
PHYSICAL REVIEW A 68, 042314 ~2003!
Conditional linear-optical measurement schemes generate effective photon nonlinearities
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We provide a general approach for the analysis of optical state evolution under conditional measurement
schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on
the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identi-
fied. Our analysis extends to conditional measurement schemes more general than those based solely on linear
optics.
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I. INTRODUCTION

One of the main problems that optical quantum comp
ing has to overcome is the efficient construction of tw
photon gates@1#. We can use Kerr nonlinearities to induce
phase shift in one mode that depends on the photon num
in the other mode, and this nonlinearity is sufficient to ge
erate a universal set of gates@2#. However, passive Ker
media have typically small nonlinearities~of the order of
10216 cm2 s V21 @3#!. We can also construct large Kerr no
linearities using slow light, but these techniques are exp
mentally difficult @4#.

On the other hand, we can employ linear optics with p
jective measurements. The benefit is that linear-opt
schemes are experimentally much easier to implement
Kerr-media approaches, but the downside is that
measurement-induced nonlinearities are less versatile an
success rate can be quite low~especially when inefficien
detectors are involved!. However, Knill, Laflamme, and Mil-
burn ~KLM ! @5# showed that with sufficient ancilla system
these linear-optical quantum computing~LOQC! devices can
be made near-deterministic with only polynomial resourc
This makes linear-optics a viable candidate for quant
computing. Indeed, many linear optical schemes and
proaches have been proposed since@6–11#, and significant
experimental progress has already been made@12,13#.

The general working of a device that implements line
optical processing with projective measurements is show
Fig. 1. The computational input and the ancilla systems
up to N optical modes that are subjected to a unitary tra
formation U, which is implemented with beam splitter
phase shifters, etc. This is called an opticalN-port device. In
order to induce a transformation of interest on the compu
tional input, the output is conditioned on a particular me
surement outcome of the ancilla system. For example,
can build a single-photon quantum nondemolition detec
with an opticalN-port device@14#. In general,N-port devices
have been studied in a variety of applications@15#.

The class of such devices of interest here is that in wh
a unitary evolution on the computational input is effected.
date these devices have been proposed and studied
more-or-less case-by-case basis. Our approach is to ad
this class in a more general way, and identify the conditio
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t-
-

er
-

i-

-
al
an
e
the

s.

p-

-
in
d
-

-
-
e
r

h
o
n a
ess
s

that such a device must satisfy to implement a unitary e
lution on the computational input. Once that unitary evo
tion is established, an effective photon nonlinearity asso
ated with the device can be identified.

In this paper, we present necessary and sufficient co
tions for the unitarity of the optical transformation of th
computational input, and we derive the effective nonlinea
ties that are associated with some of the more common
tical gates in LOQC. We begin Sec. II by introducing th
formalism. In Secs. III–V, we examine the transformati
equation under the assumption that it is unitary. We sh
that there are two necessary and sufficient conditions for
transformation to be unitary and we provide a simple t
condition. In Sec. VI, we expand the formalism and con
tions to include measurement dependent output proces
~see Fig. 2!, which is used in several schemes. In Sec. V
we show how the formalism can be applied to quantum co
puting gates. We choose as examples two quantum gate
ready proposed, the conditional sign flip of Knill, Laflamm
and Milburn @5#, and the polarization-encoded controlle
NOT ~CNOT! of Pittmanet al. @7#. Our concluding remarks are
presented in Sec. VIII, where we note that our main res
extend to devices where the unitary transformationU is more
general than those implementable with linear optics alon

II. THE GENERAL FORMALISM

We consider a class of optical devices that map the co
putational input state onto an output state, conditioned o
particular measurement outcome of an ancilla state~see Fig.
1!. We introduce a factorization of the entire Hilbert spa
into a spaceHC involving the input computing channels~i.e.,
both ‘‘target’’ and ‘‘control’’ in a typical quantum gate!, and
a Hilbert spaceHA involving the input ancilla channels,

H5HC^ HA .

We assume that the input computing and ancilla channels
uncorrelated and unentangled, so we can write the full ini
density operator asr ^ s, wherer is the initial density op-
erator for the computing channels, ands is the initial density
operator for the ancilla channels.
©2003 The American Physical Society14-1
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Let U be the unitary operator describing the premeasu
ment evolution of the optical multiport device. At the end
this process we have a full density operator given byU(r
^ s)U†. In anticipation of the projective measurement, it
useful to introduce a new factorization of the full Hilbe
space into an output computing spaceHC̄ and a new ancilla
spaceHĀ ,

H5HC̄^ HĀ .

The Von Neumann projective measurements of inte
are described by projector-valued measures~or PVMs! of the
type$P̄,I 2 P̄%, whereI is the identity operator for the whol
Hilbert space, and the projectorP̄ is of the form

P̄5I C̄^ (
k̄

sk̄uk̄&^k̄u, ~1!

whereI C̄ is the identity operator inHC̄ , and we use Roman
letters with an overbar, e.g.,uk̄&, to label a set of orthonorma
states,̂ k̄u l̄ &5d k̄ l̄ , spanning the Hilbert spaceHĀ ; eachsk̄ is
equal to zero or unity. The number of nonzerosk̄ identifies
the rank of the projectorP̄ in HĀ . ‘‘Success’’ is defined as a
measurement outcome associated with the projectorP̄, and
the probability of success is thus

d~r![TrC̄,Ā@U~r ^ s!U†P̄#. ~2!

Clearly, in generald(r) depends on the ancilla density o
erator s, the unitary evolutionU, and the projectorP̄, as
well as onr. However, we consider the first three of the
quantities fixed by the protocol of interest and thus o
display the dependence of the success probability on the
put density operatorr. In the event of a successful measur
ment, the output of the channels associated withHC̄ is iden-
tified as the computational result, and it is described by
reduced density operator

r̄5
TrĀ@ P̄U~r ^ s!U†P̄#

TrC̄,Ā@U~r ^ s!U†P̄#
. ~3!

For anyr with d(r)Þ0, this defines a so-called complete
positive~CP!, trace preserving mapT that takes eachr to its

FIG. 1. A schematic diagram of a basic conditional measu
ment device. The input computational channelsHC and input an-
cilla channelsHA undergo unitary evolution. The measurement p
formed in the ancilla output space,HĀ , indicates the success o
failure of the computation.
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associatedr̄: r̄5T(r), relating density operators inHC to
density operators inHC̄ . It will be convenient to write
T(r)5V(r)/d(r), where

V~r![TrĀ@ P̄U~r ^ s!U†P̄# ~4!

is a linear~non-trace-preserving! CP map of density opera
tors in HC to positive operators inHC̄ that is defined for all
density operatorsr in HC . We restrict ourselves to densit
operatorsr over a subspaceSC of HC . This is usually the
subspace in which the quantum gate operates.

As an example, consider the gate that turns the comp
tional basis into the Bell basis. In terms of polarizatio
states, the subspaceSC might be spanned by the comput
tional basis$uH,H&,uH,V&,uV,H&,uV,V&% ~whereasHC is
spanned by the full Fock basis!. The Bell basis onSC is then
given by$uC1&,uC2&,uF1&,uF2&%, where

uC6&5
1

A2
~ uH,V&6uV,H&)

and

uF6&5
1

A2
~ uH,H&6uV,V&).

This gate is very important in quantum information theo
because it produces maximal entanglement, and its inv
can be used to perform Bell measurements. Both functi
are necessary in, e.g., quantum teleportation@16#. However,
it is well known that such gates cannot be constructed de
ministically, and we therefore need to include an ancilla st
s and a projective measurement. We consider gates suc
these in this paper.

Suppose the subspaceSC is spanned by a set of vector
labeled by Greek letters, e.g.,ua&. We can then write

r5(
a,b

ua&rab^bu, ~5!

whererab[^aurub&. We identify a convex decompositio
of the ancilla density operators as

s5(
i

pi ux i&^x i u,

where the normalized~but not necessarily orthogonal! vec-
tors ux i& are elements ofHA , and thepi are all non-negative
and sum to unity,

(
i

pi51.

We can then use Eq.~3! to write down an expression for th
matrix elements ofr̄. Note that it is possible to work with
the eigenkets ofs so that$ux i&% is an orthonormal set; how
ever, this does not simplify the analysis so we do not int
duce the restriction. Furthermore, dealing with nonortho

-

-
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nal states in the ancilla convex decomposition may be m
convenient, depending on the system of interest. Choo
an orthonormal basis ofHC̄ that we label by Greek letter
with overbars, e.g.,uā&, we find

r̄ ād̄5(
b,g

(
i ,k̄

@Wk̄,i
āb

~r!#rbg@Wk̄,i
d̄g

~r!#* , ~6!

where

Wk̄,i
āb

~r!5sk̄A pi

d~r!
~^k̄u^āu!U~ ub&ux i&!.

Note that

(
ā

(
i ,k̄

@Wk̄,i
āg

~r!#* @Wk̄,i
āb

~r!#5dgb ,

which is confirmed by

TrC̄~ r̄ !5(
ā

r̄āā5(
b

rbb5TrC~r!. ~7!

This last equation follows immediately from Eq.~3!, sinceT
is a trace preserving CP map and TrC(r)51.

In this paper, we consider a special class of maps
constitute a unitary transformation on the computational s
spaceSC . In particular, such transformations include t
CNOT, the controlled sign flip~C-SIGN!, and the controlled bit
flip. These are not the only useful maps in linear-opti
quantum computing, but they arguably constitute the m
important class. Before we continue, we introduce the
lowing definition.

Definition. We call a CP mapr→ r̄5T(r) an operation-
ally unitary transformationon density operatorsr over a
subspaceSC if and only if ~1! for eachr over the subspace
SC we haved(r)Þ0 and~2! for eachr defined by Eq.~5!

over the subspaceSC , the mapT(r) yields ar̄ given by

r̄5(
a,b

un̄a&rab^n̄bu, ~8!

where theun̄a& are fixed vectors inHC̄ satisfying ^n̄aun̄b&
5^aub&5dab .

This forms the obvious generalization of usual unita
evolution, since it maintains the inner products of vect
under the transformation. Much of our concern in this pa
is in identifying the necessary and sufficient conditions fo
general mapT(r) of Eqs.~3! and~6! to constitute an opera
tionally unitary map. We begin in the following section b
considering what can be said about such maps.

III. CONSEQUENCES OF OPERATIONAL UNITARITY

In this section we restrict ourselves to CP mapsT(r) that
are operationally unitary@see Eqs.~5! and ~8!# for density
operatorsr over a subspaceSC of HC . The linearity of such
maps implies that the convex sum of two density operator
again a density operator:
04231
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rc5xra1~12x!rb ,

with 0<x<1. Applying Eqs.~5! and~8! to the three density
operatorsra , rb , andrc it follows immediately that

r̄c5xr̄a1~12x!r̄b . ~9!

Now a second expression forr̄c can be worked out by using
the defining relation~3! directly,

r̄c5T ~rc!5
V~rc!

d~rc!

5
xV~ra!1~12x!V~rb!

xd~ra!1~12x!d~rb!

5
xd~ra!r̄a1~12x!d~rb!r̄b

xd~ra!1~12x!d~rb!
, ~10!

where in the second line we have used the linearity ofV(r),
Eq. ~4!, andd(r), Eq. ~2!, and in the third line we have use
the corresponding relations forr̄a in terms ofra , andr̄b in
terms ofrb . Setting the right-hand sides of Eqs.~9! and~10!
equal, we find

x~12x!@d~rb!2d~ra!#~ r̄a2 r̄b!50. ~11!

Since it is easy to see from Eqs.~5! and~8! that if ra andrb

are distinct thenr̄a and r̄b are as well; choosing 0,x,1 it
is clear that the only way the operator equation~11! can be
satisfied is ifd(ra)5d(rb). But since this must hold forany
two density operators acting overSC , we have established
the following condition.

Condition. If a map T(r) is operationally unitary forr
~acting on a subspaceSC), thend(r) is independent ofr:
d(r)5d, for all r acting on that subspace.

With this result in hand we can simplify Eq.~6! for a map
that is operationally unitary, writing

r̄ ād̄5(
b,g

(
J

wJ
ābrbg~wJ

d̄g!* , ~12!

where now

wJ
āb5wk̄,i

āb
5sk̄Api

d
~^k̄u^āu!U~ ub&ux i&!

is independent ofr; we have also introduced a single labeJ

to refer to the pair of indicesk̄,i . A further simplification
arises because the condition of operational unitarity gua
tees that the subspaceSC̄ of HC̄ , over which the range of
density operatorsr̄ generated byT(r) act asr ranges over
SC , has the same dimension asSC . We can thus adopt a se
of orthonormal vectorsuā& that span that subspaceSC̄ , and

the matriceswJ
āb are square.

At this point we can formally construct a unitary map o
SC : r̃[U(r), which is isomorphic in its effect on densit
operatorsr with our operationally unitary mapr̄5T(r). We
4-3
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do this by associating eachuā& with the correspondingua&,
introducing a density operatorr̃ acting overSC , and putting

r̃ad[r̄ād̄,

MJ
ab[wJ

āb . ~13!

The unitary mapr̃[U(r) is defined by the CP map

r̃ad5(
b,g

(
J

MJ
abrbg~MJ

dg!* ,

or simply

r̃5(
J

MJrMJ
† . ~14!

This is often what is done implicitly when describing a
operationally unitary map, and we will see examples late
Sec. VII; here we find this strategy useful to simplify o
reasoning below.

Since the mapr̃[U(r) is unitary it can be implemente
by a unitary operatorM,

r̃5MrM†,

where M†5M 21. Thus (M1 ,M2 , . . . ) and (M ,0,0, . . . ),
where we add enough copies of the zero operator so tha
two lists have the same number of elements, constitute
sets of Kraus operators that implement the same mar̃
[U(r). From Nielsen and Chuang@17# we have the follow-
ing theorem.

Theorem. Suppose$E1 , . . . ,En% and $F1 , . . . ,Fm% are
Kraus operators giving rise to CP linear mapsE andF, re-
spectively. By appending zero operators to the shorter lis
elements we may ensure thatm5n. ThenE5F if and only if
there exist complex numbersujk such thatEj5(kujkFk , and
ujk is anm3m unitary matrix.

Hence, (M1 ,M2 , . . . ) must be related to (M ,0,0, . . . )
by a unitary matrix, and eachMJ is proportional to the single
operatorM. This proof carries over immediately to the o
erationally unitary mapT(r) under consideration, and w
have the following condition.

Condition. If a map T(r) is operationally unitary forr
acting over a subspaceSC , then for fixedk̄ and i the square
matrix defined by

wk̄,i
āb

5sk̄Api

d
~^k̄u^āu!U~ ub&ux i&!,

with ā labeling the row andb the column, either vanishes o
is proportional to all other nonvanishing matrices identifi
by different k̄ and i. We can thus define a matrixwāb pro-

portional to all the nonvanishingwk̄,i
āb such that we can write

our map~12! as
04231
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r̄ ād̄5(
b,g

wābrbg~wd̄g!* . ~15!

It is in fact easy to show that the twonecessaryconditions
we have established here for a mapT(r) to be an operation-
ally unitary transformation are alsosufficientconditions to
guarantee that it is. We show this in Sec. V. First, howev
we establish a simple way of identifying whether or notd(r)
is independent ofr.

IV. THE TEST CONDITION

In this section we consider a general mapT(r) of the
form of Eq.~3!, and seek a simple condition equivalent to t
independence ofd(r) on r for all r acting overSC . To do
this we writed(r) of Eq. ~2! by taking the complete trace
over HC andHA rather than overHC̄ andHĀ ,

d~r!5TrC,A@U~r ^ s!U†P̄#

5TrC,A@~r ^ s!U†P̄U#5TrC~rT!,

where we have introduced atest operator Tover the Hilbert
spaceHC as

T5TrA~sU†P̄U !,

which does not depend onr. The operatorT is clearly Her-
mitian; it is also a positive operator, since the probability f
successd(r)>0 for all r. We can now identify a condition
for d(r) to be independent ofr:

Theorem. d(r) is independent ofr, for density operators
r acting over a subspaceSC of HC , if and only if the test
operatorT is proportional to the identity operatorI SC

over

the subspaceSC . We refer to this condition onT as thetest
condition.

Proof. The sufficiency of the test condition for ad(r)
independent ofr is clear. Necessity is easily established
contradiction: Suppose thatd(r) were independent ofr but
T not proportional toI SC

. Then at least two of the eigenke
of T must have different eigenvalues; call those eigenk
uma& and umb&. It follows that d(ra)Þd(rb), where ra
5uma&^mau andrb5umb&^mbu, in contradiction with our as-
sumption.

When the test condition is satisfied we denote the sin
eigenvalue ofT over SC ast, i.e., T5tI SC

. Thend(r)5t,

and t is identified as the probability that the measurem
indicated success. For any given protocol the calculation
the operatorT gives an easy way to identify whether or n
d(r) is independent ofr.

V. NECESSARY AND SUFFICIENT CONDITIONS

We can now identify necessary and sufficient conditio
for a mapr̄5T(r) to be an operationally unitary map forr
acting on a subspaceSC of HC . These are as follows.

~1! The test condition is satisfied: Namely, the operato

T5TrA~sU†P̄U !
4-4
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is proportional to the identity operatorI SC
over the subspace

SC .
~2! Each matrix

wk̄,i
āb

5sk̄Api

t
~^k̄u^āu!U~ ub&ux i&!,

identified by the indicesk̄ andi, with row and column labels
ā and b, respectively, either vanishes or is proportional
all other such nonvanishing matrices; heret is the eigen-
value ofT.

The necessity of the first condition follows because it
equivalent to the independence ofd(r) on r, which was
established above as a necessary condition for the tran
mation to be operationally unitary, as was the second co
tion given here. So we need only demonstrate sufficien
which follows immediately: If the first condition is satisfie
thend(r)5t is independent ofr, and if the second is sat
isfied then, from Eq.~12!, we can introduce a single matri
wāb such that Eq.~15! is satisfied. Then

(
ā

r̄āā5(
b,g

rbg(
ā

~wāg!* wāb.

Now the Hermitian matrix

Ygb[(
ā

~wāg!* wāb

must in fact be the unit matrix:Ygb5dgb , otherwise we
would not have

(
ā

r̄āā5(
b

rbb

for an arbitraryr over SC , and we know our general ma
r̄5T(r) satisfies that condition@see Eq.~7!#. Thuswāb is a
unitary matrix, and from the form of Eq.~15! of the map
from r to r̄ it follows immediately that the map is operation
ally unitary @see Eqs.~5! and ~8!#.

The physics of the two necessary and sufficient conditi
given above is intuitively clear, and indeed the results
have derived here could have been guessed beforehand
if the probability for successd(r) of the measurement wer
dependent of the input density operatorr, by monitoring the
success rate in an assembly of experiments all characte
by the same inputr, one could learn something aboutr, and
we would not expect operationally unitary evolution in t
presence of this kind of gain of information. And the ind

pendence of the nonvanishing matriceswk̄,i
āb on k̄ and i, ex-

cept for overall factors, can be understood as preventing
‘‘mixedness’’ of both the input ancilla states and the gener-
ally high rank projectorP̄, from degrading the operationall
unitary transformation and leading to a decrease in purit
04231
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If a map is found to be operationally unitary, we can i
troduce the formally equivalent unitary operatorM on HC ,
as in Eq. ~13!, which can then be written in terms of a
effective action operatorQ,

M5e2 iQ/\. ~16!

The operatorQ can be determined simply by diagonalizin
M, and its form reveals the nature of the Hamiltonian evo
tion simulated by the conditional measurement process.
can define an effective HamiltonianHe f f that characterizes
an effective photon nonlinearity acting through a timete f fby
puttingHe f f[Q/te f f , wherete f f can be taken as the time o
operation of the device.

In a special but common case, the input ancilla state
pure and the projectorP̄ is of unit rank inHĀ . For cases
such as this there is only one matrixwāb in the problem, and
thus there is only a single necessary and sufficient condi
for the map to be operationally unitary.

Condition. In the special case of a projectorP̄ of rank 1 in
HĀ , whereP̄5 I C̄^ uK̄&^K̄u, and a pure input ancilla state
s5ux&^xu, then mapr̄5T(r) is operationally unitary forr
acting on a subspaceSC of HC if and only if T satisfies the
test condition. Here

T5^xuU†P̄Uux&,

which is an operator inHC . If it does satisfy this condition,
then the transformation is given by

r̄ ād̄5(
b,g

wābrbg~wd̄g!* , ~17!

where

wāb5A1

t
~^K̄u^āu!U~ ub&ux&!,

andt is the single eigenvalue ofT over SC .

VI. GENERALIZATION TO INCLUDE
FEED-FORWARD PROCESSING

Suppose that the measurement outcome of the an
does not yield the desired result, but that it signals that
output can be transformed by simply applying a~determin-
istic! unitary mode transformation on the output~see Fig. 2!.
This is called feed-forward processing and is widely us
For example, in teleportation, Alice sends Bob a class
message which allows him to correct for ‘‘wrong’’ outcome
of Alice’s Bell measurement. Here, we can explicitly ta
into account feed-forward processing.

Suppose the projective measurement is characterized
set of projectors, each identifying a different detection sig
ture $P̄(1) ,P̄(2) , . . . P̄(N) ,P̄'%, where

P̄'5I 2 (
L51

N

P̄(L) ,
4-5
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and

P̄(L)5I C̄^ (
k̄

sL,k̄uk̄&^k̄u.

All the sL,k̄ are equal to zero or unity, such that

P̄(L)P̄(L8)5 P̄(L)dLL8 .

Here success arises if the measurement outcome is asso
with any of the operatorsP̄(L) . And if outcome L is
achieved, then the computational output is processed by
plication of the unitary operatorV̄(L) acting overHC̄ . The
probability of achieving outcomeL is

d(L)~r![TrC̄,Ā@U~r ^ s!U†P̄(L)#

and if outcomeL is achieved the feed-forward process
computational output is then

r̄ (L)5
V̄(L)@TrĀ$P̄(L)U~r ^ s!U†P̄(L)%#V̄(L)

†

TrC̄,Ā@U~r ^ s!U†P̄(L)#
,

which defines a mapr̄ (L)5T(L)(r) for thoser for which
d(L)(r)Þ0. In this more general case we define theset of
maps$T(L)% to be operationally unitary for density operato
r over the subspaceSC when ~1! for eachr over the sub-
spaceSC at least one of thed(L)(r)Þ0, and~2! for eachr
over the subspaceSC , for eachL for which d(L)(r)Þ0 the
mapT(L)(r) yields ar̄ (L) of the form of Eq.~8!, independent
of L.

The kind of arguments we have presented above can
extended to show that the necessary and sufficient condit
for such a set of maps to be operationally unitary for den
operatorsr over the subspaceSC are the following.

~1! Test conditions are satisfied: The operators

T(L)5TrA~sU†P̄(L)U !

are each proportional to the identity operatorI SC over the
subspaceSC . The proportionality constantst (L) need not be
the same for allL.

~2! Omitting matrices associated with anyL for which
t (L)50, each matrix

FIG. 2. A schematic diagram of a conditional measurement
vice that incorporates feed-forward processing. The double
connecting the two small boxes represents a classical channe
carries the measurement result. Based on the outcome, the a
priate processing is performed on the output channel.
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wL,k̄,i
āb

5sL,k̄A pi

t (L)
(
l̄

V̄(L)
āl̄ ~ ^k̄u^l̄u!U~ ub&ux i&!,

identified by the indicesL, k̄, and i, with row and column
labelsā andb respectively, either vanishes or is proportion
to all other such nonvanishing matrices.

The probability of success is(Lt (L)5t. This expanded
formalism applies to the feed-forward schemes discussed
Pittmanet al. @13# and the teleportation schemes of Gotte
man and Chuang@6#. In devices such as these, a measu
ment provides classical information that is used in the s
sequent evolution of the output state.

In a common special case, the input ancilla state is p
s5ux&^xu, and each of the projectorsP̄(L) is of unit rank in
HĀ , P̄(L)5I C̄^ uk̄L&^k̄Lu. Here the two necessary and suf
cient conditions for the set of maps to be operationally u
tary for density operatorsr over the subspaceSC simplify to
the following.

~1! All the operators

T(L)5^xuU†P̄(L)Uux&

over HC satisfy the test condition.
~2! Omitting matrices associated with anyL for which

t (L)50, each matrix

wL
āb5

1

At (L)
(
l̄

V̄(L)
āl̄ ~ ^ k̄Lu^l̄u!U~ ub&ux&!,

identified by the indicesL, with row and column labelsā
and b respectively, either vanishes or is proportional to
other such nonvanishing matrices.

If these conditions are met, then the operationally unit
transformation is given by

r̄ ād̄5(
b,g

wL
ābrbg~wL

d̄g!* ,

which is independent ofL.
Another extension of the standard Von Neumann, or p

jection, measurements is to the class of measurements
scribed by more general positive-operator-valued meas
or POVMs. These can be used to describe more complic
measurements, often resulting from imperfections in a
signed PVM. Our analysis can be generalized to POVMs
expanding the ancilla space, and then describing the POV
by PVMs in this expanded space. In some instances op
tionally unitarity might still be possible; in others, the exte
sion would allow us to study of the effect of realistic limita
tions such as detector loss and the lack of single-pho
resolution.

VII. EXAMPLES

In this section we will apply the formalism develope
above to two proposed optical quantum gates for LOQC. T
straightforward calculation of the effects of these gates p
sented in the original publications makes it clear that they

-
e
hat
ro-
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operationally unitary; our purpose here is merely to illustr
how the approach we have introduced here is applied.

To evaluate the test operatorsT(L) and matrix elements

wL,k̄,i
āb it is useful to have expression for quantities such

UaVU†, where we use capital Greek letters as subscripts
the lettera to denote annihilation operators for input~com-
puting and ancilla! channels; similarly, we useaD̄ to denote
annihilation operators for output~computing and ancilla!
channels. We now characterize the unitary transformatioU
by a set of quantitiesUVD̄

* that give the complex amplitud

for an output photon in modeD̄ given an input photon in
modeV. That is,

U~aV
† uvac&)5(

D̄

UVD̄
* ~aD̄

† uvac&), ~18!

whereuvac& is the vacuum of the full Hilbert spaceH. Since
only linear optical elements are involved we haveU†uvac&
5uvac&, and it further follows from Eq.~18! that

UaV
† U†5(

D̄

UVD̄
* aD̄

† , ~19!

or

UaVU†5(
D̄

UVD̄aD̄ . ~20!

Using the commutation relations satisfied by the creation
annihilation operators, it immediately follows that the mat
UVD̄ , which identifies the unitary transformationU, is itself
a unitary matrix. Certain calculations can be simplified by
diagonalization, but for the kind of analysis of few photo
states that we require this is not necessary. We will nee
express, in terms of few photon states with respect to
decompositionHC̄^ HĀ , the result of acting withU on few
photon states of the decompositionHC^ HA ; this follows
directly from Eq.~19!. For example, denoting byu1V1

2V2
&

the state with one photon in modeV1 and two in modeV2,
we have

Uu1V1
2V2

&5UaV1

†
~aV2

† !2

A2
uvac&

5
1

A2
~UaV1

† U†!~UaV2

† U†!~UaV2

† U†!uvac&

5
1

A2
(

D̄1 ,D̄2 ,D̄3

UV1D̄1
* UV2D̄2

* UV2D̄3
*

3~aD̄1

†
aD̄2

†
aD̄3

†
!uvac&, ~21!

and doing the sums in the last line allows us to indeed
complish our goal.
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A. KLM conditional sign flip

The first example we consider is the conditional sign fl
discussed by Knill, Laflamme, and Milburn@5#. Note that in
this case the input ancilla state is pure, there is no fe
forward processing, and the projectorP̄ is of unit rank in
HĀ . The necessary and sufficient conditions for the trans
mation to be operationally unitary are those of the spe
case discussed in Sec. V. The gate consists of one comp
tional input port~labeled 1! and two ancilla input ports~2
and 3!. The projective measurement is performed on t
output ports (b,c) and the one remaining port is the comp
tational output (a). The subspaceSC is spanned by the Fock
statesu0&, u1&, andu2& in each optical mode.

The premeasurement evolution, which is donevia beam
splitters and a phase shifter, is given by the unitary trans
mationU and is characterized by the matrix

U5U* 5F 12A2 221/4 ~3/A222!1/2

221/4 1/2 1/221/A2

~3/A222!1/2 1/221/A2 A221/2
G .

~22!

The ancilla input state is

ux&5a2
†uvacA&, ~23!

denoting a single photon in the 2 mode, whereuvacA& de-
notes the vacuum ofHA . The projective measurement op
erator is given by

P̄5I C̄^ uK̄&^K̄u5I C̄^ ab
†uvacĀ&^vacĀuab

which corresponds to the detection of one and only one p
ton in modeb, and zero photons in modec. The basis states
that define the subspaceSC are

u0&5uvacC&, u1&5a1
†uvacC&, u2&5

~a1
†!2

A2
uvacC&,

and the basis states ofHC̄ are

u0̄&5uvacC̄&, u1̄&5aa
†uvacC̄&, u2̄&5

~aa
†!2

A2
uvacC̄&.

In order to evaluate the test function, we first write

U†P̄U5(
ā

U†~ab
†uvacĀ& ^ uā&)~^āu ^ ^vacĀuab!U

and look at the matrix elements

~^au ^ ^xu!U†P̄U~ ux& ^ ub&!

5(
ā

~^au ^ ^vacAua2!U†~ab
†uvacĀ& ^ uā& !

3~^āu ^ ^vacĀuab!U~a2
†uvacA& ^ ub&! ~24!
4-7
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over the computational subspace,SC . The calculation is
straightforward. Applying the operatorU on each of the
statesa2

†uvacA& ^ ub& gives the following states in theHC̄

^ HĀ decomposition:

U~a2
†uvacA& ^ u0&)5S 221/4aa

†1
1

2
ab

†1F1

2
2

1

A2
Gac

†D uvac&

U~a2
†uvacA& ^ u1&)5S 221/4aa

†1
1

2
ab

†1F1

2
2

1

A2
Gac

†D
3S @12A2#aa

†1221/4ab
†

1F 3

A2
22G 1/2

ac
†D uvac&,

U~a2
†uvacA& ^ u2&)5

1

A2
S 221/4aa

†1
1

2
ab

†1F1

2
2

1

A2
Gac

†D
3S @12A2#aa

†1221/4ab
†

1F 3

A2
22G 1/2

ac
†D 2

uvac&,

and we can then separately evaluate the terms in sum~24!,
noting that the nonzero elements are

u~^0̄u ^ ^vacĀuab!U~a2
†uvacA& ^ u0&!u25 1

4 ,

u~^1̄u ^ ^vacĀuab!U~a2
†uvacA& ^ u1&!u25 1

4 ,

u~^2̄u ^ ^vacĀuab!U~a2
†uvacA& ^ u2&!u25 1

4 .

The test operatorT is then

T5
1

4 F uvacC&^vacCu1a1
†uvacC&^vacCua1

1
~a1

†!2

A2
uvacC&^vacCu

~a1!2

A2
G5

1

4
I SC ,

and is indeed a multiple of the unit operator in the compu
tional input space. The probability of a success-indicat
measurement is 1/4, independent of the computational in
state. Since this test condition is satisfied, transforma
~17! is operationally unitary. The terms of the transformati
matrix wāb can be calculated noting that the nonze

^K̄u^āuUub&ux& terms are

^K̄u^0̄uUu0&ux&5 1
2 ,

^K̄u^1̄uUu1&ux&5 1
2 ,
04231
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^K̄u^2̄uUu2&ux&52 1
2 ,

and sincet51/4 the nonzero elements of the transformati
matrix are

w0̄051,

w1̄151,

w2̄2521,

which corresponds to the conditional sign flip, since w
probability 1/4 the gate takes the input stateuc&5a0u0&
1a1u1&1a2u2& and produces the stateuc̄&5a0u0̄&1a1u1̄&
2a2u2̄&.

This map can be seen to exhibit an effective nonlin
interaction between the photons, since the formally equi
lent unitary map~see Sec. III! is characterized by the unitar
operatorM ~13!,

uc̃&5a0u0&1a1u1&2a2u2&5M ~a0u0&1a1u1&1a2u2&),

which can be written in terms of an effective action opera
Q ~16!, where we can take

Q5
p\

2
~5n̂2n̂2!,

wheren̂ is the photon number operator. But such an effect
action operator exists only if we restrict ourselves to t
three-dimensional subspaceSC , spanned by the ketsu0&,
u1&, andu2&. Consider an attempt to expand this subspace
that spanned by the kets (u0&,u1&,u2&,u3&). The device guar-
antees that a computational input of three photons can o
produce a computational three-photon output, since a s
cessful measurement requires the detection of one and
one photon in the ancilla space. The test operator is there
still diagonal in the photon number basis. However, we fi

u~^3̄u ^ ^vacĀuab!U~a2
†uvacA& ^ u3&!u25~2A22 5

2 !2,

and thus the test operatorT is no longer a multiple of the uni
operator in this enlarged subspace. In this larger space
probability of a success-indicating measurement is dep
dent on the input, and the map is not operationally unita

B. Polarization encodedCNOT

The second example is the polarization-encod
Gottesman-Chuang protocol discussed by Pittmanet al. @7#.
In this case the input ancilla state is pure, there is fe
forward processing, and there are several projectorsP̄(L) of
unit rank inHĀ . The necessary and sufficient conditions f
the transformation to be operationally unitary are theref
those of the special case discussed in Sec. VI. The device
two computational input ports~labeleda and b) and four
ancilla input ports~1–4!. A projective measurement is mad
on four output ports (p,q,n,m) while the two remaining
ports are the computational output~5 and 6!. A photon of
4-8
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horizontal polarization represents a logical 0, and a vertic
polarized photon represents a logical 1. We use the s
notation as Pittmanet al. @7#. For example,uH(V)a& repre-
sents a horizontally~vertically! polarized photon in port ‘‘a’’
and the Hadamard transformed modes areuF(S)a&5 1

2 @ uHa&
6uVa&]. The four basis states of the computational input
u00&5uHa&uHb&, u01&5uHa&uVb&, u10&5uVa&uHb&, u11&
5uVa&uVb& and the output states are labeled asu00&
5uH5&uH6&, u01&5uH5&uV6&, u10&5uV5&uH6&, u11&
5uV5&uV6&. The input ancilla state is

ux&5 1
2 ~ uH1&uH4&uH2&uH3&1uH1&uV4&uH2&uV3&)

1 1
2 ~ uV1&uH4&uV2&uV3&1uV1&uV4&uV2&uH3&),

and the measurement projectorsP̄(L)5I C̄^ uk̄L&^k̄Lu repre-
sent the 16 possible success outcomes:

uk1̄&5uFp&uFq&uFn&uFm&5 1
4 ~ uHp&1uVp&)~ uHq&

1uVq&)~ uHn&1uVn&)~ uHm&1uVm&),

uk2̄&5uFp&uFq&uFn&uSm&5 1
4 ~ uHp&1uVp&)~ uHq&

1uVq&)~ uHn&1uVn&)~ uHm&2uVm&),

A

uk15̄&5uSp&uSq&uSn&uFm&5 1
4 ~ uHp&2uVp&)~ uHq&

2uVq&)~ uHn&2uVn&)~ uHm&1uVm&),

uk16̄&5uSp&uSq&uSn&uSm&5 1
4 ~ uHp&2uVp&)~ uHq&

2uVq&)~ uHn&2uVn&)~ uHm&2uVm&).

The polarizing beam splitters perform a unitary evolution
the input ports, characterized by the set of quantitiesUVD̄

* .
One can summarize the evolution of modes inHC^ HA to
modes inHC̄^ HĀ with the following linear map:

uH1&→uHp&, uV1&→2 i uVq&,

uH2&→uH5&, uV2&→uV5&,

uH3&→uH6&, uV3&→uV6&,

uH4&→uHm&, uV4&→2 i uVn&,

uHa&→uHq&, uVa&→2 i uVp&,

uHb&→uHn&, uVb&→2 i uVm&,

since UH1Hp
* 51, UV1Vq

* 52 i , etc. As in the previous ex

ample, to evaluate the test operators, we first look at
terms
04231
ly
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U~ u00&ux&)5
uHq&uHn&

2
@ uHp&uHm&uH5&uH6&

2 i uHp&uVn&uH5&uV6&2 i uVq&uHm&uV5&uV6&

2uVq&uVn&uV5&uH6&],

U~ u01&ux&)5
2 i uHq&uVm&

2
@ uHp&uHm&uH5&uH6&

2 i uHp&uVn&uH5&uV6&2 i uVq&uHm&uV5&uV6&

2uVq&uVn&uV5&uH6&],

U~ u10&ux&)5
2 i uVp&uHn&

2
@ uHp&uHm&uH5&uH6&

2 i uHp&uVn&uH5&uV6&2 i uVq&uHm&uV5&uV6&

2uVq&uVn&uV5&uH6&],

U~ u11&ux&)5
2uVp&uVm&

2
@ uHp&uHm&uH5&uH6&

2 i uHp&uVn&uH5&uV6&2 i uVq&uHm&uV5&uV6&

2uVq&uVn&uV5&uH6&].

The matrix elements of interest are now

~^au ^ ^xu!U†P̄(L)U~ ux& ^ ub&!

5(
ā

~^au ^ ^xu!U†uk̄L&uā&^āu^k̄LuU~ ux& ^ ub&!

~25!

and the nonzero terms of the sum in Eq.~25! are

u^00u^kLuU~ ux& ^ u00&!u25 1
16 ,

u^01u^kLuU~ ux& ^ u01&!u25 1
16 ,

u^11u^kLuU~ ux& ^ u10&!u25 1
16 ,

u^10u^kLuU~ ux& ^ u11&!u25 1
16 ,

for all L. The test functions$T(L)% are then

T(L)5
1

64 @ uHa&uHb&^Hbu^Hau1uHa&uVb&^Vbu^Hau

1uVa&uHb&^Hbu^Vau1uVa&uVb&^Vbu^Vau#

5 1
64 I SC

and are indeed multiples of the unit operator in the com
tational input space. In this schemet (L)51/64, and the prob-
ability of success is the sum of the individual probabilities
the 16 detection outcomes,(Lt (L)51/4. The terms of the

transformation matriceswL
āb can be calculated noting tha

the nonzerô k̄Lu^l̄uUub&ux& terms are

^kLu^00uUu00&ux&5eifL,0/8,
4-9
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^kLu^01uUu01&ux&5eifL,1/8,

^kLu^11uUu10&ux&5eifL,2/8,

^kLu^10uUu11&ux&5eifL,3/8,

where eifL,051,eif1,1521,eif2,151, . . . ,eif16,351 are
phase factors of61. For this transformation to be operatio

ally unitary, thewL
āb matrices must all be proportional t

each other. In certain outcomes, single-qubit operati
(p-phase shifts! are required to correct the phase factors
that the transformation is operationally unitary and the
sired output is produced. The feed-forward processing ma

cesV̄(L)
āl̄ represent these single-qubit operations. Setting

V̄(L)
00,005eifL,0, V̄(L)

01,015eifL,1,

V̄(L)
11,115eifL,2, V̄(L)

10,105eifL,3,

with all other elements equal to zero gives the appropr
corrections. The nonzero transformation matrix elements
then

wL
00,0051,

wL
01,0151,

wL
11,1051,

wL
10,1151

for all L. Since the 16 evolution matrices are identical, t
proportionality condition is satisfied. The transformation
then

r̄ ād̄5(
b,g

wL
ābrbg~wL

d̄g!*

which is theCNOT operation. This gate takes the input sta
uc&5a0u00&1a1u01&1a2u10&1a3u11& and produces the

statea0u00&1a1u01&1a2u11&1a3u10& with probability 1/4.
Again, this map exhibits an effective nonlinear interacti
between the photons since the formally equivalent unit
map is characterized by a nonlinear effective action oper
Q ~16!. In this case one could choose

Q5
p\

2
~31ab

†~12n̂b!1~12n̂b!ab!n̂a .

where the operators are associated with the vertical pola
tion of the respective mode. Again, however, the operatio
unitarity is restricted to the subspace. Suppose we expan
computational subspace to include an extra photon in on
the input modes. As an example, consider the special s
uS&5uHa&uHb&uHb&. The form of the projectors indicate
that the detection events involve one and only one photo
the appropriate modes. Evaluating the corresponding tes
erator elements we find
04231
s
o
-

ri-

te
re

y
or

a-
al
the
of
te

in
p-

u^āu^kLuU~ ux& ^ uS&!u250,

since the extra photon inhibits a success-indicating meas
ment result. The evolution cannot be operationally unitary
this expanded subspace because the test operator is no l
proportional to the unit operator.

VIII. CONCLUSION

In this paper we introduced a general approach to
investigation of conditional measurement devices. We c
sidered an important class of opticalN-port devices, includ-
ing those employing projectors of rank greater than un
mixed input ancilla states, multiple success outcomes,
feed-forward processing. We also sketched how more g
eral POVMs, rather than PVMs, could be included. The n
essary and sufficient conditions for these devices to simu
unitary evolution have been derived. They are not surpris
and indeed from a physical point of view are fairly obviou
But to our knowledge they have not been discussed in
general way before. One of the conditions is that the pr
ability of each successful outcome must be independen
the input density operator. Whether or not this holds can
checked by evaluating a set of test operators over the in
computational Hilbert space, which is easily done for a
proposed device. In the special case of only one succes
outcome there is only one test operator to be computed;
thermore, if the ancilla state is pure and the success proje
of rank 1, then the passing of a test condition by that sin
test operator guarantees that the map is operationally uni
In the case of more than one successful outcome it is a
essary consequence of operational unitarity that each of
test operators pass the test condition. This is not sufficien
imply operational unitarity in the multiple projector case u
less the proportionality condition is also satisfied. The p
portionality condition can often be satisfied by introduci
feed-forward processing.

Besides application in the analysis of particular propos
devices, we believe the general framework presented h
will be useful in exploring the different types of premeasu
ment evolution and measurements that might be useful in
design, optimization, and characterization of such devices
particular, the conditional sign flip and polarization-encod
CNOT devices we considered functioned as operationally u
tary maps only over the input computational subspaces
which they were originally proposed. So while effective ph
ton nonlinearities could be introduced, the degree to wh
they are physically meaningful is somewhat limited. An ou
standing issue, perhaps even of interest more from the g
eral perspective of nonlinear optics than from that of qu
tum computer design, is the study of potential devices t
provide effective photon nonlinearities over much larger
put computational subspaces. The question remains: to w
extent are such devices possible in theory and feasibl
practice?

Finally, we note that only in Sec. VII did we assume th
the premeasurement unitary evolutionU is associated with
linear elements in an optical system. The more gene
framework of the earlier sections may find application
4-10



tio
s

n
r
th

l-
nd
the
also
Ac-
ed
rch.
nd

CONDITIONAL LINEAR-OPTICAL MEASUREMENT . . . PHYSICAL REVIEW A 68, 042314 ~2003!
describing other proposed devices for quantum informa
processing that involve conditional measurement scheme
the presence of more complicated interactions@18#.
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