme of Ref.@12# as pictured in
Fig. 1 and discussed in the preceding section. We can
simply discardR(Z,u) attempts for which the measuremen
of na and nb yield low values for the produc
u^Qna ,nb

uQgoal&u2. Suppose we choose a setS of (na ,nb)
e worst

FIG. 5. Here we plot the fidelity of our procedure for performing theR(Z,u) rotation as a function ofa ~usingu5p/2) and as a function

of u ~usinga52). The dots show the fidelity after the teleportation and the curve shows the fidelity before teleportation. We use th
case input qubit.
9-6
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QUANTUM COMPUTATION WITH OPTICAL COHERENT STATES PHYSICAL REVIEW A68, 042319 ~2003!
pairs which are accepted as successful operations of the
gate, andPS is the probability to measure a memberSduring
the teleportation. The total output of the logic gate~when it
succeeds! is then the mixed state

rS5
1

PS
(

(na ,nb)PS
P~na ,nb!uQna ,nb

&^Qna ,nb
u. ~23!

We can now operate this logic gate with a fidelity which
very close to one. Of course, this is limited by the maximu
possible value ofu^Qna ,nb

uQgoal&u2 ~0.999 999 9 fora52

andu5p/2 with the worst case qubit!. Suppose we insist on
performingR(Z,u) with a fidelity of 0.99. In Fig. 6 we plot
PS as a function ofa under this restriction. This allows us t
make estimates of the number of Bell-cat states require
perform a singleR(Z,u). In the gate teleportation schem
each attempt to performR(Z,u) requires two Bell-cat states
so on an average we need 2/PS Bell cats. Because there is
50% probability of performingR(Z,2u) during the gate
teleportation, we need additional 2/PS Bell cats to correct
this, and becauseZ commutes withR(Z,u) it is not neces-
sary to performZ after each teleportation; instead we c
wait and perform only oneZ after all teleportations are com
plete. This makes a total of 4/PS11 Bell cats on average, o
8.88 fora51, or 5.78 fora52.

Which of these three strategies,~i! using very largea, ~ii !
using only smallu, or ~iii ! operating the gate probabilist
cally and using gate teleportation, is ultimately most efficie
is a complicated question that will depend on the constra
of Bell-cat production and photon counters. We hope to
dress this further in future research.

The other gates of the preceding section can similarly
implemented by replacing the projective measurements w
photon counting measurements. In this way we are abl
implement a universal set of quantum gates on the coher
state qubits via linear optics, photon counting, and cat
Bell-cat state resources. We now examine how the cat
Bell-cat states may be produced.

IV. THE GENERATION OF SMALL SCHRO ¨ DINGER
CAT STATES

Let us now turn our attention to how small amplitud
Schrödinger cat states required for our universal quant

FIG. 6. Here we plotPS(a), the probability that our implemen
tation ofR(Z,u) succeeds, given that we demand it performs wit
fidelity of 0.99. Here again we useu5p/2 and the worst case qubi
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computation schemes can be realized using technologies
rently available or likely in the near future. More specifical
how do we generate states of the form

uC6&5
1

AN6

@ u2a&6ua&], ~24!

where theN65262e22uau2. As we have seen, the ampl
tude of these cat states need not be large (a'2 is sufficient!.
An elegant proposal was made by Daknaet al. @16# ~see also
Ref. @17#! for generating such states by means of a con
tional measurement on a beam splitter. Their scheme is
picted in Fig. 7 and works as follows: A squeezed state of
form uCsq&5(12ulu2)1/4(n@A(2n)!/n! #(l/2)nu2n& ~with
squeezing parameterl) and a vacuum stateu0& are com-
bined on a variable transmissivityu beam splitter. On the
second output port from the beam splitter, a definite pho
number measurement, which can be modeled by the pro
tor um&^mu, is performed giving a resultm. The conditional
state of the remaining output mode is then

uCm&5
1

ANm
(

n
cn,mS lcos2u

2 D (n1m)/2

un&, ~25!

with cn,m5(n1m)! @11(21)n1m#/@An!G(@(n1m)/2#
11)# and Nm5(ncn,m

2 ul cos2u/2un1m. The mean photon
number for Eq.~25! is

^n̄&5
1

Nm
(

n
ncn,m

2 Ul cos2u

2 Un1m

. ~26!

Equation~25! can be broken into two cases: the state
sulting from an evenm result and the state from an oddm
~which will not be considered here!. Form even, Eq.~25! has
only even photon numbers and can be written in the sim
fied form

FIG. 7. Schematic diagram for the generation of Schro¨dinger-
like cat states by means of a conditional photon number meas
ment on a beam splitter. A single-mode squeezed state is used
input into one port of a variable reflectivity beam splitter with th
other input being a vacuum state. A definite measurement om
photons~with m.0) on one output port of the beam splitter pr
pares the required state to a good approximation.
9-7



RALPH et al. PHYSICAL REVIEW A 68, 042319 ~2003!
FIG. 8. Plot of the fidelity of the state, Eq.~25!, compared with Eq.~24! and mean photon number of Eq.~25! vs l cos2u for ~i! m
50, ~ii ! m52, ~iii ! m54, ~iv! m56, and~v! m510.
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uCm&5
1

ANm
(

n

~2n1m!! S 2 D
S n1

m

2 D !A~2n!!

u2n&.

~27!

For l cos2u small, this expression can be further appro
mated as

uCm&'u0&1l cos2u
11m

A2
u2&1•••. ~28!

Here we observe that asm increases, so does the populati
in the u2& ~and higher! states compared with them50 situ-
ation. Thus for smalll cos2u, the mean photon number in
creases asm increases. As a cautionary note, we must e
phasize that the scheme here requires the detection o
exact number of photons to generate the approximate sin
mode cat state. Currently, detectors are not that efficient
good progress is being made.

Now let us determine how good an approximation, E
~25!, is with the Schro¨dinger cat states given by Eq.~24!.
This can be achieved by calculating the overlapF
5u^C1uCm&u2 between the two states. To this end, we p
in Fig. 8 both the mean photon number of the state of
~25! and the fidelity for various evenm. It is interesting to
observe that a good fidelity (.95%) can be achieved fo
quite a range ofl cos2u andm. In fact, for lcos2u<0.3 the
fidelity between the two states we are comparing exce
99%. However, to achieve a cat state with a moderate m
photon number we either needm large orl cos2u>0.5. Asm
increases, the overlap between Eqs.~24! and ~25! for the
same mean photon number increases. There is a pote
regime where Eq.~25! has moderate mean photon numb
and a high overlap with the state in Eq.~24!. However, there
is a trade-off in that the initial probability of generating th
state in Eq.~25! with l fixed decreases asm increases. The
probability of successfully generating the state in Eq.~25! is
given by
04231
-

-
an
le-
ut

.

t
.

ds
an

tial
r

Pm5A 12l

12l2cos4u
F l sin 2u

4~12l2cos4u!
G

3(
l 50

m/2
m!

~m22l !! l ! 2~2l cos2u!2l
~29!

and is shown in Fig. 9 for variousm. As m increases, the
probability of successfully generating our required state s
nificantly decreases but the success probability is reason
for l50.6 with eitherm52 or 4. With such parameters w
can generate a Schro¨dinger cat like state with a fidelity
greater than 95% with a probability of success greater t
1%.

Let us now determine if the Dakna cat state can be use
generate the entangled cat stateua&ua&1u2a&u2a& re-
quired in the teleportation step of the various fundamen
gates. Such a state can be generated by combining it with
vacuum state on a 50/50 beam splitter~here we need to
choose the amplitudeb of the original single-mode cat to b
A2a). Using the Dakna state cat as the input to this be
splitter, we plot in Fig. 10~a! the overlap between the resul
ing two mode-state and the two-mode entangled state.
observe that for bothm52,4 we have the fidelity exceedin
95% for a wide range of parameters. This indicates that
very good approximation we can generate the two-mode
tangled cat state required for our basic gate operations. G
this entangled resource we can now investigate one such
operation. We consider the operation of theR(Z,f) gate
illustrated in Fig. 1 using the Dakna cat state to generate b
the entangled resource and the stateuQ&. In Fig. 10~b! we

FIG. 9. Plot of the probability of generating Eq.~25! vs l cos2u
for l50.6 with ~i! m52, ~ii ! m54, and~iii ! m56.
9-8
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FIG. 10. Plot of the fidelity for the~a! Dakna two-mode cat state vsua&ua&1u2a&u2a& and~b! the stateeifua&1e2 ifu2a& resulting
from the action of the gateR(Z,f) with f5p/32 vsl cos2u for ~i! m50, ~ii ! m52, and~iii ! m54.
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show the fidelity for performing the gate operation to tran
form the stateuQ& to eifua&12 ifu2a& for small f. These
results show the feasibility of performing, in principle, e
periments to demonstrate quantum logic.

V. ERROR CORRECTION

A viable quantum computation scheme must be capabl
incorporating error correction. We now briefly discuss t
issue of error correction. The major sources of error in
scheme are expected to be, in order of increasing sig
cance,~i! errors due to nonorthogonal code states,~ii ! errors
due to moving outside the qubit basis,~iii ! errors due to
random optical phase shifts, and~iv! photon loss.

Sources~i! and~ii ! are equivalent. As discussed in Sec.
we could use the cat states as orthogonal code states. T
states are a single-qubit gate away from the coherent-s
code. Such a gate must be nonunitary and we have giv
method based on teleportation to achieve this. Single-q
manipulations in the cat state basis require us to move
side the qubit basis and rely on teleportation to project b
into the computational basis. We have shown that errors
troduced in this process due to nonorthogonality of cohe
states are exponentially small in amplitude and in any c
are heralded by the teleportation process itself. If we see
error, we can repeat the teleportation process which, as
errors can be made so small, is very likely to succeed aft
couple of trials. We will thus not consider these sources
error further.

Optical phase-shift errors will occur due to timing erro
between different qubits and between qubits and the lo
oscillator. Such errors may arise from path-length fluct
tions in the circuit. These can be monitored and correc
through classical optical interferometric techniques. Su
locking techniques are a mature technology and can be
tremely precise. We will assume that sufficient classical c
trol is exercised to make these errors negligible.

Photon loss error, however, is a more serious problem
it is never heralded and increases quadratically witha. In
this case we must turn to error correction coding to mitig
the effect. Photons are lost from a coherent state at Poi
distributed times at a rate determined byg^a†a&, whereg is
the single-photon loss rate. Obviously, if a photon is lost,
system has one less photon. The effect of photon loss fro
pure state is thus given byuc&→auc&, wherea is the Bose
annihilation operator.
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The Poisson distributed nature of photon loss means
even when no photons are lost from a coherent state, the
must change. Not seeing a photon emitted up to timet indi-
cates that the state is increasingly likely not to contain a
photons at all, and thus we must continuously adjust
description of the state to reflect this knowledge.

We can put the description of photon loss on a more f
mal basis by asking for the conditional state of the syste
given an entire history of photon loss events. This is a list
times $t1,t2,•••,tn<t% at which photons are lost. Th
~un-normalized! conditional state@18# is

uc~ tut1 ,t2 , . . . ,tn!&

5gn/2e2g(t2tn)â†â/2âe2g(tn2tn21)â†â/2

3â•••e2g(t22t1)â†â/2âe2gt1â†â/2uc~0!&. ~30!

The norm of this unconditional state is the probability f
this history.

If we start in the coherent stateua& and lose no photons
up to timet, the conditional state isuka& wherek5e2gt/2.
The important fact here is that the state remains a cohe
state even though the amplitude is decreased. This kin
error takes us out of the code space, but can be correcte
teleportation. Consider the state

uC&5~mu2ka&11nuka&1)~ ua,a&231u2a,2a&23).
~31!

If we mix modes 1 and 2 on a beam splitter, and counn
Þ0 photons in mode 1 and 0 photons in mode 2, the con
tional state of mode 3 is found to bemu2a&1nua&. If k is
small enough, this will occur with high probability. In fac
letting k512e, the probability for this event is very clos
to

P~n1Þ0,n250!5e2e2uau2/2, ~32!

the teleportation projects us back into the qubit basis w
high probability as it is most likely thatn1 is near 2uau2.
Failure of the protocol is heralded byn150,n2Þ0 and thus
the gate can be repeated if necessary. The dominant ter
the failure probability is approximately givene22uau2. In
9-9
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fact, this resetting of the amplitude happens as a matte
course, in all the teleportation-based gates we have
cussed. Thus it may not be necessary to explicitly introd
additional gates for this purpose.

If a photon is lost from a coherent state, the state is
changed up to a phase asaua&5aua&, which when normal-
ized produces only a phase shift given by the phase oa
@19#. This means that, in the qubit code space, photon los
equivalent to an erroneous application of theZ gate, which
induces a sign-flip error. A sign flip error may be convert
into a bit-flip error by performing a Hadamard gate a
working in the conjugate basisu6&5ua&6u2a&, ~that is,
the cat states!. To prepare a code state to protect sign-fl
errors, we thus first prepare the standard three-qubit c
@20#,

u0&L5u2a,2a,2a&, u1&L5ua,a,a&, ~33!

and then perform a Hadamard gate on each mode separ
Sign-flip errors will now appear as bit-flip errors and can
corrected using the standard three-qubit circuit@21#.

The encoding is easily done in linear optics by an ext
sion of the technique previously discussed for producing B
entanglement. Two beam splitters suffice to implement
transformation

~mu2b&11nub&1)u0&2u0&3

→S mU2b

A3
L

1

U2b

A3
L

2

U2b

A3
L

3

1nU b

A3
L

1

U b

A3
L

2

U b

A3
L

3
D .

~34!

At the first beam splitter, with reflectivity amplitude of 1/A3,
modes 1 and 2 are combined, subsequently, modes 2 a
are combined at a 50:50 beam splitter. Thus by choos
b5A3a we can immediately prepare the entangled st
mu2a,2a,2a&1nua,a,a&.

Any logical operation may be performed on an arbitra
state in the code space,

uc&L5mu2a,2a,2a&1nua,a,a&, ~35!

by extending the teleportation gates for the single-mode c
to the multimode case. Displacements can easily be done
one mode at a time. The teleportation steps in the gates
require a six-mode entangled resource of the form

ua,a,a,a,a,a&1u2a,2a,2a,2a,2a,2a&. ~36!

Such a state could be prepared by an obvious generaliza
of the method used in Eq.~34!, however, the amplitude o
the initial cat state is becoming uncomfortably large. We n
show how to avoid this problem.

Consider the resource state

u2a,2A2a&1ua,A2a&, ~37!

which can be produced from a cat state of amplitudeA3a by
splitting it on a beam splitter of reflectivity 1/A3. Suppose
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this state is used as the entanglement in a teleportation
tocol, with the smaller amplitude arm being mixed with th
input state and measured. The result of the teleportatio
the transformation

mu2a&1nua&→mu2A2a&1nuA2a&, ~38!

where we have assumed that the necessary bit-flip and s
flip corrections have been made. That is, the state is am
fied while preserving the superposition. If the amplified st
is then split on a 50:50 beam splitter, an entangled stat
the same amplitude as the original will be produced. By
peating this process many times, multimode encoded st
or entangled resource states can be produced determi
cally without the need to produce ‘‘large’’ cats.

Finally, we note that the preceding analysis has igno
the effect of gate errors due to photon loss. For the ph
rotation gate and the control phase gate@R(Z,u) and R(Z
^ Z,2f)], the effect of photon loss is similar to that dis
cussed above for the propagating qubit, that is, it produ
sign flips in the computational basis. In reaching this conc
sion we have considered loss events occurring, to the
source states, at the measurement site and, at the disp
ment. Hence errors in these gates can be corrected by
code discussed above. However, photon loss events in
superposition gate@R(X,p/2)# can produce bit flips in the
computational basis if they occur at the measurement site
a result, protecting a general circuit will require error corre
tion for both sign flips and bit flips. This can be achieved
using the standard nine-qubit code@21# which can be imple-
mented by a straightforward generalization of the techniq
outlined in the preceding discussion.

It is likely that the application of more efficient codes@22#
and optimization, in particular, exploiting the rarity of bit-fli
vs sign-flip errors in a general circuit, can reduce the co
plexity of the required error correcting codes. We leave
investigation of this and the general question of fault tol
ance levels for future research.

VI. CONCLUSION

In this paper we have presented a quantum computa
scheme based on encoding qubits as coherent states of
absolute amplitude but opposite sign. The optical netwo
required to manipulate the qubits are conceptually sim
and require only linear interactions and photon counti
provided coherent superposition ancilla states are avail
~cat states!. We have shown that qubits with amplitudeuau
52 and resource cat states of amplitudeuau5A6 would be
sufficient. Accurate photon counting measurements of up
about ten photons would also be necessary.

We have discussed how the cat-state resources coul
produced from squeezed sources, linear interactions,
photon counting in a simple scheme. This scheme app
capable of producing states suitable for proof of princip
experiments. It seems likely though that more sophistica
schemes would be necessary for scalable systems.

The power of the scheme stems from the ability to gen
ate entangled states and make Bell basis measurements
9-10
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simple linear interactions. This means teleportation protoc
of various forms can be implemented deterministically
great effect.

A disadvantage of the scheme is that the multiphoton
ture of the qubits makes them more susceptible to pho
loss than single-photon qubits. However, we have sho
how error correction can be employed in a straightforw
way to counter this effect.

Being a simple optical system, the decoherence and c
trol issues are well understood and with sufficient effort
alistic evaluations of the resources and precision needed
be made. This level of understanding is not a feature of
quantum computer candidates. In addition to the long te
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goal of quantum computation, nearer term applications
quantum communication protocols appear possible.
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