PHYSICAL REVIEW A 68, 042314 (2003
Conditional linear-optical measurement schemes generate effective photon nonlinearities
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We provide a general approach for the analysis of optical state evolution under conditional measurement
schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on
the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identi-
fied. Our analysis extends to conditional measurement schemes more general than those based solely on linear
optics.
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[. INTRODUCTION that such a device must satisfy to implement a unitary evo-
lution on the computational input. Once that unitary evolu-
One of the main problems that optical quantum computtion is established, an effective photon nonlinearity associ-
ing has to overcome is the efficient construction of two-ated with the device can be identified.
photon gate$1]. We can use Kerr nonlinearities to induce a  In this paper, we present necessary and sufficient condi-
phase shift in one mode that depends on the photon numb&@ns for the unitarity of the optical transformation of the
in the other mode, and this nonlinearity is sufficient to gen-computational input, and we derive the effective nonlineari-
erate a universal set of gat¢8]. However, passive Kerr ties that are associated with some of the more common op-

media have typically small nonlinearitigsf the order of tical gates in LOQC. We begin Sec. Il by introducing the
10726 cn? s V-1 [3]). We can also construct large Kerr non- formalism. In Secs. [lI-V, we examine the transformation

linearities using slow light, but these techniques are experiequation under the assumption that it is unitary. We show
mentally difficult [4]. that there are two necessary and sufficient conditions for the

On the other hand, we can employ linear optics with pro-transformation to be unitary and we provide a simple test
jective measurements. The benefit is that linear-opticagondition. In Sec. VI, we expand the formalism and condi-
schemes are experimentally much easier to implement thaiPns to include measurement dependent output processing
Kerr-media approaches, but the downside is that thésee Fig. 2, which is used in several schemes. In Sec. VI,
measurement-induced nonlinearities are less versatile and tM¢ show how the formalism can be applied to quantum com-
success rate can be quite Id@specially when inefficient Puting gates. We choose as examples two quantum gates al-
detectors are involvedHowever, Knill, Laflamme, and Mil- ready proposed, the conditional sign flip of Knill, Laflamme,
burn (KLM) [5] showed that with sufficient ancilla systems, @ahd Milburn [5], and the polarization-encoded controlled-
these |inear-0ptica| guantum Compuu@QC) devices can NOT (CNOT) of Pittmanet al. [7] Our CO”CIUding remarks are
be made near-deterministic with only polynomial resourcespresented in Sec. VIII, where we note that our main results
This makes linear-optics a viable candidate for quantunfXxtend to devices where the unitary transformatipis more
computing. Indeed, many linear optical schemes and apdeneral than those implementable with linear optics alone.
proaches have been proposed sifgel1], and significant
experimental progress has already been nja@el3.

The general working of a device that implements linear-
optical processing with projective measurements is shown in  We consider a class of optical devices that map the com-
Fig. 1. The computational input and the ancilla systems adgutational input state onto an output state, conditioned on a
up to N optical modes that are subjected to a unitary transparticular measurement outcome of an ancilla sts¢e Fig.
formation U, which is implemented with beam splitters, 1). We introduce a factorization of the entire Hilbert space
phase shifters, etc. This is called an optisgbort device. In  into a spacé. involving the input computing channelise.,
order to induce a transformation of interest on the computaboth “target” and “control” in a typical quantum gajeand
tional input, the output is conditioned on a particular mea-a Hilbert space, involving the input ancilla channels,
surement outcome of the ancilla system. For example, one
can build a single-photon quantum nondemolition detector
with an opticalN-port device[14]. In generalN-port devices
have been studied in a variety of applicatiga$].

The class of such devices of interest here is that in whichWe assume that the input computing and ancilla channels are
a unitary evolution on the computational input is effected. Touncorrelated and unentangled, so we can write the full initial
date these devices have been proposed and studied ondansity operator ap® o, wherep is the initial density op-
more-or-less case-by-case basis. Our approach is to addresmtor for the computing channels, amds the initial density
this class in a more general way, and identify the condition®perator for the ancilla channels.

Il. THE GENERAL FORMALISM

H:Hc®HA.
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associatecﬂ ;= 1(p), relating density operators i to
Ho He density operators irHg. It will be convenient to write
Computational Input Computational Output T(p)=W(p)/d(p), where
v Wp)=Tra{ PU(p® 0)U'P] (@
Ha Measurement . . . .
is a linear(non-trace-preservingCP map of density opera-
Ancilla Input onHa tors inHc to positive operators ift{c that is defined for all

density operatorg in Hc. We restrict ourselves to density

FIG. 1. A schematic diagram of a basic conditional measureOPeratorsp over a subspacéc of Hc. This is usually the
ment device. The input computational channils and input an-  Subspace in which the quantum gate operates.
cilla channelsH, undergo unitary evolution. The measurement per- AS an example, consider the gate that turns the computa-
formed in the ancilla output spacé{z, indicates the success or tional basis into the Bell basis. In terms of polarization
failure of the computation. states, the subspac® might be spanned by the computa-

tional basis{|H,H),|H,V),|V,H),|V,V)} (whereasHc is

Let U be the unitary operator describing the premeasurespanned by the full Fock bagisThe Bell basis orS: is then
ment evolution of the optical multiport device. At the end of given by{|W¥*),|¥),|®*),|® )}, where
this process we have a full density operator givenlfyp

®o)U". In anticipation of the projective measurement, it is . 1
useful to introduce a new factorization of the full Hilbert |‘I’_>:ﬁ(|H,V>i|V1H>)
space into an output computing spdgg and a new ancilla
spaceHy,, and
H=Hz®Ha.

1
N +
The Von Neumann projective measurements of interest 25) \/§(|H’H>_|V'V>)'
are described by projector-valued measyoeVMs) of the
type{P,| —P}, wherel is the identity operator for the whole This gate is very important in quantum information theory,
Hilbert space, and the project®ris of the form because it produces maximal entanglement, and its inverse
can be used to perform Bell measurements. Both functions
_ _ are necessary in, e.g., quantum teleportafith]. However,
P=|6®Z st k)(kl, 1) it is well known that such gates cannot be constructed deter-
K ministically, and we therefore need to include an ancilla state

wherel g is the identity operator ifi{c, and we use Roman ¢ @nd a projective measurement. We consider gates such as

letters with an overbar, e.dk), to label a set of orthonormal these in this paper.

— i ) - i Suppose the subspaégR is spanned by a set of vectors
states(k|l)= &7, spanning the Hilbert spadéx; eachsyis  |apeled by Greek letters, e.ga). We can then write
equal to zero or unity. The number of nonzegpidentifies

the rank of the projectoﬁin Ha. “Success” is defined as a

measurement outcome associated with the projd%toand
the probability of success is thus

p=aEB |y p“#(B, ®)

. where p*#=(a|p|B). We identify a convex decomposition
d(p)ETraK[U(p@O')UTP]. (2 of the ancilla density operataer as

Clearly, in generall(p) depends on the ancilla density op-
erator o, the unitary evolutiond, and the projectoP, as U:Ei Pilxi)(xil.
well as onp. However, we consider the first three of these
quantities fixed by the protocol of interest and thus onlywhere the normalizedbut not necessarily orthogonatec-
display the dependence of the success probability on the iners|y;) are elements dof{,, and thep; are all non-negative
put density operatas. In the event of a successful measure-and sum to unity,
ment, the output of the channels associated withis iden-
tified as the computational result, and it is described by the 2 =1
i=1.

reduced density operator -

— Tra[PU(p20)U"P] @ We can then use E¢3) to write down an expression for the

Trgx[u(p(@g)u’rﬁ] ' matrix elements op. Note that it is possible to work with

' the eigenkets oé so that{| x;)} is an orthonormal set; how-
For anyp with d(p)#0, this defines a so-called completely ever, this does not simplify the analysis so we do not intro-
positive(CP), trace preserving map that takes each to its  duce the restriction. Furthermore, dealing with nonorthogo-
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nal states in the ancilla convex decomposition may be more pe=Xpat+(1—X)pp,
convenient, depending on the system of interest. Choosing
an orthonormal basis df{c that we label by Greek letters with O<x<1. Applying Egs.(5) and(8) to the three density

with overbars, e.gla), we find operatorsp,, pp, andp, it follows immediately that
— . 5 Pe=Xpat(1=X)pp. 9
p=2 2 [W(p) 1o TW (p)T¥, ) coE
Py ik Now a second expression fpg can be worked out by using
where the defining relation(3) directly,
— 4 — V(pe)
o p TV = = —C
W (p) = s\ gy (KI(aDU(B) i) Pe=T(Pd =G0
Note that _ XV(Pa)"’(l_X)V(Pb)
xd(pa) +(1=x)d(pp)

p)

(W () I [W(p)]= 6,5, _ xd(pa)pat (1=x)d(pp)py
xd(pa)+(1=x)d(py)

where in the second line we have used the linearity(qf),
Eqg. (4), andd(p), Eq.(2), and in the third line we have used

the corresponding relations fga‘g1 in terms ofp,, anda) in

) . ) . ) terms ofp,, . Setting the right-hand sides of Eq9) and(10)
This last equation follows immediately from E@), sinceT  gqual, we find

is a trace preserving CP map and:(p)=1.

In this paper, we consider a special class of maps that X(1—x)[d(pp) —d(pa)1(pa—pp) =0. (11)
constitute a unitary transformation on the computational sub-
spaceSc. In particular, such transformations include the Since it is easy to see from Eq$) and(8) that if p, andpy,
CNOT, the controlled sign fligc-siGN), and the controlled bit  5re distinct therp, and p,, are as well; choosing9x<1 it
flip. These are not the only useful maps inllinear-opticaliS clear that the only way the operator equatiaf) can be
quantum computing, but they arguably constitute the mosgatisfied is ifd(p,) = d(py). But since this must hold faany
important class. Before we continue, we introduce the foly,q density operators acting ové, we have established
lowing definition. - the following condition.

Definition We call a CP map— p="71(p) an operation- Condition If a map 7{p) is operationally unitary forp
ally unitary transformationon density operatorg over a  (acting on a subspac8.), thend(p) is independent op:
subspaceSc if and only if (1) for eachp over the subspace d(p)=d, for all p acting on that subspace.

ik

(10)
which is confirmed by

Tra(p)=>, F@% pPE=Trc(p). (7)

Sc we haved(p)#0 and(2) for eachp defined by Eq(5) With this result in hand we can simplify E¢) for a map
over the subspac., the mapZ(p) yields ap given by that is operationally unitary, writing
p=2 [va)o™ (v, ® P=2 2, wiPpP (W), (12
a, Y

where the|v,) are fixed vectors iric satisfying(v,|vz) ~ Where now
=<ar|13>f:6aﬁ' he ob | f usual o p

This forms the obvious generalization of usual unitary aB_ B \/T M

. . ; Lo ; wiP=w " =5\ 7((k u i

evolution, since it maintains the inner products of vectors J ki~ >k d(< (aU(18) X))
under the transformation. Much of our concern in this paper . _
is in identifying the necessary and sufficient conditions for ais independent ofp; we have also introduced a single lalel
general ma(p) of Egs.(3) and(6) to constitute an opera- to refer to the pair of indicek,i. A further simplification
tionally unitary map. We begin in the following section by arises because the condition of operational unitarity guaran-

considering what can be said about such maps. tees that the subspac® of Hc, over which the range of
density operatorp generated by/(p) act asp ranges over
lll. CONSEQUENCES OF OPERATIONAL UNITARITY Sc, has the same dimension 8. We can thus adopt a set

] ) . of orthonormal vector@) that span that subspa&g, and
In this section we restrict ourselves to CP mépg) that by

. aﬂ
are operationally unitarysee Eqs(5) and (8)] for density the m?]t.r'ces{VJ are sql;are. I .
operatorgp over a subspac8: of Hc. The linearity of such At.,t IS point W? cgn .orma y c.on.str.uct a unitary map.on
maps implies that the convex sum of two density operators iSc: P=U(p), which is isomorphic in its effect on density
again a density operator: operatorsp with our operationally unitary map="7{p). We
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do this by associating ea¢h) with the correspondinga),

“ao_ ;,B By, Ey *
. . . ~ . . =2, W w . 15
introducing a density operatgracting overSc, and putting P ﬁE,y prIW™) (19
;msE;E Itis in fact easy to show that the tweecessargonditions
’ we have established here for a ni&p) to be an operation-
B aB ally unitary transformation are alssufficientconditions to
MjP=w;". (13 guarantee that it is. We show this in Sec. V. First, however,
- we establish a simple way of identifying whether or dfp)
The unitary map=U(p) is defined by the CP map is independent op.
~a @ IV. THE TEST CONDITION
P 6:; 2 M§PpEY(MIN)*,
Y

In this section we consider a general m#fp) of the
form of Eq.(3), and seek a simple condition equivalent to the
independence afi(p) on p for all p acting overS. To do
this we writed(p) of Eqg. (2) by taking the complete trace

;:2 MJPMI- (14) over Hc andH, rather than ovetHs and Ha,
J

or simply

d(p)=Trc AlU(p®a)UTP]
This is often what is done implicitly when describing an _
operationally unitary map, and we will see examples later in =Tre Al(p@)UTPUT=Trc(pT),
Sec. VII; here we find this strategy useful to simplify our
reasoning below.

Since the map=U(p) is unitary it can be implemented
by a unitary operatoM,

where we have introducedtast operator Tover the Hilbert
spaceHc as

T=Tra(cUTPU),

p=MpMT, which does not depend gn The operatof is clearly Her-
mitian; it is also a positive operator, since the probability for
whereMT=M"1. Thus M;,M,,...) and M,0,0,...), successi(p)=0 for all p. We can now identify a condition
where we add enough copies of the zero operator so that tHer d(p) to be independent gf:
two lists have the same number of elements, constitute two Theoremd(p) is independent op, for density operators
sets of Kraus operators that implement the same map p acting over a subspac&. of Hc, if and only if the test
=U(p). From Nielsen and Chuarid 7] we have the follow- operatorT is proportional to the identity operatdygC over

ing theorem. the subspacé. . We refer to this condition off as thetest
Theorem Suppose{E,, ... E,} and{F,, ... F,} are condition.
Kraus operators giving rise to CP linear mapand 7, re- Proof. The sufficiency of the test condition for &(p)

spectively. By appending zero operators to the shorter list oindependent op is clear. Necessity is easily established by
elements we may ensure tmt=n. Then=Fifand only if  contradiction: Suppose thd{p) were independent qf but
there exist complex numbewg such tha€;=Z2u;Fy, and T not proportional td s_. Then at least two of the eigenkets
Ujx IS anmX'm unitary matrix. of T must have different eigenvalues; call those eigenkets

Hence, M1,M, ...) must be related toN,0,0....) |,y and |u,). It follows that d(p,)#d(py), Where p,

by a unitary matrix, and eadt is proportional to the single = |, (.| andp,=|uy)(uy|, in contradiction with our as-
operatorM. This proof carries over immediately to the op- symption.

erationally unitary mapZ(p) under consideration, and we  \hen the test condition is satisfied we denote the single
have the following condition. . . eigenvalue ofl overSc asr, i.e., T=rls.. Thend(p)=r,

?0”0"“0” It a map 7(p) is opergtm@IIy gn|tary forp and 7 is identified as the probability that the measurement
acting over a subspac®:, then for fixedk andi the square jngicated success. For any given protocol the calculation of
matrix defined by the operatoiT gives an easy way to identify whether or not
d(p) is independent op.

ap \/E —

=s\/ = ((k u i)
Wiei =Sk d(< [(eDU (B} X)) V. NECESSARY AND SUFFICIENT CONDITIONS
We can now identify necessary and sufficient conditions

for a map;=7'(p) to be an operationally unitary map fpr
acting on a subspac®: of H.. These are as follows.
(1) The test condition is satisfied: Namely, the operator

with « labeling the row angB the column, either vanishes or
is proportional to all other nonvanishing matrices identified

by differentk andi. We can thus define a matrix®? pro-

portional to all the nonvanishingf/f such that we can write -
our map(12) as T=Tra(cUTPU)
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is proportional to the identity operatbs_ over the subspace If a map is found to be operationally unitary, we can in-
Sc. troduce the formally equivalent unitary operatdron Hc,
(2) Each matrix as in Eq.(13), which can then be written in terms of an
effective action operatd®,

M=e Q" (16)

o Pi, — —
Wit =5\~ (K(a)U(I8) X)),
The operatoiQ can be determined simply by diagonalizing
identified by the indice& andi. with row and column labels M, and its form reveals the nature of the Hamiltonian evolu-
= y . ) U i ) tion simulated by the conditional measurement process. We
a and g, respectively, either vanishes or is proportional ©0¢can define an effective Hamiltonidfe; that characterizes

all other such nonvanishing matrices; heras the eigen-
value of T.

an effective photon nonlinearity acting through a titpgby
putting He i =Q/tes¢, Wheretqss can be taken as the time of

The necessity of the first condition follows because it isoperation of the device.

equivalent to the independence dfp) on p, which was

In a special but common case, the input ancilla state is

established above as a necessary condition for the transforIJre and the proiectoP is of unit rank inHx. For cases
mation to be operationally unitary, as was the second cond? . P J_ e A

tion given here. So we need only demonstrate sufficiencySuch as this there is only one matvi” in the problem, and
which follows immediately: If the first condition is satisfied thus there is only a single necessary and sufficient condition

thend(p) =7 is independent op, and if the second is sat-
isfied then, from Eq(12), we can introduce a single matrix

w? such that Eq(15) is satisfied. Then

S -3

pBVZ (WEY)* WZB
By a

Now the Hermitian matrix
YrA=> (W;}/)*W;B

must in fact be the unit matrixy”?= Syp s otherwise we
would not have

S prr=> phh

@ B

for an arbitraryp over Sc, and we know our general map

p="T1(p) satisfies that conditiofsee Eq(7)]. Thusw*? is a
unitary matrix, and from the form of Eq15) of the map

from p to ;it follows immediately that the map is operation-

ally unitary[see Eqs(5) and(8)].

for the map to be operationally unitary.

Condition In the special case of a project®rof rank 1 in
Hx, whereP= Ig@|K)(K|, and a pure input ancilla state,
o=|x)x|, then mapp="7(p) is operationally unitary fop

acting on a subspac®- of H¢ if and only if T satisfies the
test condition. Here

T=(x|U'PU|x),

which is an operator ift{c . If it does satisfy this condition,
then the transformation is given by

p0=2 WP W), (17)
Y

where

Waﬁ:

\/§<<E|<Z|>U<|ﬁ>|x>>,

and 7 is the single eigenvalue &f over S¢.

VI. GENERALIZATION TO INCLUDE
FEED-FORWARD PROCESSING

Suppose that the measurement outcome of the ancilla

The physics of the two necessary and sufficient conditionsloes not yield the desired result, but that it signals that the
given above is intuitively clear, and indeed the results weoutput can be transformed by simply applyingdetermin-
have derived here could have been guessed beforehand. Rstic) unitary mode transformation on the outgsee Fig. 2

if the probability for succesd(p) of the measurement were
dependent of the input density operaporby monitoring the

This is called feed-forward processing and is widely used.
For example, in teleportation, Alice sends Bob a classical

success rate in an assembly of experiments all characterizedessage which allows him to correct for “wrong” outcomes

by the same inpys, one could learn something abgutand

of Alice’s Bell measurement. Here, we can explicitly take

we would not expect operationally unitary evolution in the into account feed-forward processing.

presence of this kind of gain of information. And the inde-

pendence of the nonvanishing matrim%’f onk andi, ex-

Suppose the projective measurement is characterized by a
set of projectors, each identifying a different detection signa-

cept for overall factors, can be understood as preventing th&"'€ {P).P), - - - Py, P}, where

“mixedness” of both the input ancilla state and the gener-

ally high rank projectoﬁ, from degrading the operationally
unitary transformation and leading to a decrease in purity.

N
P, =I- 2 P(L),
£=1
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ap _ | Pi N Vel
He Feed-forward L He WL’k,i_SL,k m; V(L)(<k|<)\|)u(|:8>|)(i>),
processing
U || identified by the indiced., k, andi, with row and column

IabelsEandB respectively, either vanishes or is proportional
to all other such nonvanishing matrices.

The probability of success 5 7 )=7. This expanded
formalism applies to the feed-forward schemes discussed by
FIG. 2. A schematic diagram of a conditional measurement dePlttmanet al. [13] and the teleportation schemes of Gottes-

vice that incorporates feed-forward processing. The double lind"@n and Chuang6]. In devices such as these, a measure-

connecting the two small boxes represents a classical channel th@t€nt provides _C|aSS'Ca| information that is used in the sub-

carries the measurement result. Based on the outcome, the app@eduent evolution of the output state.

priate processing is performed on the output channel. In a common special case, the input ancilla state is pure,
o=|x)(x|, and each of the projecto,, is of unit rank in

Ha, Py=1c® |k )(k_|. Here the two necessary and suffi-
o o cient conditions for the set of maps to be operationally uni-
PLy=1c® Z s k) (K. tary for de_nsity operators over the subspacg: simplify to
k the following.
(1) All the operators

Ha Measurement
on Hz

and

All the s\ are equal to zero or unity, such that
Ty=(xIUP,Ulx)

Here success arises if the measurement outcome is associaPé’t?rHc S".‘“.Sfy the t?St cond|t|qn. . .
(2) Omitting matrices associated with amyfor which

with any of the operatorsP_(L). And if .outcomeL is r_(L)=0, each matrix
achieved, then the computational output is processed by ap

P(L)P(L’): P(L) 5LL’ .

plication of the unitary operatov, acting overHc. The e 1 — =
probability of achieving outcome is wif=——= 2 VO (k DU B)X)),
T A

d =TreAlU(p®o)UTP, _
w(p) calllpea) Gl identified by the indiced., with row and column labels
and if outcomeL is achieved the feed-forward processedand 3 respectively, either vanishes or is proportional to all

computational output is then other such nonvanishing matrices.
. . . If these conditions are met, then the operationally unitary
; _V(L)[TrA*{P(L)U(p® a)UTP(L)}]V(TL) transformation is given by
(Oh _ Y J
TrealU(p@o)UTP(L)]

_ p*0=2 wiPpPr(wir)*,
which defines a map)=7,,(p) for thosep for which By
dy(p)#0. In this more general case we define et of

maps{7,} to be operationally unitary for density operators

p over the subspacsc when (1) for eachp over the sub- o ction, measurements is to the class of measurements de-
spaceSc at least one of thel,(p) #0, and(2) for eachp  gcriped by more general positive-operator-valued measures
over the subspacc, for eachL for whichd.(p)#0 the o povMs. These can be used to describe more complicated
map7,(p) yields ap ) of the form of Eq.(8), independent measurements, often resulting from imperfections in a de-
of L. signed PVM. Our analysis can be generalized to POVMs by
The kind of arguments we have presented above can bexpanding the ancilla space, and then describing the POVMs
extended to show that the necessary and sufficient conditiorigy PVMs in this expanded space. In some instances opera-
for such a set of maps to be operationally unitary for densitytionally unitarity might still be possible; in others, the exten-

which is independent df.
Another extension of the standard Von Neumann, or pro-

operatorsp over the subspacs: are the following. sion would allow us to study of the effect of realistic limita-
(1) Test conditions are satisfied: The operators tions such as detector loss and the lack of single-photon
_ resolution.
Twy=Tra(cUTP V)
are each proportional to the identity operatge over the VIl EXAMPLES
subspaceS: . The proportionality constantg, ) need not be In this section we will apply the formalism developed
the same for allL. above to two proposed optical quantum gates for LOQC. The
(2) Omitting matrices associated with aryfor which  straightforward calculation of the effects of these gates pre-
7(y="0, each matrix sented in the original publications makes it clear that they are
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operationally unitary; our purpose here is merely to illustrate A. KLM conditional sign flip
how the approach we have introduced here is applied. The first example we consider is the conditional sign flip

_To evaluate the test operatofg) and maitrix elements giscyssed by Knill, Laflamme, and Milbuf8]. Note that in
£ it is useful to have expression for quantities such aghis case the input ancilla state is pure, there is no feed-

Wi ki Lk
UanUT, where we use capital Greek letters as subscripts oforward processing, and the projectBris of unit rank in
the lettera to denote annihilation operators for inp@om-  ‘Hx. The necessary and sufficient conditions for the transfor-
puting and ancillachannels; similarly, we usa, to denote  mation to be operationally unitary are those of the special
annihilation operators for outpufcomputing and ancilla  case discussed in Sec. V. The gate consists of one computa-
channels. We now characterize the unitary transformétion tional input port(labeled 1 and two ancilla input port$2
by a set of qua”titiey;ﬁ that give the complex amplitude and 3. The projective measurement is performed on two
output ports b,c) and the one remaining port is the compu-
tational output &). The subspacé; is spanned by the Fock
states0), |1), and|2) in each optical mode.

The premeasurement evolution, which is dof@ beam
U(a5|vac))=z U;‘ﬂ(aﬁvacwl (18) split.ters and a phase shifper, is given by th_e unitary transfor-

A mationU and is characterized by the matrix

for an output photon in moda given an input photon in
mode(). That is,

where|vag) is the vacuum of the full Hilbert spade. Since 1-\2 27" (38K2-2)'?
only linear optical elements are involved we havé|vac U=U*= 2—1/4 1/2 12— 12

=|vao, and it further follows from Eq(18) that
[vag a(18) (3N2-2)¥2 1/2-1\2  2-1/2
(22)

valut=> u*al, 19
“ % aaTa (19 The ancilla input state is

or |x)=al|vac,), (23

denoting a single photon in the 2 mode, whévec,) de-
UaQUT=Z Ugaray - (20 notes the vacuum of{,. The projective measurement op-
A erator is given by

Using the commutation relations satisfied by the creation and P=1zo|K)K|=Iz® al|vac)(vaclay

annihilation operators, it immediately follows that the matrix

Una» Which identifies the unitary transformatidh is itself ~ which corresponds to the detection of one and only one pho-
a unitary matrix. Certain calculations can be simplified by itston in modeb, and zero photons in mode The basis states
diagonalization, but for the kind of analysis of few photon that define the subspack are

states that we require this is not necessary. We will need to

express, in terms of few photon states with respect to the + (a’{)2
decompositiorHc® Hx, the result of acting withJ on few |0)=|vace), [1)=ajlvac), [2)= 2 lvace),

photon states of the decompositiGt-® H, ; this follows
directly from Eq.(19). For example, denoting bmﬂl%z)

the state with one photon in modg; and two in mode&,,

we have _ ;2

0)=Ivag), [1)=allvac), [2)= \Elva@-

and the basis states &ic are

(ah,)?
—11af 2
U|191292)—Ua91 \/5 |vag In order to evaluate the test function, we first write
Lot utvtat Utat ot UtPU=2Y U'(al|vag)®|a))({a|©(vaca,)U
zﬁ(Uaﬂlu )(Uag UM (Uag U )|vac = bl VaG, b
1 s . . . and look at the matrix elements
== Uy s Un s Un 5
— & P00 70,0, 7000, —
V25,55 (alo(DUPU(xe]8)
X (azflalfzalfg) lvao), (21)

=2 ((a|®(vaga)U'(aj|vag) ®|a))

and doing the sums in the last line allows us to indeed ac- _ .
complish our goal. X((a|®(vagiapU(aslvac)®|B)) (24
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over the computational subspac8z. The calculation is
straightforward. Applying the operatdd on each of the
statesal|vac)®|B) gives the following states in the(c
® Ha decomposition:

1
U(aZ|VaQ\>®|0>)=<21’4a;+§ab E—T Z)|Vac>
t Cyat, Loy |1
U(ajlvag)®|1))=| 2 aa+§ab+ E—T

[1-2]al+2 V4]

3 1/2 .
—-2| a.||vao,

V2

+

1 1

2 2

ty - 1int
[1-2]al+2 V4]

1 1
U(a}|vag)®|2))= —( 2 Y4l —al+

2 2

d

172
a

3 2
——2 |vac),
V2

and we can then separately evaluate the terms in @4m
noting that the nonzero elements are

J’_

|((0]@(vacay)U(ajlvag) ®|0))|*=1,

-bl

|((1]®(vac]a,)U(a}|vac)®|1))[2=1,
|((2]®(vagiay) U (allvag)®|2))|?=}.

The test operatof is then

1
— 7 | Ivaco)(vac|+ ajlvac:) (vaccfay

aT)Z (a;)?

f [vac)(vac| —= 7

Z|SC,

and is indeed a multiple of the unit operator in the computa-
tional input space. The probability of a success-indicatin
measurement is 1/4, independent of the computational inp
state. Since this test condition is satisfied, transformatio

PHYSICAL REVIEW A 68, 042314 (2003

(Kl(2lu[2)|x)=-3,

and sincer=1/4 the nonzero elements of the transformation
matrix are

which corresponds to the conditional sign flip, since with
probability 1/4 the gate takes the input stdte)= a;|0)
+a1|1)+ a,|2) and produces the staie) = ao|0) + a[1)

- a2| 2).

This map can be seen to exhibit an effective nonlinear
interaction between the photons, since the formally equiva-
lent unitary magp(see Sec. INis characterized by the unitary
operatorM (13),

|0) = | 0) + 1| 1) — @] 2) = M (0| 0) + arq| 1) + | 2)),

which can be written in terms of an effective action operator
Q (16), where we can take

_mh .,
Q—T(Sn—n),

wheren is the photon number operator. But such an effective
action operator exists only if we restrict ourselves to the
three-dimensional subspac®, spanned by the ketf),

|1), and|2). Consider an attempt to expand this subspace to
that spanned by the ket§(,|1),|2),|3)). The device guar-
antees that a computational input of three photons can only
produce a computational three-photon output, since a suc-
cessful measurement requires the detection of one and only
one photon in the ancilla space. The test operator is therefore
still diagonal in the photon number basis. However, we find

|((3]®(vag]ay)U(a}|vac)®|3))|?= (22— 3

and thus the test operat®diis no longer a multiple of the unit
operator in this enlarged subspace. In this larger space the
probability of a success-indicating measurement is depen-
dent on the input, and the map is not operationally unitary.

B. Polarization encodedcNoT

The second example is the polarization-encoded
ottesman-Chuang protocol discussed by Pittetal. [7].

lin this case the input ancilla state is pure, there is feed-

(17) is operationally unitary. The terms of the 'transformationforward processing, and there are several projedgrs of

matrix w*® can be calculated noting that the nonzero

(Kl(alU|B)|x) terms are
(KI(0[U]0)|x)=3,

(KI(1U[1)[x)=3,

unit rank ins. The necessary and sufficient conditions for
the transformation to be operationally unitary are therefore
those of the special case discussed in Sec. VI. The device has
two computational input portglabeleda and b) and four
ancilla input portg1—4). A projective measurement is made
on four output ports §,q,n,m) while the two remaining
ports are the computational outp(§ and §. A photon of
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horizontal polarization represents a logical 0, and a vertically
polarized photon represents a logical 1. We use the sameU(|00)|x))=—>—
notation as Pittmamt al. [7]. For example|H(V),) repre-

sents a horizontallyvertically) polarized photon in port&”
and the Hadamard transformed modes |&S),)=3[|H.)

*=|V,)]. The four basis states of the computational input are

|00>:|Ha>|Hb>v |01>:|Ha>|vb>v |10>:|Va>|Hb>a |£—>
=|V,)|Vp) and the output states are labeled H¥0)
=|Hs)[He), [0D)=[H5)|Ve), [10)=|V5)[He), [11)

=|Vs)|Vg). The input ancilla state is
[x)=3(HD)[Ha[H2)[H3) +[H1)[Va)[H)[V3))
+3(IVDHDIV2)[V3) + V1) V) Vo) [H3)),

and the measurement projectd®g,=1c® |k, )(k.| repre-
sent the 16 possible success outcomes:

[ke) =IF ) FFa) Fm)=5([Hp) + Vo)) (Hg)
+ VD) (Ha) + V) ([Hd + Vi),

@:|Fp>|Fq>|Fn>|Sm>:%(|Hp>+|vp>)(|Hq>
+|Vq>)(|Hn>+|Vn>)(|Hm>_|Vm>),

|k15>:|sp>|sq>|sn>||:m>:4l(|Hp>_|Vp>)(|Hq>
_|Vq>)(|Hn>_|Vn>)(|Hm>+|Vm>)a

|k16>:|sp>|sq>|sn>|sm>:711(|Hp>_|vp>)(|Hq>
_|Vq>)(|Hn>_|Vn>)(|Hm>_|Vm>)-

PHYSICAL REVIEW A 68, 042314 (2003

M ) o ) )

_ial>|Vn>|H5>|V6>_i|Vq>|Hm>|V5>|V6>
_|Vq>|vn>|v5>|H6>]y

0090 = 1 e )
_i|Hp>|Vn>|H5>|V6>_i|Vq>|Hm>|V5>|V6>
_|Vq>|vn>|v5>|H6>],

_ iV [Hp)

U(10x)=——5 " [Hp)HmIHs)|He)
_i|Hp>|vn>|H5>|V6>_i|Vq>|Hm>|V5>|V6>
_|Vq>|vn>|V5>|H6>],

L)) - ">| ”‘>[|Hp>|Hm>|H5>|He>

_i|Hp>|vn>|H5>|V6>_i|Vq>|Hm>|V5>|V6>
_|Vq>|vn>|V5>|H6>]-

The matrix elements of interest are now
(ale(xH)UTPLU(Ix)2|B))
=2 (al@(xHUTk)a)al(k |U(lx)|B8)

(29

and the nonzero terms of the sum in E&5) are

(00 (k |U(|x)®]00))| 2=,

The polarizing beam splitters perform a unitary evolution on

the input ports, characterized by the set of quantitiég.
One can summarize the evolution of modesHp® Ha to
modes iNHc® Ha with the following linear map:

H) = [Hp), Vi) ——ilVy),
[H2)—[Hs),  [V2)—|Vs),
[Ha)—[He),  [Va)—[Ve),
[Ha)—=Hm),  [Va)——i[Vy),
[Ha)—=[Hg),  [Va)——i[Vp),
[Hp)—[Hn), V)= —i|Vi),
since Uﬁal= 1, Ui‘,lvq=

(01(k |U(|x)®|01))|2= %,
(11(k U (| x)®[10))]2= %,

(101(k [U(Ix) @ |11))]2= 7,

for all L. The test functiong T} are then

6%1[|Ha>|Hb><Hb|<Ha| +|Ha>|vb><vb|<Ha|
+ |Va>|Hb><Hb|<Va| + |Va>|Vb><Vb|<Va|]

Tuy=

_LI
— 64'SC

and are indeed multiples of the unit operator in the compu-

tational input space. In this schemg, = 1/64, and the prob-
ability of success is the sum of the individual probabilities of
the 16 detection outcome&, 7 ,=1/4. The terms of the

transformation matricesv(*# can be calculated noting that

—i, etc. As in the previous ex- pe nonzerdﬁ|<ﬂU|B)|X) terms are

ample, to evaluate the test operators, we first look at the

terms

(k{00 U|00)| x)=€'?L8,
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(ki[(03U 0D x) =€ 118, (al(k UL @IS)[*=0,
(k_,_|<1_1|U|10>|X>=e‘¢Lv2/8, since the extra photon inhibits a success-indicating measure-
_ ‘ ment result. The evolution cannot be operationally unitary in
(k {10U|12)|x)=e€"¢L4/8, this expanded subspace because the test operator is no longer

_ . _ _ proportional to the unit operator.
where e'%to=1g%11=—1g'%21=1, .. . €e%63=1 are

phase factors of 1. For this transformation to be operation-

ally unitary, thew*® matrices must all be proportional to

each other. In certain outcomes, single-qubit operations In this paper we introduced a general approach to the

(ﬂ-_phase shiftsare required to correct the phase factors sdnvestigation of conditional measurement devices. We con-

that the transformation is operationally unitary and the desidered an important class of optidsdport devices, includ-

sired output is produced. The feed-forward processing matrind tZO_se E;mploylfling t|m;01'ect0rsl,t_olf rank greatertthan unity,OI
Ta . - : - mixed in nci , multi mes, an

cesV(L”) represent these single-qubit operations. Setting feeg-forvfz; daprgc:sziﬁge.SWe Léls%eslf:'g:%eesds hoéjwc%ofg gaen-

VIIl. CONCLUSION

700,00_ _i¢ 0101 ¢ eral POVMs, rather than PVMs, could be included. The nec-
V(L) =ge'?Lo, V(L) =e'’L1 . . . .
essary and sufficient conditions for these devices to simulate
VI gid,  yIODO_ gids unitary evolution have been derived. They are not surprising,
L &S o —&s and indeed from a physical point of view are fairly obvious.

. . .. But to our knowledge they have not been discussed in this
with all other elements equal to zero gives the appropriate

. X . general way before. One of the conditions is that the prob-
corrections. The nonzero transformation matrix elements arg, ... .
ability of each successful outcome must be independent of

then the input density operator. Whether or not this holds can be
00,00_ checked by evaluating a set of test operators over the input
w =1, : . S X

computational Hilbert space, which is easily done for any
01,01 proposed device. In the special case of only one successful

we=1, outcome there is only one test operator to be computed; fur-
T3 10 thermore, if the ancilla state is pure and the success projector

wi=1, of rank 1, then the passing of a test condition by that single
_ test operator guarantees that the map is operationally unitary.
wiot=1 In the case of more than one successful outcome it is a nec-

essary consequence of operational unitarity that each of the
for all L. Since the 16 evolution matrices are identical, thetest operators pass the test condition. This is not sufficient to
proportionality condition is satisfied. The transformation isimply operational unitarity in the multiple projector case un-
then less the proportionality condition is also satisfied. The pro-

portionality condition can often be satisfied by introducing

;EZE WEB pﬁy(wfy)* feed-forward processing. . _
By Besides application in the analysis of particular proposed

devices, we believe the general framework presented here
which is thecNOT operation. This gate takes the input stateyill be useful in exploring the different types of premeasure-
| 1) = 2|00) + @1 01) + x| 10) + @5/ 11) and produces the ment evolution and measurements that might be useful in the
statea|00) + a4 01) + a5 11) + 5| 10) with probability 1/4.  design, optimization, and characterization of such devices. In
Again, this map exhibits an effective nonlinear interactionparticular, the conditional sign flip and polarization-encoded
between the photons since the formally equivalent unitareNOT devices we considered functioned as operationally uni-
map is characterized by a nonlinear effective action operatdiary maps only over the input computational subspaces for
Q (16). In this case one could choose which they were originally proposed. So while effective pho-
ton nonlinearities could be introduced, the degree to which
they are physically meaningful is somewhat limited. An out-
standing issue, perhaps even of interest more from the gen-
eral perspective of nonlinear optics than from that of quan-
where the operators are associated with the vertical polarizaum computer design, is the study of potential devices that
tion of the respective mode. Again, however, the operationgbrovide effective photon nonlinearities over much larger in-
unitarity is restricted to the subspace. Suppose we expand tipeit computational subspaces. The question remains: to what
computational subspace to include an extra photon in one axtent are such devices possible in theory and feasible in
the input modes. As an example, consider the special stafzractice?
|S)=|H.)|Hp)|Hp). The form of the projectors indicates  Finally, we note that only in Sec. VII did we assume that
that the detection events involve one and only one photon ithe premeasurement unitary evolutithis associated with
the appropriate modes. Evaluating the corresponding test ofinear elements in an optical system. The more general
erator elements we find framework of the earlier sections may find application in

wh + “ R “
Q= 7(3+ab(1_nb)+(1_nb)ab)na-
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