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Clifford group, stabilizer states, and linear and quadratic operations over GK2)
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We describe stabilizer states and Clifford group operations using linear operations and quadratic forms over
binary vector spaces. We show how tigubit Clifford group is isomorphic to a group with an operation that
is defined in terms of a (2+1)X(2n+1) binary matrix product and binary quadratic forms. As an applica-
tion we give two schemes to efficiently decompose Clifford group operations into one- and two-qubit opera-
tions. We also show how the coefficients of stabilizer states and Clifford group operations in a standard basis
expansion can be described by binary quadratic forms. Our results are useful for quantum error correction,
entanglement distillation, and possibly quantum computing.
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[. INTRODUCTION binary linear algebra, by means of symplectic linear opera-
tions and quadratic forms.

Stabilizer states and Clifford group operations play a cen- We use the following notation for Pauli matrices:
tral role in quantum error correction, quantum computing,
and entanglement distillation. A stabilizer state is a state of 10
an n-qubit system that is a simultaneous eigenvector of a T00= 700907 | 5 1]
commutative subgroup of the Pauli group. The latter consists
of all tensor products ofi single-qubit Pauli operations. The
Clifford group is the group of unitary operations that map the
Pauli group to itself under conjugation. In quantum error
correction these concepts play a central role in the theory of
stabilizer code$1]. Although a quantum computer working
with only stabilizer states and Clifford group operations is
not powerful enough to disallow efficient simulation on a
classical computel2,3], it is not unlikely that possible new
guantum algorithms will exploit the rich structure of this 011= 0y=
group. In Ref[4], we also showed the relevance of a quo-
tient group of the Clifford group in mixed state entanglement
distillation. T =ioy=

In this paper, we link stabilizer states and Clifford opera-
tions with binary linear algebra and binary quadratic forms
[over GH2)]. The connection between multiplication of
Pauli group elements and binary addition is well known as i
the connection between commutability of Pauli group opera-
tions and a binary symplectic inner prodyd{. In Ref.[4]
we extended this connection to a link between a quotient T @ @7 @)
group of the Clifford group and binary symplectic matrices a v Un'n’
(there termedP orthogonal. In this paper we give a binary

characterization of the full Clifford group, by adding qua- of Pauli matrices with an additional complex phase{ 15,

dratic forms 10 the _symplect!c operations. In addition, WE.’—l,—i}, an arbitrary Pauli group element can be represented
show how the coefficients, with respect to a standard basis, ".’s e on .

- . . dsi°(—1)¢r,, whered,eeZ, andueZ; . The separation
of both stabilizer states and Clifford operations can also be]c s ande. rather than havind? with 7 s deliberate
described using binary quadratic forms. Our results also lead & 9 Y E La

to efficient ways for decomposing Clifford group operations"’md will S|m_pl|fy_ formulas below._Throughout this pa(sp_ear ex
in a product of two-qubit operations ponents ofi will always be binary. As a resulf 1?2

=i%%%(—1)%%, Multiplication of two Pauli group ele-
Il. CLIFEORD GROUP OPERATIONS AND BINARY ments can now be translated into binary terms in the follow-
LINEAR AND QUADRATIC OPERATIONS Ing way.

_ _ _ o Lemma 11f a;,a,e 73", 8,,8,,€1,6,€ 7, and 7 is de-
In this section, we show how the Clifford group is iso- fined as in Eq(1), then

morphic to a group that can be entirely described in terms of

001~ T01= Ox—

0 1
1 0/

010~ T10— 0z—

1 0
0 -1}

0 —i

i o]
0 1
-1 0

We also use vector indices to indicate tensor products of
Jauli matrices. 1b,we 75 anda=[Y]e 73", then we denote

a U1W1® ® VW

If we define the Pauli group to contain all tensor products

01— 1)eir, i %2(— 1)e2r, =i O12( — 1)c1er,
1 2 12
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810= 81+ 85, =CUC, Or d=Vyiag(CTUC) [With Vgiag(X) being the vector
T with the diagonal elements f].
€= €11 €2+ 610t aUay, Now, givenC, d, andh, defining the Clifford operatio®,
s the imagei °2(—1)27,, of i°(—1)“7, underX—QXQ'
A= a1y, can be found by multiplying those operatdfs(—1)"r,
0, Iq for which b, ,=1. By repeated application of Lemma 1, this
= 0, 0, yields
.. . " . . . b2=Cb1,
where multiplication and addition of binary variables is
modulo 2. _ 3 8,=5,+dTby,
These formulas can easily be verified fo=1 and then
generalized fon>1. The termajUa, “counts” (modulo 2 €,=€,+h"b;+ bl P, CTUC+ddTb, + 8,d"b,

the number of positionk wherewy,=1 andv,,=1, with
where Pjows(X) is the strictly lower triangular part oK.

U1 U2 These formulas can be simplified by introducing the follow-
a,; = and a,= , . .
Wy W, ing notation:
as only these positions get a minus sign in the following = c 0
derivation: C= dr 1
TUlkwlkTUZkWZkzo-Zlk lek ;ZKU\;VZK —|(u o0
vikto W1+ W U: 0 1 ’
=(— 1)w1kv2k021k ZKO.X 1k T Wok
:(_1)W1k02k701k+”2k*W1k+W2k' H:[h}
0 1
A Clifford group operationQ, by definition, maps the
Pauli group to itself under conjugation: — by — b,
. b1: y b2: y
QrQ=i%(-1)r, %1 %
for somesd, €, b, function ofa. TEl=i‘$11'bl, 752=i527b2

BecauseQr, 7,,Q"=(Qr,, Q") (Q7,,Q"), itis sufficient .
to know the image of a generating set of the Pauli group td//é then get the following theorem.

know the image of all Pauli group elements and defn@p ~ Theorem 1Given_€ andh, defining the Clifford opera-
to an overall phageIn binary terms it is sufficient to know tion Q as above, the image undér-QXQ' of (—1)“17, is
the image ofrbk, k=1,...nwhereb,, k=1,... nforma (- 1)62732 with
basis ofZ3". -
For this purpose it is possible to work with Hermitian b,=Cb,,
Pauli group elements only as the image of a Hermitian ma- L o
trix under X—QXQ" will again be Hermitian(and the im- €2=€,+h'b;+b]Pous(CTUC)b;.
ages of Hermitian Pauli group elements are sufficient do de- . _
rive the images of non Hermitian onesin our binary With this theorem we can also compose two Clifford op-

language Hermitian Pauli group elements are described aserations using the binary language. To this end we have to
find the images under the second operation of the images

i’°‘TUé‘(—1)57-a under the first operation of the standard basis vectors. This
. _ can be done using Theorem 1:
asa Ua counts(modulo 2 the number ofr;; in the tensor Theorem 2GivenCy, hy, C,, andh,, defining two Clif-

productr%. For 74, is the only non-Hermitiaitactually skew  ¢5,q operationsQ, and Q, as above, the producDs
Hermitian of the four = matrices and multiplication with — _ . — —
makes it Hermitian. =Q,Q; is represented b¢,; andh,, given by

Now we take the standard basisZﬁ‘” e, k=1,...n Coi=C.C.
wheregy is the kth column ofl,,, and consider the gener- A e
ating set of Hermitian operators,, . These correspond to
single-qubit operations, and o,. We denote their images
underX—QXQ" by i%(—1)"7r; and assemble the vectors  The next question is, which instances®andh (or C, d,

c, in a matrixC (with columnsc,) and the scalard, andh,  andh) can represent a Clifford operation? The answer is that
in the vectorsd and h. As the images are Hermitiam, C has to be a symplectic matrpand d has to be equal to

ho1=hy+ C{hy+ Vyiag(C1Piows(C3UC,)Cy)
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Vdiag(CTUC) as abovg If we defineP to beU+UT, we tors 7, _representing one-qubit operationg and o,. One
call a matrix symplectic iCTPC=P. One way to see th&Z  can easily verify that-, is represented by

has to be symplectic is through the connection of the sym-

plectic inner productb™Pa with commutability of Pauli C=lz,,

group elements: 2
h=Pa.

T
TaTp=(— 1)b Pa7'b7'a-

Second, note that Clifford operations acting on a subset

Since the mapX—QXQ' preserves commutabilitg andb aC{l1,...n} cqnsi.st pf a §ymplectic matrix on thg rows
have to represent commutable Pauli group elemeint®g ~ @nd columns with indices iU (a+n), embedded in an
=0) if and only if Ca and Cb represent commutable ele- identity matrix[that is, with ones on position€, =1, k
ments pTCTPCa=0). This implies thalC has to be sym- €aU(a+n) andCy =0 if k#| andk or| & aU(a+n).]
p|ectic_ Also hk:O if kEE aU(a-l— n).

That symplecticity is also sufficient was first implied by ~ Third, qubit permutations are represented by
Theorem 1 of Ref[4] (almost, as this result was set in the

context of entanglement distillation where the signplay C= I O}
no significant roleé The idea is to give a constructive way of o IIy
realizing the Clifford operatior@ given by C andh. This h=0

can be done using only one- and two-qubit operations, which
makes the result also of practical use. In Sec. IV we give two herell is a permutation matrix
such decompositions that are more transparent than the & P " : .
Fourth, the conditional not GNOT operation on two qu-

sults of Ref.[4]. its is represented b

First, to conclude this section, we complete the binarf) P y
group picture by a formula for the inverse of a Clifford group
element, given in binary terms.

Theorem 3GivenC; andE, defining a Clifford opera- C=
tion Q, as above, the invers@2=Q1‘1 is represented by

O O o

o R B
Bk =, O O
L O O O

0

T
PC,P O h=0.

C,=C;'=
2 dipclp 1

d'ct 1

c;t o}

Fifth, by composing qubit permutations aodoT opera-
tions on selected qubits any linear transformation of the in-
dex spacéx)— |RX) can be realized, whepee 75 labels the

These formulas can be verified using Theorem 2. Finallnytar?darOI .basis sta}téx): [X)®- - ®_|Xn> and.Re:ZQX” is
note that since the Clifford operations form a group and thén invertible matrix(modulo 2. This operation is repre-

matricesC are simply multiplied when composing Clifford sented in the symplectic picture by

F2 = E_ TF'{' Vdiag(E_ Tplows( ET%) E_ 1)-

group operations, the matric&s with C symplectic andd c RT O

=Viiag(C'UC) must form a group of (@+1)x(2n+1) “l o R/

matrices that is isomorphic to the symplectic group of 2 3)
X 2n matrices. This can be easily verified by showing that h=0.
Vdiag(clcguczcl):C-{Vdiag(c-lz—ucz)+Vdiag(CIUC1)- The qubit permutations andNOT operation discussed

above are special cases of such operations as qubit permuta-

This follows from the fact thatCTUC+U is symmetric tions can be rf-%resented [ag—[I1x) and thecNoT opera-
whenCTPC=P andx"Sx=XVgiag(S) WhenSis symmet- ~ tion asp)—|[1 1]x). _ _
ric. In a similar way it can be proved that Decomposing a ggneral Imea@r transformatidimto cNOT
Vdiag(C_TUC_l):C_TVdiag(CTUC)- operations and qubit permutations can be dor_1e by Gauss
elimination (a well-known technique for the solution of sys-
tems of linear equationsin this proces® is operated on on
the left by cNOT operations and qubit permutations to be
gradually transformed in an identity matrix. The process op-
In this section we consider a selected set of Clifford grouperates orR, column by column, first moving a nonzero ele-
operations and their representation in the binary picture ofment into the diagonal position by a qubit permutation, then
Sec. Il zeroing the rest of the column NOT operations. The in-
First, we consider the Pauli group operatidQs-7, as  verses of the applied operations yield a decompositioR. of
Clifford operations. Note that a global phase cannot be rep- Sixth, we consider Hadamard operations. The Hadamard
resented as it does not affect the acton» QXQ'. To con-  operation on a single qub(D=H=(1/\/§)[} ,i] is repre-
structC andh we have to consider the images of the operasented byC=[{ §] andh=0. A Hadamard operation on a

Ill. SPECIAL CLIFFORD OPERATIONS
IN THE BINARY PICTURE
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selected set of qubits is represented by the embedding ¢Note that a 22-matrix is invertible if and only if it is
such matrices in an identity matrix as explained above. As @ymplectic) Next, we perform two-qubit operatiore(™4 7
special case we mention the Hadamard operation on all qwn qubits 1 andl with a,=c,,.; and ag=cg,, for |

bits, which is represented ly=P andh=0. =2,...,n. Such an operation chang€sthrough multipli-
Seventh, we consider operationg(™7a=(1/2)(I  cation withl +aa'P. For the first column this means that
+i73) whereae 73", is replaced byc;+a, asa'Pc;=c], 1, 1P2C, 11 Ch1P2Ch1
7 a =1+0=1, whereP,=[} g]. This wayc is reduced to 0.
=| , C.. is changed at every step but remains inverti@ad
a'Ua symplectig. Note that through these operations also the other
aTUa ) columns ofC are changed. After the first column has been
and r;=i% "%7,. These operations are represented by zeroed on all positions except, we tackle columm+ 1
C=l+aa'P, (4 with operationse' (™7 on qubits 1 and with a,=c, ; and
h=CTUa. ag=Cgn+1,1=2,... n. These operations have no effect on
(o becaUS@TPC]_:C;leCa’l‘F 0=0, and reduc&g . to
This is proved in the Appendix. 0 in the same way as was d_one for the first column. After
Finally, we mention that real Clifford operations hagte ~these operations we are left with andc,,, all 0 except for
=0. C... Which equals an invertible matrix. This matrix can be
transformed into an identity matrix by a one-qubit symplec-
IV. DECOMPOSITIONS OF CLIFFORD OPERATIONS tic operation on qubit 1. One-qubit Clifford operations can
IN ONE- AND TWO-QUBIT OPERATIONS be easily made by one-qubit operations of tgi&4)7,

hi . . | Clifford . An advantage of this scheme is that it is efficient if only
In this section we write general Clifford group operations ;e ¢olumns of (or rows, as one can also work on the

as products of one- and two-qubit operations using the binary py are specified while the other columns do not matter.
picture. This does not only complete the results of Sec. llihis'is the case in the entanglement distillation protocols of
showing that every symplecti€ and arbitraryh represent a Ref. [4].

Clifford operation, but also is of practical use for quantum The second scheme also takes a number of steps that is

com_puti_ng applications as.well as.entanglement d,iSti”atio'huadratical im. It is based on the following theorem, which
a_lppllcatlons since two-qubit operations can be rgahzed relg; ill also be of importance in Sec. V and for which we give a
tively easily and the number of two-qubit operations needeq. <ty ctive proof

is “only” quadratical in the number of qubits. We give two Theorem 41f Ce 72™2" is a symplectic matrix CTPC

different schemes. =P), it can be decomposed as
First, for both schemes, we observe that the main problem =’ P

is realizing C, not h. For once a Clifford operation repre- T

sented byC andh’ is realized, we can realize by doing an i Vi ZatVaVa Vot VaZ,

extra operatiorQ= rcp(n+hy ON the left orQ= 7p(h+py ON - T, 0 0 Zy Vi+ZVi 1,+Z,Z,

t2he right. This can be proved by using E8) and Theorem - 0 0 I, 0
The first scheme realize8 by two-qubit operations, act- 0o I V3 Z;

ing on qubitk and |, of the typee'(™7 with symplectic

matrices (+aa'P), wherea can be nonzerd.e., ong only X

at positionsk,l,n+k, andn+I. The scheme works by re-

ducing a given symplectic matriQ to the identity matrix by

operating on the left with two-qubit operations. The product lh-r O Z3 V;

of the inverses of these two-qubit matrices is then equél to [T—T 0 } 0 | vi oz

1 r 1 1

©)

The reduction to the identity matrix is done by working on =

two columnsm andn+m at a time, form=1, ... n. First 0 0 I, O

columns 1 andh+1 are reduced to columns 1 and-1 of O O O

the identity matrix. Because through all the operati@hs

remains symplectic, one can show that as a result rows 1 and [lhny O 0 O7[lh-r O 0O V;

n+1 are also reduced to rows 1 and-1 of the identity 0O 0 0 I o I, Vi Z,

matrix. Then one can repeat the same process on the subma- X

trix of C obtained by dropping rows and columns 1 and 0 0 It O 0 0 I O

+1, until the whole matrix is reduced to the identity matrix. | 0 I, 0 O o 0 o0 |
Leta={1,1+n} andB={l,l +n}. The first step in reduc- R

ing columns 1 anah+ 1 of C to the corresponding columns T, 0

of the identity matrix is a qubit permutation, exchanging qu- 0o T,

bit 1 with some qubik to makeC,, ,, invertible. This can be

done, for if allC4 , would be rank deficient, we would have whereT, andT, are invertiblenx n matricesZ, andZ, are

cIPan:O which is in conflict with the symplecticity dot. symmetricr Xr matrices,Zz is a symmetric i—r)X(n

: (6)
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—r) matrix, V,; andV, are (h—r)Xr matrices and the zero bothH,; andE; are replaced by,,_, . We will assume that

blocks have appropriate dimensions.

Proof. To prove this theorem we considéras a block

matrixC=[E, "l

Then, we find invertibleR; andR, in Z5*" such that

0 O

R; 'G'R,= 0 |
r

wherer is the rank ofG’. This is a standard linear algebra
technique and can be realiz6dr example by (1) setting the

firstn—r columns ofR, equal to a basis of the kernel Gf',

(2) choosing the other columns Bf, as to make it invertible,

(3) setting the last columns ofR; equal to the last col-

umns ofR, multiplied on the left byG’ (This yields a basis

this choice ofR, was taken from the start. Then, from Egs.
(8) and(10) we findH,,=0. From Eq.(11) we learn thaE,,
is symmetric. From Eqs(12) and (13 we find Fy,=E/,
+ Eng o1 andF,,=1+ExH,,. Substituting these equations
in Egs. (14), (15), and (16), we find thatF,;+HJE], is
symmetric,F,= H£1+ E,H,,, andH,, is symmetric. Set-
ting T;=Rq, T2=Rg (with R, chosen so as to maké;;
=Hyu=1), Vi=Ep, Vo=H}y, Z1=E3, Z,=Hj andZ;
=Fq+ vlv;, we obtain Eq(5). Note thatZ; is symmetric
because F1;+V,V] and V,Vi+V,V, are symmetric.
Finally, Eq. 6 can be easily verified. This completes
the proof. |

To find a decomposition of in one- and two-qubit op-
erations we concentrate on the five matrices in the right-hand

of the range 0fG’), and(4) choosing the other columns of side of Eq.(6), all of which are symplectic. Clearly the first
R; so as to make it invertible. By construction, this implies and last matrices are linear index space transformations as

G'R,=R 9
2_ lo |r'
Now we set
Ell E12 Fll F12
Rl 0 oRe O] _|Ea Ex Fau Fz
0 RY0 RT 0 0 Hy Hyp

0 I Ha Hyp

Because the three matrices in the left-hand side of Baare
symplectic, so is the right-hand side. This leads to the fol

lowing relations between its submatrices:
E-2rl: 0,
EfHu+ ExHz=1,
EfHio+ EjH2=0,
EJ,+Ex=0,
EfH 11+ EZHoi+ Fai=0,
ElHio+EfH oot Fppo=1,
FlH1t FoHor+ HigF 1+ HiF21=0,
FlH 1o+ FoH oo+ HIF 1o+ H3F =0,

FiH 1o+ FH oot HF 1o+ H 3F 2,=0.

(@)

®

(©)
(10)
(11
(12
(13)
(14)
(15)

(16)

With Egs. (8) and (9) we find Hy;=E;". Now, if we

replaceR, by

E;f O
R, ,
0o I,

discussed in Sec. lll. These can be decomposeddntor
operations and qubit permutations. The middle matrix corre-
sponds to Hadamard operations on the tagtibits. We will
now show that the second and the fourth matrix can be real-
ized by one- and two-qubit operations of the tyg€&™4 7,

First note that both matrices are of the fofins] with Z
symmetric. These matrices form a commutative subgroup of
the symplectic matrices with

| Z,
0 |

Now, we realize[{) Z|] with one- and two-qubit operations by
first realizing the ones on off-diagonal positions Znand

| Z,
0 |

| Za+Z,
0o I

then realizing the diagonal. Entriég |=Z, (=1 are realized

by operationse'("¥7a with a,=a,=1 anda,=0 if m#k
andm#1. These are two-qubit operations which realize the
off-diagonal part ofZ and as a by-product produce some
diagonal. Now this diagonal can be replaced by the diagonal
of Z by one-qubit operationg'(™7 with a,=1 and a,,

=0 if m#k, which affect only the diagonal entrieg .
This completes the construction 6fby means of one- and
two-qubit operations.

V. DESCRIPTION OF STABILIZER STATES
AND CLIFFORD OPERATIONS USING BINARY
QUADRATIC FORMS

In this section we use our binary language to get further
results on stabilizer states and Clifford operations. First, we
take the binary picture of stabilizer states and their stabilizers
and show how Clifford operations act on stabilizer states in
the binary picture. We also discuss the binary equivalent of
replacing one set of generators of a stabilizer by another.
Then we move to two seemingly unrelated results. One is the
expansion of a stabilizer state in the standard basis, describ-
ing the coefficients with binary quadratic forms. The other is
a similar description of the entries of the unitary matrix of a
Clifford operation with respect to the same standard basis.

A stabilizer statéy) is the simultaneous eigenvector, with
eigenvalues 1, of commutable Hermitian Pauli group ele-
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ments i'(—1)%rg, k=1,...n, where sc75"k

=1,...n, are linearly independentf,,b,eZ,, and f,
=sIUsk. The n Hermitian Pauli group elements generate a -
commutable subgroup of the Pauli group, called the stabi- T 0 0
lizer S of the state. We will assemble the vectsysas the s=| 0 T%! 0o|sr=|Ir
columns of a matrixSe 73"*" and the scalar$, andb, in o o0 1
vectorsf andb e Z3. This binary representation of stabilizer
states is common in the literature of stabilizer codgsThe
fact that the Pauli group elements are commutable is re- £
flected byS'TPS=0. One can think oS, fT, andb' as the L@ §
“left half” of C, d" andh' of Sec. Il. In the style of that bas (18)
section we also definS=[f§]. b’ =[ }

If |¢) is operated on by a Clifford operatid®, Q| ) is a
new stabilizer state whose stabilizer is given(@&QT. As a whereZ is full rank and Symmetric anﬁa: Vdiag(z)-

o

o O o o

o o O o

be

result, the new set of generators, representetg’b;and b’ (i) The statd ) can be expanded in the standard basis as
can be found by acting witle andh, representind, as in
Theorem 1 and Theorem 2. One finds ly)y=[1(2(aT)] > (—i)fl)/a

_ czya e

S=Cs, '

X (— 1)[Y;7>Iows(z+ fafa)Vatbhpy]

b’ =b+STh+Vyiag(S Piows(CTUC)S).

- y

bel/’
The representation af by Sandb is not unique as they wherey= [Va] with y, e Z a andybeZ b

only represent one set of generatorsSofin the binary lan-

guage a change from one set of generators to another is re8- In words th|s theorem reads as follows. If the coefficients
resented by an invertible linear transformati@racting on f a stabilizer statgy), with respect to the standard basis

the right onS and acting appropriately oh. By repeated {|x)|x e Z3}, are considered as a function of the binary basis

licati fL 1 finds thatandb be t label x, this function is nonzero in an,+ry dimensional
]?Oprﬂ]'gg ;)Sno emma 1 one finds andb can be trans- plane(a coset of a subspace ) and the nonzero elements

are (up to a global scaling factprequal to 1,i, —1, or
= = —i, where the signs are given by a binary quadratic function
S'=SR, " : . .
over the plane and's appear either in a subplane of codi-
mension one or nowher@ f,=0).

b'= RTb+Vdiag(RTPIows(STUS) R). Proof. First we writeS as a block matrix:

Below we will refer to such a transformation as a stabilizer v
basis change. S= }

Before we state the main results of this section, we show W
how binary linear algebra can also be used to describe the.

n><n . aye .
action of a Pauli matrix on a state, expanded in the standar ith V.WeZy"". Then we perform(g first stablllzer basis
basis. ange Ry, transformlng W to WW=WR,=| 0],

where W e 722 and r,+r,=rank(W). Th|s is
B o Tx achieved by setting the last columnsRf equal to a basis of
Ta Ezn Il x)= EZ” (=1 YsulX), 17) the kernel of W and choosing the other columns so as to

e e make it invertible. As a result the columns\6t}) are a basis
wherea=["]. This is proved as follows. From,|by=|p  Of the range oﬁ/(\{.)YVe als_o W(rll'ge t(?)e transformag?r? ofin
+1> with beZ, we have 7-[0 3| X) = 3 | X+ W) block f(()lr)m asV\W/=VR;=[Vy, V.’]. Becauses'" is full

UerulX). From o|by=(—1)"b), we then find Eq. rank, V¢’ must also be full rank.

(17)x xew z Now we perform a second stabilizer basis charmye
al H 1) (1) \ /(1) 2
Now we exploit our binary language to get results about_[Rc abbuo] transforming V@W=[vg) vl to v
the expansion in the standard basis of a stabilizer state asy,(1)g _[ng) 0 ng)]’ where ng)ezgxra and r+r.

summarized in the following theorem, for which we give a — rank(V). This is achieved by setting the colu 1 il

constructive proof_ N ra+r, of R, is equal to a basis of the kernel ¥V and
Theorem 5(i) If Sandb represent a stabilizer stdt#) as  choosing the first, columns so as to make it invertible.

described aboves andb can be transformed by an invertible (Note that the last, columns ofR, are equal to the corre-
index space transformatidn)—|T~*x) with TeZ3*" and  sponding columns of the identity matrix and no linear com-
an invertible stabilizer basis change= 75" into the form  bination of these can be in the kernel\f") asV{V is full
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rank) As a result the columns ¢?V{?)] are a basis of the the columns ofv{?). This is in contradiction with the fact
range ofV. We also write the transformation @) in block  that [V{?V{?)] is full rank. ThereforeZ is full rank. This
form asw®=WMR,=[WPW? 0]. completes the proof of patt).

Next we perform an index space transformatipr To prove part (i), first observe that applyingx)
—[T7) with T=[W&WE W], where the columns —|T 'x) to|) simply replaces
W2 are chosen so as to makénvertible. As a resulv® is

transformed toV®=TTV@=[v( 0 v{¥], and W®? is Y
transformed to b,
W = T- 1) — lr+r, O . by
0 0

o

and stabilizer basis transformations only change the descrip-
tion of a stabilizer state but not the state itself. Therefore, we
have to prove that

Because

(3)_
STEWe

v<3)}

satisfiesS®)TPS®)=0, one also finds

7 0 0 |¢>: E (_i)f-la—ya(— 1)(y;PIows(Z+faf1a—)ya+b;bY) {by :|>
(ratrp)
vd=| 0 0 o0 Vs C(lg)
Ve o vl

is an eigenvector with eigenvalue one of the operators
whereZ is symmetric and/() is full rank. A final stabilizer i"(— 1)Pr. described by’ andb’. Fork=1
. e

, fa, We
basis change

have
I 0 o 70
R3: 0 I rb 0 0
_ _ s = ,
v v o v Sy
transformsv(® to 0
Z 0 0 fr="Ffa=2Zcx.
V' = V(3)R3= 0O 0 O )
0 0 I b= Dapk.

c

whereg, is thekth column oflra. With Eqg. (17) we find

and leavesV®) =W’ unchanged. Through all the transfor-
mations we also have to keep trackfaindb. We find

Vdiag(z)
0 .

ik(—1)bry | 4)

=2 |

X (— 1)(a* @ ProwsZ+ fafg) (Ya*+ &)+ b3(va+ &) +byyp)

f'=Vyiag(S' TUS') =
diag i fak( — 1)Pabk( — 1)(2610 ya(_|)fa(ya+ek)

SettingR=R;R,R; we find

=R+ Vyiag(R™Piows(VIW+dd"R).

be

We still have to prove thaZ is full rank. First note that
z=WATVE = From S@TPS?=0 and the fact that
[V(Z)V(Z)] and[W(Z)W(Z)] are full rank, it follows that the

X

)

= E [ifak( —i )flya( —i)fak(— 1)flyafak
y

columns of W{?) span the orthogonal complement of
[V@V®)] and the columns ofv{?) span the orthogonal
complement of W2 W{?)]. Assume now that there exists
somex e Z;? with x#0 andZx=0, thenV{?x is orthogonal
to the columns oiv? . And V{®)x is also orthogonal to the
columns ofW(?) . ThereforeV{®)x is a linear combination of

X (— 1)eIZya+ babk( — 1)(y1a—7>lows(z+ faf;)ya)

ol

X (— 1)(€(Z+ fafD¥a*biya* bapic+ byyp)

=[¢).
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Fork=r,+1,...r, we have

bﬁ: Dabko

where nowe, is the kth column ofl(raﬂb). With Eq. (17)
we find

(= 1)Plrg| )= [(—nbaw—i)flya
y

X (— 1)[YaPlows(Z+ af 2)Ya*bap(y+ €]
y
be

For k=rp,+1,...n, we find with Eq. (17) that
ifk(— 1)bll<rsﬁ|x>=(— 1)%*b|x). The statd ¢) is clearly an
eigenstate of this operator ag+b, =0 for all states

d)

N. This completes the proof. |

X

=|¢).

x)=

andk=ry+1,...

Finally, we show how the entries of a Clifford matrix also
can be described with binary quadratic forms, by using Theo-
rem 4. This leads to the following theorem for which we give

a constructive proof.

Theorem 6 Given a Clifford operatiorQ, represented by

C andh (or C, d, and h) as in Sec. II,Q can be written as

Q=(1N2) X X X [(—i)%rur(—i)dee

Xbexgir Xrlez Xcle2

T T T T
X ( _ :]_)(hbcxbc+ Xp Xc)( _ 1)Xbrplows(zbr+dbrdbr)xbr

T T
X (= 1)oclows(Zoc™ docdodXoe| Ty, ) (T *xpott]],

wherexy,, =[] and x,c=["], T1,T,eZ5*" are invertible
r Cc

matrices, Zy,, ,Zpce 25" are symmetric,dp, = Vaiag(Zor),
dbe= Viiag(Zbo) andhp,teZ;.
Proof. The proof is based on the decompositionCoés a

PHYSICAL REVIEW A68, 042318(2003

T," 0 O][l, Zy O

c=cWc@c®cHc®= o T, 0|0 I, O
0 0 1Jl0 df, 1
“l,., 0O 0 0 O
0 0 0 I, 0|[ly Zy O
x{ o o 1,, o ollO I, O
0o I, 0 0 di. 1
. 0 0 0 o0 1]
[T,7 0
| 0 T,
0 0 1
where Zu=[ ¢ 3], Zoo=lyr 71, dor=Veiag(Zer), and

dpe= Vdiag(zbc)- .

If we define Clifford operation®Q® by C® and h(®
=0,k=1,...,5, theoperationQQQRQM*Q®) is rep-
resented byC and some vectoh’, which can be found by
repeated application of Theorem 2. The vedtaf the given
Clifford operationQ can then be realized by an extra opera-
tion Q® to the right withC®=1 andh®=h+h’. Now,
Q® is a Hadamard operation on the lasjubits. Because a
Hadamard operation on one qubit can be written as

Hi=(1V2)2p, b e7,(—1)" b, )(be[, the Hadamard
operation on r qubits can be written asH,(1/
\/T)Exr,Xcezrz(—l)XrTXclx,)(xJ and, including then—r qu-
bits that are not operated on, as

Q¥=1n2") X X

xbeZ "X xceZ

(= 1)%%e|xp ) {Xpdl.
(20)

Considered as a matrix, this is a block diagonal matrix with
2"~ identical Zx 2" blocks with entries that are 1 or1.

The indexx,, addresses the blocks and the indigg@andx,
address the columns and rows inside the blocks. Now we
will show that the matrixQ can be derived from this matrix
by multiplying on the left and the right with a diagonal ma-
trix and a permutation matrix representing an affine index
space transformation. First we concentrate@® andQ®).

C® andC™ have the form

|
N

[@l}

=|0
0 1

ol

We show that such a matritogether withh=0) repre-

product of five matrices as in Theorem 4. Due to the isomorsents a diagonal Clifford operation

phism between the group of symplectic matricesind the

extended matrice§ as defined in Sec. I, this decomposition

can be converted into a decomposition&)fas follows:

Q=3 (=) (=1 Powde+dDxx) (x].

n
XeZy

(21)
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This result can be derived using the decompositiofding-  terms of binary linear algebra. This has led to two schemes
onal) one- and two-qubit operations given in Sec. IV, but canfor the decomposition of Clifford group operations in a prod-
more easily be proved by showing that the Pauli group eleuct of one- and two-qubit operations, and to the description
ments7e, , With e being thekth column ofl,,, are mapped of standard basis expansions of both stabilizer states and

to operators represented by the columns Oqunder X Clifford group operations with binary quadratic forms.

—QXQ". Clearly, fork=1,...n, Q7 Q"=7,QQ"=17, ACKNOWLEDGMENTS
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O Prows(Z+ddT) (x+ef , At :
X (= 1)@ Pows(2+dd 0ty (x| ] Computation, Identification & Modelling.

—E [(—i)d™d"xjdTeq—1)dxd"e; APPENDIX: PROOF OF EQ. (4)
e T Let e, be thekth column ofl,,, k=1, ...,5. Then we
X (—1)% (z+ddDe have to find the images of,,(Hermitian matricels under
G zel X—QXQ" with Q=¢€'(")7=(1/\2)(1+i7) to yield the
T kth columnc, = Ce, of C and thekth entryh,=egh of h. We
find

Bringing the secondre, from the left-hand side to the

right-hand side we finally prove E421). TUe N 1 .
Combining Egs(20) and (21), we find (= 1) ere, = \/—(| +irg) TekT —i7a)
Sndl 1 1
QPQEQW=(112") X X [(—i)%rr _1 L
xpe " ¥, xoeZh 2 (Tek+ 7'a_'7'ek7'§) + 2 I (7151_'7'ek 7'ekTa_)

_-de _ xTx 1
X ( i) %bc bc( 1)%r%e :E[l-i'(_l)ezpa]Tek

X ( — ]_)X-tl;rplows(zbr+dbrdgr)xbr
1 T
H _(_1\¢e.Pa
X (= ]_)X-tlj—cplows(zbc"' dbcdgc)xbc|xbr><xbc|]_ + EI [1 (=1)% ]TETek,
To take into account the index space transforma@6h we  where in the last step we use(a%:l and 7,7,

simply have to replacéx,,) by |T1x,,). For C® and C(®)

. ; L L A =(—1)bTPaﬂrb7—a as follows from Lemma 1. WhemaIPa
we first definet andh,.e 75 by writing h(®) as

=0 we findc,=e, andh,=0. Whene;Pa=1 we find

h(6) =

Lo . AT T
|Ckuck(_1)hk7'ck:|7'§7'ek:“a Ua(_l)ekua7a+ek-

T;hbc}.
Then. with Egs. (2 d find c5)c®) Fr?m thisT formula itT can be read thai=a+e,. With
o won =as.49 an (A7 we find (xp| jja'Va—ja’Ua+1_1)a'la (with the addition in the expo-
=(—1)"b*e(T, *Xpc+t|. This completes the proof. MW nents modulo 2) and a+ey)TU(a+e)=a"Ua+elPa
+elUe=a"Ua+1, we also find thah,=a"Ua+e/Ua.
Combining the two caseeé[Pa=O ande/Pa=1 we find
We have shown the relevance of binary linear algebréi=ex+a(ecPa)=(I+aa'P)ey, yielding C=(I+aa'P).
[over GR2)] for the theory of stabilizer states and Clifford For h we find h,=(efPa)(a’Ua+efUa). With
group operations. We have described how the Clifford grouffe;Pa)(efUa)=e;Ua this reduces toh,=e (Paa'Ua
is isomorphic to a group that can be entirely described in+Ua) andh=(l+aa'P)"Ua. This completes the prool

VI. CONCLUSION
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