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Clifford group, stabilizer states, and linear and quadratic operations over GF„2…

Jeroen Dehaene* and Bart De Moor
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We describe stabilizer states and Clifford group operations using linear operations and quadratic forms over
binary vector spaces. We show how then-qubit Clifford group is isomorphic to a group with an operation that
is defined in terms of a (2n11)3(2n11) binary matrix product and binary quadratic forms. As an applica-
tion we give two schemes to efficiently decompose Clifford group operations into one- and two-qubit opera-
tions. We also show how the coefficients of stabilizer states and Clifford group operations in a standard basis
expansion can be described by binary quadratic forms. Our results are useful for quantum error correction,
entanglement distillation, and possibly quantum computing.
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I. INTRODUCTION

Stabilizer states and Clifford group operations play a c
tral role in quantum error correction, quantum computin
and entanglement distillation. A stabilizer state is a state
an n-qubit system that is a simultaneous eigenvector o
commutative subgroup of the Pauli group. The latter cons
of all tensor products ofn single-qubit Pauli operations. Th
Clifford group is the group of unitary operations that map t
Pauli group to itself under conjugation. In quantum er
correction these concepts play a central role in the theor
stabilizer codes@1#. Although a quantum computer workin
with only stabilizer states and Clifford group operations
not powerful enough to disallow efficient simulation on
classical computer@2,3#, it is not unlikely that possible new
quantum algorithms will exploit the rich structure of th
group. In Ref.@4#, we also showed the relevance of a qu
tient group of the Clifford group in mixed state entangleme
distillation.

In this paper, we link stabilizer states and Clifford ope
tions with binary linear algebra and binary quadratic for
@over GF~2!#. The connection between multiplication o
Pauli group elements and binary addition is well known a
the connection between commutability of Pauli group ope
tions and a binary symplectic inner product@1#. In Ref. @4#
we extended this connection to a link between a quot
group of the Clifford group and binary symplectic matric
~there termedP orthogonal!. In this paper we give a binary
characterization of the full Clifford group, by adding qu
dratic forms to the symplectic operations. In addition,
show how the coefficients, with respect to a standard ba
of both stabilizer states and Clifford operations can also
described using binary quadratic forms. Our results also l
to efficient ways for decomposing Clifford group operatio
in a product of two-qubit operations.

II. CLIFFORD GROUP OPERATIONS AND BINARY
LINEAR AND QUADRATIC OPERATIONS

In this section, we show how the Clifford group is is
morphic to a group that can be entirely described in term

*Electronic address: Jeroen.Dehaene@esat.kuleuven.ac.be
1050-2947/2003/68~4!/042318~10!/$20.00 68 0423
-
,
f

a
ts

r
of

-
t

-
s

s
-

t

is,
e
d

f

binary linear algebra, by means of symplectic linear ope
tions and quadratic forms.

We use the following notation for Pauli matrices:

s005t005s05F1 0

0 1G ,
s015t015sx5F0 1

1 0G ,
s105t105sz5F1 0

0 21G ,
s115sy5F0 2 i

i 0 G ,
t115 isy5F 0 1

21 0G .
We also use vector indices to indicate tensor products

Pauli matrices. Ifv,wPZ2
n anda5@w

v #PZ2
2n , then we denote

sa5sv1w1
^ •••^ svnwn

,

~1!
ta5tv1w1

^ •••^ tvnwn
.

If we define the Pauli group to contain all tensor produ
of Pauli matrices with an additional complex phase in$1,i ,
21,2 i %, an arbitrary Pauli group element can be represen
as i d(21)etu , whered,ePZ2 and uPZ2

2n . The separation
of d and e, rather than havingi g with gPZ4, is deliberate
and will simplify formulas below. Throughout this paper e
ponents of i will always be binary. As a resulti d1i d2

5 i d11d2(21)d1d2. Multiplication of two Pauli group ele-
ments can now be translated into binary terms in the follo
ing way.

Lemma 1. If a1 ,a2PZ2
2n , d1 ,d2 ,e1 ,e2PZ2 and t is de-

fined as in Eq.~1!, then

i d1~21!e1ta1
i d2~21!e2ta2

5 i d12~21!e12ta12

with
©2003 The American Physical Society18-1
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d125d11d2 ,

e125e11e21d1d21a2
TUa1 ,

a125a11a2 ,

U5F0n I n

0n 0n
G ,

where multiplication and addition of binary variables
modulo 2.

These formulas can easily be verified forn51 and then
generalized forn.1. The terma2

TUa1 ‘‘counts’’ ~modulo 2!
the number of positionsk wherew1k51 andv2k51, with

a15F v1

w1
G and a25F v2

w2
G ,

as only these positions get a minus sign in the follow
derivation:

tv1kw1k
tv2kw2k

5sz
v1ksx

w1ksz
v2ksx

w2k

5~21!w1kv2ksz
v1k1v2ksx

w1k1w2k

5~21!w1kv2ktv1k1v2k ,w1k1w2k
.

A Clifford group operationQ, by definition, maps the
Pauli group to itself under conjugation:

QtaQ†5 i d~21!etb

for somed, e, b, function ofa.
BecauseQta1

ta2
Q†5(Qta1

Q†)(Qta2
Q†), it is sufficient

to know the image of a generating set of the Pauli group
know the image of all Pauli group elements and defineQ ~up
to an overall phase!. In binary terms it is sufficient to know
the image oftbk

, k51, . . . ,n wherebk , k51, . . . ,n form a

basis ofZ2
2n .

For this purpose it is possible to work with Hermitia
Pauli group elements only as the image of a Hermitian m
trix under X→QXQ† will again be Hermitian~and the im-
ages of Hermitian Pauli group elements are sufficient do
rive the images of non Hermitian ones!. In our binary
language Hermitian Pauli group elements are described

i aTUa~21!eta

asaTUa counts~modulo 2! the number oft11 in the tensor
productta . Fort11 is the only non-Hermitian~actually skew
Hermitian! of the four t matrices and multiplication withi
makes it Hermitian.

Now we take the standard basis ofZ2
2n ek , k51, . . . ,n

whereek is thekth column ofI 2n , and consider the gene
ating set of Hermitian operatorstek

. These correspond to

single-qubit operationssz and sx . We denote their image
underX→QXQ† by i dk(21)hktck

and assemble the vecto

ck in a matrixC ~with columnsck) and the scalarsdk andhk
in the vectorsd and h. As the images are Hermitian,dk
04231
o

-

e-

5ck
TUck or d5Vdiag(C

TUC) @with Vdiag(X) being the vector
with the diagonal elements ofX].

Now, givenC, d, andh, defining the Clifford operationQ,
the imagei d2(21)e2tb2

of i d1(21)e1tb1
underX→QXQ†

can be found by multiplying those operatorsi dk(21)hktck

for which b1k51. By repeated application of Lemma 1, th
yields

b25Cb1 ,

d25d11dTb1 ,

e25e11hTb11b1
TPlows~CTUC1ddT!b11d1dTb1 ,

where Plows(X) is the strictly lower triangular part ofX.
These formulas can be simplified by introducing the follo
ing notation:

C̄5FC 0

dT 1G ,
Ū5FU 0

0 1G ,
h̄5Fh

0G ,
b̄15Fb1

d1
G , b̄25Fb2

d2
G ,

t b̄1
5 i d1tb1

, t b̄2
5 i d2tb2

We then get the following theorem.
Theorem 1. Given C̄ and h̄, defining the Clifford opera-

tion Q as above, the image underX→QXQ† of (21)e1t b̄1
is

(21)e2t b̄2
with

b̄25C̄b̄1 ,

e25e11h̄Tb̄11b̄1
TPlows~C̄TŪC̄!b̄1 .

With this theorem we can also compose two Clifford o
erations using the binary language. To this end we have
find the images under the second operation of the ima
under the first operation of the standard basis vectors. T
can be done using Theorem 1:

Theorem 2. GivenC̄1 , h̄1 , C̄2, andh̄2, defining two Clif-
ford operationsQ1 and Q2 as above, the productQ21

5Q2Q1 is represented byC̄21 and h̄21 given by

C̄215C̄2C̄1 .

h̄215h̄11C̄1
Th̄21Vdiag„C̄1

TPlows~C̄2
TŪC̄2!C̄1…

The next question is, which instances ofC̄ andh̄ ~or C, d,
andh! can represent a Clifford operation? The answer is t
C has to be a symplectic matrix@and d has to be equal to
8-2



m

-

y
e

f

ic
tw
e

ar
p

ll
th
d

2
t

t

u
o

e

ra

set
s

in-

uta-

uss
-

e
p-

e-
en

f
ard

a
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Vdiag(C
TUC) as above#. If we defineP to be U1UT, we

call a matrix symplectic ifCTPC5P. One way to see thatC
has to be symplectic is through the connection of the sy
plectic inner productbTPa with commutability of Pauli
group elements:

tatb5~21!bTPatbta .

Since the mapX→QXQ† preserves commutability,a andb
have to represent commutable Pauli group elements (bTPa
50) if and only if Ca and Cb represent commutable ele
ments (bTCTPCa50). This implies thatC has to be sym-
plectic.

That symplecticity is also sufficient was first implied b
Theorem 1 of Ref.@4# ~almost, as this result was set in th
context of entanglement distillation where the signse play
no significant role!. The idea is to give a constructive way o
realizing the Clifford operationQ given by C̄ and h̄. This
can be done using only one- and two-qubit operations, wh
makes the result also of practical use. In Sec. IV we give
such decompositions that are more transparent than th
sults of Ref.@4#.

First, to conclude this section, we complete the bin
group picture by a formula for the inverse of a Clifford grou
element, given in binary terms.

Theorem 3. Given C̄1 and h̄1, defining a Clifford opera-
tion Q1 as above, the inverseQ25Q1

21 is represented by

C̄25C̄1
215F C1

21 0

dTC21 1
G5F PC1

TP 0

d1
TPC1

TP 1G ,

h̄25C̄2Th̄1Vdiag„C̄
2TPlows~C̄TŪC̄!C̄21

….

These formulas can be verified using Theorem 2. Fina
note that since the Clifford operations form a group and
matricesC̄ are simply multiplied when composing Cliffor
group operations, the matricesC̄ with C symplectic andd
5Vdiag(C

TUC) must form a group of (2n11)3(2n11)
matrices that is isomorphic to the symplectic group ofn
32n matrices. This can be easily verified by showing tha

Vdiag~C1
TC2

TUC2C1!5C1
TVdiag~C2

TUC2!1Vdiag~C1
TUC1!.

This follows from the fact thatCTUC1U is symmetric
whenCTPC5P andxTSx5xTVdiag(S) whenS is symmet-
ric. In a similar way it can be proved tha
Vdiag(C

2TUC21)5C2TVdiag(C
TUC).

III. SPECIAL CLIFFORD OPERATIONS
IN THE BINARY PICTURE

In this section we consider a selected set of Clifford gro
operations and their representation in the binary picture
Sec. II.

First, we consider the Pauli group operationsQ5ta as
Clifford operations. Note that a global phase cannot be r
resented as it does not affect the actionX→QXQ†. To con-
structC andh we have to consider the images of the ope
04231
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representing one-qubit operationssx and sz . One

can easily verify thatta is represented by

C5I 2n ,
~2!

h5Pa.

Second, note that Clifford operations acting on a sub
a,$1, . . . ,n% consist of a symplectic matrix on the row
and columns with indices inaø(a1n), embedded in an
identity matrix @that is, with ones on positionsCk,k51, k
Paø(a1n) andCk,l50 if kÞ l andk or l ¹aø(a1n).#
Also hk50 if k¹aø(a1n).

Third, qubit permutations are represented by

C5FP 0

0 P
G ,

h50,

whereP is a permutation matrix.
Fourth, the conditional not orCNOT operation on two qu-

bits is represented by

C5F 1 1 0 0

0 1 0 0

0 0 1 0

0 0 1 1

G ,

h50.

Fifth, by composing qubit permutations andCNOT opera-
tions on selected qubits any linear transformation of the
dex spaceux&→uRx& can be realized, wherexPZ2

n labels the
standard basis statesux&5ux1& ^ •••^ uxn& and RPZ2

n3n is
an invertible matrix~modulo 2!. This operation is repre-
sented in the symplectic picture by

C5FR2T 0

0 RG ,
~3!h50.

The qubit permutations andCNOT operation discussed
above are special cases of such operations as qubit perm
tions can be represented asux&→uPx& and theCNOT opera-
tion asux&→u@1 1

1 0#x&.
Decomposing a general linear transformationR into CNOT

operations and qubit permutations can be done by Ga
elimination~a well-known technique for the solution of sys
tems of linear equations!. In this processR is operated on on
the left by CNOT operations and qubit permutations to b
gradually transformed in an identity matrix. The process o
erates onR, column by column, first moving a nonzero el
ment into the diagonal position by a qubit permutation, th
zeroing the rest of the column byCNOT operations. The in-
verses of the applied operations yield a decomposition oR.

Sixth, we consider Hadamard operations. The Hadam
operation on a single qubitQ5H5(1/A2)@1 21

1 1# is repre-
sented byC5@1 0

0 1# and h50. A Hadamard operation on
8-3
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selected set of qubits is represented by the embeddin
such matrices in an identity matrix as explained above. A
special case we mention the Hadamard operation on all
bits, which is represented byC5P andh50.

Seventh, we consider operationsei (p/4)t ā5(1/A2)(I
1 i t ā) whereaPZ2

2n ,

ā5F a

aTUaG ,
andt ā5 i aTUata . These operations are represented by

C5I 1aaTP, ~4!

h5CTUa.

This is proved in the Appendix.
Finally, we mention that real Clifford operations haved

50.

IV. DECOMPOSITIONS OF CLIFFORD OPERATIONS
IN ONE- AND TWO-QUBIT OPERATIONS

In this section we write general Clifford group operatio
as products of one- and two-qubit operations using the bin
picture. This does not only complete the results of Sec.
showing that every symplecticC and arbitraryh represent a
Clifford operation, but also is of practical use for quantu
computing applications as well as entanglement distillat
applications since two-qubit operations can be realized r
tively easily and the number of two-qubit operations need
is ‘‘only’’ quadratical in the number of qubits. We give tw
different schemes.

First, for both schemes, we observe that the main prob
is realizing C, not h. For once a Clifford operation repre
sented byC andh8 is realized, we can realizeh by doing an
extra operationQ5tCP(h1h8) on the left orQ5tP(h1h8) on
the right. This can be proved by using Eq.~2! and Theorem
2.

The first scheme realizesC by two-qubit operations, act
ing on qubit k and l, of the typeei (p/4)t ā with symplectic
matrices (I 1aaTP), wherea can be nonzero~i.e., one! only
at positionsk,l ,n1k, and n1 l . The scheme works by re
ducing a given symplectic matrixC to the identity matrix by
operating on the left with two-qubit operations. The produ
of the inverses of these two-qubit matrices is then equal toC.
The reduction to the identity matrix is done by working o
two columnsm andn1m at a time, form51, . . . ,n. First
columns 1 andn11 are reduced to columns 1 andn11 of
the identity matrix. Because through all the operationsC
remains symplectic, one can show that as a result rows 1
n11 are also reduced to rows 1 andn11 of the identity
matrix. Then one can repeat the same process on the su
trix of C obtained by dropping rows and columns 1 andn
11, until the whole matrix is reduced to the identity matr

Let a5$1,11n% andb5$ l ,l 1n%. The first step in reduc-
ing columns 1 andn11 of C to the corresponding column
of the identity matrix is a qubit permutation, exchanging q
bit 1 with some qubitk to makeCa,a invertible. This can be
done, for if allCb,a would be rank deficient, we would hav
c1

TPcn1150 which is in conflict with the symplecticity ofC.
04231
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~Note that a 232-matrix is invertible if and only if it is
symplectic.! Next, we perform two-qubit operationsei (p/4)t ā

on qubits 1 andl with aa5ca,n11 and ab5cb,1 , for l
52, . . . ,n. Such an operation changesC through multipli-
cation withI 1aaTP. For the first column this means thatc1

is replaced byc11a, asaTPc15ca,n11
T P2ca,11cb,1

T P2cb,1

511051, whereP25@1 0
0 1#. This waycb,1 is reduced to 0.

Ca,a is changed at every step but remains invertible~and
symplectic!. Note that through these operations also the ot
columns ofC are changed. After the first column has be
zeroed on all positions excepta, we tackle columnn11
with operationsei (p/4)t ā on qubits 1 andl with aa5ca,1 and
ab5cb,n11 , l 52, . . . ,n. These operations have no effect o
c1 becauseaTPc15ca,1

T P2ca,11050, and reducecb,n11 to
0 in the same way as was done for the first column. Af
these operations we are left withc1 andcn11 all 0 except for
Ca,a which equals an invertible matrix. This matrix can b
transformed into an identity matrix by a one-qubit symple
tic operation on qubit 1. One-qubit Clifford operations c
be easily made by one-qubit operations of typeei (p/4)t ā.

An advantage of this scheme is that it is efficient if on
some columns ofC ~or rows, as one can also work on th
right! are specified while the other columns do not matt
This is the case in the entanglement distillation protocols
Ref. @4#.

The second scheme also takes a number of steps th
quadratical inn. It is based on the following theorem, whic
will also be of importance in Sec. V and for which we give
constructive proof.

Theorem 4. If CPZ2
2n32n is a symplectic matrix (CTPC

5P), it can be decomposed as

C5FT1
2T 0

0 T1
GF I n2r V1 Z31V1V2

T V21V1Z2

0 Z1 V1
T1Z1V2

T I r1Z1Z2

0 0 I n2r 0

0 I r V2
T Z2

G
3FT2

2T 0

0 T2
G , ~5!

5FT1
2T 0

0 T1
GF I n2r 0 Z3 V1

0 I r V1
T Z1

0 0 I n2r 0

0 0 0 I r

G
3F I n2r 0 0 0

0 0 0 I r

0 0 I n2r 0

0 I r 0 0

GF I n2r 0 0 V2

0 I r V2
T Z2

0 0 I n2r 0

0 0 0 I r

G
3FT2

2T 0

0 T2
G , ~6!

whereT1 andT2 are invertiblen3n matrices,Z1 andZ2 are
symmetric r 3r matrices,Z3 is a symmetric (n2r )3(n
8-4
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2r) matrix, V1 andV2 are (n2r )3r matrices and the zero
blocks have appropriate dimensions.

Proof. To prove this theorem we considerC as a block

matrix C5@G8 H8
E8 F8 #.

Then, we find invertibleR1 andR2 in Z2
n3n such that

R1
21G8R25F0 0

0 I r
G ,

wherer is the rank ofG8. This is a standard linear algebr
technique and can be realized~for example! by ~1! setting the
first n2r columns ofR2 equal to a basis of the kernel ofG8,
~2! choosing the other columns ofR2 as to make it invertible,
~3! setting the lastr columns ofR1 equal to the lastr col-
umns ofR2 multiplied on the left byG8 ~This yields a basis
of the range ofG8), and~4! choosing the other columns o
R1 so as to make it invertible. By construction, this implie

G8R25R1F0 0

0 I r
G .

Now we set

FR1
T 0

0 R1
21GCFR2 0

0 R2
2TG5F E11 E12 F11 F12

E21 E22 F21 F22

0 0 H11 H12

0 I r H21 H12

G .

~7!

Because the three matrices in the left-hand side of Eq.~7! are
symplectic, so is the right-hand side. This leads to the
lowing relations between its submatrices:

E21
T 50, ~8!

E11
T H111E21

T H215I , ~9!

E11
T H121E21

T H2250, ~10!

E22
T 1E2250, ~11!

E12
T H111E22

T H211F2150, ~12!

E12
T H121E22

T H221F225I , ~13!

F11
T H111F21

T H211H11
T F111H21

T F2150, ~14!

F11
T H121F21

T H221H11
T F121H21

T F2150, ~15!

F12
T H121F22

T H221H12
T F121H22

T F2250. ~16!

With Eqs. ~8! and ~9! we find H115E11
2T . Now, if we

replaceR2 by

R2FE11
21 0

0 I r
G ,
04231
l-

bothH11 andE11 are replaced byI n2r . We will assume that
this choice ofR2 was taken from the start. Then, from Eq
~8! and~10! we findH1250. From Eq.~11! we learn thatE22

is symmetric. From Eqs.~12! and ~13! we find F215E12
T

1E22
T H21 andF225I 1E22H22. Substituting these equation

in Eqs. ~14!, ~15!, and ~16!, we find thatF111H21
T E12

T is
symmetric,F125H21

T 1E12H22, andH22 is symmetric. Set-
ting T15R1 , T25R2

T ~with R2 chosen so as to makeE11

5H115I ), V15E12, V25H21
T , Z15E22, Z25H22 and Z3

5F111V1V2
T , we obtain Eq.~5!. Note thatZ3 is symmetric

because F111V2V1
T and V2V1

T1V1V2
T are symmetric.

Finally, Eq. 6 can be easily verified. This complet
the proof. j

To find a decomposition ofC in one- and two-qubit op-
erations we concentrate on the five matrices in the right-h
side of Eq.~6!, all of which are symplectic. Clearly the firs
and last matrices are linear index space transformation
discussed in Sec. III. These can be decomposed intoCNOT

operations and qubit permutations. The middle matrix cor
sponds to Hadamard operations on the lastr qubits. We will
now show that the second and the fourth matrix can be r
ized by one- and two-qubit operations of the typeei (p/4)t ā.
First note that both matrices are of the form@0 I

I Z# with Z
symmetric. These matrices form a commutative subgroup
the symplectic matrices with

F I Za

0 I GF I Zb

0 I G5F I Za1Zb

0 I G .
Now, we realize@0 I

I Z# with one- and two-qubit operations b
first realizing the ones on off-diagonal positions inZ and
then realizing the diagonal. EntriesZk,l5Zl ,k51 are realized
by operationsei (p/4)t ā with ak5al51 and am50 if mÞk
andmÞ l . These are two-qubit operations which realize t
off-diagonal part ofZ and as a by-product produce som
diagonal. Now this diagonal can be replaced by the diago
of Z by one-qubit operationsei (p/4)t ā with ak51 and am
50 if mÞk, which affect only the diagonal entriesZk,k .
This completes the construction ofC by means of one- and
two-qubit operations.

V. DESCRIPTION OF STABILIZER STATES
AND CLIFFORD OPERATIONS USING BINARY

QUADRATIC FORMS

In this section we use our binary language to get furt
results on stabilizer states and Clifford operations. First,
take the binary picture of stabilizer states and their stabiliz
and show how Clifford operations act on stabilizer states
the binary picture. We also discuss the binary equivalen
replacing one set of generators of a stabilizer by anot
Then we move to two seemingly unrelated results. One is
expansion of a stabilizer state in the standard basis, des
ing the coefficients with binary quadratic forms. The other
a similar description of the entries of the unitary matrix of
Clifford operation with respect to the same standard bas

A stabilizer stateuc& is the simultaneous eigenvector, wit
eigenvalues 1, ofn commutable Hermitian Pauli group ele
8-5
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ments i f k(21)bktsk
, k51, . . . ,n, where skPZ2

2n ,k

51, . . . ,n, are linearly independent,f k ,bkPZ2, and f k

5sk
TUsk . The n Hermitian Pauli group elements generate

commutable subgroup of the Pauli group, called the sta
lizer S of the state. We will assemble the vectorssk as the
columns of a matrixSPZ2

2n3n and the scalarsf k and bk in
vectorsf andbPZ2

n . This binary representation of stabilize
states is common in the literature of stabilizer codes@1#. The
fact that the Pauli group elements are commutable is
flected bySTPS50. One can think ofS, f T, andbT as the
‘‘left half’’ of C, dT and hT of Sec. II. In the style of that
section we also defineS̄5@ f T

S
#.

If uc& is operated on by a Clifford operationQ, Quc& is a
new stabilizer state whose stabilizer is given byQSQ†. As a
result, the new set of generators, represented byS̄8 and b8

can be found by acting withC̄ andh, representingQ, as in
Theorem 1 and Theorem 2. One finds

S̄85C̄S̄,

b85b1STh1Vdiag„S̄
TPlows~C̄TŪC̄!S̄….

The representation ofS by S̄ andb is not unique as they
only represent one set of generators ofS. In the binary lan-
guage a change from one set of generators to another is
resented by an invertible linear transformationR acting on
the right onS and acting appropriately onb. By repeated
application of Lemma 1 one finds thatS̄ andb can be trans-
formed as

S̄85S̄R,

b85RTb1Vdiag„R
TPlows~S̄TŪS̄!R….

Below we will refer to such a transformation as a stabiliz
basis change.

Before we state the main results of this section, we sh
how binary linear algebra can also be used to describe
action of a Pauli matrix on a state, expanded in the stand
basis.

ta (
xPZ2

n
cxux&5 (

xPZ2
n

~21!vTxcx1wux&, ~17!

where a5@w
v #. This is proved as follows. Fromsxub&5ub

11& with bPZ2, we have t [
0
w](xcxux&5(xcxux1w&

5(xcx1wux&. From szub&5(21)bub&, we then find Eq.
~17!.

Now we exploit our binary language to get results ab
the expansion in the standard basis of a stabilizer stat
summarized in the following theorem, for which we give
constructive proof.

Theorem 5. ~i! If S̄ andb represent a stabilizer stateuc& as
described above,S̄ andb can be transformed by an invertib
index space transformationux&→uT21x& with TPZ2

n3n and
an invertible stabilizer basis changeRPZ2

n3n into the form
04231
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S̄85F TT 0 0

0 T21 0

0 0 1
G S̄R53

Z 0 0

0 0 0

0 0 I r c

I r a
0 0

0 I r b
0

0 0 0

f a
T 0 0

4 ,

~18!

b85Fbab

bc
G ,

whereZ is full rank and symmetric andf a5Vdiag(Z).
~ii ! The stateuc& can be expanded in the standard basis

uc&5@1/A~2(r a1r b)!# (
yPZ

2

(r a1r b)
~2 i ! f a

Tya

3~21! [ ya
TPlows(Z1 f af a

T)ya1bab
T y]UTF y

bc
G L ,

wherey5@yb

ya# with yaPZ2
r a andybPZ2

r b.

In words this theorem reads as follows. If the coefficien
of a stabilizer stateuc&, with respect to the standard bas
$ux&uxPZ2

n%, are considered as a function of the binary ba
label x, this function is nonzero in anr a1r b dimensional
plane~a coset of a subspace ofZ2

n) and the nonzero element
are ~up to a global scaling factor! equal to 1, i, 21, or
2 i , where the signs are given by a binary quadratic funct
over the plane andi ’s appear either in a subplane of cod
mension one or nowhere~if f a50).

Proof. First we writeS as a block matrix:

S5F V

WG
with V,WPZ2

n3n . Then we perform a first stabilizer bas
change R1, transforming W to W(1)5WR15@Wab

(1) 0#,
where Wab

(1)PZ2
n3(r a1r b) and r a1r b5rank(W). This is

achieved by setting the last columns ofR1 equal to a basis of
the kernel ofW and choosing the other columns so as
make it invertible. As a result the columns ofWab

(1) are a basis
of the range ofW. We also write the transformation ofV in
block form asV(1)5VR15@Vab

(1) Vc
(1)#. BecauseS(1) is full

rank,Vc
(1) must also be full rank.

Now we perform a second stabilizer basis changeR2

5@Rc,ab I r c

Rab,ab 0 #, transforming V(1)5@Vab
(1) Vc

(1)# to V(2)

5V(1)R25@Va
(2) 0 Vc

(2)#, where Va
(2)PZ2

n3r a and r a1r c

5rank(V). This is achieved by setting the columnsr a11 till
r a1r b of R2 is equal to a basis of the kernel ofV(1) and
choosing the firstr a columns so as to make it invertible
~Note that the lastr c columns ofR2 are equal to the corre
sponding columns of the identity matrix and no linear co
bination of these can be in the kernel ofV(1) asVc

(1) is full
8-6
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rank.! As a result the columns of@Va
(2)Vc

(2)# are a basis of the
range ofV. We also write the transformation ofW(1) in block
form asW(2)5W(1)R25@Wa

(2)Wb
(2) 0#.

Next we perform an index space transformationux&
→uT21x& with T5@Wa

(2)Wb
(2) Wc

(2)#, where the columns
Wc

(2) are chosen so as to makeT invertible. As a resultV(2) is
transformed toV(3)5TTV(2)5@Va

(3) 0 Vc
(3)#, and W(2) is

transformed to

W(3)5T21W(2)5F I r a1r b
0

0 0
G .

Because

S(3)5F V(3)

W(3)G
satisfiesS(3)TPS(3)50, one also finds

V(3)5F Z 0 0

0 0 0

Vca
(3) 0 Vcc

(3)
G ,

whereZ is symmetric andVcc
(3) is full rank. A final stabilizer

basis change

R35F I r a
0 0

0 I r b
0

Vcc
(3)21Vca

(3) 0 Vcc
(3)21

G
transformsV(3) to

V85V(3)R35F Z 0 0

0 0 0

0 0 I r c

G
and leavesW(3)5W8 unchanged. Through all the transfo
mations we also have to keep track off andb. We find

f 85Vdiag~S8TUS8!5FVdiag~Z!

0 G .
SettingR5R1R2R3 we find

Fbab

bc
G5RTb1Vdiag„R

TPlows~VTW1ddT!R….

We still have to prove thatZ is full rank. First note that
Z5Wa

(2)TVa
(2) . From S(2)TPS(2)50 and the fact that

@Va
(2)Vc

(2)# and @Wa
(2)Wb

(2)# are full rank, it follows that the
columns of Wb

(2) span the orthogonal complement
@Va

(2)Vc
(2)# and the columns ofVc

(2) span the orthogona
complement of@Wa

(2) Wb
(2)#. Assume now that there exist

somexPZ2
r a with xÞ0 andZx50, thenVa

(2)x is orthogonal
to the columns ofWa

(2) . And Va
(2)x is also orthogonal to the

columns ofWb
(2) . ThereforeVa

(2)x is a linear combination of
04231
the columns ofVc
(2) . This is in contradiction with the fac

that @Va
(2)Vc

(2)# is full rank. Therefore,Z is full rank. This
completes the proof of part~i!.

To prove part ~ii !, first observe that applyingux&
→uT21x& to uc& simply replaces

UTF y

bc
G L

by

UF y

bc
G L ,

and stabilizer basis transformations only change the desc
tion of a stabilizer state but not the state itself. Therefore,
have to prove that

uf&5 (
yPZ

2

(r a1r b)
~2 i ! f a

Tya~21!(ya
TPlows(Z1 f af a

T)ya1bab
T y)UF y

bc
G L

~19!

is an eigenvector with eigenvalue one of the operat

i f k8(21)bk8ts
k8

described byS̄8 andb8. For k51, . . . ,r a , we

have

sk85F Zek

0

ek

0

G ,

f k85 f ak5zk,k ,

bk85babk ,

whereek is thekth column ofI r a
. With Eq. ~17! we find

i f k8~21!bk8ts
k8
uf&

5(
y

F i f ak~21!babk~21!(Zek)Tya~2 i ! f a
T(ya1ek)

3~21!((ya1ek)TPlows(Z1 f af a
T)(ya1ek)1ba

T(ya1ek)1bb
Tyb)

3UF y

bc
G L G

5(
y

F i f ak~2 i ! f a
Tya~2 i ! f ak~21! f a

Tyaf ak

3~21!ek
TZya1babk~21!(ya

TPlows(Z1 f af a
T)ya)

3~21!(ek
T(Z1 f af a

T)ya1ba
Tya1babk1bb

Tyb)UF y

bc
G L G

5uf&.
8-7
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For k5r a11, . . . ,r b we have

sk85F 0

ek

0
G ,

f k850,

bk85babk,

where nowek is the kth column of I (r a1r b) . With Eq. ~17!

we find

i f k8~21!bk8ts
k8
uf&5(

y
F ~21!babk~2 i ! f a

Tya

3~21! [ yaPlows(Z1 f af a
T)ya1bab

T (y1ek)]

3UF y

bc
G L G

5uf&.

For k5r b11, . . . ,n, we find with Eq. ~17! that

i f k8(21)bk8ts
k8
ux&5(21)xk1bk8ux&. The stateuf& is clearly an

eigenstate of this operator asxk1bk850 for all states

ux&5UF y

bc
G L

andk5r b11, . . . ,n. This completes the proof. j
Finally, we show how the entries of a Clifford matrix als

can be described with binary quadratic forms, by using Th
rem 4. This leads to the following theorem for which we gi
a constructive proof.

Theorem 6. Given a Clifford operationQ, represented by
C̄ andh ~or C, d, andh) as in Sec. II,Q can be written as

Q5~1/A2r ! (
xbPZ2

n2r
(

xrPZ2
r

(
xcPZ2

r
@~2 i !dbr

T xbr~2 i !dbc
T xbc

3~21!(hbc
T xbc1xr

Txc)~21!xbr
T Plows(Zbr1dbrdbr

T )xbr

3~21!xbc
T Plows(Zbc1dbcdbc

T )xbcuT1xbr&^T2
21xbc1tu#,

wherexbr5@xr

xb# and xbc5@xc

xb#, T1 ,T2PZ2
n3n are invertible

matrices, Zbr ,ZbcPZ2
n3n are symmetric,dbr5Vdiag(Zbr),

dbc5Vdiag(Zbc), andhbc ,tPZ2
n .

Proof. The proof is based on the decomposition ofC as a
product of five matrices as in Theorem 4. Due to the isom
phism between the group of symplectic matricesC and the
extended matricesC̄ as defined in Sec. II, this decompositio
can be converted into a decomposition ofC̄ as follows:
04231
-

r-

C̄5C̄(1)C̄(2)C̄(3)C̄(4)C̄(5)5F T1
2T 0 0

0 T1 0

0 0 1
GF I n Zbr 0

0 I n 0

0 dbr
T 1

G
3F I n2r 0 0 0 0

0 0 0 I r 0

0 0 I n2r 0 0

0 I r 0 0 0

0 0 0 0 1

G F I n Zbc 0

0 I n 0

0 dbc
T 1

G
3F T2

2T 0 0

0 T2 0

0 0 1
G ,

where Zbr5@
V

1
T Z1

Z3 V1#, Zbc5@
V

2
T Z2

0 V2#, dbr5Vdiag(Zbr), and

dbc5Vdiag(Zbc).
If we define Clifford operationsQ(k) by C̄(k) and h(k)

50, k51, . . . ,5, theoperationQ(1)Q(2)Q(3)Q(4)Q(5) is rep-
resented byC̄ and some vectorh8, which can be found by
repeated application of Theorem 2. The vectorh of the given
Clifford operationQ can then be realized by an extra oper
tion Q(6) to the right with C̄(6)5I and h(6)5h1h8. Now,
Q(3) is a Hadamard operation on the lastr qubits. Because a
Hadamard operation on one qubit can be written
H15(1/A2)(br ,bcPZ2

(21)brbcubr&^bcu, the Hadamard

operation on r qubits can be written asHr(1/
A2r)(xr ,xcPZ

2
r (21)xr

Txcuxr&^xcu and, including then2r qu-

bits that are not operated on, as

Q(3)5~1/A2r ! (
xbPZ2

n2r
(

xr ,xcPZ2
r

~21!xr
Txcuxbr&^xbcu.

~20!

Considered as a matrix, this is a block diagonal matrix w
2n2r identical 2r32r blocks with entries that are 1 or21.
The indexxb addresses the blocks and the indicesxc andxr
address the columns and rows inside the blocks. Now
will show that the matrixQ can be derived from this matrix
by multiplying on the left and the right with a diagonal m
trix and a permutation matrix representing an affine ind
space transformation. First we concentrate onQ(2) andQ(4).
C̄(2) and C̄(4) have the form

C̃̄5F I z̃ 0

0 I 0

0 d̃ 1
G .

We show that such a matrix~together withh̃50) repre-
sents a diagonal Clifford operation

Q̃5 (
xPZ2

n
~2 i ! d̃Tx~21!xTPlows( z̃1d̃d̃T)xux&^xu. ~21!
8-8
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This result can be derived using the decomposition in~diag-
onal! one- and two-qubit operations given in Sec. IV, but c
more easily be proved by showing that the Pauli group e
mentstek

, with ek being thekth column ofI 2n , are mapped

to operators represented by the columns ofC̃̄ under X

→Q̃XQ̃†. Clearly, for k51, . . . ,n, Q̃tek
Q̃†5tek

Q̃Q̃†5tek

~asQ̃ andtek
are diagonal!. Fork5n11, . . . ,2n let ek again

be thekth column ofI 2n andek8 the kth column ofI n . Then
we have

Q̃tek
Q̃†tek

5(
x

@~2 i ! d̃Tx~21!xTPlows(Z̃1d̃d̃T)xux&^xu#

3(
x

@~1 i ! d̃T(x1ek8)

3~21!(x1ek8)TPlows(Z̃1d̃d̃T)(x1ek8)ux&^xu#

5(
x

@~2 i ! d̃Txi d̃Txi d̃Tek8~21! d̃Txd̃Tek8

3~21!xT(Z̃1d̃d̃T)ek8#

5 i d̃kt [
Ze

k8
0

] .

Bringing the secondtek
from the left-hand side to the

right-hand side we finally prove Eq.~21!.
Combining Eqs.~20! and ~21!, we find

Q(2)Q(3)Q(4)5~1/A2r ! (
xbPZ2

n2r
(

xr ,xcPZ2
r

@~2 i !dbr
T xbr

3~2 i !dbc
T xbc~21!xr

Txc

3~21!xbr
T Plows(Zbr1dbrdbr

T )xbr

3~21!xbc
T Plows(Zbc1dbcdbc

T )xbcuxbr&^xbcu#.

To take into account the index space transformationC(1) we
simply have to replaceuxbr& by uT1xbr&. For C(5) and C(6)

we first definet andhbcPZ2
n by writing h(6) as

h(6)5F t

T2
Thbc

G .

Then, with Eqs. ~2! and ~17! we find ^xbcuC(5)C(6)

5(21)hbc
T xbc^T2

21xbc1tu. This completes the proof. j

VI. CONCLUSION

We have shown the relevance of binary linear alge
@over GF~2!# for the theory of stabilizer states and Cliffor
group operations. We have described how the Clifford gro
is isomorphic to a group that can be entirely described
04231
-

a

p
n

terms of binary linear algebra. This has led to two schem
for the decomposition of Clifford group operations in a pro
uct of one- and two-qubit operations, and to the descript
of standard basis expansions of both stabilizer states
Clifford group operations with binary quadratic forms.
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APPENDIX: PROOF OF EQ. „4…

Let ek be thekth column ofI 2n , k51, . . . ,2n. Then we
have to find the images oftek

~Hermitian matrices! under

X→QXQ† with Q5ei (p/4)t ā5(1/A2)(I 1 i t ā) to yield the
kth columnck5Cek of C and thekth entryhk5ek

Th of h. We
find

i ck
TUck~21!hktck

5
1

A2
~ I 1 i t ā!tek

1

A2
~ I 2 i t ā!

5
1

2
~tek

1t ātek
t ā!1

1

2
i ~t ātek

2tek
t ā!

5
1

2
@11~21!ek

TPa#tek

1
1

2
i @12~21!ek

TPa#t ātek
,

where in the last step we usedt ā
25I and tatb

5(21)bTPatbta as follows from Lemma 1. Whenek
TPa

50 we findck5ek andhk50. Whenek
TPa51 we find

i ck
TUck~21!hktck

5 i t ātek
5 i i aTUa~21!ek

TUata1ek
.

From this formula it can be read thatck5a1ek . With
i i aTUa5 i aTUa11(21)aTUa ~with the addition in the expo-
nents modulo 2) and (a1ek)

TU(a1ek)5aTUa1ek
TPa

1ek
TUek5aTUa11, we also find thathk5aTUa1ek

TUa.
Combining the two casesek

TPa50 andek
TPa51 we find

ck5ek1a(ek
TPa)5(I 1aaTP)ek , yielding C5(I 1aaTP).

For h we find hk5(ek
TPa)(aTUa1ek

TUa). With
(ek

TPa)(ek
TUa)5ek

TUa this reduces tohk5ek
T(PaaTUa

1Ua) andh5(I 1aaTP)TUa. This completes the proof.j
8-9
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