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Photon polarization and Wigner’s little group
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To discuss one-photon polarization states we find the explicit form of the Wigner’s little group element in the
massless case for arbitrary Lorentz transformation. As is well known, when analyzing the transformation
properties of the physical states, only the value of the phase factor is relevant. We show that this phase factor
depends only on the direction of the momentkiftk| and does not depend on the frequek€y Finally, we
use this observation to discuss the transformation properties of the linearly polarized photons and the corre-
sponding reduced density matrix. We find that they transform properly under Lorentz group.
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I. INTRODUCTION T#. Moreover, the faithful representations Bf. are homo-
morphic representations of its universal covering group.

In recent years a lot of interest has been devoted to the We use the canonical homomorphism between the group
study of the quantum entanglement and Einstein-PodolskySL(2,C) (universal covering of the proper ortochronous Lor-
Rosen correlation function under the Lorentz transformationgntz groupL' ) and the Lorentz group! ~S0O(1,3), [10].
for massive particle§1-7]. In recent paper$8,9] also the  This homomorphism is defined as follows: With every four-

massless particle case was discussed. One of the key ingrgactork* we associate a two-dimensional Hermitian matrix
dients of these papers is the calculation of the explicit formk sych that

of the little group element for massless particle in some spe-
cial cases to analyze transformation properties of entangled k=k“o,, (1)
states and reduced density matrix.

In this paper we derive the explicit form of the Wigner’s where o;,i=1,2,3 are the standard Pauli matrices ang
little group element in the massless case for an arbitrary Lor=1. In the space of two-dimensional Hermitian matri¢gs
entz transformation and discuss the transformation propertighe Lorentz group action is given by
of the linearly polarized photons and the corresponding re-
duced density matrix obtained by tracing out kinematical de- k'=AKAT, (2
grees of freedom. As is well known in the Hilbert space of
massless particles the one-particle momentum eigenvectovghere A denotes element of the SL(3, group correspond-
under Lorentz transformatioA are multiplied by a phase ing to the Lorentz transformatioN (A) which converts the
factor depending o\ and the particle four-momentuit‘. four-vectork to k’ (i.e., k'“=A%k") andk’'=k'#o,. The
We show that this phase factor depends onlyAomnd the  kernel of this homomorphism is isomorphicZe [the center
direction of the momenturk/|k| but does not depend on the of the SL(2()].
frequencyk®. In contrast to other papef8] this observation Now, let us focus on the case of massless particles. An
enables us to give the description of the transformation rulegxplicit matrix representatioril) of the null (light-cone
of the linearly polarized photons which are not necessarilffour-vectork can be written as
monochromatic.

k=k° 3

1+n® n_
n, 1-n3/’
II. WIGNER'S LITTLE GROUP FOR MASSLESS
PARTICLES where n.=n'+in?, n=k/[k|, k°=|k| and dek=k“k,
As is well known, the pure quantum states are identified=0. In this case we choose the standard four-vectok as
with rays in the Hilbert space. For this reason, on the quan=(1,0,0,1). In the matrix representati@8) the following
tum level, we should use ray representations of the classicghatrix is associated witk:
symmetry groups In our case of the proper ortochronous
Poincaregroup P!, , which is the semidirect product of the . (2 0
proper ortochronous Lorentz groug, and the translations “lo o/ 4
group T4, its ray representationso called double-valued
representatior)sare faithful representations of the universal

covering ofP!, , i.e., the semidirect product of SL(3, and Now, let us find the stability group df, i.e., Age SL(2()

which leave invariant. All suchA, form a subgroup of the
SL(2/C) group, i.e.,
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As is well known[10], the stability group of the four-vector To calculateA ,, we simply use the formulag) and(3) to

k is isomorphic to theE(2) group of rigid motions of Eu-

clidean plane. We can easily find the most genéglby

find k" and then identifyk’ = Ak. We find

- - 1
solving the equatiohk=A,kA}. We get k’°=§k°a, (16)
w2
AOZ ( i y (6) 2b
0 e |(¢/2)) 3P _
n a 1, (17
wherezis an arbitrary complex number. Since the SI())2is
the two-fold covering of the Lorentz group, we restricted the n' :2_0, (18)
values ofy to the intervak 0,27). Our purpose is to find the t o a
Wigner’s little group elemenW(A ,k) corresponding tdk
and the Lorentz transformatiaok, namely, n"_=n.*, (19

W(A,K) =L ALy, @)

wherelL e Ll is determined uniquely by the following con-

ditions:
k=LK, Lg=I. (8)

In order to find the corresponding elemeB{A, k) in
SL(2,C) such thatW(A,k)=A(S(A,k)), i.e.,

S(Ak)=A\tAA,, 9

whereA (A) =L, we have to first calculate the matuy, .
We can do it by solving the matrix equation

After simple calculation we get
A=UB(K?), 11
where
1 1+n® —-n_
ST 3 (12)
V2(1+n3) | ny 14n

represents rotatiorR, which converts the spatial vector

(0,0,1) ton, while

JkO 0
B(k®)= o L (13
JKO

represents boost along thkeaxis which converts to k%.

Therefore,

1 kK°%(1+n%® —n_
A== 0 - (14
V2K(1+n3) | Kng 14n

Note that according to Eq8) Az=1. Now, an arbitrary Lor-
entz transformation\ (A) is represented in SL(2) by the
corresponding complex unimodular matrix

(aﬁ

A:
y 6

), ad—By=1. (15)

where
a=(|a|>+[y1>)(1+n® +(| B>+ 8> (1—n®) + (ap*

+yd)n_+(a*B+y*o)n,, (20)
b=|a|?(1+n%+|B]2(1—n®+aB*n_+a*Bn, ,
(21)

c=a*y(1+nd+B*8(1-nd)+B*yn_+a*én, ,
(22

andn’=k’/|k’|. Therefore we can find the explicit form of
S(A,k) by means of Eqg9) and(14). We have to calculate
only the element$(A ,k);; andS(A k) ,, since the general
little group element(6) depends only on the phase factor
e'(¥2 and complex numbez. A straightforward calculation
yields finally the following formulas:

[a(1+n®)+Bn,]b+[y(1+n%+én, Jc*

ayb(1+n®)

el (¥(AK)12) =

(23

[—an_+B(1+n%]b+[—yn_+8(1+n%]c*

k%ay/b(1+n3) ’

(24)

zZ(A k)=

wherea, b, andc are given by Eqs(20)—(22).

The unitary irreducible representations of the Poincare
group are induced from the unitary irreducible representa-
tions of the little group of the four-momentukt [i.e., the
E(2) group in the case of the massless particlé@4,10.

Now, we have two classes of the unitary irreducible repre-
sentations ofE(2): the faithful infinite dimensional repre-
sentations and the one-dimensional homomorphic represen-
tations of E(2), isomorphic to its compact subgroup
SO(2)CE(2). Because there is no evidence for existence of
massless particles with a continuous intrinsic degrees of free-
dom the physical choice is the last ofiel]. Thus by means
of the induction procedurglQ] the four-momentum eigen-
states transform according to the formula
U(A) [k N)y=e AR AKN). (25)
In the above formulalJ (A) denotes unitary operator repre-
sentingA in the unitary representation of the Poincgreup
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while the helicity\ fixes irreducible unitary representation Thus inserting the corresponding valuesaofand 8 to Eq.
of the Poincaregroup induced from S(), \ takes integer (29), we find in this case

and half-integer values onlyl1,10. We use invariant nor- RO — o

malization of the four-momentum eigenstatgs)), i.e., e =eX. (33
(p,o|k,\)=2k°5,, 8(k—p). Thus, when analyzing the
transformation properties of physical states only the value
the phase/(A k) is relevan{Eq. (23)]. So it is very impor-

of\s the next example, we consider the rotatR:(r)(i) around
the z axis. In this casdésee Ref[13])

tant to stress thdhe value of the phasg¢ depends only oA el (x/2) 0
andn and does not depend on the frequen€y k UR(XQ):( 0 ei(x/Z))* (34)
k
P(A k)= zjx(A,m) =y(A,n). (26) therefore from Eq(29), we get the same formula as previ-
ously,
Note also that momenta of massless particles which are RGN — gix. (35

parallel in one inertial frame are parallel for every inertial

observer, i.e., Boosts.Pure Lorentz boosA (v) in an arbitrary direction

, , e=V/|v| can be represented by the following SL{Pmatrix
=SS = (27) '
Pl k' (o]

wherek’=Ak, p’=Ap. Indeed, for massless particlds,
and p are parallel iff the corresponding four-momenta areA(v)=e

coshi—+e3sinh§ e,sinhg

(12)¢el o —

Lorentz orthogonal, i.ek,p*=0. Sincek, p* is a Lorentz e+sinh§ Coshi——e?’sinhg
invariant then this holds in all inertial frames. Equati@T7)
can be also verified explicitly by using Eqd.7)—(19). The (36)

above property holds good only n the massles; case. where the parametef is connected with the velocity of the
Now, using Eq{(23) we can immediately obtain the value boosted frame by the relation

of €Ak in a number of special cases considered else-

where. tanhé= —v (37)
Rotations.In the caseA =R, we haveR=A(U) where
U e SU(2)CSL(2), thus we put ande, =e'+ie? (we use natural units with the light velocity
. . 5 5 equal to ). Inserting the corresponding values @fand 8
d=a*, y=—p*, |a|*+|B|*=1 (28)  into Egs.(20)—(22), we arrive at the relations of the form
and from Eq.(23), we get the following simple formula: a=2(cosh¢+e-nsinhé), (39
i @(1End)+pn, b=coshé+n®+ (e3+e- n)sinhé+ede- n(coshé— 1),
e W(RK) — ) (29 (39
a*(1+nd)+B*n_
c=n, +[sinhé+e-n(coshé—1)]e, . (40

For the given rotatiorR the explicit form ofa and 3 can be
expressed by, e.g., Euler anglese, for example, Reff12]).

Now, the corresponding little group element can be obtained
Also note that from Eq(24), we get

from Egs. (23)—(24). We consider here two special cases:

Z(R,k)=0. (30) boqstA(v n) along then direction and boosA(ui) along the
z direction. In the first case, we hawe=n and from Eqgs.
Now let us consider the special case of the rotafRgyn)  (38)—(40) and Eqs(23)—(24), we find
around the directiom. The matrix Ug(,n) € SU(2) repre- (A (0n) ) _
sentingR(yn) can be written in the forn13] € =1 2(A(m).k)=0. (4D)

In the second case, we have

UR(XH)=e(”2)X”j‘Ti:cos)2£+injojsin)§(. (31 L4
-0
a=—= , B=y=0. (42)
Thus, o 1+v
Inserting the above values into Eq23) and(24), we get
X . 3. X X
co%ﬂn sin; in_siny ) )
Ur(ym = N N ME (32 #(A(vz),k)=0, z(A(vz),k)= (43
[ i —inSsi of=_ 3
in,sin; cos; —in“sin; K (v n )
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I1l. TRANSFORMATION LAW FOR LINEARLY 1
POLARIZED LIGHT U(A)|g,¢,n)= T 2 e Mé+y(A,n)
2\

Now, we apply the above results to discuss some transfor-

mation properties of the polarized states and reduced density * , 0 ,
matrix for photons. <, dlklg’ (kD I(k®[k[n"),\)
Let us consider first the classical electromagnetic field. As
is well known the monochromatic plane electromagnetic =|g’,¢+¢,n'), (47)

wave is in general polarized elliptically. In the special case of

the linear polarization we can deal also with the plane wavevhere
which is not necessarily monochromatic. In this case the
electromagnetic field tensor can be written as

2|k

! k _2
g'(lkh= 9

F#Y(x)=F*"f(ct—n-x) (44)
a is given by Eq(20), and by virtue of Eq(27) the direction
for the lineary polarized wave propagating in thelirection, n' is fixed, too. Therefore, the state we received is again
where the tensaF*” is x* independent. It is evident that the linearly polarized.
above formula is covariant under Lorentz transformations. It Now, we discuss the transformation of the reduced density
means that Lorentz transformations preserve linear polarizanatrix for linearly polarized plane wave. In general for the
tion of an arbitrary plane wavénot necessarily monochro- reduced density matrix describing the helicity properties of
matic). We show that it is also the case on the quantum levelthe state
As is well known (see, e.g., Refs[11-14) the one-
photon representation space is spanned by the vectors
{|k,2),|k,— 1)} because the parity operator changes the sign |f>=§£ f dp (k) fr (k) [k, ) (49)
of the helicity. Let us consider first the monochromatic lin-
early polarized plane wave. The photon state correspondi

"Je obtain the following formula:
to such a wave is of the forfil4] © oblain the following formuia

B N ECICER
=016~ B k), 49 = , 50
o 3 [ aul P

wherek®=|k| and the momentum independent anglele- h h dth o
termines the direction of the polarization in the plane perpen?/N€ré we have used the Lorentz invariant measure

dicular to the direction of the propagation The general
linearly polarized state corresponding to the wa%d) has
the form

3

du(k)= 0(k°)5(k2)d4kz:|—lf|. (51)

1 . ° It should be noted that in general the staf¢ can be a
lg,,n)=—= > e'WJ dk|g([k)[(K°k|n),\), tempered distributioriit does not necessarily belong to the
V2 X 0 Hilbert space but rather to the Gel'fand tripléor example,
(46)  four-momentum eigenstates. In such a situation the formula
(50) should be understood as a result of a proper regulariza-
wheren is fixed. The stat€46) is a tensor product of mo- tion procedure. Applying the above considerations to the
mentum direction and polarization states in each Lorentzlensity matrix describing the stafg, #,n), we get the fol-
frame. Let us note that states belonging to the proper Hilbetowing reduced density matrix:
space(wave packetscannot be exactly linearly polarized
states. However, linearly polarized stat@) can be ap- Pro(g,d,n)=32eA"9)9 (52
proximated(as tempered distributiopsvith an arbitrary ac-
curacy by sequences of wave packets. It is interesting tpe
point out a parallelism between classical and quantum de-
scription of ideal linearly polarized states. Namely, on the 1
classical level they have infinite total electromagnetic energy p(g,é,n)==
while on the quantum level they lie out of the proper Hilbert 2
space of the wave packets, i.e., they are distributions.
Now, we show thafor every inertial observer the linearly which in fact represents a reduced pure state becafise
polarized statg46) remains linearly polarized. Indeed, tak- =p. The above density matrix transforms properly under
ing into account Eqs(23)—(26), we find Lorentz transformations, namely,

(53

1 e2i¢
e—2i ] 1)’
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el (AN 0 e iw(AN) 0 IV. CONCLUSIONS
_( 0 e 1A P9, ¢.1) 0 gl v(An) We have found in this paper the explicit form of the
20(6+ ) Wigner’s little group element in the massless case for arbi-
1 1 e _ , , 54 trary Lorentz transformation. Using this result we have
T2\ e 24w el ): G4 shown that the light wave which is linearly polarizéuit not

necessarily monochromatifor one inertial observer remains
We stress on the fact that the linearly polarized state admits ghearly polarized also for an arbitrary inertial observer. We
covariant reduced density matrix description in terms of hehave also shown that the reduced density matrix describing
licity degrees of freedom is related to the property of thelinearly polarized photon, obtained by tracing out kinemati-
Lorentz transformation and that it does not generate encal degrees of freedom, transforms properly under Lorentz

tanglement between momentum direction and helicity. group action. Moreover the corresponding von Neumann en-
Finally, let us note that the von Neumann entropy corre+ropy is a Lorentz scalar.

sponding to the density matri¢g3) is equal to zero. Evi-

dently it _is Lore_ntz-invariant in_ view of E_c(54). _ ACKNOWLEDGMENTS
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