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Elliptic Rydberg states as direction indicators

Netanel H. Lindner, Asher Peres, and Daniel R. Terno*
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The orientation in space of a Cartesian coordinate system can be indicated by the two vectorial constants of
motion of a classical Keplerian orbit: the angular momentum and the Laplace-Runge-Lenz vector. In quantum
mechanics, the states of a hydrogen atom that mimic classical elliptic orbits are the coherent states of the SO~4!
rotation group. It is known how to produce these states experimentally. They have minimal dispersions of the
two conserved vectors and can be used as direction indicators. We compare the fidelity of this transmission
method with that of the idealized optimal method.
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I. UNSPEAKABLE QUANTUM INFORMATION

Information theory usually deals with the transmission
a sequence of discrete symbols, such as 0 and 1. Even i
information to be transmitted is of continuous nature, such
the position of a particle, it can be represented with arbitr
accuracy by a string of bits. However, there are situati
where information cannot be encoded in such a way.
example, the emitter~conventionally called Alice! wants to
indicate to the receiver~Bob! a direction in space. If they
have a common coordinate system to which they can refe
if they can create one by observing distant fixed stars, A
simply communicates to Bob the components of a unit vec
n along that direction, or its spherical coordinatesu andf.
But if no common coordinate system has been establis
all she can do is to send a real physical object, such a
gyroscope, whose orientation is deemed stable.

In the quantum world, the role of the gyroscope is play
by a system with large spin. For example, Alice can se
angular momentum eigenstates satisfyingn•Juc&5 j uc&.
This is essentially the solution proposed by Massar
Popescu@1# who took N parallel spins, polarized alongn.
This, however, is not the most efficient procedure: for t
spins, a higher accuracy is achieved by preparing them w
opposite polarizations@2#. For more than two spins, optima
results are obtained with entangled states@3,4#.

The above discussion can be generalized to the trans
sion of a Cartesian frame. IfN spins are available, one ca
encode a Cartesian frame in an entangled state of these s
as in Ref.@5#. However, a more accurate transmission is th
obtained if Alice uses half of the spins to indicate thex axis,
and the other half for hery axis @6#. In this case thex andy
directions found by Bob may not be exactly perpendicu
and some adjustment will be needed to obtain Bob’s b
estimate of thex and y axes. Finally, thez axis can be in-
ferred from the estimates of thex andy axes.

However, it is not possible to proceed in this way if
single quantum messenger is available. The optimal tra
mission of a Cartesian frame by a hydrogen atom~formally,
a spinless particle in a Coloumb potential! was derived by
Peres and Scudo@7#. The results of Ref.@5# can also be used

*Also at Perimeter Institute, Waterloo, Ontario, Canada.
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for that case if one considers the angular-momentum eig
states to be those of the atom, rather than those ofN spins.

In this paper we show how to transmit a Cartesian fra
by using elliptic Rydberg states. These are the quantu
mechanical analogs of a classical Keplerian orbit, and i
known how to produce these states experimentally. Ellip
Rydberg states, just as their classical counterparts, de
three orthogonal directions in space, and thus are nat
candidates for encoding a Cartesian frame.

In a real experimental situation, relativistic effects cann
be neglected: the spin-orbit coupling and spin-spin coupl
remove the degeneracy of the Rydberg energy levels
cause the ellipse to precess appreciably within milliseco
@8#. This precession may perhaps be controlled. Howe
coupling to the radiation field causes the Rydberg levels
decay irreversibly and sets an absolute time limit on such
experiment. Fortunately, the mean lifetime of the levels
much longer than the precession time@9#,

Trad/Tp58pe2/3\c'16.40, ~1!

and the experiment, although difficult, may be feasible.
Similar situations also arise with other types of atom

Yeazell and Stroud@10# excited a sodium atom into an an
gularly localized wave packet and subsequently had its lo
ization direction probed by an ionizing field. The states e
cited in that experiment are good approximations of
SO~4! coherent states, and the precession of the Lapla
Runge-Lenz~LRL! vector was dominated by relativistic e
fects just as it is in hydrogen.

In the following section we discuss the properties
quantum elliptic states. Section III deals with the transm
sion of one direction by means of them, and in Secs. IV
use them to transmit two orthogonal axes~and thus a Carte-
sian frame!. In Sec. III and IV the detection procedure
based on SO~3! coherent states as in Ref.@7#. SO~4! coherent
states are employed in Sec. V to produce a positive oper
valued measure~POVM! which enables the use of ellipti
states for the transmission of two directions that are not
thogonal. Even when these states are used by Alice to tr
mit two orthogonal axes, the two directions found by Bob a
not necessarily perpendicular and further adjustment
needed, as explained above. As shown in the Appendix, th
adjustments increase the fidelity of transmission of two
©2003 The American Physical Society08-1
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LINDNER, PERES, AND TERNO PHYSICAL REVIEW A68, 042308 ~2003!
thogonal axes. However, a higher fidelity is achieved wit
POVM based on the SO~3! rotation group, especially whe
the energy quantum numbern is large.

II. CONSTRUCTION OF AN ELLIPTIC STATE

A classical bounded Keplerian orbit in a potential2k/r
can be defined by its constants of motion: the energyE
,0, the angular momentumL which is an axial vector per
pendicular to the plane of the orbit, and the Laplace-Run
Lenz ~LRL! vector @11#

K5~22H !21/2~p3L2mkr /r !, ~2!

wherem is the particle’s reduced mass, and we introduce
prefactor (22H)21/2 for later convenience. This prefacto
which is a constant of motion, does not appear in the us
definition of the LRL vector@11#. The Hamiltonian isH
5p2/2m2k/r . We consider only bounded motion for whic
the energyE, which is the numerical value ofH, is negative.
The classical orbit is then an ellipse, and the LRL vector i
polar vector directed along its major axis. It satisfies

L•K50, ~3!

and

K21mL252m2k2/2E. ~4!

Because of these relations, only five out of the seven c
stants are independent. They uniquely determine the sh
and orientation of the ellipse. Its eccentricity@11# is

e5uK uA22E/mk. ~5!

We now turn to the quantum version. We use natural un
m5k5\51, so that the energy levels for bound states
E521/2n2, wheren is an integer. The operatorK is defined
by

K5~22H !21/2@ 1
2 ~p3L2L3p!2r /r #. ~6!

Note that H commutes with@ 1
2 (p3L2L3p)2r /r #. The

commutation relations for the operatorsL andK @12# are

@Li ,K j #5 i e i jkKk , ~7!

@Ki ,K j #5 i e i jkLk . ~8!

Together with@Li ,L j #5 i e i jkLk , these are the commutatio
rules of infinitesimal rotations in four-dimensional Euclide
space, which leave thenth energy-level subspace invaria
@13#. The coherent states of SO~4!, i.e., the states for which
the dispersion ofL21K2 is minimal, can be built from the
coherent states of SO~3!, since SO(4)5SO(3)3SO(3).

Define

J15 1
2 ~L2K ! and J25 1

2 ~L1K !. ~9!

These two operators have the commutation relations of
independent three-dimensional angular momenta:
04230
a

e-

a

al

a

n-
pe

s,
e

o

@J1i ,J1 j #5 i e i jkJ1k , ~10!

@J2i ,J2 j #5 i e i jkJ2k , ~11!

@J1i ,J2 j #50. ~12!

Instead of the classical equations~3! and ~4!, we now have
@14#

L•K5K•L50 ~13!

and

L21K252121/2H5n221, ~14!

where the last form of the equality holds for energy eige
states. In the classical limit,n@1, Eq. ~14! reduces to the
classical one~4!.

In the rest of this paper we consider only energy eig
states. Owing to Eq.~9!, we have

j 1~ j 111!5 j 2~ j 211!5 1
4 ~n221!, ~15!

where j 1 and j 2 are the quantum numbers referring to t
operatorsJ1

2 andJ2
2, respectively. It follows thatj 1 and j 2 are

equal: j 15 j 2[ j and j ( j 11)5 1
4 (n221), so that

j 5 1
2 ~n21!. ~16!

The coherent states of a three-dimensional angular mom
tum will be denoted byuJ,u&. They obeyu•JuJ,u&5 j uJ,u&
for an arbitrary classical unit vectoru. For the coherent
states the dispersionDJ5(^J2&2^J&2)1/2 is minimal: (DJ)2

5 j . In particular,DJu50 andDJ'5Aj /2, whereJu5J•u
and J'5J•v with v'u. The coherent states of SO~3! are
obtained by a rotation of a fiducial coherent stateuJ,z&,

uJ,uuf&5e2 iL zfe2 iL yuuJ,z&. ~17!

The coherent states of SO~4! are now obtained as direc
products of coherent states for each of the SO~3! subgroups,

un,u1u2&5uJ1 ,u1& ^ uJ2 ,u2&, ~18!

where the unit vectorsu1 and u2 are again classical. The
coherent stateuJ1 ,u1& obeys

u1•J1uJ1 ,u1&5 j uJ1 ,u1&5 1
2 ~n21!uJ1 ,u1&, ~19!

and likewise, we have

u2•J2uJ2 ,u2&5 j uJ2 ,u2&5 1
2 ~n21!uJ2 ,u2&. ~20!

As from now, we shall omit the symbolsn,J1 , and J2 in
state vectors, since the quantum numbersn, j 1 , j 2 have fixed
values, related by Eq.~15!. For example, the stateunlm&
which obeys Hunlm&5nunlm&, L2unlm&5 l ( l 11)unlm&,
andLzunlm&5munlm& will be written simply asu lm&, uJ,u&
becomesuu&, anduJ,z& becomesu j j &, etc. The symbolj will
always denote the fixed valuej 5 1

2 (n21).
Owing to Eq.~9!, the dispersion ofL21K2 is minimal for

coherent states@14#:
8-2
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ELLIPTIC RYDBERG STATES AS DIRECTION INDICATORS PHYSICAL REVIEW A68, 042308 ~2003!
~DL !21~DK !252@~DJ1!21~DJ2!2#52~n21!. ~21!

To obtain the expansion of the coherent stateun,u1u2& in the
familiar nlm basis, we first expand each of theuui& in Eq.
~18!:

uui&5 (
m52 j

j

Dm
j ~u i f i !u jm&, i 51,2, ~22!

where theDm
j (u i f i) are related to the usual rotation mat

ces@15#:

Dm
j ~uf![D ( j )~fu0!m j , ~23!

5S 2 j
j 1mD 1/2S cos

u

2D j 1mS sin
u

2D j 2m

e2 imf. ~24!

Substitution into Eq.~18! gives

uu1u2&5 (
m152 j

j

(
m252 j

j

Dm1

j ~u1f1!Dm2

j ~u2f2!u jm1& ^ u jm2&.

~25!

We then use the angular-momentum addition formula

u jm1& ^ u jm2&5(
l 50

2 j

(
m52 l

l

Cm1m2 m
j j l u lm&, ~26!

whereCm1m2 m
j 1 j 2 l is the Clebsch-Gordan coefficient@16# which

vanishes formÞm11m2. Combining Eqs.~25! and~26!, we
finally get

uu1u2&5(
l 50

2 j

(
m52 l

l S (
m152 j

j

(
m252 j

j

Dm1

j ~u1f1!

3Dm2

j ~u2f2!Cm1m2 m
j j l D u lm&. ~27!

The classical orbit that corresponds to the coherent s
uu1u2&, in the limit of largen, can be obtained as follows
From Eq.~9!, we have

L5~J11J2! and K5~J22J1!. ~28!

Let z be half the angle betweenu1 and u2, i.e., sinz[uu1
3u2u/uu11u2u, and define three orthogonal classical u
vectors

ø[
u11u2

uu11u2u
, k[

u22u1

uu22u1u
, ~29!

andw[ø3k. Denoting byu1' an arbitrary vector orthogo
nal to u1, we have

J15~J1•u1!u11~J1•u1'!u1' , ~30!

J1•u25~J1•u1!~u1•u2!1~J1•u1'!~u1'•u2!. ~31!

Then from
04230
te
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^u1u~u1•J1!uu1&5 j ~32!

and

^u1uu1'•J1uu1&50, ~33!

we get

^u1u~u2•J1!uu1&5^u2u~u1•J2!uu2&, ~34!

5 j u1•u25 j cos 2z. ~35!

Noting that

uu11u2u52u coszu ~36!

and

uu12u2u52u sinzu, ~37!

we obtain from Eq.~35! the expectation values of the com
ponents ofK andL along the directions ofk, ø, andw, for
the coherent stateuu1u2&,

^Kk&5~n21!sinz, ~38!

^L,&5~n21!cosz, ~39!

whereKk[k•K , etc. In the perpendicular directions the e
pectation values vanish:

^K,&5^Kw&5^Lk&5^Lw&50. ~40!

From Eqs.~38!–~40! we see that in the limit of largen, the
coherent stateuu1u2& corresponds to a classical elliptic tra
jectory in thek-w plane with the LRL vector in thek direc-
tion, the angular momentum in theø direction, and eccen-
tricity e5^Kk&/(n21)5sinz, which is the quantum-
mechanical analog to Eq.~5!. The unit vectorw is parallel to
the minor axis of the ellipse.

III. TRANSMISSION OF ONE DIRECTION

We now turn to the use of elliptic wave functions as d
rection indicators. Consider two observers~Alice and Bob!
who do not have a common reference frame. Alice wants
indicate to Bob herz axis by using an elliptic Rydberg state
In the following section, we shall likewise discuss the tran
mission of two orthogonal axes. We use as much as poss
the same notations in both sections. Alice’s signal is

uA&5(
l 50

2 j

(
m52 l

l

almu lm&, ~41!

where

(
l 50

2 j

(
m52 l

l

ualmu251. ~42!
8-3



s
s

t

h

-

f-

is

l-
te

by

a

e’s

nd
en

ipti-

by

f

LINDNER, PERES, AND TERNO PHYSICAL REVIEW A68, 042308 ~2003!
Bob’s detectors have labelscuf which indicate the un-
known Euler angles relating his Cartesian axes to those u
by Alice. The mathematical representation of his apparatu
a POVM,

E dE~cuf!51, ~43!

where

dE~cuf!5dcufU~cuf!uB&^BuU†~cuf!, ~44!

anddcuf5sinudcdudf/8p2 is the SO~3! Haar measure for
Euler angles@15#. As usual,U(cuf) is the unitary operator
for a rotation by Euler anglescuf, anduB& is Bob’s fiducial
vector defined as in Ref.@7#,

uB&5(
l 50

2 j

A2l 11 (
m52 l

l

blmu lm&, ~45!

where for eachl,

(
m52 l

l

ublmu251. ~46!

Note that Eq.~41! was written with Alice’s notation, while
Eq. ~45! is in Bob’s notation~recall that they use differen
coordinate systems!.

Optimizing the transmission fidelity, defined by Eq.~49!
below, leads@7# to

blm5almS (
n52 l

l

ualnu2D 21/2

~47!

for eachl. SinceuB& is a direct sum of vectors, one for eac
value of l, then likewiseU(cuf) is a direct sum with one
term for each irreducible representation:

U~cuf!5(
l

% D ( l )~cuf!, ~48!

where theD ( l )(cuf) are the usual irreducible unitary rota
tion matrices@15#. A generalization of Schur’s lemma@17#
confirms that Eq.~44! is indeed satisfied, owing to the coe
ficientsA2l 11 in Eq. ~45!.

The fidelity of the transmission of a single direction
defined as usual:

F5^cos2~v/2!&5 1
2 ~11^cosv&!, ~49!

wherev is the angle between the direction indicated by A
ice and the one that is estimated by Bob. If Alice indica
herz axis, we thus want to maximizêcosvz&. Following the
method of Peres and Scudo@7#, we define Euler anglesabg
whose effect is rotating Bob’s Cartesian frame into hisesti-
mateof Alice’s frame, and then rotating back the result
the true angles from Alice’s to Bob’s frame. The anglesabg
thus indicate Bob’s measurement error. Since in this c
Bob’s estimate refers to Alice’sz axis only, the anglevz is
identical to the second Euler angleb:
04230
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Let us examine two extreme cases. First, we take Alic
vector to be a circular state, with null eccentricity (sinz
50), i.e.,

uA&5u l l &, ~51!

with

l 52 j 5n21. ~52!

Bob’s vector is obtained from Eq.~47!, which in this case
gives

uB&5A2n21u l l &. ~53!

We then@15# have

^AuU~abg!uB&5A2n21ei (n21)(a1g)cos2(n21)
b

2
.

~54!

Inserting the last equation into Eq.~50! gives

^cosvz&5~n2 1
2 !E

0

p

sinbdbcos4(n21)~b/2!cosb,

~55!

5~n21!/n. ~56!

The ‘‘infidelity’’ 1 2F, whose typical meaning is Bob’s
mean-square error@3#, is

1
2 ~12^cosvz&!51/2n. ~57!

This result is identical to the one obtained by Massar a
Popescu@1#, when the number of their parallel spins is tak
to beN52l 52n22.

The other extreme case corresponds to a classical ell
cal orbit with unit eccentricity, so thatL50. Let K lie in the
z direction. The corresponding quantum state, denoted
uK,z&, is an extreme Stark state with^Lz&50 and maximal
^Kz&:

uK,z&[u2z& ^ uz&5u j ,2 j & ^ u j j &. ~58!

This state satisfiesLzuK,z&50 and it is also an eigenstate o
Kz :

KzuK,z&5~J2z2J1z!u j ,2 j & ^ u j j &, ~59!

5~n21!uK,z&, ~60!

owing to

~J2z2J1z!u j ,2 j & ^ u j j &52J1zu j ,2 j & ^ J2zu j j &. ~61!

In the nlm basis we have
8-4
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uK,z&5(
l 50

2 j

(
m52 l

l

Cm1m2m
j j l u lm&5(

l 50

2 j

C2 j j 0
j j l u l0&, ~62!

since m152 j and m25 j . The fidelity of transmission by
this state will be evaluated at the end of this section.

Both the circular state and the extreme Stark state
coherent states of SO~4!, but only the circular state is also a
angular-momentum coherent state. Moreover, the circ
state is symmetric,̂ l l ur u l l &50, while the extreme Stark
state is not. This can be seen@19# from:

^nlmur unlm&5 2
3 ^nlmuK unlm&. ~63!

Let us examine which one of these states gives better re
when used by Alice to transmit the directions of herz axis.
The overlap between two angular-momentum coherent st
@18# is

u^u1uu2&u25cos4 j~x/2!, ~64!

wherex is the angle between the directions ofu1 andu2. It
is noteworthy that the overlap between two extreme St
states is the same, as we will see shortly. First, a rotatio
the uK,z& state by angles (uf) gives

uK,uuf&5e2 iL zfe2 iL yuuK,z&, ~65!

where again the operatore2 iL zfe2 iL yu performs an active
rotation of the vectoruK,z&. Using Eq.~28! we have

uK,uuf&5e2 i (J1z1J2z)fe2 i (J1y1J2y)uu2z& ^ uz&, ~66!

5e2 iJ1zfe2 iJ1yuu2z& ^ e2 iJ2zfe2 iJ2yuuz&, ~67!

owing to Eqs.~7! and ~8!. Thus the rotated extreme Sta
state is just

uK,uuf&5u2uuf& ^ uuuf&, ~68!

where the SO~3! coherent statesuuuf& are defined as in Eq
~22!. This Stark state is an eigenstate ofu•K with the maxi-
mal eigenvaluen21, and it satisfiesk5u, as can be seen
from Eq. ~29!. The overlap between two such stat
u^K,u8uK,u9&u2 is

u^2u8u2u9&u2u^u8uu9&u2, ~69!

which, by using Eq.~64!, is just

cos4 j 1~x/2!cos4 j 2~x/2!5cos4(n21)~x/2!, ~70!

wherex is the angle between the vectorsu8 andu9.
Such a simple expression cannot hold for the overlap

two generic elliptic states whose eccentricities are not 0 o
Let a generic elliptic state

uu1u2&5uu1& ^ uu2& ~71!

be an elliptic state with eccentricity 0,e,1. Unlike thee
51 ande50 cases, this state does not define one direct
but two independent ones,u1 andu2. If it is rotated by Euler
anglesabg, the result is
04230
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n,

e2 iL zae2 iL ybe2 iL zguu1u2&5U1uu1& ^ U2uu2&, ~72!

where

U15e2 iJ1zae2 iJ1ybe2 iJ1zg, ~73!

and likewise forU2. To obtain this result we have used E
~28! and the commutation relations~7! and~8!. The rotation
e2 iL zae2 iL ybe2 iL zg opens an anglex1 between the classica
vectorsu1 and R(abg)u1, and an anglex2 ~which is gen-
erally different fromx1) betweenu2 and R(abg)u2. Here
R(abg) denotes the classical rotation matrix@11#. It follows
that

^u1u2ue2 iL zae2 iL ybe2 iL zguu1u2&5S cos
x1

2
cos

x2

2 D 2(n21)

.

~74!

Generally, bothx1 and x2 are different from the angle be
tween the directionsk and k85R(abg)k, or between the
directionsø andø85R(abg)ø.

We now calculate the transmission fidelity for the ca
where Alice sends an extreme Stark stateuK,z&. Since uA&
contains onlym50 terms, so does Bob’s fiducial vector

blm5al0~ ual0u2!21/2dm0 . ~75!

We thus have

blm5dm0 ~al0 /ual0u!, ~76!

uB&5 (
l 50

n21

A2l 11~al0 /ual0u!u l0&. ~77!

In order to determinêcosvz& in Eq. ~50!, we note that

^AuU~abg!uB&5 (
l 50

n21

A2l 11 al0* bl0^ l0uD ( l )~abg!u l0&,

5 (
l 50

n21

A2l 11ual0ud00
( l )~b!. ~78!

We insert this expression into Eq.~50!. The result, obtained
by using Eqs.~19!–~21! of Ref. @3#, is

^cosvz&5(
kl

Alkual0ak0u, ~79!

where Alk is a real symmetric matrix whose nonvanishin
elements are

Al ,l 215Al 21,l5 l /A4l 221, ~80!

and al 05C2 j j 0
j j l . The results are summarized in Fig. 1,

which the mean-square error is plotted versusn. The uK,z&
state gives fidelity better than the circular stateu l l &, but for
n.3 its fidelity is substantially less than optimal@3,4# and
goes asymptotically to 1/(4n22). This raises the questio
whether it is possible to build a ‘‘natural’’ POVM by settin
Bob’s vector touB&5ANuK,z&, so that POVM elements ar
8-5
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LINDNER, PERES, AND TERNO PHYSICAL REVIEW A68, 042308 ~2003!
NuK,uuf&^K,uufu, ~81!

where uK,uuf& was defined in Eq.~67! and N is a normal-
ization factor. Unfortunately,uK,z& contains a superpositio
of all values ofl, as can be seen from Eq.~62!. Thus uK,z&
does not belong to one irreducible subspace of the repre
tation of the SO~3! rotation group. As a result, the operato

B5E dufuK,uuf&^K,uufu ~82!

is not proportional to the identity, but is a block-diagon
matrix with different blocks for each irreducible represen
tion of the rotation group. Moreover, the resulting POV
includes an element which corresponds to the absence o
answer, thus reducing fidelity. A natural POVM which us
the SO~4! group will be discussed in Sec. IV.

The direction of the minor axis of a classical nondege
erate ellipse is that ofL3K . A quantum ellipse also has thi
property. Taking Alice’s state as a quantum ellipse with
centricity 0,e,1, with bothk andø lying in the xy plane
so thatw5z, the resulting fidelity can be compared with th
cases wherek or ø points along thez axis and the eccentric
ity of the ellipse is 0 or 1, respectively. The fidelity for tran
mission using the semiminor axis reaches a maximum
eccentricity of aboute50.7 ~a different eccentricity for each
value ofn). A comparison of the mean-square error for usi
the three options is given in Table I.

FIG. 1. Mean-square error as a function ofn for the transmis-
sion of a single axis using the circular state~open circles!, the
extreme Stark state~squares!, and the optimal state~closed circles!.
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Comparison between elliptic wave functions
and optimal wave functions

We shall now compare the extreme Stark state with
ice’s optimal vector for the transmission of one axis as c
culated in Ref.@3#. They are both eigenstates ofLz with m
50, and since Eq.~79! holds, we will present them in the
notation (ua00u,ua10u,ua20u, . . . ,uan21,0u), whereal 05C2 j j 0

j j l

as before. Forn53 we have

uK,z&5S 1

A3
,

1

A2
,

1

A6
D , ~83!

while Alice’s optimal state is

uAopt&5SA 5

3A2
,

1

A2
,A2

3D . ~84!

Thus for n53 the overlap between the extreme Stark st
and the optimal state is

u^K,zuAopt&u250.993 491. ~85!

Both states give almost the same fidelity for transmission
one axis. For higher values ofn, they become more and mor
different. Forn510 the overlap is

u^K,zuAopt&u250.764 06. ~86!

The various components are given in Table II. We see t
the extreme Stark state has coefficients peaked at lower
ues ofl than the optimal state.

IV. TRANSMISSION OF TWO AXES

Alice now wants to transmit a Cartesian frame by indic
ing the directions of two axes, the third one being inferr
from them. Which elliptic state is optimal? Obviously, stat
with e50 ande51 will not do in this case, since they defin
only one direction. We have to find the optimal eccentrici
Let

TABLE I. Eccentricitiese and mean-square errorsh for trans-
mission of a single direction usingz5w, z5ø, or z5k, for n55 or
10.

n z5w z5ø z5k

5 e50.6963 e50 e51
h50.193967 h50.1 h50.0573645

10 e50.701261 e50 e51
h50.0861934 h50.05 h50.0264067
0045
0989
TABLE II. Coefficientsual0u for Alice’s optimal state and for the extreme Stark state whenn510.

l 0 1 2 3 4 5 6 7 8 9

uK,z& 0.3162 0.4954 0.5222 0.4534 0.3365 0.2148 0.1167 0.0526 0.0186 0.
Optimal 0.1825 0.3079 0.3767 0.4098 0.4130 0.3894 0.3422 0.2751 0.1923 0.
8-6
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DK'5A~DK,!21~DKw!2, ~87!

DL'5A~DLk!
21~DLw!2, ~88!

where

DK,5A^K,
2&2^K,&

25A^K,
2&, ~89!

owing to Eq. ~40!. We define similar expressions for th
other components. When we want to transmitk, namely, the
direction of the classical LRL vector, then a small
DK' /^Kk& improves the fidelity. A similar argument hold
for the transmission ofø. Thus when transmitting two axes
a heuristic guideline is to look for states that satisfy

DK'

^Kk&
'

DL'

^Ll&
. ~90!

A straightforward calculation@14# gives

DKw5DLw5A1
2 ~n21!, ~91!

DK,5A 1
2 ~n21!sinz, ~92!

DLk5A 1
2 ~n21!cosz. ~93!

Together with Eqs.~38! and ~39!, this gives an equation fo
the eccentricity,

A11sin2z

A2~n21!sinz
'

A11cos2z

A2~n21!cosz
. ~94!

Therefore we expect that the optimal eccentricity is appro
mately

e5sinz5cosz51/A2. ~95!

More accurate numerical results are given below.
We now evaluate the fidelity for the transmission of tw

axes. Alice uses an elliptic state withk5x andø5y ~the unit
vectors in thex and y directions, respectively!. The eccen-
tricity e5sinz has to be optimized. Recall thatz is defined
to be half the angle betweenu1 andu2. The definitions ofk
andø are given in Eq.~29!. Thus in order to meet the abov
requirements we set inuA&5uuu1f1

,uu2f2
& the parameters

u15u25p/2, and

f15 1
2 p2z, f25 3

2 p2z. ~96!

Fidelities now must be defined for each one of the axes. N
that cosvk ~for the kth axis! is given by the correspondin
diagonal element of the orthogonal~classical! rotation ma-
trix. For the transmission of thex andy axes, we thus need
@11#

^cosvx1cosvy&5^~11cosb!~cos~a1g!&. ~97!

We expanduA& and uB& as in Eqs.~41! and ~45!. Bob’s
optimal fiducial vector is still given by Eq.~47!, and
^cosvx1cosvy& is calculated using Eqs.~23!–~26! of Ref.
04230
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te

@7#. The mean-square error per axis is plotted in Fig. 2
n55,10, and 20. The error is minimal ate'0.708 for n
55, ate'0.704 forn510, ande'0.674 forn520.

Note that the shape of the curve flattens with increasinn,
so that the minimum is hard to find numerically. The intu
tive explanation is that in the limit of largen, as if Alice were
to transmit a ‘‘classical atom,’’ i.e., a classical two-body K
pler system, then the direction of the classical angular m
mentum and LRL vectors could be found irrespective of
eccentricity. Therefore, the transmission accuracy would
the same for any eccentricity that is not close to zero or o

The deviation of the optimum frome51/A2 was ex-
pected, since transmission of thek direction (e51) achieved
higher fidelity than the transmission of theø direction (e
50). Thus the ellipse with optimal eccentricity for transmi
sion of two axes is biased to giveDL' /L,DK' /K in order
to compensate the difference and make the contribution
the error from thek direction about equal to that from theø
direction.

Elliptic states give results very close to the optimal on
The mean-square error for transmission of two axes by e
tic states with optimal eccentricity is compared to the op
mal results@7# in Table III.

V. POVM FOR SO„4…

We now construct a POVM based on the SO~4! group and
use it in order to transmit two axes. This POVM is natura
built with the SO~4! coherent states which are, as we ha
seen, direct products of two SO~3! coherent states. We sha
use for each one of the SO~3! subspaces the notation

FIG. 2. Mean-square error~per axis! as a function of eccentric-
ity for n55, 10, and 20.

TABLE III. Mean-square errorh for transmission of two axes
by an elliptic state with optimal eccentricity, and by the optim
method@7# for n55,10, and 20.

n Elliptic Optimal

5 h50.14765 h50.14465
10 h50.06822 h50.06793
20 h50.03190 h50.03088
8-7
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ucuf&u5A2 j 11U~cuf!uu&, ~98!

and

dE~cuf!5dcufucuf&u^cufuu , ~99!

where u labels the direction to be transmitted, anddcuf
5sinududfdc/8p2 as in Eq. ~44!. By applying Schur’s
lemma to each of the SO~3! subspaces, we have

E E dE1~c1u1f1! ^ dE2~c2u2f2!511^ 1251.

~100!

We are now ready to discuss the transmission of Alice’x
andy axes by means of an elliptic state. We take

uA&5uxy&5ux& ^ uy&. ~101!

This equation was written in Alice’s notation. We also defi
a fiducial vector for Bob,

uB&5~2 j 11!ux& ^ uy&, ~102!

written in Bob’s notations. Thus the POVM element is co
structed from the vector

uc1u1f1&x^ uc2u2f2&y5~2 j 11!~U1^ U2!uB&.
~103!

The result of Bob’s measurement consists of two sets of
ler angles,c1u1f1 and c2u2f2. The first one gives Bob’s
estimate of the active rotation needed to bring hisx axis to
Alice’s x axis. Likewise, the second set gives Bob’s estim
of the active rotation needed to bring hisy axis to Alice’sy
axis. The detection probability of these sets of angles is

dP~c1•••f2!5dc1u1f1
dc2u2f2

u^AuU1^ U2uB&u2.
~104!

Recall that Eq.~101! was written in Alice’s notations, while
Eq. ~102! was in Bob’s notations. To compute the result e
plicitly, we need a uniform system of notations. For this w
introduce, as in Ref.@7#, the Euler anglesjhz that rotate
Bob’s xyz axes into Alice’s axes.~The Euler anglez should
not be confused with the eccentricity parameter introduce
Sec. II.! The unitary operatorU(jhz) represents an activ
transformation of Bob’s state vectors to the correspond
state vectors of Alice’s system. Therefore,U(jhz) is also
the passive transformation from Alice’s notations to Bo
notations. Written in Bob’s notations, Alice’s vectoruA& be-
comes U(jhz)uA& so that in Eq. ~104!, ^Au becomes
^AuU(jhz)†. Owing to the commutation relations~7! and
~8!,

U~jhz!5e2 iL zje2 iL yhe2 iL zz, ~105!

5U1~jhz! ^ U2~jhz!, ~106!

where againU1 andU2 are defined as in Eq.~73!. We thus
have
04230
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U~jhz!uu1u2&5U1~jhz!uu1& ^ U2~jhz!uu2&. ~107!

Let us therefore define

U1~a1b1g1!5U1
†~jhz!U1~c1u1f1! ~108!

and

U2~a2b2g2!5U2
†~jhz!U2~c2u2f2!. ~109!

We shall henceforth use the left-hand sides of Eqs.~108! and
~109! as the new definitions of the symbolsU1 andU2. As
before, the Euler anglesa1b1g1 have the effect of rotating
Bob’s x axis into his estimate of Alice’sx axis and then
rotating back the result by the true rotation from Alice’s
Bob’s frame. The action of the Euler anglesa2b2g2 is simi-
lar for the y axis. Thus the Euler anglesa ib ig i indicate
Bob’s measurement error, and the probability of that erro

dP~a1•••g2!5da1b1g1
da2b2g2

u^AuU1^ U2uB&u2.
~110!

Note the similarity with Eq.~104!. The difference is that Eq
~104! referred to the probability ofdetectionof a particular
set of Euler angles, while Eq.~110! gives the probability of
error in that detection.

The transmission mean-square errorper axisis, as in Eq.
~57!,

R5 1
4 ~12cosvx!1 1

4 ~12cosvy!, ~111!

wherevx and vy are the angles between the true and e
mated directions of the andy axes, respectively. Since Bo
infers the direction of thex axis from the anglesc1u1f1, the
value of cosvx depends only ona1b1g1. Likewise, the
value of cosvy depends only on the anglesa2b2g2. We have

^cosvx&5E da1b1g1
u^xuU1ux&u2cosvx , ~112!

where we have used Eq.~110! and Schur’s lemma for the
second set of angles, namely,

~2 j 11!E da2b2g2
U2uy&^yuU2

†512 . ~113!

The evaluation of Eq.~112! is identical to the one performe
in Eq. ~55!, with n replaced by1

2 (n11) everywhere, and we
get

^cosvx&5~n21!/~n11!. ~114!

Likewise,

^cosvy&5~n21!/~n11!. ~115!

Thus the infidelity~mean-square error! per axis is

1
4 ~12^cosvx&!1 1

4 ~12^cosvy&!51/~n11!. ~116!

In Ref. @7# it was found that theoptimal POVM ~not re-
stricted to elliptic states! for transmission of two axes using
nonrelativistic hydrogen atom is of the form given by E
8-8
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~44!. It was shown that using this POVM, the infidelity p
axis for Alice’s optimal signal approaches 1/(3n) asymptoti-
cally. Using SO~4! instead of SO~3! as in Ref.@7#, we obtain
an infidelity per axis that is exactly 1/(n11) for all values of
n. As shown in the Appendix, an adjustment procedure
obtain orthogonal axes will further decrease the mean-sq
error by a factor which, for large values ofn, tends to 3/4.

The SO~4! POVM also enables the transmission of tw
directions which are not orthogonal, by means of a particle
an elliptic state. To transmit the directions of two general u
vectorsv1 andv2, Alice’s prepares the elliptic state

uA&5uv1v2&5uv1& ^ uv2&, ~117!

~in her notations! while Bob’s vector is~in his notations!

uB&5~2 j 11!uv1& ^ uv2&. ~118!

As before, the infidelity for each direction is 1/(n11). It
should be noted that transmission of two nonorthogonal
rections with one hydrogen atom is not possible with
SO~3! POVM.

VI. SUMMARY AND CONCLUDING REMARKS

We have shown how elliptic Rydberg states can trans
information on the orientation of one direction, or more ge
erally that of a Cartesian frame. For increasing values on,
the fidelity obtained for a single direction falls rapidly belo
the optimal ones. However, for a Cartesian frame the res
are very close to the optimal ones. Note that we have
sumed that Alice and Bob have the same chirality. If th
chiralities are opposite, then when angular momenta are u
for the transmission the direction inferred by Bob should
reversed~because directions are polar vectors while angu
momentum is an axial vector!. However, the LRL vector is a
polar vector, thus even if Bob and Alice have oppos
chiralities, the direction inferred by Bob is correct. We ha
also shown how elliptic Rydberg states can be prepare
encode two arbitrary directions, when the measuremen
based on the SO~4! rotation group.
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APPENDIX: REDUCTION OF ERRORS
BY ORTHOGONALIZATION

As we have seen in Sec. V, Bob’s estimates of Alice’sx
and y axes may not be exactly orthogonal. The probabi
for the estimate of thex axis to have an angular errorvx , as
can be seen from Eq.~64!, is

r~vx!} cos2n22~vx/2!, ~A1!

and likewise for they axis. Thus for large values ofn, the
error probability distribution will be highly peaked. We no
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calculate the gain in fidelity achieved if Bob performs
simple orthogonalization of his two estimatesr̂ x and r̂ y , by
rotating the two vectors in their plane by the same angle
that they become orthogonal.

Let us define two pairs of spherical angles that give
position of the estimated directions with respect to the~un-
known! true axes. These positions are given by

r̂ x5~sinu1cosf1 ,sinu1sinf1 ,cosu1! ~A2!

and

r̂ y5~sinu2cosf2 ,sinu2sinf2 ,cosu2!. ~A3!

The probability distributions will be denoted byr i(u i ,f i).
In the limit of largen, the deviation anglesvx and vy are
small. Hence the distribution is centered as

rx5r~u12 1
2 p,f1!, ~A4!

ry5r~u22 1
2 p,f22 1

2 p!, ~A5!

wherer(j,m) is peaked around (0,0). Here we used the f
that the SO~4! POVM gives probabilities of error for eac
axis, which are identical and independent. Define new v
ables

ũ i5u i2
1
2 p, ~A6!

f̃25f22 1
2 p. ~A7!

The deviation angles are given by cosvx5r̂ x• x̂ and cosvy

5r̂ y• ŷ, namely,

cosvx5sinu1cosf1'12 1
2 ũ1

22 1
2 f1

2 ~A8!

and

cosvy5sinu2sinf2'12 1
2 ũ2

22 1
2 f̃2

2 . ~A9!

Let g denote the infidelity per axis before the adjustme
The infidelities for both axes are equal, thus

g[ 1
2 ~12^cosvx&!, ~A10!

' 1
4 E ~ ũ1

21f1
2!dr i[

1
4 ^ũ1

21f1
2&, ~A11!

where

dr i5r~ũ i ,f i !sinũ idũ idf i ~A12!

fulfills

E dr i51. ~A13!

Equivalently, we can write the infidelity in terms ofũ2 and
f̃2 as
8-9
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g' 1
4 E ~ ũ2

21f̃2
2!dr i[

1
4 ^ũ2

21f̃2
2&. ~A14!

In first order we have, by combining Eqs.~A2! and~A3! with
the definitions~A6! and ~A7!,

r̂ x'~1,f1 ,2 ũ1!, r̂ y'~2f̃2,1,2 ũ2!, ~A15!

and the angleV between them is given by

cosV5 r̂ x• r̂ y'f12f̃2 . ~A16!

The bisector ofr̂ x and r̂ y is given by theunit vector b̂5( r̂1

1 r̂2)/u r̂11 r̂2u. Using Eq.~A15! and keeping only first-orde
terms, we have

b̂'@12 1
2 ~f11f̃2!,11 1

2 ~f11f̃2!,2 ũ12 ũ2#/A2,
~A17!

where we used

u r̂11 r̂2u'A2~11 1
2 f12 1

2 f̃2!. ~A18!

We can also express the bisectorb̂ in terms of its spherica
angles which we shall denote by (t,w). Since the errors are
small, we havew' 1

4 p, and it is convenient to define

w̃5w2 1
4 p. ~A19!

Comparison of the two expressions forb̂ gives

j5 1
2 p1A 1

2 ~ ũ11 ũ2!, w̃5 1
2 ~f11f̃2!. ~A20!

In first order, as Eq.~A16! shows, the orthogonalization con
sists in changing the anglesf i irrespective ofu i , without
changing theu i themselves. Hence, in first order, the proc
dure defines

f185w2 1
4 p, f285w1 1

4 p, ~A21!

i.e.,

f185f̃285w̃5 1
2 ~f11f̃2!, ~A22!

where againf̃285f282 1
2 p. The change inũ i is of higher

order,ũ i85 ũ i1O(u2,f2). The new infidelity per axis,gnew,
is

gnew5 1
4 ^f18

21 ũ1
2&5 1

4 ^f̃28
21 ũ2

2&. ~A23!

Returning to Eqs.~A11! and ~A14!, consider the integrals
over f i . Define

rf~f![E r~u,f!sinudu. ~A24!

Keeping in mind that the distributions forf1 and f̃2 are
identical, thef part of the infidelity per axisbeforethe ad-
justment is
04230
-

gf5 1
4 ^f1

2&5 1
4 ^f̃2

2&, ~A25!

5E f1
2 rf~f1!rf~f̃2!df1df̃2/4, ~A26!

5E f̃2
2 rf~f̃1!rf~f̃2!df1df̃2/4. ~A27!

The f parts of the infidelitiesafter the adjustment, denote
by gf

new, are

gf
new5 1

4 ^f18
2&5 1

4 ^f̃28
2&5 1

16 ^f1
212f1f̃21f̃2

2&.
~A28!

The functionsrf(f1) and rf(f̃2) are even, because th
probability distributionr depends only on the anglesvx or

vy , which are independent of the signs off1 andf̃2. Thus

^f1f̃2&5E f1f̃2rf~f1! rf~f̃2! df1df̃250.

~A29!

With the help of Eq.~A25! we obtain

gf
new5 1

16 ^f1
21f̃2

2&5 1
8 ^f1

2&. ~A30!

Thus thef parts of the infidelity are halved,

gf
new5 1

2 gf . ~A31!

As already stated, the anglesũ i are unchanged in first orde
Since the probability functionrx(f1 ,ũ1) depends only on
the anglevx5 r̂ x• x̂, it is symmetric with respect to rotation
around thex axis. A similar argument holds for they axis.
Thus

^ũ1
2&5^f1

2&5^ũ2
2&5^f2

2&, ~A32!

and we have finally

gnew5 3
4 g. ~A33!
8-10
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