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Photon polarization and Wigner’s little group

Paweł Caban* and Jakub Rembielin´ski†

Department of Theoretical Physics, University of Ło´dź, Pomorska 149/153, 90-236 Ło´dź, Poland
~Received 16 May 2003; published 10 October 2003!

To discuss one-photon polarization states we find the explicit form of the Wigner’s little group element in the
massless case for arbitrary Lorentz transformation. As is well known, when analyzing the transformation
properties of the physical states, only the value of the phase factor is relevant. We show that this phase factor
depends only on the direction of the momentumk/uku and does not depend on the frequencyk0. Finally, we
use this observation to discuss the transformation properties of the linearly polarized photons and the corre-
sponding reduced density matrix. We find that they transform properly under Lorentz group.
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I. INTRODUCTION

In recent years a lot of interest has been devoted to
study of the quantum entanglement and Einstein-Podols
Rosen correlation function under the Lorentz transformati
for massive particles@1–7#. In recent papers@8,9# also the
massless particle case was discussed. One of the key in
dients of these papers is the calculation of the explicit fo
of the little group element for massless particle in some s
cial cases to analyze transformation properties of entan
states and reduced density matrix.

In this paper we derive the explicit form of the Wigner
little group element in the massless case for an arbitrary L
entz transformation and discuss the transformation prope
of the linearly polarized photons and the corresponding
duced density matrix obtained by tracing out kinematical
grees of freedom. As is well known in the Hilbert space
massless particles the one-particle momentum eigenve
under Lorentz transformationL are multiplied by a phase
factor depending onL and the particle four-momentumkm.
We show that this phase factor depends only onL and the
direction of the momentumk/uku but does not depend on th
frequencyk0. In contrast to other papers@8# this observation
enables us to give the description of the transformation ru
of the linearly polarized photons which are not necessa
monochromatic.

II. WIGNER’S LITTLE GROUP FOR MASSLESS
PARTICLES

As is well known, the pure quantum states are identifi
with rays in the Hilbert space. For this reason, on the qu
tum level, we should use ray representations of the class
symmetry groups. In our case of the proper ortochron
Poincare´ group P1

↑ , which is the semidirect product of th
proper ortochronous Lorentz groupL1

↑ and the translations
group T4, its ray representations~so called double-valued
representations! are faithful representations of the univers
covering ofP1

↑ , i.e., the semidirect product of SL(2,C) and
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T4. Moreover, the faithful representations ofP1
↑ are homo-

morphic representations of its universal covering group.
We use the canonical homomorphism between the gr

SL(2,C) ~universal covering of the proper ortochronous Lo
entz groupL1

↑ ) and the Lorentz groupL1
↑ ;SO(1,3)0 @10#.

This homomorphism is defined as follows: With every fou
vectorkm we associate a two-dimensional Hermitian mat
k such that

k5kmsm , ~1!

where s i ,i 51,2,3 are the standard Pauli matrices ands0
5I . In the space of two-dimensional Hermitian matrices~1!,
the Lorentz group action is given by

k85AkA†, ~2!

whereA denotes element of the SL(2,C) group correspond-
ing to the Lorentz transformationL(A) which converts the
four-vectork to k8 ~i.e., k8m5Ln

mkn) and k85k8msm . The
kernel of this homomorphism is isomorphic toZ2 @the center
of the SL(2,C)].

Now, let us focus on the case of massless particles.
explicit matrix representation~1! of the null ~light-cone!
four-vectork can be written as

k5k0S 11n3 n2

n1 12n3D , ~3!

where n65n16 in2, n5k/uku, k05uku and detk5kmkm

50. In this case we choose the standard four-vector ak̃
5(1,0,0,1). In the matrix representation~3! the following
matrix is associated withk̃:

k̃5S 2 0

0 0D . ~4!

Now, let us find the stability group ofk̃, i.e., A0PSL(2,C)
which leavesk̃ invariant. All suchA0 form a subgroup of the
SL(2,C) group, i.e.,

~stability group!5$A0PSL~2,C!: k̃5A0k̃A0
†%. ~5!
©2003 The American Physical Society07-1
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As is well known@10#, the stability group of the four-vecto
k̃ is isomorphic to theE(2) group of rigid motions of Eu-
clidean plane. We can easily find the most generalA0 by
solving the equationk̃5A0k̃A0

† . We get

A05S ei (c/2) z

0 e2 i (c/2)D , ~6!

wherez is an arbitrary complex number. Since the SL(2,C) is
the two-fold covering of the Lorentz group, we restricted t
values ofc to the interval̂ 0,2p). Our purpose is to find the
Wigner’s little group elementW(L,k) corresponding tok
and the Lorentz transformationL, namely,

W~L,k!5LLk
21LLk , ~7!

whereLkPL1
↑ is determined uniquely by the following con

ditions:

k5Lkk̃, Lk̃5I . ~8!

In order to find the corresponding elementS(L,k) in
SL(2,C) such thatW(L,k)5L„S(L,k)…, i.e.,

S~L,k!5ALk
21AAk , ~9!

whereL(Ak)5Lk , we have to first calculate the matrixAk .
We can do it by solving the matrix equation

k5Akk̃Ak
† . ~10!

After simple calculation we get

Ak5UnB~k0!, ~11!

where

Un5
1

A2~11n3!
S 11n3 2n2

n1 11n3D ~12!

represents rotationRn which converts the spatial vecto
(0,0,1) ton, while

B~k0!5S Ak0 0

0
1

Ak0
D ~13!

represents boost along thez axis which convertsk̃ to k0k̃.
Therefore,

Ak5
1

A2k0~11n3!
S k0~11n3! 2n2

k0n1 11n3D . ~14!

Note that according to Eq.~8! Ak̃5I . Now, an arbitrary Lor-
entz transformationL(A) is represented in SL(2,C) by the
corresponding complex unimodular matrix

A5S a b

g d D , ad2bg51. ~15!
04210
To calculateALk we simply use the formulas~2! and ~3! to
find k8 and then identifyk85Lk. We find

k805
1

2
k0a, ~16!

n835
2b

a
21, ~17!

n18 5
2c

a
, ~18!

n28 5n18 * , ~19!

where

a5~ uau21ugu2!~11n3!1~ ubu21udu2!~12n3!1~ab*

1gd* !n21~a* b1g* d!n1 , ~20!

b5uau2~11n3!1ubu2~12n3!1ab* n21a* bn1 ,
~21!

c5a* g~11n3!1b* d~12n3!1b* gn21a* dn1 ,
~22!

andn85k8/uk8u. Therefore we can find the explicit form o
S(L,k) by means of Eqs.~9! and~14!. We have to calculate
only the elementsS(L,k)11 andS(L,k)12, since the genera
little group element~6! depends only on the phase fact
ei (c/2) and complex numberz. A straightforward calculation
yields finally the following formulas:

ei (c(L,k)/2)5
@a~11n3!1bn1#b1@g~11n3!1dn1#c*

aAb~11n3!
~23!

z~L,k!5
@2an21b~11n3!#b1@2gn21d~11n3!#c*

k0aAb~11n3!
,

~24!

wherea, b, andc are given by Eqs.~20!–~22!.
The unitary irreducible representations of the Poinc´

group are induced from the unitary irreducible represen
tions of the little group of the four-momentumkm @i.e., the
E(2) group in the case of the massless particles# @11,10#.
Now, we have two classes of the unitary irreducible rep
sentations ofE(2): the faithful infinite dimensional repre-
sentations and the one-dimensional homomorphic repre
tations of E(2), isomorphic to its compact subgrou
SO(2),E(2). Because there is no evidence for existence
massless particles with a continuous intrinsic degrees of f
dom the physical choice is the last one@11#. Thus by means
of the induction procedure@10# the four-momentum eigen
states transform according to the formula

U~L!uk,l&5eilc(L,k)uLk,l&. ~25!

In the above formula,U(L) denotes unitary operator repre
sentingL in the unitary representation of the Poincare´ group
7-2
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while the helicityl fixes irreducible unitary representatio
of the Poincare´ group induced from SO(2), l takes integer
and half-integer values only@11,10#. We use invariant nor-
malization of the four-momentum eigenstatesuk,l&, i.e.,
^p,suk,l&52k0dsld(k2p). Thus, when analyzing the
transformation properties of physical states only the value
the phasec(L,k) is relevant@Eq. ~23!#. So it is very impor-
tant to stress thatthe value of the phasec depends only onL
and n and does not depend on the frequency k0:

c~L,k!5cS L,
k

uku D5c~L,n!. ~26!

Note also that momenta of massless particles which
parallel in one inertial frame are parallel for every inert
observer, i.e.,

k

uku
5

p

upu
⇒ k8

uk8u
5

p8

up8u
, ~27!

where k85Lk, p85Lp. Indeed, for massless particles,k
and p are parallel iff the corresponding four-momenta a
Lorentz orthogonal, i.e.,kmpm50. Sincekmpm is a Lorentz
invariant then this holds in all inertial frames. Equation~27!
can be also verified explicitly by using Eqs.~17!–~19!. The
above property holds good only in the massless case.

Now, using Eq.~23! we can immediately obtain the valu
of eic(L,k) in a number of special cases considered e
where.

Rotations.In the caseL5R, we haveR5L(U) where
UPSU(2),SL(2,C), thus we put

d5a* , g52b* , uau21ubu251 ~28!

and from Eq.~23!, we get the following simple formula:

eic(R,k)5
a~11n3!1bn1

a* ~11n3!1b* n2

. ~29!

For the given rotationR the explicit form ofa andb can be
expressed by, e.g., Euler angles~see, for example, Ref.@12#!.
Also note that from Eq.~24!, we get

z~R,k!50. ~30!

Now let us consider the special case of the rotationR(xn)
around the directionn. The matrix UR(xn)PSU(2) repre-
sentingR(xn) can be written in the form@13#

UR(xn)5e( i /2)xnjs j5cos
x

2
1 in js jsin

x

2
. ~31!

Thus,

UR(xn)5S cos
x

2
1 in3sin

x

2
in2sin

x

2

in1sin
x

2
cos

x

2
2 in3sin

x

2

D . ~32!
04210
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Thus inserting the corresponding values ofa and b to Eq.
~29!, we find in this case

eic[R(xn),n]5eix. ~33!

As the next example, we consider the rotationR(x ẑ) around
the z axis. In this case~see Ref.@13#!

UR(x ẑ)5S ei (x/2) 0

0 e2 i (x/2)D , ~34!

therefore from Eq.~29!, we get the same formula as prev
ously,

eic[R(x ẑ),n]5eix. ~35!

Boosts.Pure Lorentz boostL(v) in an arbitrary direction
e5v/uvu can be represented by the following SL(2,C) matrix
@10#:

A~v!5e(1/2)jejs j5S cosh
j

2
1e3sinh

j

2
e2sinh

j

2

e1sinh
j

2
cosh

j

2
2e3sinh

j

2

D ,

~36!

where the parameterj is connected with the velocity of the
boosted frame by the relation

tanhj52v ~37!

ande65e16 ie2 ~we use natural units with the light velocit
equal to 1!. Inserting the corresponding values ofa and b
into Eqs.~20!–~22!, we arrive at the relations of the form

a52~coshj1e•n sinhj!, ~38!

b5coshj1n31~e31e•n!sinhj1e3e•n~coshj21!,
~39!

c5n11@sinhj1e•n~coshj21!#e1 . ~40!

Now, the corresponding little group element can be obtain
from Eqs. ~23!–~24!. We consider here two special case
boostA(vn) along then direction and boostL(v ẑ) along the
z direction. In the first case, we havee5n and from Eqs.
~38!–~40! and Eqs.~23!–~24!, we find

eic(L(vn),k)51, z„L~vn!,k…50. ~41!

In the second case, we have

a5
1

d
5A4 12v

11v
, b5g50. ~42!

Inserting the above values into Eqs.~23! and ~24!, we get

c„L~v ẑ!,k…50, z„L~v ẑ!,k…5
n2

k0S 1

v
2n3D . ~43!
7-3



fo
ns

A
ti
o

av
th

e
.
iz
-
ve

to
ig
n-
di

en

-
n
e

d

d
he
rg
r

k-

ain

sity
e
of

e

ula
iza-
the

e
er
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III. TRANSFORMATION LAW FOR LINEARLY
POLARIZED LIGHT

Now, we apply the above results to discuss some trans
mation properties of the polarized states and reduced de
matrix for photons.

Let us consider first the classical electromagnetic field.
is well known the monochromatic plane electromagne
wave is in general polarized elliptically. In the special case
the linear polarization we can deal also with the plane w
which is not necessarily monochromatic. In this case
electromagnetic field tensor can be written as

Fmn~x!5Fmn f ~ct2n•x! ~44!

for the lineary polarized wave propagating in then direction,
where the tensorFmn is xm independent. It is evident that th
above formula is covariant under Lorentz transformations
means that Lorentz transformations preserve linear polar
tion of an arbitrary plane wave~not necessarily monochro
matic!. We show that it is also the case on the quantum le

As is well known ~see, e.g., Refs.@11–14#! the one-
photon representation space is spanned by the vec
$uk,1&,uk,21&% because the parity operator changes the s
of the helicity. Let us consider first the monochromatic li
early polarized plane wave. The photon state correspon
to such a wave is of the form@14#

uk,f&[u~k0,ukun!,f&5
1

A2
(

l521
lÞ0

1

eilfuk,l&, ~45!

wherek05uku and the momentum independent anglef de-
termines the direction of the polarization in the plane perp
dicular to the direction of the propagationn. The general
linearly polarized state corresponding to the wave~44! has
the form

ug,f,n&5
1

A2
(
l

eilfE
0

`

dukug~ uku!u~k0,ukun!,l&,

~46!

wheren is fixed. The state~46! is a tensor product of mo
mentum direction and polarization states in each Lore
frame. Let us note that states belonging to the proper Hilb
space~wave packets! cannot be exactly linearly polarize
states. However, linearly polarized states~46! can be ap-
proximated~as tempered distributions! with an arbitrary ac-
curacy by sequences of wave packets. It is interesting
point out a parallelism between classical and quantum
scription of ideal linearly polarized states. Namely, on t
classical level they have infinite total electromagnetic ene
while on the quantum level they lie out of the proper Hilbe
space of the wave packets, i.e., they are distributions.

Now, we show thatfor every inertial observer the linearly
polarized state~46! remains linearly polarized. Indeed, ta
ing into account Eqs.~23!–~26!, we find
04210
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U~L!ug,f,n&5
1

A2
(
l

eil„f1c(L,n)…

3E
0

`

dukug8~ uku!u~k0,ukun8!,l&

5ug8,f1c,n8&, ~47!

where

g8~ uku!5
2

a
gS 2uku

a D , ~48!

a is given by Eq.~20!, and by virtue of Eq.~27! the direction
n8 is fixed, too. Therefore, the state we received is ag
linearly polarized.

Now, we discuss the transformation of the reduced den
matrix for linearly polarized plane wave. In general for th
reduced density matrix describing the helicity properties
the state

u f &5(
l
E dm~k! f l~k!uk,l& ~49!

we obtain the following formula:

r̂sl5

E dm~k! f s~k! f l* ~k!

(
l
E dm~k!u f l~k!u2

, ~50!

where we have used the Lorentz invariant measure

dm~k!5u~k0!d~k2!d4k[
d3k

2uku
. ~51!

It should be noted that in general the stateu f & can be a
tempered distribution~it does not necessarily belong to th
Hilbert space but rather to the Gel’fand triple!, for example,
four-momentum eigenstates. In such a situation the form
~50! should be understood as a result of a proper regular
tion procedure. Applying the above considerations to
density matrix describing the stateug,f,n&, we get the fol-
lowing reduced density matrix:

rls~g,f,n!5 1
2 ei (l2s)f, ~52!

i.e.,

r~g,f,n!5
1

2 S 1 e2if

e22if 1 D , ~53!

which in fact represents a reduced pure state becausr2

5r. The above density matrix transforms properly und
Lorentz transformations, namely,
7-4
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r85S eic(L,n) 0

0 e2 ic(L,n)D r~g,f,n!S e2 ic(L,n) 0

0 eic(L,n)D
5

1

2 S 1 e2i (f1c)

e22i (f1c) 1 D 5r~g8,f1c,n8!. ~54!

We stress on the fact that the linearly polarized state adm
covariant reduced density matrix description in terms of
licity degrees of freedom is related to the property of t
Lorentz transformation and that it does not generate
tanglement between momentum direction and helicity.

Finally, let us note that the von Neumann entropy cor
sponding to the density matrix~53! is equal to zero. Evi-
dently it is Lorentz-invariant in view of Eq.~54!.

Our discussion can be easily recast in terms of polar
tion vectors defined according to Ref.@11#, for different ap-
proach see also Ref.@15#.
en
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IV. CONCLUSIONS

We have found in this paper the explicit form of th
Wigner’s little group element in the massless case for a
trary Lorentz transformation. Using this result we ha
shown that the light wave which is linearly polarized~but not
necessarily monochromatic! for one inertial observer remain
linearly polarized also for an arbitrary inertial observer. W
have also shown that the reduced density matrix describ
linearly polarized photon, obtained by tracing out kinema
cal degrees of freedom, transforms properly under Lore
group action. Moreover the corresponding von Neumann
tropy is a Lorentz scalar.
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