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Separable balls around the maximally mixed multipartite quantum states

Leonid Gurvits and Howard Barnum
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~Received 19 February 2003; published 14 October 2003!

We show that for anm-partite quantum system, there is a ball of radius 22(m/221) in Frobenius norm,
centered at the identity matrix, of separable~unentangled! positive semidefinite matrices. This can be used to
derive ane below which mixtures ofe of any density matrix with 12e of the maximally mixed state will be
separable. Thee thus obtained is exponentially better~in the number of systems! than existing results. This
gives a number of qubits below which nuclear magnetic resonance with standard pseudopure-state preparation
techniques can access only unentangled states; with parameters realistic for current experiments, this is 23
qubits~compared to 13 qubits via earlier results!. A ball of radius 1 is obtained for multipartite states separable
over the reals.
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I. INTRODUCTION

Entanglement is an important quantum resource, usefu
quantum computation, cryptography, and communicat
protocols. Entangled quantum states are those that cann
expressed as a mixture of product states. That is, if a~not
necessarily normalized, but positive semidefinite! stater is
an entangled state ofm systems~an ‘‘m-partite state’’!, there
is no way to choose positivepi and statesr i

1,...,r i
m for sys-

tems 1 throughm, such that

r5(
i

pir i
1

^¯^ r i
m . ~1!

~If stater is normalized, trr51, we get an equivalent defi
nition even ifpi are required to be probabilities,( i pi51.) In
this paper, we provide a simple geometric condition su
cient to guarantee separability~nonentanglement! of an
m-partite unnormalized state: that the state is proportiona
the identity matrix plus a Hermitian perturbationD whose
Frobenius norm~2-norm! is no greater than 22(m/221). This
is exponentially better than the best previous bounds we
aware of@1,2#. We use it to obtain balls of normalized sep
rable states. Because the set of separable~unentangled! den-
sity matrices is convex, and the size of the largest ball t
fits inside it ~as well as the smallest ball that covers it! is
important to complexity-theoretic questions involving co
vex sets, we expect the result to have applications in c
plexity questions about entanglement, such as the comple
of deciding whether or not a multipartite state is entangl
Equally importantly, it can help determine whether or n
entanglement is present in interesting theoretical and exp
mental situations. For example, though the utility of the c
terion is emphatically not restricted to such states, it gives
a bound on the ‘‘polarization’’e below which ‘‘pseudopure’’
states of the form (12e)I /d1ep, with p pure,I the identity
operator on a multipartite state space of overall dimensiod,
are separable. Applied to liquid-state nuclear magnetic re
nance~NMR! with preparation of an initial pseudopure sta
at a temperature of 300 K in an 11 T external field, o
criterion implies that unless we have 23 or more nuclear-s
1050-2947/2003/68~4!/042312~8!/$20.00 68 0423
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qubits only separable states can be produced~compared to 13
qubits using the bound in Ref.@1#!.

The methods of Refs.@1#, @2# are very different from ours:
they expand the density matrix in an overcomplete basis
pure states and find conditions guaranteeing positivity of
coefficients of the expansion, thus giving an explicit deco
position of form~1!. In contrast, the methods we use have
nonconstructive flavor: although they establish that a
m-partite ~unnormalized! density matrix within a distance
1/2(m/221) is separable, they do not provide an explic
‘‘separable representation’’~1! of it. Our methods use genera
concepts of matrix theory and convex analysis in terms
which the problem is naturally formulated, and involve on
short and elementary calculations. This paper is a nat
sequel to Ref.@3# in the sense that almost the same ma
ematics is used. The main~though quite simple! difference
here is a generalization ofseparability, so-called (C1^ C2

^¯^ Cm) separability, whereCi are matrix cones~see
Definition 2 below!. This generalization arises naturally i
extending the bipartite result of Ref.@3# to m-partite systems
with m>3. A reader comfortable with the technique used
Ref. @3# should have no extra problems in understanding t
paper.

We also study cones of ‘‘real-separable’’ Hermitian mat
ces, lying in a particular linear subspace of the Hermit
matrices, and find a larger separable ball, the unit Froben
norm ball, of matrices in this space. Real separability o
matrix is shown equivalent to separability and being in t
aforementioned linear subspace, which turns out to be
tensor product of the local spaces of real symmetric matric
This may be viewed as a situation in which the density m
trix obeys particular symmetries, and it may be useful
have a bound for this situation~which is in any case of math
ematical interest!. Also, real Hilbert spaces and real sepa
bility have been studied in relating quantum informati
theory to foundational questions and ‘‘generalized inform
tion theory’’ @4,5#, so our results are relevant to such matte
The results on real separability are not required in orde
understand the results on ordinary separability, and may
omitted by readers only interested in the latter.
©2003 The American Physical Society12-1
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II. NOTATION AND MATHEMATICAL PRELIMINARIES

The mathematical notion of a ‘‘regular’’ positive con
~which we will just call cone! is basic in quantum-
information science, especially in the study of entanglem
This is so because the unnormalized quantum states, the
normalized separable states of a multipartite quantum
tem, the completely positive maps, the positive maps,
many other sets of interest form such cones.~Appropriate
normalizationlike conditions, such as unit trace for states
trace preservation or trace nonincrease for maps, are us
just additional linear equalities or inequalities.! In this sec-
tion, we review regular positive cones and related notio
background and preliminaries specific to the separable co
~of unentangled states! appear at the beginning of the follow
ing section.

Definition 1. A positive cone is a subsetK of a real vector
spaceV closed under multiplication by positive scalars. It
called regular if it is~a! convex~equivalently, closed unde
addition: K1K5K), ~b! generating (K2K5V, equiva-
lently K linearly generatesV), ~c! pointed (Kù2K5B, so
that it contains no nonnull subspace ofV), and~d! topologi-
cally closed~in the Euclidean metric topology, for finite di
mension!.

Such a positive cone induces a partial order>K on V,
defined byx>K yªx2yPK. This partial order is ‘‘linear
compatible’’: inequalities can be added and multiplied
positive scalars. A setS is said togeneratea coneK if K is
the set ofpositivelinear combinations of elements ofS. The
topological closure condition guarantees that such a con
generated~via addition! by its extreme rays. These are sets
Rxª$lx:l>0% such that noyPRx can be written as a con
vex combination of elements ofC that are not inRx . We will
not make much use of closure and extremality, but at so
points we use the fact that positive semidefinite~PSD! ma-
trices can be written as convex combinations of rank-1 P
matrices~these being the members of the extreme rays of
cone of PSD matrices!.

Duality is often a useful tool when dealing with cones. A
inner product, written̂ ¯ ,¯&, on a finite-dimensionalV
selects a particular way of identifyingV with with its dual
@the space of linear functions~‘‘functionals’’ ! from V to R#.
The coneC* dual toC ~the set of linear functionals which
are non-negative onC! is identified with $yPV:^y,x&
>0,; xPC%. We define the adjoint off: V1→V2 as
f†:V2→V1 via

^B,f~A!&5^f†~B!,A& ~2!

for all APV1 , BPV2 .
We say a linear mapf: V1→V2 is C1-to-C2 positive, for

cones C1,V1 , C2,V2 , if f(C1)#C2 . The following
proposition is easily~but instructively! verified.

Proposition 1. If f(C1)#C2 , thenf†(C2* )#C1* .
For complex matricesM, we useM† to denote the trans

pose of the entrywise complex conjugate of the matrix.~The
transpose itself we denoteMT.) The positive semidefinite
coneP(d) in the real linear space of Hermitiand3d matri-
ces is the set of matricesM such thatx†Mx>0 for all x
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PCd. If we use the trace inner product^X,Y&ªtr XY to
identify V* with V, it is equal to its dual. We will denote by
‘‘ f’’ the partial order induced by this cone, and often wri
Mf0 for the equivalentMPP(d).

We will have several occasions to use the followi
proposition, which follows from the fact that for normal~in-
cluding Hermitian! matricesD, iDi` is the largest modulus
of an eigenvalue ofD.

Proposition 2. Let D be Hermitian. ThenI 1Df0 is
equivalent toiDi`<1.

We define more notation.
Definition 2. The linear space ofN3N complex matrices

is denoted asM (N), the linear space over the reals ofN
3N real matrices is denoted asMR(N), the linear space of
real symmetricN3N matrices is denoted asSR(N), and the
linear space over reals ofN3N complex Hermitian matrices
is denoted asH(N). The space of complex block matrices,K
blocks by K blocks, with blocks inM (N), is denoted as
B(K,N).

III. SEPARABLE CONES

Let us consider anm-partite unnormalized density matri
~i.e., just positive semidefinite!

r:H1^ H2^¯^ Hm→H1^ H2^¯^ Hm

Let dim(Hi)5di , 1< i<m. Then any such

r5$r~ i 1 ,i 2 ,...,i m ; j 1 , j 2 ,...,j m!,

1< i k , j k<dk ;1<k<m%.

Let us block partitionr with respect to the first index:

rªS r1,1 r1,2
¯ r1,d1

r2,1 r1,2
¯ r2,d1

¯ ¯ ¯ ¯

rd1,1 rd1,2
¯ rd1 ,d1

D , ~3!

where the blocks are

r i , j :H2^¯^ Hm→H2^¯^ Hm

and

r i , j5$r~ i ,i 2 ,...,i m ; j , j 2 ,...,j m%, 1< i k , j k<dk ; 2<k<m.

We will make use of a well-known isomorphism betwe
the spaces of linear maps fromM (K) to M (N) andB(K,N).
For any MPB(K,N) let xM be the mapx defined via
x(eiej

†)5Mi , j . Hereei is the 13K matrix with 1 in thei th
place, zero elsewhere, soeiej

† is the ‘‘matrix unit,’’ with 1 in
the i,j place and 0 elsewhere.eiej

† are a basis forM (K), so
this determinesxM . We could use the same equation to d
termine a block matrixMx from a mapx, so this is an iso-
morphism of vector spaces, in factxMx

5x. In the quantum-
information literature this is sometimes called th
‘‘Jamiolkowski isomorphism’’ ~or equivalence!; we have
2-2
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also calledMx the ‘‘Choi matrix’’ of x. It has the important
and easily verified property given as follows.

Proposition 3. tr @x(A)B#5tr @Mx(AT
^ B)#.

Definition 3. Consider conesCi,M (di), 1< i<m. A ma-
trix

r:H1^ H2^¯^ Hm→H1^ H2^¯^ Hm

@i.e., rPM (d1d2¯dm)] is called (C1^ C2^¯^ Cm) sepa-
rable if it belongs to the cone generated by the set$A1^ A2
^¯^ Am :AiPCi ,1< i<m%. We call this the separable con
S(C1 ,C2 ,...,Cm).

This is trivially equivalent to the recursive definition
S(C1 ,C2 ,...,Cm) is the cone generated by the pairsA1^ B
with AiPC1 , BPS(C2 ,...,Cm).

Examples: Two examples are given as follows.~1! Let for
all 1< i<m the coneCi be the cone of positive semidefinit
matrices, denoted byP(di). In this case the definition o
(C1^ C2^¯^ Cm) separability is equivalent to the standa
notion of separability of multiparty unnormalized dens
matrices. We will denote the corresponding cone
separable multiparty unnormalized density matrices
S(d1 ,d2 ,...,dm).

~2! Let for all 1< i<m the coneCi be the cone of positive
semidefinite matrices with real entries. We call the cor
sponding cone the cone of real-separable multiparty den
matrices and denote it bySR(d1 ,d2 ,...,dm).

We now recursively define a subspaceL(d1 ,...,dm),
which we show is the minimal linear subspace~over the
reals! of the symmetric matricesSR(d1 ,...,dm) that contains
the real-separable coneSR(d1 ,...,dm).

Definition 4. rPL(d1 ,d2 ,...,dm) iff in the block partition
~3!, r i , jPL(d2 ,...,dm) and r i , j5r j ,i(1< i , j <d1); L(d)
5SR(d).

It is easily calculated from this definition that the dime
sion of L is

dim@L~d1 ,...,dm!#5)
i 51

m

@di~di21!/2#, ~4!

the dimension of the tensor product of the spaces of r
symmetric matrices on eachHi , which in fact will turn out
to beL; for m.1, this is strictly smaller than the dimensio
(P i 51

m dm)(P i 51
m dm21)/2 of SR(d1¯dm). „This accounts

for many differences in the ‘‘information-theoretic’’ behavio
of quantum mechanics on real vs complex Hilbert spaces~cf.
Ref. @5# for example!: it is the mathematical way of sayin
that the expectation values of local observables~tensor prod-
ucts of real-symmetric matrices! in this theory do not suffice
to determine a state on the tensor product of real Hilb
spaces@do not determine the expectation values ofall ob-
servables on this space, i.e., all elements ofSR(d1¯dm)]. It
also implies that the separable~i.e., real-separable! states
have zero measure in the space of all states on the te
product of real Hilbert spaces.…

It is easy to prove thatr:H1^ H2^¯^ Hm→H1^ H2
^¯^ Hm is real separable iffr is separable andr
PL(d1 ,d2 ,...,dm). In fact, we will show
04231
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Proposition 4. L(d1 ,d2 ,...,dm) is the minimal linear sub-
space ~over the reals! of SR(d1d2¯dm) which contains
SR(d1 ,d2 ,...,dm).

Proof. It is clear thatL(d1 ,...,dm) is a subspace of~‘‘ <’’ !
SR(d1¯dm). To be explicit, symmetry mean
r( i 1 ,...,i m , j 1 ,...,j m)5r( j 1 ,...,j m ,i 1 ,...,i m); this follows
from the definition ofL andL(d2 ,...,dm) being a subspace
of SR(d2 ,...,dm). This establishes our induction step; th
base caseL(dm)5SR(dm) is part of Definition 4.

SupposeXPSR(d1 ,...,dm). That is, X5(kAk^ Bk , Ak
PSR(d1 ,...,dm21), andBkPSR(dm). By the induction hy-
pothesis,AkPL(d1 ,...,dm21). Block partitioning with re-
spect to themth system,

Xi j 5(
k

Bk~ i , j !Ak5(
k

Bk~ j ,i !Ak5Xji . ~5!

These blocks are inL(d1¯dm21) becauseAk are conse-
quently XPL(d1 ,...,dm). The base case is trivial
SR(d1)#@SR(d1)ùL(d1)# holds with equality because
SR(d1)[P(d1) andL(d1)5SR(d1).

For the opposite direction, let XPL(d1 ,...dm)
ùS(d1 ,...,dm). By separability,

X5(
k

Ak^ Bk^¯^ Zk , ~6!

where AkPP(d1), BkPP(d2),...,ZkPP(dm) ~and no re-
striction to m526 is intended!. Let Ak5Ak

11 iAk
2 with Ak

1

real symmetric,Ak
2 real skew symmetric, and similarly forB,

C, etc. Substituting these in Eq.~6! and keeping only terms
with an even number of imaginary factors~sinceXPL), and
block partitioning the matrix according to the first su
system, each block has the form

(
k

Ak
1~ i , j !Rk1(

k
Ak

2~ i , j !Sk . ~7!

Thus X5X11X2 , where the first term is block symmetri
and the second term is block skew symmetric. This sec
term must therefore be zero. By the recursive definition oL
~andS! we have that, for each fixed value ofi,j , Xi j must be
block symmetric when partitioned according to the seco
~‘‘B’’ ! system. This block is

(
k

Ak
1~ i , j !Bk

1~m,n!Ck
^¯Zk

1(
k

Ak
1~ i , j !Bk

2~m,n!Ck
^¯Zk ~8!

and again only the first component is nonzero. Proceed
thus through all the subsystems, all terms with a ske
symmetric factor must be zero and we have

X5(
k

Ak
1

^ Bk
1

^¯Zk
1, ~9!
2-3
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with each of Ak ,Bk ,...,Zk real symmetric and positive
semidefinite, i.e.,XPSR . ThatL is theminimal linear sub-
space ofSR containingSR is clear from the fact thatSR
contains allm-fold tensor products of positive semidefini
real-symmetric matrices, and these span the space of te
products of real-symmetric matrices, whose dimension,
remarked just after the definition ofL, is equal to that of
L(d1 ,...,dm).

An advantage of definingL as we did above, rather tha
by the equivalent characterization as the tensor produc
the spacesSR(di) obtained at the end of the preceding pro
is that Definition 4 gives a criterion for membership inL
easily checked on any matrix, while the tensor product ch
acterization just gives us bases forL.

The next lemma gives a simple but very useful criteri
for P(d1) ^ C(d2) separability for any coneC(d2) of Her-
mitian matrices. It is a slight generalization of the necess
and sufficient criterion~cf. Refs. @6#, @7#! for ordinary
@C(d2)5P(d2)# bipartite separability@that every positive
linear map, applied to one subsystem of the bipartite sys
~i.e., to every block of its block density matrix! gives a posi-
tive semidefinite matrix#.

Definition 5. A linear operatorf: M (d2)→M (N) is
called C(d2) positive if f„C(d2)…,P(N). If X is a block
matrix as in Eq.~3!, Xi , jPM (d2), andf: M (d2)→M (N) is
a linear operator, then we define

f̃~X!ªS f~X1,1! f~X1,2! ... f~X1,d1!

f~X2,1! f~X2,2! ... f~X2,d1!

... ... ... ...

f~Xd1,1! f~Xd1,2! ... f~Xd1 ,d1!

D .

~10!

Lemma 1. Suppose that the coneC(d2),H(d2),M (d2).
ThenX is P(d1) ^ C(d2) separable ifff̃(X)f0 ~i.e., is posi-
tive semidefinite! for all C(d2)-positive linear operators
f: M (d2)→M (d1).

The proof uses the following proposition, which gener
izes the duality between positive linear maps and separ
states.

Proposition 5. For Hermitian matricesMPB(d1 ,d2), the
following are equivalent: ~1! tr MZ>0 for all P(d1)
^ C(d2)-separable matricesZ and ~2! Mi j 5x(eiej

†) for
somex such thatx„P(d1)…#C(d2)* .

The proposition is a special case of the following lemm
Lemma 2. For HermitianMPB(d1 ,d2) the following are

equivalent:~1! tr (MZ)>0 for all C(d1) ^ C(d2)-separable
matrices Z and ~2! Mi j 5x(eiej

†) for some x such that
x„C(d1)T

…#C(d2)* .
By CT, C a set of matrices, we mean the set of transpose
matrices inC; if C is a cone, so isCT.

Proof of Lemma 2. Item 1 is equivalent to

tr @M ~A^ B!#>0 for all APC~d1!, BPC~d2!.
~11!

By Proposition 3 this is equivalent to
04231
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tr @x~AT!B#>0 ~12!

for all APC(d1), BPC(d2), i.e., x„C(d1)T
…#C(d2)* .

Proof of Lemma 1. ‘‘Only if’’ is trivial: P(d1) ^ C(d2)
separability ofX meansX5( iAi ^ Bi , with AiPP(d1), Bi

PC(d2), hence f̃(X)5( iAi ^ f(Bi); since we assumed
f„C(d2)…#P(d1), we have f(Bi)PP(d1), so f̃(X)
PS(d1 ,d1).

For ‘‘if,’’ note that f̃(X)f0 says that for any positive
semidefiniteBPB(N,K),

(
i j

tr @Bi j f~Xi j !#>0. ~13!

By the definition of dual cone@and the self-duality ofP(d1)]
it is easily seen thatf†

„P(d1)…#C(d2)* . Now, Eq. ~13! is
equivalent to

(
i j

tr@f†~Bi j !Xi j #5tr@f̃†~B!X#>0. ~14!

Letting Bi j 5eiej
† , so B is the block matrix of a positive

semidefinite rank-1 state~specifically, the unnormalized
maximally entangled statexx† with x5( iei ^ ei), we have
that the matrixf̃†(B) satisfies condition 2 of the Propos
tion; asf ranges over allP(d1)-to-C(d2)* -positive maps,
f̃†(B) ranges over all such matrices so by Proposition 5X is
P(d1) ^ C(d2) separable.

The next proposition will allow us to extend the~exact!
bipartite result from Ref.@3# to multiparty systems. The bi
partite result was that everything in the ballB(N,1)ª$I
1D: iDi2<1% of size 1 in Frobenius norm around the ide
tity operator is separable; therefore, so is everything in
cone, which we callG(d1d2,1), generated by that ball, for
bipartite system with subsystems of dimensionsd1 , d2 . We
define a slight generalization of this cone.

Definition 6. Let G(N,a),H(N),M (N) be the cone
generated by HermitianN3N matrices of the form$I
1D: iDi2ª(tr(DD†)1/2<a%.
A sufficient condition for tripartite separability ofX is clearly
that it belongs to the cone generated byAi ^ Zi , whereAi
PP(d1) and ZiPG(d2d3,1); this can be used to derive
tripartite sufficient condition for separability in terms o
Frobenius norm. Letting this tripartite 2-norm ball generat
cone of separable tripartite states, similar reasoning give
ball of 4-partite states, and so on. The key to the induct
step is the following proposition.

Proposition 6. If f: M (N)→M (K) is aG(N,a)-positive
linear operator@i.e., f(X)f0 for all XPG(N,a)] and
f(I )5I PM (K), then ~1! if(X)i`<a21iXi2 for all X
PH(N) and ~2! if(Y)i`<a21&iYi2 for all YPM (N).

Proof. All G(N,a) positivef satisfyf(I 1D)f0 for all
D such thatiDi2<a, which whenf(I )5I gives I 1f(D)
f0; by Proposition 2 this is equivalent toif(D)i`<1, es-
tablishing item 1. Item 2 uses item 1 and the followin
lemma.

Lemma 3. If a linear operatorf: M (N)→M (K) satisfies
f„H(N)…#H(K) and if(Z)i`<iZi2 for all Hermitian Z
2-4
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PM(N), thenif(Y)i`<&iYi2 for all YPM (N). To show
this, let Y5A1 iB with A, B Hermitian. Now, f(Y)
5f(A)1 if(B), soif(Y)i`<if(A)i`1if(B)i` . This is
less than or equal toiAi21iBi2 by assumption~A, B being
Hermitian!. The conclusion follows from the square root
the elementary inequality (x1y)2<2(x21y2) @obtained
from 2xy<x21y2, which comes from (x2y)2>0].

The following example shows that the extra& factor ~for
general vs Hermitian matrices! is the best possible in Lemm
3.

Consider f: M (2)→M (2), f(X)5X(1,1)A1
1X(2,2)A2 ; whereA1 , A2 are real-symmetric anticommu
ing unitary matrices:

A15S 1 0

0 21D ,

A25S 0 1

1 0D .

Notice that for reala, b we have thataA11bA25(a2

1b2)1/2U for some real-symmetric unitaryU. Thus
f„H(2)…,H(2) and if(Z)i`<iZi2 for all Hermitian Z
PM (2). Consider the following~non-Hermitian! matrix:

Y5S 1 0

0 i D .

Then iYi2
252 and if(Y)i`

2 5if(Y)i2
254, since

Det@f(Y)#50.
Remark. If we add to the premises of Lemma 3 the ad

tional assumption that we used to obtain Proposition 6 fr
Lemma 3, namely, thatf(I )5I , we can obtain a contractio
bound~whenk>2! of A221/n instead ofA2, as well as an
example showing thatA222/n can be achieved. Propositio
2 of Ref. @3# is a similar contraction bound with constant
rather than& on all matrices, not just Hermitian ones, fo
the usual positive maps; the proofs used there do not w
for the different notion of positivity used here.

Now everything is ready for our attack on multiparti
separability.

Theorem 1. Let H1 , H2 have dimensionsn1 , n2 . If an
unnormalized density matrixr: H1^ H2→H1^ H2 satisfies
the inequality ir2I i2<a/&, then it is P(n1) ^ G(n2 ,a)
separable.

Proof. Let r5I 1D, D Hermitian; by Lemma 1, we are
looking for a bound on iDi2 that ensures, for any
G(n2 ,a)-to-P(n1)-positive linear operator,f̃(I 1D)f0.
f(I )5I , so f̃(I 1D)5I 1f̃(D); if̃(D)i`<1 will ensure
this ~cf. Proposition 2!. The argument establishing tha
if̃(D)i`<1 is essentially identical to the proof of the ma
theorem of Ref.@3#, except that becausef is not an ordinary
positive map we must use the weaker contraction bound
Proposition 6, with its& factor, in place of the result of Ref
@3# with factor 1:
04231
-

rk

of

if̃~D!i`
2 <iAi`

2 <iAi2
25(

i j
ai j

2 5(
i j

if~D i j !i`
2 ,

~15!

whereAª@ai j #, ai jªif(D i j )i` . ~The first inequality is be-
cause the operator norm of a block matrix is bounded ab
by that of the matrix whose elements are the norms of
blocks, a known result whose proof is sketched in, e.g., R
@3#, and the second is because the Frobenius norm is
upper bound to the operator norm.! if(D i j )i`

2

<2a22iD i j i`
2 by Proposition 6, and it is an elementary nor

inequality thatiD i j i`<iD i j i2 . So

if̃~D!i`
2 <(

i j
if~D i j !i`

2 <2a22(
i j

iD i j i2
2[2a22iDi2

2.

~16!

Thus if iDi2<a/&, if̃(D)i`<1.
Corollary 1. If an m-partite unnormalized density matri

r: H1^¯^ Hm→H1^¯^ Hm satisifes ir2I i2
<1/(2m/221), then it is separable.

Proof. The main result of Ref. @3# is that
G(d1d2,1),S(d1 ,d2). This is the base case for an indu
tion on the number of subsystems. For the induction s
fix m.2 and suppose as our induction hypothe
the corollary holds for m21, i.e.,
G(d1 ,...,dm21,22@(m21)/221#)#S(d1 ,...,dm21). Theorem 1
tells us G(d1 ,...,dm,22@(m21)/221#/&[22(m/221)) is
P(dm) ^ G(d1¯dm21,22@(m21)/221#) separable, and there
fore ~by the induction hypothesis and the recursive definit
of separability! separable.

If we had an analog to Theorem 1, withG(n1 ,a) instead
of P(n1), and some constanta replacing 1/&, then we
could get one over a polynomial instead of an exponentia
Corollary 1, by recursively dividing systems into subsyste
of more or less equal size, since this involves a logarithm
number of partitionings compared to splitting off one syste
at a time. The first step toward such a theorem would be
apply the characterization ofC(d1) ^ C(d2) separability
given by Lemma 2 toG(d1 ,a), G(d2 ,a); the fact that nei-
ther of these cones is self-dual has so far proved an obs
to our getting useful results along these lines.

Note that for tripartite separability, this corollary gives
ball of radius 1/&. Even here, it is an interesting open que
tion whether this is tight; in fact, any example showing th
the radius of a maximal separable 2-norm ball is smaller t
1 would be very interesting.

Theorem 2. Consider rPL(d1 ,...,dm). If ir2I i2<1,
then

r5( air
~ i !

^ r i ,ai>0, ~17!

where for all i r1
( i ) is a real positive semidefinited13d1

matrix, r iPL(d2 ,...,dm) and i I 2r i i2<1.
Proof. The proof goes essentially like that of Theorem

except that the blocksD i j are Hermitian by Proposition 4
2-5
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Consequently we may use item 2 rather than item 1
Proposition 6, and obtain the larger radius ball.

Corollary 2. If rPL(d1 ,...,dm) andir2I i2<1, thenr is
real separable. In other words the maximal separable ba
L(d1 ,...,dm) around the identityI has radius 1.

The next proposition is immediate from results of R
@3#, derived using ‘‘scaling,’’ i.e., considering all ways o
writing a matrixr as a positive scalar times the sum of t
identity and a Hermitian perturbation, and minimizing t
2-norm of the perturbation.

Proposition 7. Definem~r! as the maximum ofiDi2 over
all D such that there exists ana.0 for which r5a(I
1D). Let r be a normalized (trr51) density matrix. Then
the following three statements are equivalent:~1! m(r)<a,
~2! tr r2<1/(d2a2), and~3! ir2I /di2<a/Ad(d2a2).

Using this Proposition, Theorem 1 has~via Corollary 1!
the following corollary.

Corollary 3. If an m partite normalized~i.e., unit trace!
density matrix r:H1^¯^ Hm→H1^¯^ Hm satisfiesir
2I /di2<1/2m/221d, whered5dim(H1^¯^ Hm), then it is
separable.

@The proposition actually gives the~negligibly! tighter
statement with 2m/221Ad(d222(m22)) in the denominator.#

IV. DISCUSSION

In many interesting experimental or theoretical situatio
the system is in a pseudopure state: a mixture of the unif
density matrix with some pure statep:

re,pªep1~12e!I /d, ~19!

where d5d13d23 ¯ 3dm is the total dimension of the
system. For example, consider NMRQIP, wheredi52 for i
51, . . . ,m, d52m, andm is the number of spins individu
ally addressed in the molecule being used. As discusse
more detail below, the initialization procedures standard
most NMRQIP implementations prepare pseudopure sta

Write

re,p5~1/d!I 1e~p2I /d!. ~20!

Since ie(p2I /d)i25eA(d21)/d, by Corollary 3, this is
separable if

e<22~m/221!/Ad~d21!, ~21!

For m D-dimensional systems~so d5Dm), this implies the
~negligibly loosened! bound

e<22~m/221!/Dm. ~22!

This is an exponential improvement over the result in R
@2# ~the qubit case is in Ref.@1#! of e<1/(11D2m21). Form
qubits, for example, our result goes asymptotically
22@(3/2)m21#, vs 22(2m21) in Ref. @1#. Another comparison is
with our earlier bound of

e<1/~Dm21! ~23!
04231
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guaranteeing separability form D-dimensional systems with
respect to every bipartition@3#. It is interesting that this is
exponentially larger than the present bound guarantee
multipartite separability, although we do not know that
tight multipartite bound would still exhibit this exponentia
separation.

In liquid-state NMR at high temperatureT, the sample is
placed in a high dc magnetic field. Each spin is in a high
mixed thermal state. It is not maximally mixed because
the energy splitting between the higher-energy state in wh
the spin is aligned with the magnetic field and the high
energy one in which it is antialigned. This gives probabiliti
for those states that are proportional to the Boltzmann fac
e6bmB, whereb[1/kT with k Boltzmann’s constant,m the
magnetic moment of the nuclear spin, andB the external
field strength. For realistic high-T liquid NMR values ofT
5300 K, B511 T, bmB'3.74631025!1. Calling thish,
e6h'16h, so the probabilities arep↑'(12h)/2, p↓'(1
1h)/2, where ↑/↓ denote alignment/antialignment of th
spin with the field. With independent, distinguishable nucle
spins, Maxwell-Boltzmann statistics give the highe
probability pure state, with allm spins up~field-aligned!,
probability about (11h)m/2m'(11mh)/2m. Standard
pseudopure-state preparation creates a mixture of this
and the maximally mixed state by applying a randomly ch
sen unitary from the group of unitaries fixing the all-spi
aligned state.@U could be chosen uniformly~i.e., with Haar
measure on this group!, but efficient randomization proce
dures may draw from carefully chosen finite sets of su
unitaries@8#.# Thus, we get a mixture

~12e!I /2m1eu↑¯↑&^↑¯↑u, ~24!

with

e5hm/2m. ~25!

With h'3.74631025, this implies that below about 23 qu
bits, NMR pseudopure states are all separable compare
the '13 qubits one gets from the bound in Ref.@1#.

A quantum computation in which the computer state
mains pure and unentangled can be efficiently~polynomi-
ally! simulated on a classical computer@9#. Whether quan-
tum computations involving only general, potentially mixe
separable states are efficiently classically simulable,
whether they are capable of the same performance as un
sal quantum computation, or at least of some speedups
classical computation, are open questions. Our results
course, do not directly address this question. On the bas
a suspicion that entangled states are required for s
speedup, doubt is sometimes cast on the usefulness of N
based quantum-information-processing protocols that do
even asymptotically, achieve entanglement. Even without
tanglement considerations, however, it is clear t
pseudopure-state NMR quantum computing will not gi
asymptotic gains over classical computing because of
exponentially decreasing signal-to-noise ratio from Eq.~25!.
As pointed out in Ref.@10#, it does not follow that no appli-
cation of liquid-state NMR can have better-than-classi
2-6
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asymptotic performance: NMRQIP is not limited
pseudopure-state initialization. It is not known that NMRQ
with other initialization schemes, such as those that invo
preparing afixed number of pseudopure qubits as the to
number of spin qubits grows, can be efficiently classica
simulated, and even with one pure qubit interesting thin
can be efficiently done for which no efficient classical alg
rithm is currently known@10#. Another nonpseudopure ini
tialization scheme is the Schulman-Vazirani algorithm
cooling procedure@11#, which essentially uses an efficien
~and NMR implementable! compression algorithm to conve
the thermal state withS bits of entropy form nuclear spins,
into log2 Smaximally mixed qubits andm2 log2 Spure ones.
Their work shows that the theoretical model derived fro
NMR with an initial thermal state is as powerful as standa
quantum computation. Though the overhead required is p
nomial, the space overhead is large enough to be impract
given the small number of qubits available in liquid-sta
NMR. But algorithmic cooling is certainly relevant in prin
ciple to the asymptotic power of an implementation, a
could be practically relevant to a high-temperature bulk Q
implementation that was expected to be sufficiently scala
that asymptotic considerations are relevant.

However, there is still the interesting possibility that o
may produce an entangled overall density matrix~and not
just a mixture of the maximally mixed state with an e
tangled state! via pseudopure-state NMRQIP. The resu
herein increase~to 23, withh as above! the number of qubits
known to be required before this may be possible. Since
have not shown that our bounds are tight, even at 23 qu
there is no guarantee one can prepare an entan
pseudopure state. By contrast, from Eqs.~23! and ~25! one
needsm51/h qubits ~about 26,700 for ourh! to have any
hope of obtaining a pseudopure state that is not bipa
separable with respect to partitions of the qubits into t
sets. Again, we remind the reader that nonpseudopure p
cols could conceivably give such a ‘‘biseparable’’ state w
far fewer qubits; in the Appendix we discuss some implic
tions of our results for this possibility.

In conclusion, we have derived an upper bound, expon
tially better than those already known, on the Frobeni
norm radius of a ball of separable matrices around the id
tity matrix. The bound has implications for the minimu
polarization needed for bulk quantum-informatio
processing protocols initialized by preparing pseudop
states from a thermal state via averaging, to produce
tanglement: known lower bounds on this minimal polariz
tion are exponentially increased by our results. We str
however, that this is just one application of a general, co
putationally simple sufficient criterion for multipartite en
tanglement, applicable to states of any form. Its geome
nature should make it useful in many applications, both t
oretical and practical. The question of whether this boun
tight, or whether there is a larger separable Frobenius-n
ball around the identity, remains open.
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APPENDIX: ENTANGLEMENT AND THERMAL INITIAL
STATES IN NMR

Schulman and Vazirani’s algorithmic cooling protoc
@11# shows that it is, in theory, possible to prepare any
tangled state from sufficiently many thermal NMR qubi
The question of just how many qubits are required by me
possibly simpler than algorithmic cooling is also of intere
One can gain some information about this using our resu
by applying Corollary 3 to the initial thermal density matr
of an NMR system. This matrix, which is approximately

S 11h

2
0

0
12h

2

D ^ n

~A1!

~with each qubit expressed in theu↑&, u↓& basis!, has

ir2I /di2
25

~11h2!m21

2m 'mh2/2m. ~A2!

This should be compared to the separability condition
Corollary 3, which guarantees separability if this squar
distance is below 22(3m22). The comparison gives that form
qubits, the thermal state~and any state reachable from it b
unitary transformation! is separable if

h<m21/22m21. ~A3!

For the same experimental conditions considered above
qubits are required before this bound is exceeded~rather than
the 23 for the pseudopure state prepared from this ther
state!.

If one wants the possibility of bipartite entanglement w
respect to some partition of the qubits into two sets, it
necessary to beat the bound@closely related to Eq.~23!#

ir2I /di2
2<

1

d~d21!
. ~A4!

For the thermal state, this givesh<m21/222m/2. With h
53.74631025 as before, the bound is not surpassed until
qubits. Although this comes from an essentially tight bou
that does not imply that entanglement can be achie
through computation starting with this initial state. Althoug
the thermal state has the same magnitude perturbatio
some entangled state, the latter will have different eigenv
ues, so unitary manipulation will not get us there, and it is
interesting question what we can achieve along these l
using NMR-implementable nonunitary manipulations~which
may sometimes require extra thermal ancilla bits that sho
be counted as resources!. To understand whenunitary ma-
nipulations might be guaranteed to give us entanglemen
promising approach is to look for conditions on the spectr
of a matrix sufficient for an entangled state with that sp
trum to exist. We conjecture that the problem of determini
from a spectrum, whether or not an entangled state with
spectrum exists is NP~nondeterministic polynomial! -hard in
2-7
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terms of an appropriate measure of problem size; this d
not rule out easier-to-evaluate sufficient conditions, perh
obtained from relaxations of the above problem. Theorem
of Ref. @3# gives some information on spectra sufficient
guarantee entanglement.

For the pseudopure fractione there is anupperbound of
2/(212m) from Ref. @3# nearly matching the lower boun
~23!. Comparison to the expressione5hm/2m for
pseudopure polarization suggests that, at some large nu
of qubits m>2/h, even pseudopure protocols will excee
this bound. Withh53.74631025 this gives about 53 400
qubits. This is far beyond the range generally viewed as
evant for liquid-state NMR, and improved polarization is u
sc

rn
-

el

e

04231
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likely to bring it into this range. Since the state demonstr
ing entanglement at the upper bound is not in gene
pseudopure, exceeding this bound is still no guarantee
can get entanglement. Also, this is well in the range wh
algorithmic cooling could produce much stronger entang
ment. Still, one can imagine that in other bulk QIP impl
mentations the balance between the difficulty of impleme
ing complex unitaries~relatively easy in NMR! and the
difficulty of preparing large numbers of thermal qubits~ap-
parently relatively hard in NMR! could be different, and en
tanglement generation by simple manipulations on ther
states, perhaps even by pseudopure-state preparation, m
be promising.
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