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We show that for amm-partite quantum system, there is a ball of radius™*~% in Frobenius norm,
centered at the identity matrix, of separableentanglegpositive semidefinite matrices. This can be used to
derive ane below which mixtures ok of any density matrix with e of the maximally mixed state will be
separable. The thus obtained is exponentially bettén the number of systemghan existing results. This
gives a number of qubits below which nuclear magnetic resonance with standard pseudopure-state preparation
techniques can access only unentangled states; with parameters realistic for current experiments, this is 23
qubits(compared to 13 qubits via earlier resli& ball of radius 1 is obtained for multipartite states separable
over the reals.
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I. INTRODUCTION qubits only separable states can be prodiycethpared to 13
gubits using the bound in Ref1]).

Entanglement is an important quantum resource, useful in  The methods of Ref$1], [2] are very different from ours:
guantum computation, cryptography, and communicatiorthey expand the density matrix in an overcomplete basis of
protocols. Entangled quantum states are those that cannot pere states and find conditions guaranteeing positivity of all
expressed as a mixture of product states. That is,(ifidd  coefficients of the expansion, thus giving an explicit decom-
necessarily normalized, but positive semidefingeatep is  position of form(1). In contrast, the methods we use have a
an entangled state of systemgan “mpartlite state], there  ponconstructive flavor: although they establish that any
is no way to choose positive; and statey,...,pi" for sys-  mpartite (unnormalizedl density matrix within a distance

tems 1 throughm, such that 1/2™2-1) is separable, they do not provide an explicit
“separable representatiorgl) of it. Our methods use general
p=>, pipie--@pM. (1)  concepts of matrix theory and convex analysis in terms of
i

which the problem is naturally formulated, and involve only

short and elementary calculations. This paper is a natural
sequel to Ref[3] in the sense that almost the same math-
ematics is used. The maithough quite simpledifference

(If state p is normalized, tpp=1, we get an equivalent defi-
nition even ifp; are required to be probabilities,;p;=1.) In
this paper, we provide a simple geometric condition suffi- ) . .
cientIO tg guararl?tee separabiﬁtmgnentanglemehtof an here is a generallza_tlon afeparability SO'C"’_‘"ed C:®Cy
m-partite unnormalized state: that the state is proportional t&"**®Cm) separability, whereC; are matrix conessee
the identity matrix plus a Hermitian perturbatian whose Deflnltlpn 2 bel_ov?. _Th|s generalization arises naturally in
Frobenius norm2-norm is no greater than 2™2-1). This extending the bipartite result of R¢B] to m-partite systems

is exponentially better than the best previous bounds we awith m=3. A reader comfortable with the technique used in
aware of[1,2]. We use it to obtain balls of normalized sepa- Ref.[3] should have no extra problems in understanding this
rable states. Because the set of separ@bientangleflden-  pPaper.

sity matrices is convex, and the size of the largest ball that We also study cones of “real-separable” Hermitian matri-
fits inside it (as well as the smallest ball that coversi  ces, lying in a particular linear subspace of the Hermitian
important to complexity-theoretic questions involving con- matrices, and find a larger separable ball, the unit Frobenius-
vex sets, we expect the result to have applications in comarorm ball, of matrices in this space. Real separability of a
plexity questions about entanglement, such as the complexityatrix is shown equivalent to separability and being in the
of deciding whether or not a multipartite state is entangledaforementioned linear subspace, which turns out to be the
Equally importantly, it can help determine whether or nottensor product of the local spaces of real symmetric matrices.
entanglement is present in interesting theoretical and experiFhis may be viewed as a situation in which the density ma-
mental situations. For example, though the utility of the cri-trix obeys particular symmetries, and it may be useful to
terion is emphatically not restricted to such states, it gives ulave a bound for this situatidwhich is in any case of math-

a bound on the “polarizatione below which “pseudopure” ematical interest Also, real Hilbert spaces and real separa-
states of the form (% €)1/d+ e, with 7r pure,| the identity  bility have been studied in relating quantum information
operator on a multipartite state space of overall dimendjon theory to foundational questions and “generalized informa-
are separable. Applied to liquid-state nuclear magnetic resdion theory”[4,5], so our results are relevant to such matters.
nance(NMR) with preparation of an initial pseudopure state, The results on real separability are not required in order to
at a temperature of 300 K in an 11 T external field, ourunderstand the results on ordinary separability, and may be
criterion implies that unless we have 23 or more nuclear-spirmitted by readers only interested in the latter.
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II. NOTATION AND MATHEMATICAL PRELIMINARIES ECd. If we use the trace inner produ¢x'Y>::tr XY to

identify V* with V, it is equal to its dual. We will denote by
(which we will just call cong is basic in quantum- “ =" the partial order induced by this cone, and often write

information science, especially in the study of entanglementVl =0 for the equivalenM e P(d). _
This is so because the unnormalized quantum states, the un- We _VY'” haye several occasions to use the foI!owmg
normalized separable states of a multipartite quantum syd2roposition, which follows from the fact that for normih-
tem, the completely positive maps, the positive maps, angluding Hermitian matricesa, Al is the largest modulus
many other sets of interest form such con@ppropriate  Of @n eigenvalue oA. B _
normalizationlike conditions, such as unit trace for states or Proposition 2 Let A be Hermitian. Thenl +A>0 is
trace preservation or trace nonincrease for maps, are usuaffluivalent tofAfl.<1.
just additional linear equalities or inequalitie#n this sec- We define more notation. _
tion, we review regular positive cones and related notions; Definition 2 The linear space dii>xXN complex matrices
background and preliminaries specific to the separable cond$ denoted asvi(N), the linear space over the reals Nif
(of unentangled statgappear at the beginning of the follow- XN real matrices is denoted &8g(N), the linear space of
ing section. real symmetridN X N matrices is denoted &g(N), and the
Definition 1 A positive cone is a subs#t of a real vector  linear space over reals &fx N complex Hermitian matrices
spaceV closed under multiplication by positive scalars. It is IS denoted as{(N). The space of complex block matricés,
called regular if it is(a) convex(equivalently, closed under blocks by K blocks, with blocks inM(N), is denoted as
addition: K+K=K), (b) generating K—K=V, equiva- B(K.N).
lently K linearly generate¥), (c) pointed KN —K=(J, so

The mathematical notion of a “regular” positive cone

that it contailjs no nonn.ull subspage\b)f, and(d) topplpgi- . lll. SEPARABLE CONES

fnaellzs(i:‘l;r))sed(m the Euclidean metric topology, for finite di- _ Left us con_s_ider am_—par_tite unnormalized density matrix
Such Ia positive cone induces a partial oréeg on V, (I.e., just positive semidefinite

defined byx=y y:=x—ye K. This partial order is “linear pH1®H,® - ®@Hp—H @H,® @ H,,

compatible”: inequalities can be added and multiplied by
positive scalars. A sebis said togeneratea coneK if Kis | et dim(H;)=d;, 1<i<m. Then any such
the set ofpositivelinear combinations of elements &f The

topological closure condition guarantees that such a cone is p={p(i1,io,ciimiiisi2sim)s
generatedvia addition by its extreme raysThese are sets
R,:={A\x:\=0} such that ng/ e R, can be written as a con- 1<iy,jk=dy;1<k<=m}.

vex combination of elements @f that are not irR, . We will - . o
not make much use of closure and extremality, but at soméet us block partitiorp with respect to the first index:
points we use the fact that positive semidefiffSD ma-

trices can be written as convex combinations of rank-1 PSD ptt pt? o plh

matrices(these being the members of the extreme rays of the p?t  pt? . p2

cone of PSD matrices p=| . (©)]
Duality is often a useful tool when dealing with cones. An

inner product, written(---,--+), on a finite-dimensionaV/ pivt pdr? pdid

selects a particular way of identifying with with its dual

[the space of linear functior&functionals”) from V to R].  Where the blocks are
The coneC* dual toC (the set of linear functionals which
are non-negative orC) is identified with {ye V:(y,x)
=0V xeC}. We define the adjoint ofp: V,;—V, as
T V,—V; via

pHiHL®  @H L —H,® @ H,
and
Pi'j:{P(i,iz,---yim;j'j21---1jm}! 1$ik’ jkgdk; 2<k=m.

(B,o(A))=(¢'(B),A) 2 , _ _
We will make use of a well-known isomorphism between
for all AcV,;, BeV,. the spaces of linear maps fraw(K) to M(N) and5(K,N).
We say a linear magh: V;— V, is C;-to-C, positive, for ~ FOr any MeB(K,N) let xy be the mapy defined via
- - e)=M'"J. Hereg, is the 1x K matrix with 1 in theith
cones C,CV,, C,CV,, if ¢(C,)CC,. The following X(&i€) - MEereg; IS Te_ matrbx with = I thel
proposition is easilybut instructively verified. place, zero elsewhere, sge; is the “matrix unit,” with 1 in
Proposition 1 If ¢(C;)CC,, then ¢*(C’2‘)QC’1‘ ) thei,j place and O elsewhere-,e;r are a basis foM(K), so
For complex matriced, we useM T to denote the trans- this determines . We could use the same equation to de-
pose of the entrywise complex conjugate of the matithe ~ termine a block matrixM, from a mapy, so this is an iso-
transpose itself we denotél™.) The positive semidefinite morphism of vector spaces, in fagfy =x. In the quantum-
coneP(d) in the real linear space of Hermitiahxd matri-  information literature this is sometimes called the
ces is the set of matricedl such thatx'Mx=0 for all x “Jamiolkowski isomorphism” (or equivalence we have
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also calledM , the “Choi matrix” of y. It has the important Proposition 4 £(d,,d,,...,d,,) is the minimal linear sub-
and easily verified property given as follows. space (over the reals of Xx(d;d, --d;,,) which contains
Proposition 3 tr [ x(A)B]=tr [M ,(AT®B)]. Sr(dy,dy,....dp).
Definition 3 Consider cone€;,CM(d;), 1<i<m. Ama- Proof. It is clear thatZ(d4,...,dy) is a subspace df <”)
trix Sgr(dy---dy).  To  be explicit, symmetry means
P, imid1reodm)=PU1s-simii1s---4im); this follows
p:H®H,® - ®H,—H{®H,® - ®H,, from the definition of£ and £(d,,...,d,,) being a subspace

of 2x(d,,...,dy,). This establishes our induction step; the
[i.e.,peM(d,d, --d,,)] is called C,®C,®---®C,,) sepa- base cas&(d,)=2r(d) is part of Definition 4.

rable if it belongs to the cone generated by the{ggtz A, SupposeX e Sg(dq,...,dy). That is, X=2,A®By, Ay
®- @Ay A e C;,1<i<=m}. We call this the separable cone €Sg(dy,...,dn-1), andBye Zg(d,). By the induction hy-
S(C.,Cy,....Cp). pothesis,A e £(dq,...,dn—1). Block partitioning with re-

This is trivially equivalent to the recursive definition: spect to thamth system,
S(C4,C,,...,.Cy) is the cone generated by the paks® B
with Aje C,, Be S(C,,...,.Cp). i - s i
ExalmplésTwo e(xazmplesn;)re given as followd) Let for X! :Ek: Bi(l ’J)AKZEK: B ) A=X". (5)
all 1<i=m the coneC; be the cone of positive semidefinite
matrices, denoted bfP(d;). In this case the definition of These blocks are inC(d;--d,,_,) becauseA, are conse-
(C,®C,®---®Cyy) separability is equivalent to the standard quently Xe £(d;,...,dy). The base case is trivial:

notion of separability of multiparty unnormalized density s_(d,)c[Sg(d;)N£(d;)] holds with equality because
matrices. We will denote the corresponding cone ofs.(d,)=P(d,) and £(d;)=3r(d;).

separable multiparty unnormalized density matrices as ggor the opposite  direction, letXe £(d;,...dy,)
S(dy,da,...dm). ~ N8(dy,...dy). By separability,
(2) Let for all 1=i=<m the coneC; be the cone of positive
semidefinite matrices with real entries. We call the corre-
sponding cone the cone of real-separable multiparty density X=> A@B® - ®7Z, (6)
matrices and denote it h§x(d;,d,,...,dy). K
We now recursively define a subspag¥d,,...,d,),
which we show is the minimal linear subspagaver the Wh_er_e Aie P(dy), _Bk_E P(dZ)""’Zkep(dT) _(agd no “f'
realy of the symmetric matriceXg(d; ,...,d,) that contains ~Striction to m_=2(23 is intendegl Let A=A +iAj with Ai
the real-separable cor®(d;,....d,). real symmetricA, real skew symmetric, and similarly f@,
Definition 4 p e £(d;,ds, ..., d,,) iff in the block partition ~ C. etc. Substituting these in E¢6) and keeping only terms
(3), pleLl(d,,...d,) and phi=pli(1=i,j=d;); £(d) with an even number of imaginary factdnceX e £), and
=3 R(d). block partitioning the matrix according to the first sub-
It is easily calculated from this definition that the dimen- System, each block has the form
sion of £ is

m 20 AR 2 ALLDS )
dim{ £(dy,....dw]1=]1 [di(di—1)/2], (4)
=t Thus X=X;+X,, where the first term is block symmetric
and the second term is block skew symmetric. This second
term must therefore be zero. By the recursive definitiod of
(andS) we have that, for each fixed value igf, X" must be

block symmetric when partitioned according to the second
(“B” ) system. This block is

the dimension of the tensor product of the spaces of real
symmetric matrices on eadth;,, which in fact will turn out

to be £; for m>1, this is strictly smaller than the dimension
(I, dy) (I ,d,—1)/2 of S(dy---dy,). (This accounts
for many differences in the “information-theoretic” behavior
of quantum mechanics on real vs complex Hilbert spacks
Ref. [5] for examplé: it is the mathematical way of saying > ALi,j)Bi(m,n)Cke---Z¥

that the expectation values of local observalfteasor prod- K

ucts of real-symmetric matricem this theory do not suffice

to determine a state on the tensor product of real Hilbert +E Aﬁ(i,j)Bﬁ(m,n)Ck®~-Zk (8
spaceqddo not determine the expectation valuesatif ob- K

servables on this space, i.e., all element¥ gfd;---d)]. It ) , , .
also implies that the separablee., real-separablestates and again only the first component is nonzero. Proceeding

have zero measure in the space of all states on the tensbiuS through all the subsystems, all terms with a skew-

product of real Hilbert spaces. symmetric factor must be zero and we have

It is easy to prove thap:H;®H,®---®H,—H;®H,
®---®H, is real separable iffp is separable andp X=E AlgBlg...71 )
e £(d;,d,,...,dy). In fact, we will show o kT Tk k

042312-3



L. GURVITS AND H. BARNUM PHYSICAL REVIEW A 68, 042312 (2003

with each of A,By,...,Zy real symmetric and positive tr [x(AT)B]=0 (12
semidefinite, i.e.Xe Sg. That £ is theminimal linear sub-

space ofSy containingSg is clear from the fact thas;  for all Ae C(d;), Be C(dy), i.e., x(C(d;))CC(d,)*.
contains allm-fold tensor products of positive semidefinite ~ Proof of Lemma 1“Only if” is trivial: 7P(d;)®C(d,)
real-symmetric matrices, and these span the space of tenssgparability ofX meansX=23;A;®B;, with A;e P(d,), B;
products of real-symmetric matrices, whose dimension, as C(d,), hence ¢(X)=3;A;® #(B;); since we assumed

remarked just after the definition af, is equal to that of #(C(dy))CP(dy), we have ¢(B,)eP(dy), so H(X)
L(dq,...,.dy). e S(d dj ’ '

An advantage of defining as we did above, rather than b ~ »
by the equivalent characterization as the tensor product of For "if,” note that ¢(X)>=0 says that for any positive

the space& g(d;) obtained at the end of the preceding proof, semidefiniteB e B(N,K),
is that Definition 4 gives a criterion for membership 4h B B
easily checked on any matrix, while the tensor product char- E tr [B" ¢(X")]=0. (13
acterization just gives us bases or g

The next lemma gives a simple but very useful criterion
for P(d;) ® C(d,) separability for any con€(d,) of Her-
mitian matrices. It is a slight generalization of the necessar
and sufficient criterion(cf. Refs. [6], [7]) for ordinary
[C(d,)="P(d,)] bipartite separabilityfthat every positive o _
linear map, applied to one subsystem of the bipartite system 2 tr T (B X1 1=t ¢T(B)X]=0. (14
(i.e., to every block of its block density matjigives a posi- g
tive semidefinite matrik

Definition 5 A linear operator¢: M(d,)—M(N) is
called C(d,) positive if ¢(C(d,))CP(N). If Xis a block
matrix as in Eq(3), X" e M(d,), and¢: M(d,)—M(N) is

By the definition of dual confand the self-duality of?(d)]
it is easily seen thai'(P(d;))C C(d,)*. Now, Eq.(13) is
)équivalent to

Letting B =e;e, so B is the block matrix of a positive
semidefinite rank-1 statéspecifically, the unnormalized
maximally entangled statex' with x=3,e;®e,), we have

a linear operator, then we define that the matrix¢'(B) satisfies condition 2 of the Proposi-
tion; as ¢ ranges over allP(d,)-to-C(d,)* -positive maps,
HXEY)  p(XYA L p(XE) $'(B) ranges over all such matrices so by Propositiois
HX2Y  p(X2?) H(X2) P(d;)®C(dy) separable.
B(X) = _ _ Thg next proposition will allow us to extend tliexac) _
bipartite result from Ref[3] to multiparty systems. The bi-
H(XIY) (X2 . (X1 partite result was that everything in the b&[(N,1):={l

10  +A: [All,<1} of size 1 in Frobenius norm around the iden-
tity operator is separable; therefore, so is everything in the

L 1s that th d.)CH(d)C M (do). cpne,.which we chG(dldz,l), generatgd by.that ball, for a
h emma d uppos(;a a e(;cl)@f) 7:( 2.) .( 2). bipartite system with subsystems of dimensidrs d,. We
ThenXis .7;( f.l).®cf( 2) ﬁepa(rja € |ff<_ﬁ_(x)/|_0 (i-8.,1S oS- gofine 4 slight generalization of this cone.
tive semidefinitg¢ for all C(d,)-positive linear operators Definition 6 Let G(N,a)CH(N)CM(N) be the cone

¢: M(dz) —~M(dy). : " . generated by HermitialNXN matrices of the form{l
The proof uses the following proposition, which general-+A: IA[l:=(tr(AA D) Y2<a).

izes the duality between positive linear maps and separablﬁ
states.
Proposition 5 For Hermitian matrice$/ € B(d,,d,), the

sufficient condition for tripartite separability ofis clearly

that it belongs to the cone generated Ay Z;, whereA,

: . ) e P(d;) and Z; e G(d,d3,1); this can be used to derive a
following are equwaleqt. (1) rMZ=0 iijlI’ all Tp(dl) tripartite sufficient condition for separability in terms of
®C(dp)-separable matriceZ anci (2) MU=x(eig)) for  Eronenius norm. Letting this tripartite 2-norm ball generate a
somey such thaty(P(dy))C C(d2)*. cone of separable tripartite states, similar reasoning gives a

The proposition is & special case of the following lemma.p|| of 4-partite states, and so on. The key to the induction
Lemma 2 For HermitianM € 3(d, ,d,) the following are step is the following proposition.

equivalent:(1) tr (MZ)=0 for a)lrl C(dy) ®C(d)-separable Proposition 6 If ¢: M(N)—M(K) is aG(N,a)-positive
matrices Z and (2) M"=x(e;je)) for some x such that |inear operator[i.e., ¢(X)=0 for all XeG(N,a)] and

x(C(d1)HCC(dy)*. B(1)=1eM(K), then (1) |$(X)|.<a YX|, for all X
By C', C a set of matrices, we mean the set of transposes of #/(N) and (2) || (Y)|.<a"v2|Y|, for all Y € M(N).
matrices inC; if Cis a cone, so i€™. Proof. All G(N,a) positive ¢ satisfy ¢(I1 +A)=0 for all
Proof of Lemma 2ltem 1 is equivalent to A such that|Al,<a, which wheng(l)=1 gives |+ ¢(A)
>0; by Proposition 2 this is equivalent f@(A)|l..<1, es-
tr[M(A®B)]=0 for all AcC(d;), BeC(d,). tablishing item 1. Item 2 uses item 1 and the following

(1)  lemma.
Lemma 3If a linear operatokp: M(N)— M (K) satisfies
By Proposition 3 this is equivalent to d(H(N))CH(K) and | ¢(2)|..<]|Z||, for all Hermitian Z
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eM(N), then||¢(Y)||.<Vv2| Y], for all Y e M(N). To show - N
this, let Y=A+iB with A, B Hermitian. Now, ¢(Y) ||¢(A)H§o$||A||i<||A||§:Z aizj:Z lp(AD]Z,
= $(A) +14(B), 50| S(V)[.<[[A(A)]+] $(B)| .. This is ’ J 15
less than or equal thA|,+| B, by assumptior{A, B being
Hermitian. The conclusion follows from the square root of
the elementary inequality x(+y)?<2(x?+y?) [obtained
from 2xy=x2+y?, which comes fromX—y)?=0].

The following example shows that the extfafactor (for
general vs Hermitian matriceis the best possible in Lemma
3.

whereA:=[a;;], aj:=||¢(A")|... (The first inequality is be-

cause the operator norm of a block matrix is bounded above
by that of the matrix whose elements are the norms of the
blocks, a known result whose proof is sketched in, e.g., Ref.
[3], and the second is because the Frobenius norm is an

NE
Consider b M(2)—M(2), S =X(11)A, upper bound to the operator noim. | o(AY)]Z

EPTNTY) o o
+X(2,2)A,; whereA,, A, are real-symmetric anticommut- =2a ||'|tA tp{” bXErOEOSA'E'jon G,Sand itis an elementary norm
ing unitary matrices: inequality that| A"..<[|A"],. So

A _(1 0 ) H&(A)llis; H¢<A”>||is2a—2; |AT]3=2a"2]Al)3.
l_ 1
0 -1 (16)
0 1 Thus if |Al,<a/v2, | $(A)]..=<1.
A= 1 0 Corollary 1. If an m-partite unnormalized density matrix
p: Hi® -@H,—H;® --®H,, satisifes lo—1l>
_ ,  =1/(2™*1), then it is separable.
Notice that for reala, b we have thataA;+bA,=(a Proof The main result of Ref. [3] is that

+b*)YU  for some real-symmetric unitayU. Thus  G(d,d, 1)CS(d,,d,). This is the base case for an induc-
$(H(2))CH(2) and|p(Z)|l.<|Z], for all HermitianZ  {ion on the number of subsystems. For the induction step,

e M(2). Consider the followingnon-Hermitian matrix: fix m>2 and suppose as our induction hypothesis
the corollary holds for m—1, ie.,
10 G(dy,...,dp_1,2 KM=V S(dy,...,dm_1). Theorem 1
YZ(O i) tells us G(dy,...dy,,2 M- D2-1jyp=p-(m2=1)) g

P(d,)®G(dy - -dy,_1,2” M~ D/271]) separable, and there-
) ) 5 ) fore (by the induction hypothesis and the recursive definition
Then [Y[3=2 and [#()[Z=[#(Y)3=4, since of separability separable.

Def{ #(Y)]=0. If we had an analog to Theorem 1, wi@(n,,a) instead
Remark If we add to the premises of Lemma 3 the addi-of P(n,), and some constant replacing 1¥2, then we
tional assumption that we used to obtain Proposition 6 frontould get one over a polynomial instead of an exponential in
Lemma 3, namely, thap(1) =1, we can obtain a contraction Corollary 1, by recursively dividing systems into subsystems
bound(whenk=2) of \2—1/n instead of\/2, as well as an of more or less equal size, since this involves a logarithmic
example showing tha§2—2/n can be achieved. Proposition number of partitionings compared to splitting off one system
2 of Ref.[3] is a similar contraction bound with constant 1 at a time. The first step toward such a theorem would be to
rather thanv2 on all matrices, not just Hermitian ones, for apply the characterization o€(d,)®C(d,) separability
the usual positive maps; the proofs used there do not workiven by Lemma 2 taG(d,,a), G(d,,a); the fact that nei-

for the different notion of positivity used here. ther of these cones is self-dual has so far proved an obstacle
Now everything is ready for our attack on multipartite to our getting useful results along these lines.
separability. Note that for tripartite separability, this corollary gives a

Theorem 1let Hy, H, have dimensions,;, n,. If an  ball of radius 1¥2. Even here, it is an interesting open ques-
unnormalized density matrig: H;®H,—H;®H, satisfies tion whether this is tight; in fact, any example showing that
the inequality|p—1|,<a/v2, then it is P(n;)®G(n,,a) the radius of a maximal separable 2-norm ball is smaller than
separable. 1 would be very interesting.

Proof. Let p=I1+A, A Hermitian; by Lemma 1, we are Theorem 2 Considerpe £(dq,....dy). If |[p—1],=1,
looking for a bound onlA], that ensures, for any then
G(n,,a)-to-P(n;)-positive linear operator, (1 +A)>=0.
d(1)=1, so p(I+A)=1+H(A); || #(A)]l..<1 will ensure
this (cf. Proposition 2. The argument establishing that
[$(A)]..<1 is essentially identical to the proof of the main _
theorem of Ref[3], except that becausgis not an ordinary where for alli p(l') is a real positive semidefinitd;xd;
positive map we must use the weaker contraction bound amatrix, p; e £(d,,...,dy) and|l —p;|,=<1.

Proposition 6, with it3/2 factor, in place of the result of Ref. Proof. The proof goes essentially like that of Theorem 1
[3] with factor 1: except that the blocka'' are Hermitian by Proposition 4.

p=2> aipV®p;,a=0, (17
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Consequently we may use item 2 rather than item 1 ofjuaranteeing separability fon D-dimensional systems with
Proposition 6, and obtain the larger radius ball. respect to every bipartitiofi3]. It is interesting that this is
Corollary 2. If pe £(d4,...,d,,) and||p—1|,=<1, thenpis  exponentially larger than the present bound guaranteeing
real separable. In other words the maximal separable ball imultipartite separability, although we do not know that a
£(dq,...,dy) around the identity has radius 1. tight multipartite bound would still exhibit this exponential
The next proposition is immediate from results of Ref.separation.
[3], derived using “scaling,” i.e., considering all ways of  In liquid-state NMR at high temperatuig the sample is
writing a matrixp as a positive scalar times the sum of theplaced in a high dc magnetic field. Each spin is in a highly
identity and a Hermitian perturbation, and minimizing the mixed thermal state. It is not maximally mixed because of

2-norm of the perturbation. the energy splitting between the higher-energy state in which
Proposition 7 Define u(p) as the maximum offAl|, over  the spin is aligned with the magnetic field and the higher-
all A such that there exists aa>0 for which p=a(l energy one in which it is antialigned. This gives probabilities

+A). Let p be a normalized (tp=1) density matrix. Then for those states that are proportional to the Boltzmann factors
the following three statements are equivaldfy): u(p)=<a, e“PrB where=1/kT with k Boltzmann’s constanty the

(2) tr p2<1/(d—a?), and(3) |p—1/d|,<a/\d(d—a?). magnetic moment of the nuclear spin, aBdthe external
Using this Proposition, Theorem 1 hé&ga Corollary )  field strength. For realistic highi-liquid NMR values of T
the following corollary. =300K, B=11T, BuB~3.746x 10 °<1. Calling this 7,

Corollary 3. If an m partite normalizedi.e., unit tracé € 7~1=* 5, so the probabilities arp;~(1—7)/2, p;~(1
density matrixp:H;® - -®H,,—H;® - -®H,, satisfies|p +7)/2, where 1/] denote alignment/antialignment of the
—1/d|,<1/2"?"*d, whered=dim(H,;®---®H,,), thenitis  spin with the field. With independent, distinguishable nuclear
separable. spins, Maxwell-Boltzmann statistics give the highest-

[The proposition actually gives thénegligibly) tighter ~ probability pure state, with alin spins up(field-aligned,
statement with ?2-1/d(d—2~™"2) in the denominato}.  Probability about (¥ 7)"/2"~(1+m7)/2". Standard
pseudopure-state preparation creates a mixture of this state
and the maximally mixed state by applying a randomly cho-
sen unitary from the group of unitaries fixing the all-spin-

In many interesting experimental or theoretical situationsaligned stateU could be chosen uniformli.e., with Haar
the system is in a pseudopure state: a mixture of the uniforrmeasure on this groupbut efficient randomization proce-
density matrix with some pure state dures may draw from carefully chosen finite sets of such

unitaries[8].] Thus, we get a mixture

IV. DISCUSSION

per=€m+(1l—e)l/d, (29
(1=e)l/2™+ € T--- )11, (24)
where d=d;Xd,X --- Xd,, is the total dimension of the
system. For example, consider NMRQIP, whdye=2 for i with
=1, ... m d=2", andmis the number of spins individu-
ally addressed in the molecule being used. As discussed in €= nm/2™. (25

more detail below, the initialization procedures standard in
most NMRQIP implementations prepare pseudopure stateswith 7~3.746x 10" °, this implies that below about 23 qu-
Write bits, NMR pseudopure states are all separable compared to
the ~13 qubits one gets from the bound in REI].
Pen= (1) +e(m—1/d). (20) A quantum computation in which the computer state re-
mains pure and unentangled can be efficientlgolynomi-
Since [[e(7—1/d)||,=€\(d—1)/d, by Corollary 3, this is ally) simulated on a classical compuf@]. Whether quan-

separable if tum computations involving only general, potentially mixed,
separable states are efficiently classically simulable, and
e<2-M2=D7d(d—1), (21)  whether they are capable of the same performance as univer-

sal quantum computation, or at least of some speedups over
For m D-dimensional system&o d=D"), this implies the classical computation, are open questions. Our results, of

(negligibly loosenegbound course, do not directly address this question. On the basis of
a suspicion that entangled states are required for such
e<2 (M2=Lpm (22)  speedup, doubt is sometimes cast on the usefulness of NMR-

based quantum-information-processing protocols that do not,
This is an exponential improvement over the result in Refeven asymptotically, achieve entanglement. Even without en-
[2] (the qubit case is in Refl]) of e<1/(1+D?™ ). Form  tanglement considerations, however, it is clear that
qubits, for example, our result goes asymptotically aspseudopure-state NMR quantum computing will not give
2-[E2M=1]"yg 2= (2m=1) jn Ref.[1]. Another comparison is asymptotic gains over classical computing because of the

with our earlier bound of exponentially decreasing signal-to-noise ratio from &%).
As pointed out in Ref[10], it does not follow that no appli-
e<1/(D™-1) (23 cation of liquid-state NMR can have better-than-classical
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asymptotic performance: NMRQIP is not limited to APPENDIX: ENTANGLEMENT AND THERMAL INITIAL
pseudopure-state initialization. It is not known that NMRQIP STATES IN NMR

with other initialization schemes, such as those that involve

preparing afixed number of pseudopure qubits as the total
number of spin qubits grows, can be efficiently classically
simulated, and even with one pure qubit interesting thing
can be efficiently done for which no efficient classical algo-
rithm is currently known[10]. Another nonpseudopure ini-
tialization scheme is the Schulman-Vazirani algorithmic
cooling procedurd11], which essentially uses an efficient
(and NMR implementab)ecompression algorithm to convert
the thermal state witl$ bits of entropy form nuclear spins,

Schulman and Vazirani’s algorithmic cooling protocol
[11] shows that it is, in theory, possible to prepare any en-
angled state from sufficiently many thermal NMR qubits.

he question of just how many qubits are required by means
possibly simpler than algorithmic cooling is also of interest.
One can gain some information about this using our results,
by applying Corollary 3 to the initial thermal density matrix
of an NMR system. This matrix, which is approximately

®n
into log, Smaximally mixed qubits andh—log, S pure ones. l+_’7 0
Their work shows that the theoretical model derived from 2 (A1)
NMR with an initial thermal state is as powerful as standard 1— 7
guantum computation. Though the overhead required is poly- 0 >
nomial, the space overhead is large enough to be impractical,
given the small number of qubits available in quuid-state(with each qubit expressed in the, ||) basig, has
NMR. But algorithmic cooling is certainly relevant in prin-
ciple to the asymptotic power of an implementation, and (1+ 7)1
could be practically relevant to a high-temperature bulk QIP lp—1/d|5= o ~mn?/2™, (A2)

implementation that was expected to be sufficiently scalable

that asymptotic considerations are relevant. = This should be compared to the separability condition of
However, there is still the interesting p_035|b|llt_y that ON€corollary 3, which guarantees separability if this squared
may produce an entangled overall density mafeRd not  iiance is below 2™ 2). The comparison gives that far

just a mixture of the maximally mixed state with an en- : :
: qubits, the thermal stat@nd any state reachable from it by
tangled state via pseudopure-state NMRQIP. The reSU|tSunitary transformationis separable if

herein increasé&o 23, with 7 as abovgthe number of qubits
known to be required before this may be possible. Since we
have not shown that our bounds are tight, even at 23 qubits

there is no guarantee one can prepare an entanglgthy the same experimental conditions considered above, 14
pseudopure state. By contrast, from E(3) and (25) one  qupits are required before this bound is excee@ather than
needsm= 1/7 qubits (about 26,700 for oum) to have any the 23 for the pseudopure state prepared from this thermal
hope of obtaining a pseudopure state that is not bipartitgtatg.

separable with respect to partitions of the qubits into two |f one wants the possibility of bipartite entanglement with
sets. Again, we remind the reader that nonpseudopure protgespect to some partition of the qubits into two sets, it is

cols could conceivably give such a “biseparable” state withnecessary to beat the boufdosely related to Eq(23)]
far fewer qubits; in the Appendix we discuss some implica-

tions of our results for this possibility. )
In conclusion, we have derived an upper bound, exponen- lp—1/dl5< . (Ad)

) . d(d—1)

tially better than those already known, on the Frobenius-

norm radius of a ball of sepqrablg m'atrices around .th'e iden,:Or the thermal state, this gives=m~Y2-™2 With 7

tity matrix. The bound has implications for the minimum —3.746¢ 10"

polarization needed for bulk quantum-information- .-

p<m Ym-1 (A3)

5 as before, the bound is not surpassed until 25
. L . qubits. Although this comes from an essentially tight bound,
processing protocols |n|t|al|ze_d by preparing pseudopuret'hat does not imply that entanglement can be achieved
statels from_ E therrr|1al statt)e wg avere:]glng,_ to perdlfce. er{hrough computation starting with this initial state. Although
tanglement: known Ilovv_er oun dst;)nt IS mlnllmavso anza-he thermal state has the same magnitude perturbation as
Eon are eﬁponﬁ_ntl_a y Increase I'y our r(?su s elstres%ome entangled state, the latter will have different eigenval-
owever, that this is just one application of a general, COMyeq g4 ynitary manipulation will not get us there, and it is an
putationally simple sufficient criterion for multipartite en'.interesting question what we can achieve along these lines

tanglement, applicab_le to states of any fo_rm._ Its geometri sing NMR-implementable nonunitary manipulatiqgmgich
nature should ma}<e it useful in many apphcanon;, both th‘.a'may sometimes require extra thermal ancilla bits that should
oretical and practical. The question of whether this bound i

. . X $He counted as resourge§o understand whennitary ma-
tight, or Whethef ther_e IS a Ia_rger separable I:rOben'us'mrrﬂipulations might be guaranteed to give us entanglement, a
ball around the identity, remains open.

promising approach is to look for conditions on the spectrum
of a matrix sufficient for an entangled state with that spec-
trum to exist. We conjecture that the problem of determining,

We thank Manny Knill and Isaac Chuang for discussionsfrom a spectrum, whether or not an entangled state with that
and the U.S. DOE and NSA for financial support. spectrum exists is NFhondeterministic polynomigathard in
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terms of an appropriate measure of problem size; this dodgely to bring it into this range. Since the state demonstrat-
not rule out easier-to-evaluate sufficient conditions, perhapgg entanglement at the upper bound is not in general
obtained from relaxations of the above problem. Theorem 4$seudopure, exceeding this bound is still no guarantee we
of Ref. [3] gives some information on spectra sufficient to can get entanglement. Also, this is well in the range where
guarantee entanglement. algorithmic cooling could produce much stronger entangle-
For the pseudopure fractianthere is anupperbound of  ment. Still, one can imagine that in other bulk QIP imple-
2/(2+2™) from Ref.[3] nearly matching the lower bound mentations the balance between the difficulty of implement-
(23). Comparison to the expressiore=7ym/2" for  ing complex unitaries(relatively easy in NMR and the
pseudopure polarization suggests that, at some large numbdifficulty of preparing large numbers of thermal qubi&p-
of qubits m=2/7, even pseudopure protocols will exceed parently relatively hard in NMRcould be different, and en-
this bound. With»=3.746<10 ° this gives about 53400 tanglement generation by simple manipulations on thermal
qubits. This is far beyond the range generally viewed as relstates, perhaps even by pseudopure-state preparation, might
evant for liquid-state NMR, and improved polarization is un-be promising.
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