PHYSICAL REVIEW A 68, 042308 (2003
Elliptic Rydberg states as direction indicators
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The orientation in space of a Cartesian coordinate system can be indicated by the two vectorial constants of
motion of a classical Keplerian orbit: the angular momentum and the Laplace-Runge-Lenz vector. In quantum
mechanics, the states of a hydrogen atom that mimic classical elliptic orbits are the coherent states @the SO
rotation group. It is known how to produce these states experimentally. They have minimal dispersions of the
two conserved vectors and can be used as direction indicators. We compare the fidelity of this transmission
method with that of the idealized optimal method.
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I. UNSPEAKABLE QUANTUM INFORMATION for that case if one considers the angular-momentum eigen-
states to be those of the atom, rather than thoge gibins.
Information theory usually deals with the transmission of In this paper we show how to transmit a Cartesian frame
a sequence of discrete symbols, such as 0 and 1. Even if thy using elliptic Rydberg states. These are the quantum-
information to be transmitted is of continuous nature, such agiechanical analogs of a classical Keplerian orbit, and it is
the position of a particle, it can be represented with arbitranknown how to produce these states experimentally. Elliptic
accuracy by a string of bits. However, there are situationdydberg states, just as their classical counterparts, define
where information cannot be encoded in such a way. Fothree orthogonal directions in space, and thus are natural
example, the emittefconventionally called Alicewants to ~ candidates for encoding a Cartesian frame.
indicate to the receivetBob) a direction in space. If they In a real experimental situation, relativistic effects cannot
have a common coordinate system to which they can refer, de neglected: the spin-orbit coupling and spin-spin coupling
if they can create one by observing distant fixed stars, Alicéemove the degeneracy of the Rydberg energy levels and
simply communicates to Bob the components of a unit vectogause the ellipse to precess appreciably within milliseconds
n along that direction, or its spherical coordinateand ¢.  [8]. This precession may perhaps be controlled. However,
But if no common coordinate system has been establishegoupling to the radiation field causes the Rydberg levels to
all she can do is to send a real physical object, such as @ecay irreversibly and sets an absolute time limit on such an
gyroscope, whose orientation is deemed stable. experiment. Fortunately, the mean lifetime of the levels is
In the quantum world, the role of the gyroscope is playedmuch longer than the precession tifigg,
by a system with large spin. For example, Alice can send
angular momentum eigenstates satisfyingd| ) =j| ). Traa/ Tp=8me?/3hc~16.40, 1)
This is essentially the solution proposed by Massar and
Popescuy 1] who took N parallel spins, polarized along, and the experiment, although difficult, may be feasible.
This, however, is not the most efficient procedure: for two Similar situations also arise with other types of atoms,
spins, a higher accuracy is achieved by preparing them witlyeazell and Stroudi10] excited a sodium atom into an an-
opposite polarizationg2]. For more than two spins, optimal gularly localized wave packet and subsequently had its local-
results are obtained with entangled std@&4]. ization direction probed by an ionizing field. The states ex-
The above discussion can be generalized to the transmisited in that experiment are good approximations of the
sion of a Cartesian frame. N spins are available, one can SQO(4) coherent states, and the precession of the Laplace-
encode a Cartesian frame in an entangled state of these spifinge-Lenz(LRL) vector was dominated by relativistic ef-
as in Ref[5]. However, a more accurate transmission is therfects just as it is in hydrogen.
obtained if Alice uses half of the spins to indicate #haxis, In the following section we discuss the properties of
and the other half for hey axis[6]. In this case the&c andy  quantum elliptic states. Section Ill deals with the transmis-
directions found by Bob may not be exactly perpendicularsion of one direction by means of them, and in Secs. IV we
and some adjustment will be needed to obtain Bob's beatse them to transmit two orthogonal axXesd thus a Carte-
estimate of thex andy axes. Finally, thez axis can be in- sian frame. In Sec. Ill and IV the detection procedure is
ferred from the estimates of theandy axes. based on S(@) coherent states as in RET). SO4) coherent
However, it is not possible to proceed in this way if a states are employed in Sec. V to produce a positive operator
single quantum messenger is available. The optimal transvalued measuréPOVM) which enables the use of elliptic
mission of a Cartesian frame by a hydrogen atdonmally,  states for the transmission of two directions that are not or-
a spinless particle in a Coloumb potentialas derived by thogonal. Even when these states are used by Alice to trans-
Peres and Scudd@]. The results of Refl5] can also be used mit two orthogonal axes, the two directions found by Bob are
not necessarily perpendicular and further adjustment is
needed, as explained above. As shown in the Appendix, these
*Also at Perimeter Institute, Waterloo, Ontario, Canada. adjustments increase the fidelity of transmission of two or-
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thogonal axes. However, a higher fidelity is achieved with a [J1i J1j 1= € dak, (10)

POVM based on the S@) rotation group, especially when

the energy quantum numbaris large. [Ji . J21=i €Ik (11)
Il. CONSTRUCTION OF AN ELLIPTIC STATE [J1i,d2j]=0. (12)

A classical bounded Keplerian orbit in a potentiak/r Instead of the classical equatio(® and (4), we now have
can be defined by its constants of motion: the enefgy [14]
<0, the angular momentumn which is an axial vector per-
pendicular to the plane of the orbit, and the Laplace-Runge- L-K=K-L=0 (13

Lenz (LRL) vector[11] d
an

K=(—2H) Y4 pxL— ukr/r), 2
(—2H) YApXx L~ ukr/r) 2 L2+K2=—1-1/2H=n2—1, (14)

wherey is the particle’'s reduced mass, and we introduced a _ .
prefactor 2H)~ 2 for later convenience. This prefactor, where the last form of the equality holds for energy eigen-

which is a constant of motion, does not appear in the usuaitates: In the classical limip>1, Eq.(14) reduces to the

definition of the LRL vector[11]. The Hamiltonian isH  classical one4). _ _
=p2/2.—kIr. We consider only bounded motion for which I the rest of this paper we consider only energy eigen-

the energyE, which is the numerical value o, is negative. States. Owing to Eq9), we have
The classical orbit is then an ellipse, and the LRL vector is a C o o 112
. . ! . L +1)= +1)==+ _
polar vector directed along its major axis. It satisfies It D=lall2+ D =3(n"=1), 19

wherej, andj, are the quantum numbers referring to the

L-K=0, ©® operators)? andJ3, respectively. It follows that; andj, are
and equal:j;=j,=j andj(j+1)=3%(n’-1), so that
K2+ pl2= — u2k%/2E. (4) j=3(n-1). (16)

Because of these relations, only five out of the seven conlhe coherent states of a three-dimensional angular momen-
stants are independent. They uniquely determine the shadm will be denoted byJ,u). They obeyu-J|J,u)=j|J,u)

and orientation of the ellipse. Its eccentricitil] is for an arbitrary classical unit vectas. For the coherent
states the dispersiahJ=((J?)—(J)?)¥2 is minimal: (AJ)?
e=|K|\J—2E/ uk. (5  =j. In particular,AJ,=0 andAJ, =/j/2, whereJ,=J-u

and J, =J-v with vLu. The coherent states of $&) are
We now turn to the quantum version. We use natural unitspbtained by a rotation of a fiducial coherent state),
u=k=h=1, so that the energy levels for bound states are , )
E=—1/2n%, wheren is an integer. The operatét is defined [J,upgy=e""t2%e "' J,2). 17

b
y The coherent states of $0) are now obtained as direct

K=(—2H)"YL(pxL—Lxp)—r/r]. 6) products of coherent states for each of tha3Qubgroups,

Note thatH commutes with[$(pXL—LXxp)—r/r]. The IN:Us012) =33, U © 32, Uz), (18
commutation relations for the operatdrsandK [12] are where the unit vectorsi; and u, are again classical. The
coherent stat¢J,,u;) obeys
[Li, Kj]=l€Ky, (7)
up-J1133,Uu)=j[J,u)=3(n—1)[Jg,uy), (19

KiK. ]=i€Lg. 8

LK) i ® and likewise, we have
Together with[L;,L;]=i€jcLy, these are the commutation ) .
rules of infinitesimal rotations in four-dimensional Euclidean Up-Jo|ld2,Uz) =]|J2,Up)=3(N—1)[J3,Up). (20
space, which leave theth energy-level subspace invariant _ _
[13]. The coherent states of $0, i.e., the states for which AS from now, we shall omit the symbolis,J,, andJ, in
the dispersion of. 2+ K2 is minimal, can be built from the Stat€ vectors, since the quantum numbeis, j, have fixed

coherent states of 98), since SO(4¥ SO(3)x SO(3). values, related by Eq(15). For example, the statglm)
Define which obeys H|nIm)=n|nIm), LZnIm)=I(l+1)|nIm),

andL,|nIlm)=m|nIm) will be written simply agim), |J,u)
J;=3(L—K) and J,=%(L+K). (9)  becomegu), and|J,z) becomesjj), etc. The symboj will
always denote the fixed valje=3(n—1).
These two operators have the commutation relations of two Owing to Eq.(9), the dispersion of >+ K? is minimal for
independent three-dimensional angular momenta: coherent statell4]:
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(AL)2+(AK)?=2[(AJ})?+(AJy)?]=2(n—1). (21)
To obtain the expansion of the coherent state,u,) in the

familiar nIm basis, we first expand each of the) in Eq.
(18):

j
u)= 2 D6 glim), =12, (22

where theD’;n( 0, ¢;) are related to the usual rotation matri-
ces[15]:

DI(64)=DV($00),,,,
0

2J 1/2 j+tm
j+m) cos, (

Substitution into Eq(18) gives

(23

(24

g\I-—m
H —im¢
sm—z) e .

j

lusU,) = Z E

mp=-—] my=-—

 Diy(6:161)Dp,(62¢2)limo)@]jm,).
(25)

We then use the angular-momentum addition formula
2j |
limpelimy=2> > ci!  lim), (26)
=om=-1 1772

o N _
WhereC'n%iﬁ12 . is the Clebsch-Gordan coefficiefit6] which

vanishes fom+m; +m,. Combining Eqs(25) and(26), we
finally get

| j j
S22 ol
m=—I \ my=—j my=—

2]
lusup) = 20

XDl (02¢02)Chh\m, m) [Im). 27
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(Ug|(ug-3)|up) =] (32
and
(Ua|uy, - J4up)=0, (33
we get
(Ua|(uz-J1)|ug) = (ua|(u1- o) |uz), (34)
=ju;-Up;=]j cos Z. (35)
Noting that
|us+ Uy =2]| cos{| (36)
and
lup—uz|=2[ sin{], (37)

we obtain from Eq(35) the expectation values of the com-
ponents oK andL along the directions ok, €, andw, for
the coherent statg, u,),

(Ky=(n—1)sin¢, (38

(L)=(n—1)cos, (39
whereK,=k-K, etc. In the perpendicular directions the ex-
pectation values vanish:

(Kg)=(Kw)=(Li)=(Lw)=0.

From Eqgs.(38)—(40) we see that in the limit of largs, the
coherent statéu,u,) corresponds to a classical elliptic tra-
jectory in thek-w plane with the LRL vector in th& direc-
tion, the angular momentum in th&direction, and eccen-
tricity e=(K,)/(n—1)=sin{, which is the quantum-
mechanical analog to E¢5). The unit vectomw is parallel to

(40)

The classical orbit that corresponds to the coherent statgye minor axis of the ellipse.

|uiuy), in the limit of largen, can be obtained as follows.
From Eq.(9), we have
L=(J;+J,) and K=(J,—J,). (28

Let ¢ be half the angle betweem andu,, i.e., sinf=|u,

X Uy|/|u;+u,|, and define three orthogonal classical unit

vectors

Up+ Uy
lup+up|’

Ux— U

k= ,
lu—uy

(=

(29)
andw={x k. Denoting byu,, an arbitrary vector orthogo-
nal tou;, we have

J1=(J1-uup+(Jg-Ug Uy, (30
Jp-Up=(Jp-up)(Ug-Up) +(J1 Uy )(Ug - Up).  (3D)

Then from

III. TRANSMISSION OF ONE DIRECTION

We now turn to the use of elliptic wave functions as di-
rection indicators. Consider two observéAdice and Bob
who do not have a common reference frame. Alice wants to
indicate to Bob her axis by using an elliptic Rydberg state.
In the following section, we shall likewise discuss the trans-
mission of two orthogonal axes. We use as much as possible
the same notations in both sections. Alice’s signal is

2j I
=2 2 am/im), (41)

where

(42)

2j |
E E |alm|2:1-
I=0 m=—I
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Bob’s detectors have labelgf¢ which indicate the un-

known Euler angles relating his Cartesian axes to those used <005wz>:J das,l(AlU(aBy)|B)|?cosp.  (50)

by Alice. The mathematical representation of his apparatus is

a POVM, Let us examine two extreme cases. First, we take Alice’s
vector to be a circular state, with null eccentricity (&in

f dE(¢go¢)=1, (43 =0), i.e.,

where |A)=1I), (51)

dE(Y06)=d,0U(408)B)(BIUT(yog),  (4g) W

andd,gs=sin 6dydedpi8m? is the S@3) Haar measure for I=2j=n-1. (52)
Euler angleg15]. As usual,U(6¢) is the unitary operator
for a rotation by Euler anglegf¢, and|B) is Bob’s fiducial
vector defined as in Ref7],

Bob’s vector is obtained from Ed47), which in this case
gives

2j I IB)=2n—1|Il). (53)
||3>:|§0 J2I+ 1sz_| bymlIm), (45)

We then[15] have

where for each, | ;
[ (AlU(aBy)|B)=+2n— 16 (= 1)(a+t 7)C032(n—1)§_

> |bm?=1. (46) (54)

Inserting the last equation into E(pO) gives
Note that Eq.(41) was written with Alice’s notation, while

Eqg. (45 is in Bob’s notation(recall that they use different N An-1)
coordinate systems (coswz)=(n— 5)[0 sinpdpBcos (Bl2)cosp,
Optimizing the transmission fidelity, defined by E¢9) (55)
below, leadq7] to
I 12 =(n—1)/n. (56)
_ 2
Bim a|m< :E_l |ayn| ) “7) The “infidelity” 1 —F, whose typical meaning is Bob's

mean-square errgB], is
for eachl. Since|B) is a direct sum of vectors, one for each
value ofl, then likewiseU (#60¢) is a direct sum with one 3(1—(cosw,))=1/2n. (57)

term for each irreducible representation:
This result is identical to the one obtained by Massar and

U(l/f@(ﬁ):El oD (yoe), 49) E)ogsilci[;]l,;/v;si t2h.e number of their parallel spins is taken
The other extreme case corresponds to a classical ellipti-

where theD()(6¢) are the usual irreducible unitary rota- cal orbit with unit eccentricity, so that=0. LetK lie in the

tion matrices[15]. A generalization of Schur’s lemn{d7]  z direction. The corresponding quantum state, denoted by

confirms that Eq(44) is indeed satisfied, owing to the coef- |K,z), is an extreme Stark state with,)=0 and maximal

ficientsy2I + 1 in Eq. (45). (K,):

The fidelity of the transmission of a single direction is o N
defined as usual: K.n=|-78(2)=1j,—)®ljj)- (58

F={(cog(w/2))=3(1+(cosw)), (49 This state satisfies,|K,z)=0 and it is also an eigenstate of

wherew is the angle between the direction indicated by Al-
ice and the one that is estimated by Bob. If Alice indicates K,IK,2)=(J5,—J1)|i,—i)®ljj), (59)
herz axis, we thus want to maximizeosw,). Following the
method of Peres and Scufit], we define Euler anglesBy =(n—-1)|K,2), (60)

whose effect is rotating Bob’s Cartesian frame into émsi-

mate of Alice’s frame, and then rotating back the result by owing to

thetrue angles from Alice’s to Bob’s frame. The angle@y

thus indicate Bob's measurement error. Since in this case  (J,,—J1,)|j,—)®|jj)=—Jli.—)®Jplji). (61
Bob’s estimate refers to Alice’s axis only, the anglev, is

identical to the second Euler anghk In the nlm basis we have
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2 2] e L2ve e iL|uu)=U u)) Uy luy), (72
K2=3 3 Chllim=3 cliio), (62 )=Vl Lalua), (72
=om=—1 172 =0 where
sincem;=—j and m,=j. The fidelity of transmission by U,=e Vizre Niybe Uiy, (73
this state will be evaluated at the end of this section.

Both the circular state and the extreme Stark state arand likewise forU,. To obtain this result we have used Eq.
coherent states of §@), but only the circular state is also an (28) and the commutation relatiorig) and(8). The rotation
angular-momentum coherent state. Moreover, the circulag™'“z¢e~'LyPe~L2” opens an anglg, between the classical
state is symmetric{ll|r|I1)=0, while the extreme Stark vectorsu; andR(aBv)u,;, and an angley, (which is gen-
state is not. This can be segtB] from: erally different fromy,) betweenu, and R(e¢B7y)u,. Here

R(«Bvy) denotes the classical rotation matfix]. It follows

(nIm|r|nim)=(nIm|K|nIm). 63 that
Let us examine which one of these states gives better results ' ' ' X1 xp|20D
when used by Alice to transmit the directions of fzeaxis. (u1u2|e'LZ“e'Lyﬁe'L27|u1u2)=<c057cosf)
The overlap between two angular-momentum coherent states
[18] is (74)

Generally, bothy; and y, are different from the angle be-
tween the direction& and k’=R(aBvy)k, or between the

wherey is the angle between the directionsigfandu,. It~ directions€ and€¢’=R(aBy)¢.
is noteworthy that the overlap between two extreme Stark W& now calculate the transmission fidelity for the case
states is the same, as we will see shortly. First, a rotation ofnere Alice sends an extreme Stark stitez). Since|A)

[(ug|uz)|?=cod (x/2), (64)

the|K,z) state by anglesf¢) gives contains onlym=0 terms, so does Bob’s fiducial vector
|K,uggy=€""t2%e 10K, 2), (65) bim=2ay0(|@10|*) *Smo - (79
where again the operata@ “z?e~ity’ performs an active Ve thus have
rotation of the vectofK,z). Using Eq.(28) we have bim= 80 (210/]210]) (76)
|K,UW)):efi(J12+J22)¢e7i(J1y+J2y)6|_z>®|z>’ (66) -
— e Wute Nyl — 7)o Vade 0|7, 67) |B)= |20 V2l +1(ayo/|a)]10). (77

owing to Egs.(7) and (8). Thus the rotated extreme Stark In order to determinécosw,) in Eq. (50), we note that
state is just

n-1
[K,Ugg) =] —Ugg) ®|Ugg), (68) <A|U(aﬂ7)|5>:|20 V21 +1afyb (10| DV (aBy)|10),
where the SCB) coherent statefl,,) are defined as in Eq. I
(22). This Stark state is an eigenstateuloK with the maxi- _ — o
mal eigenvaluen—1, and it satisfiek=u, as can be seen B ,20 21+ 1aoldoo(B). (78
from Eq. (29). The overlap between two such states
[(K,u'[K,u")|? is We insert this expression into E¢p0). The result, obtained
by using Eqs(19)—(21) of Ref.[3], is
[(=u’[=u")[Z[(u’ fum) 2, (69)
which, by using Eq(64), is just <coswz>=% Ailajoagol, (79)

j1 ip) = (n-1)
costi(x/2)cosx(x/2) = cos (x12), (70 where A is a real symmetric matrix whose nonvanishing

wherey is the angle between the vectars andu”. elements are
Such a simple expression cannot hold for the overlap of
two generic elliptic states whose eccentricities are not O or 1. Ani-1=A-y =14 =1, (80

Let a generic elliptic state anda; o=C!;;. The results are summarized in Fig. 1, in

lusUn)=|u;)®|uy) (71  Which the mean-square error is plotted versuShe IK,z)

state gives fidelity better than the circular stHte, but for

be an elliptic state with eccentricity<Oe<<1. Unlike thee n>3 its fidelity is substantially less than optima,4] and
=1 ande=0 cases, this state does not define one directiongoes asymptotically to 1/¢%-2). This raises the question
but two independent ones; andu,. If it is rotated by Euler ~ whether it is possible to build a “natural” POVM by setting
anglesa By, the result is Bob's vector to|B)=/N|K,Zz), so that POVM elements are
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Y TABLE I. Eccentricitiese and mean-square errossfor trans-
mission of a single direction usirg=w, z=¢, orz=k, forn=5 or
e 10.
107 " .
. o n Z=w z=¢ z=k
o 5 e=0.6963 e=0 e=1
_ 107 o . 7=0.193967 7=0.1 7=0.0573645
3 - 10 e=0.701261 e=0 e=1
% L 7=0.0861934 7=0.05 7=0.0264067
- 1073 * o
. Comparison between elliptic wave functions
and optimal wave functions
107 . ,
We shall now compare the extreme Stark state with Al-
ice’s optimal vector for the transmission of one axis as cal-
p ' culated in Ref[3]. They are both eigenstates Iof with m
e =0, and since Eq(79) holds, we will present them in the
n-1 notation (aegl,|aid,lazd, - - - |an-1,d), wherea;o=C"j;,

as before. Fon=3 we have
FIG. 1. Mean-square error as a functionrofor the transmis-

sion of a single axis using the circular std@pen circley the

extreme Stark statesquares and the optimal stat@losed circles (83

K.2) 1 1 1

IZ = _1 _1_ 7
V3'V2' 6

while Alice’s optimal state is

where|K,uy,) was defined in Eq(67) andN is a normal- 5 1 5

ization factor. Unfortunately,K,z) contains a superposition 1A, t>:< \ /__ \ﬁ) (84)

of all values ofl, as can be seen from E(62). Thus|K,z) P 3\/5 \/5 3

does not belong to one irreducible subspace of the represen-

tation of the S@V) rotation group. As a result, the operator Thus forn=3 the overlap between the extreme Stark state
and the optimal state is

NIK, Ugg) (K, Uggl, (81

B:f 0yl K, Upg) (K U] 82 (K, 2lAgp)| ?=0.993 491, (85

Both states give almost the same fidelity for transmission of
one axis. For higher values of they become more and more
different. Forn=10 the overlap is

is not proportional to the identity, but is a block-diagonal
matrix with different blocks for each irreducible representa-
tion of the rotation group. Moreover, the resulting POVM

includes an element which corresponds to the absence of any (K, Z|Agp)|2=0.764 06. (86)
answer, thus reducing fidelity. A natural POVM which uses op
the SQ@4) group will be discussed in Sec. IV. The various components are given in Table Il. We see that

The qirect_ion of the minor axis of a c!assica| nondeg_enthe extreme Stark state has coefficients peaked at lower val-
erate ellipse is that df XK. A quantum ellipse also has this yes of| than the optimal state.

property. Taking Alice’s state as a quantum ellipse with ec-
centricity 0<e<1, with bothk and¢ lying in the xy plane

so thatw=z, the resulting fidelity can be compared with the

cases wher& or € points along the axis and the eccentric- Alice now wants to transmit a Cartesian frame by indicat-
ity of the ellipse is 0 or 1, respectively. The fidelity for trans- ing the directions of two axes, the third one being inferred
mission using the semiminor axis reaches a maximum afrom them. Which elliptic state is optimal? Obviously, states
eccentricity of aboue=0.7 (a different eccentricity for each with e=0 ande= 1 will not do in this case, since they define

value ofn). A comparison of the mean-square error for usingonly one direction. We have to find the optimal eccentricity.
the three options is given in Table I. Let

IV. TRANSMISSION OF TWO AXES

TABLE II. Coefficients|a,q| for Alice’s optimal state and for the extreme Stark state wheriL0.

| 0 1 2 3 4 5 6 7 8 9

|K,2) 0.3162 0.4954 0.5222 0.4534 0.3365 0.2148 0.1167 0.0526 0.0186 0.0045
Optimal  0.1825 0.3079 0.3767 0.4098 0.4130 0.3894 0.3422 0.2751 0.1923 0.0989
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AK, =\(AK()?*+(AK,)?, (87)
AL, =V(ALOZ+ (AL, (89)

where
AK = (KD —(Ke)?=(K), (89)

owing to Eg.(40). We define similar expressions for the
other components. When we want to transkjinamely, the
direction of the classical LRL vector, then a smaller
AK, /{Ky) improves the fidelity. A similar argument holds
for the transmission of. Thus when transmitting two axes,
a heuristic guideline is to look for states that satisfy

AK, AL,
(Ko (L)

A straightforward calculatiof14] gives
AL,=V3(n—1),
AKy= mSinL
AL,=V3(n—1)cos{.

Together with Eqs(38) and (39), this gives an equation for
the eccentricity,

J1+sirt¢ N J1+cos¢
2(n—1)sing J2(n—1)cos¢’

(90

AK,, (91)
(92

(93

(99
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0.20
n=5

0.15
2
2 0.10
f‘é n=10

0.05 n=20

T T T
0.5 0.6 0.7 0.8 09
eccentricity

FIG. 2. Mean-square errgper axis as a function of eccentric-
ity for n=5, 10, and 20.

[7]. The mean-square error per axis is plotted in Fig. 2 for
n=>5,10, and 20. The error is minimal &=~0.708 forn
=5, ate~0.704 forn=10, ande~0.674 forn=20.

Note that the shape of the curve flattens with increasing
so that the minimum is hard to find numerically. The intui-
tive explanation is that in the limit of large as if Alice were
to transmit a “classical atom,” i.e., a classical two-body Ke-
pler system, then the direction of the classical angular mo-
mentum and LRL vectors could be found irrespective of the
eccentricity. Therefore, the transmission accuracy would be
the same for any eccentricity that is not close to zero or one.

The deviation of the optimum frone=1/y2 was ex-
pected, since transmission of thalirection =1) achieved
higher fidelity than the transmission of tledirection (€

Therefore we expect that the optimal eccentricity is approxi-=0)- Thus the ellipse with optimal eccentricity for transmis-

mately

e=sin{=cos{=1/\/2. (95)
More accurate numerical results are given below.

We now evaluate the fidelity for the transmission of two
axes. Alice uses an elliptic state with=x and€=y (the unit
vectors in thex andy directions, respectively The eccen-
tricity e=sin{ has to be optimized. Recall thétis defined
to be half the angle between andu,. The definitions ok
and¢ are given in Eq(29). Thus in order to meet the above
requirements we set i||1A>=|u91¢1,u62¢2) the parameters

01= 02= 77/2, and

br=37—{, p=37—L. (96)

sion of two axes is biased to givel | /L<AK, /K in order

to compensate the difference and make the contribution to
the error from thek direction about equal to that from the
direction.

Elliptic states give results very close to the optimal ones.
The mean-square error for transmission of two axes by ellip-
tic states with optimal eccentricity is compared to the opti-
mal resultg 7] in Table III.

V. POVM FOR SO(4)

We now construct a POVM based on the(@yroup and
use it in order to transmit two axes. This POVM is naturally
built with the SA4) coherent states which are, as we have
seen, direct products of two $8) coherent states. We shall
use for each one of the $8) subspaces the notation

Fidelities now must be defined for each one of the axes. Note

that coswy (for the kth axig is given by the corresponding
diagonal element of the orthogonallassical rotation ma-
trix. For the transmission of the andy axes, we thus need
[11]

(coswy+coswy)=((1+cosp)(cod a+y)).

97

We expand|A) and |B) as in Egs.(41) and (45). Bob’s
optimal fiducial vector is still given by Eq(47), and
(cosw,+coswy) is calculated using Eq$23)—(26) of Ref.

TABLE IIl. Mean-square error for transmission of two axes
by an elliptic state with optimal eccentricity, and by the optimal
method[7] for n=5,10, and 20.

n Elliptic Optimal

5 7=0.14765 7=0.14465
10 7=0.06822 7=0.06793
20 7=0.03190 7=0.03088
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|40¢),=2j+1U(40¢)|u), (98) U(&End)|uruz) =U1(En0)|up)®@U(End)|uy). (107)
and Let us therefore define
dE($0¢)=d 04| 00) (0|, (99 Ui(a1817)=UL(En0)U1(410161) (108

where u labels the direction to be transmitted, adgy, and
=singdodgpdy/8m? as in Eq. (44). By applying Schur’s

0t
lemma to each of the S@) subspaces, we have Uz(azB2y2) =Ua(EnE)Ua(20262). (109

We shall henceforth use the left-hand sides of E&88) and
f f dE(410141) @AE(¢26¢5) =11 ®1,=1. (109 as the new definitions of the symbdls, andU,. As
before, the Euler angles; 3,7y, have the effect of rotating
(100 Bob’s x axis into his estimate of Alice’x axis and then
rotating back the result by the true rotation from Alice’s to
Bob’s frame. The action of the Euler angless,y, is simi-
lar for they axis. Thus the Euler angles;3;y; indicate

We are now ready to discuss the transmission of Alice’s
andy axes by means of an elliptic state. We take

[AY=]xy)=|x)®]y). (101 Bob’s measurement error, and the probability of that error is
This equation was written in Alice’s notation. We also define dP(ay- - 72):dalﬁlylda2ﬁ2y2|<A|U1®U2|B>|2-
a fiducial vector for Bob, (110
IBY=(2j+1)|x)®]y), (102 Note the similarity with Eq(104). The difference is that Eq.

(109 referred to the probability ofletectionof a particular
written in Bob’s notations. Thus the POVM element is con-set of Euler angles, while E4110) gives the probability of
structed from the vector error in that detection.

The transmission mean-square ermer axisis, as in Eq.

|h10101)x®|20,¢2)y=(2] +1)(U;©U,)|B). (57),
(103

R=Z(1—coswy)+ 3(1-CoSw,), (111
The result of Bob’s measurement consists of two sets of Eu-
ler angles,iy;0,¢, and ¢,6,¢,. The first one gives Bob's Wherew, and w, are the angles between the true and esti-
estimate of the active rotation needed to bringohiaxis to ~ Mated directions of the anylaxes, respectively. Since Bob
Alice’s x axis. Likewise, the second set gives Bob’s estimatdnfers the direction of the axis from the angleg 6, ¢,, the
of the active rotation needed to bring hisaxis to Alice’sy ~ value of cosw, depends only onwi3;1y;. Likewise, the
axis. The detection probability of these sets of angles is  Vvalue of cosn, depends only on the angles3,y,. We have

- 2
dP(i1- - a) =y 9,0y 0,4,/ (AlU1® Uy|B)| -(104) <003wx>=f da1ﬁ1y1|(X|U1|X>|ZCOwa, (112

Recall that Eq(101) was written in Alice’s notations, while
Eqg. (102 was in Bob’s notations. To compute the result ex-
plicitly, we need a uniform system of notations. For this we
introduce, as in Ref[7], the Euler angleg#n{ that rotate (2j+1)f da232y2U2|y><y|U;=J12. (113
Bob’s xyz axes into Alice’s axeg.The Euler anglg should

not be confused with the eccentricity parameter introduced ifrne evaluation of Eq(112) is identical to the one performed

Sec. II) The unitary operatotJ (¢é7{) represents an active j, Eq. (55), with n replaced by (n+1) everywhere, and we
transformation of Bob's state vectors to the corresponding,q¢

state vectors of Alice’s system. Therefotg(&é7() is also
the passive transformation from Alice’s notations to Bob’s (coswy)=(n—1)/(n+1). (119
notations. Written in Bob’s notations, Alice’s vectidk) be- -
comes U(£72)|A) so that in Eq.(104), (A| becomes Likewise,
(AJU(€7¢)T. Owing to the commutation relatiord) and

where we have used E@110) and Schur’s lemma for the
second set of angles, namely,

) (coswy)=(n—1)/(n+1). (115
U(£ng) e trte-ityrg-iLat (105 Thus the infidelity(mean-square errpper axis is
7(1—(coswy)) +z(1—(coswy))=1/(n+1). (116
=U1(€n0)®Us(End), (106

In Ref. [7] it was found that theoptimal POVM (not re-
where agairlJ,; andU, are defined as in Eq73). We thus  stricted to elliptic statgsor transmission of two axes using a
have nonrelativistic hydrogen atom is of the form given by Eqg.
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(44). It was shown that using this POVM, the infidelity per calculate the gain in fidelity achieved if Bob performs a

axis for Alice’s optimal signal approaches 1i)Basymptoti-  simple orthogonalization of his two estimatesandr,, by
cally. Using S@4) instead of S@8) as in Ref[7], we obtain  rotating the two vectors in their plane by the same angle, so
an infidelity per axis that is exactly (1) for all values of  that they become orthogonal.

n. As shown in the Appendix, an adjustment procedure to |et us define two pairs of spherical angles that give the
obtain orthogonal axes will further decrease the mean-squajsosition of the estimated directions with respect to (ine-

error by a factor which, for large values of tends to 3/4. known) true axes. These positions are given by
The Sd4) POVM also enables the transmission of two

directions which are not orthogonal, by means of a particle in r,=(sin#,c0S¢, ,sin6;5in ¢, ,cosh;) (A2)
an elliptic state. To transmit the directions of two general unit
vectorsv, andv,, Alice’s prepares the elliptic state and
|A)=|viva) = |v1)®|Vy), (117 ry=(Sin 6,C0S¢,,SiN 6,5 ¢, €0S,). (A3)
(in her notationswhile Bob’s vector is(in his notationy The probability distributions will be denoted by (6, , ¢;).
o In the limit of largen, the deviation angles, and w, are
=(2]+ . T X y
[B)=(2i+Dlvi)&lvz) (18 small. Hence the distribution is centered as
As before, the infidelity for each direction is b/ 1). It B 1
should be noted that transmission of two nonorthogonal di- px=p(01— 3, 1), (A4)
rections with one hydrogen atom is not possible with the (1 1 A5
SO(3) POVM. Py—P( 2= 2T 3 7), (A5)

wherep(¢, ) is peaked around (0,0). Here we used the fact
VI. SUMMARY AND CONCLUDING REMARKS that the S@) POVM gives probabilities of error for each

We have shown how elliptic Rydberg states can transfefXis, Which are identical and independent. Define new vari-
information on the orientation of one direction, or more gen-ables
erally that of a Cartesian frame. For increasing values, of ~ .
the fidelity obtained for a single direction falls rapidly below 0i=0—zm, (A6)
the optimal ones. However, for a Cartesian frame the results _
are very close to the optimal ones. Note that we have as- bo=po— 3. (A7)
sumed that Alice and Bob have the same chirality. If their
chiralities are opposite, then when angular momenta are usékhe deviation angles are given by czm&rx X and COSwy
for the transmission the direction inferred by Bob should be—ry y, namely,
reversedbecause directions are polar vectors while angular
momentum is an axial vec.terowever, thg LRL vector is a COSw,=SiN#;cosph~1— 167 — L 2 (A8)
polar vector, thus even if Bob and Alice have opposite
chiralities, the direction inferred by Bob is correct. We haveand
also shown how elliptic Rydberg states can be prepared to
encode two arbitrary directions, when the measurement is CoSw,=sin stin¢2~1—%~0§—%~§. (A9)
based on the S@) rotation group.

Let g denote the infidelity per axis before the adjustment.
ACKNOWLEDGMENTS The infidelities for both axes are equal, thus
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and the Fund for Promotion of Research. Work by N.H.L.

3(1—(coswy)), (A10)

was supported by a grant from the Technion Graduate [~ )
School. ‘_‘f (62+ ¢p2)dp;=2(03+ ¢?2), (A11)
APPENDIX: REDUCTION OF ERRORS where
BY ORTHOGONALIZATION _ o
As we have seen in Sec. V, Bob's estimates of Alice’s dpi=p(6;,di)sin0id6id ¢ (A12)
andy axes may not be exactly orthogonal. The probabilitysiiis
for the estimate of th& axis to have an angular errax,, as
can be seen from E@64), is
J dp; (A13)

pwy)* COS" *(,/2), (A1)

and likewise for they axis. Thus for large values of, the ~ Equivalently, we can write the infidelity in terms @ and
error probability distribution will be highly peaked. We now ¢, as
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0=} [ B+ Bop=i#1H). @19 Ge= (1) =3(42), (h29

In first order we have, by combining Eq#2) and(A3) with
the definitions(A6) and (A7), :f ¢§P¢(¢1)P¢(<~ﬁz)d¢1d7ﬁz/4, (A26)

=Ly, —0y), Ty=~(—¢s1-6,), (A1)

and the angl€) between them is given by ~y o~ ~ ~
o B :f D304(D1)py(P2)dp1d o4 (A27)
COSQ=Ty-Ty~ 1~ ¢b,. (Al16)

The bisector of, andry is given by theunitvectorb=(r;  ypq 4 parts of the infidelitiesafter the adjustment, denoted
+1,)/|F1+T,|. Using Eq.(A15) and keeping only first-order by g'", a

terms, we have

b~ 1_% p 1 % ¢ ,—hé 6,1/ 2, new ’ &) Dot d
[ (D1t @2), 1+ 3(P1+ b2) 1~ 0] \/—(A17) 4<¢12> X 22>:ﬁ5<¢%+2¢1¢2+¢§>.(A28)

where we used

[Pt Tol~\2(1+ 51— 5 o). (A18)  The functionsp,(#1) and p,(¢,) are even, because the
probability distributionp depends only on the angles, or

We can also express the bisectoin terms of its spherical w,, which are independent of the signs &f and $,. Thus
yr .

angles which we shall denote by,{). Since the errors are
small, we havep~ 1, and it is convenient to define

Bl

z’: P 3T. (A19) <¢1&2>=j ¢1§52P¢(¢1) P¢(Z’2) d¢1d2’2=0-

Comparison of the two expressions fomgives (A29)

—3mt Vi@ 82, p=3d1+ B2 (A20)  with the help of Eq(AZ5) we obtain

In first order, as Eq(A16) shows, the orthogonalization con-

sists in changing the anglep; irrespective ofg;, without 2

changing thef; themselves. Hence, in first order, the proce- new 16<¢1+ ¢2> s(o1). (A30)
dure defines

Prl=@—3im, =@+, (A21)  Thus the¢ parts of the infidelity are halved,

- - - g"=1304. (A31)
bi=dp=0=1(d1+ P2), (A22) oo

where agamqﬁ2 ¢,—3m. The change ing; is of higher
order, 6 =6,+ O(6?,¢%). The new infidelity per axisg™",
is

As already stated, the anglésare unchanged in first order.
Since the probability functiomx(¢1fél) depends only on
the anglew,=r,-X, it is symmetric with respect to rotations

127 ~12.,% around thex axis. A similar argument holds for the axis.
e TN A 1C 7 N B g he

Returning to Egqs(All) and (Al4), consider the integrals
over ¢, . Define

(63)=( 2y =(03)=(3), (A32)
po(h)= f p(6,¢)sin6do. (A24)

and we have finally
Keeping in mind that the distributions fap, and ¢, are
identical, the¢ part of the infidelity per axidbeforethe ad-
justment is gnev=2g. (A33)
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