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Polarization operator contributions to the Lamb shift and hyperfine splitting
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We calculate radiative corrections to the Lamb shift of ord&(Z«)°m and radiative corrections to hyper-
fine splitting of ordera®(Za)Er generated by the diagrams with insertions of radiative photons and electron
polarization loops in the graphs with two external photons. We also obtain the radiative-recoil correction to
hyperfine splitting in muonium generated by the diagrams withrtipelarization loop.
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I. INTRODUCTION ity of light, h is the Planck constan®.. is the Rydberg
constanta,, is the muon anomalous magnetic moment, and
Nonrecoil corrections of orde®(Za)®m to the Lamb  Z is the nucleus charge in terms of the electron cha@e (
shift and corrections of ordex®(Za)Ef to hyperfine split- =1 for hydrogen and muonium
ting are generated by three-loop radiative insertions in the |et us consider radiative insertions in the skeleton two-
skeleton diagram in Fig. 1. Respective corrections of lowephoton diagram in Fig. 1. Account of these corrections effec-
orders ina generated by one- and two-loop radiative inser-ively leads to insertion of an additional factb(k) in the
tions are already well know(see, e.g., Ref1]). The crucial  gjvergent integrals above, and while this factor has at most a
observation, which greatly facilitates further calculations, isjsgarithmic asymptotic behavior at large momenta and does
that the scattering approximation is adequate for calculation gl the ultraviolet convergence of the integrals, in the
of all corrections of orden"(Za)°m and a"(Za)Eg (see, low-momentum region it behaves agk)~k? (again UIE) to

€.g., a detailed proof in Refi2]). One may easily understand logarithmic factory and improves the low-frequency behav-

the phys!cal reasons which lead to th"’f conclu.5|onl. ConS|_d%r of the integrand. However, the integral for the Lamb shift
the matrix elements of the skeleton diagram in Fig. 1 with

the on shell external electron lines caloulated between this sometimes still divergent after inclusion of the radiative
) o Eorrections because the two-photon-exchange diagram, even
free-electron spinors, and multiplied by the square of th

Schiainger-Coulomb wave function at the origin. Thev are ith radiative corrections, contains a contribution of the pre-
iing . . . gin. y vious order inZa. This spurious contribution should be re-
described by the infrared divergent integral

moved by subtracting the leading low-momentum term from

5 3 L(k)/k*. The result of such subtraction is a convergent inte-
16(Za)” [ m, » dk L wh he low i . f ; d
- = m| =3 (1)  9gral, where the low integration momentaf atomic order
mn® M o k* mZa) in the exchange loops are suppressed, and the effec-

. ] ] ) tive loop integration momenta are of ordar Then it is clear
in the case of the Lamb shift, and by the infrared divergentnat small virtuality of the external electron lines would lead

integral to an additional suppression of the matrix element under con-
sideration, and it is sufficient to consider the diagrams only

8Za fx ﬂ( 5 with on-mass-shell external momenta for calculation of the

nd o K2 @ contributions to the energy shifts. As an additional bonus of

this approach one does not need to worry about the ultravio-
in the case of hyperfine splitting. In these integralis the  let divergence of the one-loop radiative corrections. The sub-
dimensionless momentum of the exchanged photons me#action automatically eliminates any ultraviolet divergent
sured in the units of the electron mass. We define the Fermierms and the result is both ultraviolet and infrared finite.
energyEr as Below we consider contributions to the Lamb shift and

hyperfine splitting generated by radiative insertions in the

16_, ,m m, 3 skeleton diagram in Fig. 1. We also obtain radiative-recoll
EF:§Z « M(1+aﬂ) m chR., 3  correction to hyperfine splitting generated by thpolariza-
tion loop.

wherem s the electron mas$/ is the muon massn, is the

reduced massy is the fine structure constarmtjs the veloc- —i—g

*Email addresses: eides@pa.uky.edu, eides@thd.pnpi.spb.ru
TEmail address: shelyuto@vniim.ru FIG. 1. Skeleton two-photon diagram.
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FIG. 3. One- and two-loop polarizations.

FIG. 2. Three one-loop polarizations.

B. Diagrams with two-loop and one-loop electron vacuum

Il. CORRECTIONS OF ORDER a*(Za)°’m TO LAMB R
polarizations

SHIFT AND OF ORDER a?(Za)E¢ TO HYPERFINE

SPLITTING 1. Lamb shift
A. Diagrams with three one-loop electron vacuum The integral for the diagrams in Fig. 3 is obtained from
polarizations the skeleton integral in Eq1) by insertion of the one-loop

vacuum polarization 4/ )k?l 1., and the two-loop vacuum

1. Lamb shift polarization @/)%k?l,, (see, e.g., Ref§3,4])
Each polarization loop in the diagrams in Fig. 2 corre-
sponds to insertion of the vacuum polarization operatorI 2 (1 vdv 3—u? (1402 Li 1-v
(alm)k?l 1, in the Lamb shift skeleton integral in E¢l), 2273, 4+ K¥(1-v?) (3=v)(1+v%)|Lia| =777
where
1-v 3 1+v 1+v 1+v
1 p%(1-v?3 +2 L +2In N
Ile:f ) ( ). @ 2 Lis| 7575 zlrl_vlr‘ 5 Ir‘l_vlnv
0o 4+k31-v?)
11 X o v 1+
Inserting also the multiplicity factor 4, we obtain an analytic g3 )AL+ + |n1_v
expression for the contribution to the Lamb shift generated
by the diagrams in Fig. 2 in the form 3 —v?
+|=v(3-v?)In —2v(3—v?)Inv
o 64a¥(Za)d(m\® (e 2
SEM=————"| | m[ dkkiI3,. (5)
w*n® m 0 ¢ 3
+§v(5—302) , (11)

Calculating the integral numerically we obtain
where the dilogarithm Li(x) is defined as Li(z)=
©) — [§dtIn(1-t)/t.
Inserting in the skeleton integral in E€l) also the mul-
tiplicity factor 6, we obtain an analytic expression for the
or contribution to the Lamb shift generated by the diagrams
with the one- and two-loop polarization blocks in Fig. 3,
SEM=-0.00216 kHz 7

3(Za)®[m,\3
1 _ @ (Za)> My
SE(M=—0.0214581) - (m

mn

for the 1S level in hydrogen. SE@) = —

96a3(Za)5<mr 8
( 2aleq) (T

"3 mf dkliel 56 . (12
wn 0
2. Hyperfine splitting ) ) )
i . o . After numerical calculations we obtain
We obtain the expression for the radiative correction to

hyperfine splitting generated by the diagrams in Fig. 2 by a3(Za)® [ m,\3
inserting the polarization loops in the skeleton integral in Eq. SE(?)=—-0.3901527) ; (Er) (13
),
322%(Za) _ [ or
SER=—"—""—""F f dkiA 3. (8)
HEST a3 o te SE(®=-0.03921 kHz (1)
After numerical calculations we have for the 1S level in hydrogen.
o3(Za 2. Hyperfine splittin
s - 256834 g, © yPerine SRS - |
In the case of hyperfine splitting we obtain the expression
for the energy shift generated by the diagrams in Fig. 3 with
or the help of the skeleton integral in E@),
SE{25=0.00329 kHz (10 480°(Za) _
_ _ SE{fs= J Akl 3¢l pe (15
for the ground state in muonium. wn3
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FIG. 4. Three-loop polarizations.
After numerical calculations we have FIG. 5. One-loop electron factor and two one-loop polarizations.
@ o3(Za) 3) a3(Za)®(m\3
O0EHEs=3.55992) = Ee (16 oE”’= 1.015 885)W ™ m (19
or or
(3) =
5E§42,23=0.00456 KHz an 6E|*’=0.10210 kHz (20
) ) for the 1S level in hydrogen.
for the ground state in muonium.
2. Hyperfine splitting
C. Diagrams with three-loop electron vacuum polarization In the case of hyperfine splitting there is no problem of
1. Lamb shift infrared divergence for the radiative correction generated by

) } . the three-loop polarization insertions in Fig. 4. This correc-
For calculation of the correction generated by the dia+jon is given by the integral

grams in Fig. 4 we need the three-loop vacuum polarization

operator @/)3k?l 5. This operator in QED and QCD was 1603(Za) «

considered in a series of papdis-9). As a result, eight 5E(H325=4—3Epf dklse, (21)
leading terms in the low- and seven in the high-momentum ™n 0

mptotic expansions in th wers of the momentum were , . . . .
22?/(:”&?(10 :ngl";l/tiie?llys. Sc;[meepcc))f tehes 2otefﬁciecr)1tsewt;re preeflavhl_ch arises afte_r insertion of the doublgd three-loop polar-
sented in Refd.7,9] only in theMS scheme and only for the 'Zax?tgroﬁfr:? :r)ircgll ég?cﬁﬁligtnosnvilr:%gggirlln H).
case of QCD. We adjusted these results for the case of the
momentum renormalization scheme used in QED, and con- 23(Za)
structed an interpolation which approximates the three-loop 559252 1.64795)———E¢ (22
polarization operator for all Euclidean momenta. w?

The skeleton integral in E1) remains infrared divergent
even after insertion of the three-loop vacuum polarizatiorPr
since 13,(0)#0. This linear infrared divergence is effec-
tively cut off at the characteristic atomic scaleZa if we
restore finite virtualities of the external electron lines. As was . :
already mentioned in the Introduction, such infrared diver-Of the ground state in muonium.
gence lowers the power of the factdwy, and respective
would-be-divergent contribution turns out to be of order D. Diagrams with one-loop electron factor and two one-loop
a®(Za)*. This correction was calculated in R¢fL0], and electron vacuum polarizations
we will not discuss it here. We carry out the subtraction of 1. Lamb shift
the leading low-frequency asymptote of the polarization op- . ] )
erator insertion, which corresponds to the subtraction of the 3A” ?nalytm expression for the correction of order
leading low-frequency asymptote in the integrand for thee (Z@)” generated by the gauge invariant set of diagrams in
contribution to the energy shift(K)=15e(K) — I 5(0), and Fig. 5 can be obtained from the skeleton integral in @gin

insert the subtracted expression in the formula for the Lamﬂ)he sar\]me way "’;‘; trl](e Otrlle(; corrfecuons ?bove.t But th'ls ?r?
shift in Eqg.(1). We also insert an additional factor 2 in order proach requires the knowledge of a new element, namely, the

to take into account possible insertions of the poIarizationg"il.Jg|e |n\|/|ar|ant_gle<_:tront_factchr,_f(m n S'Igt.' 6 WE'Cth d.G' th
operator in both photon lines. Then the contribution to theSCrbes all possibie insertions of the radiative photon in the
energy shift has the form electron line with two external photons. An explicit expres-

sion for the electron factor was obtained in different forms in
32a%(Za)® [ m,\3 = dk.
SER)=— ;)(—r) mf e (19
0

SEE)=0.00211 kHz (23)

Refs.[11-14 (we use the expression from R¢1L4])

73 1 m el k! k)
[3K{ = ¢ < + 2 ¢ [4 + ¢ [4
Calculating the integral numerically we obtain FIG. 6. One-loop electron factor.
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11 1K ) ,r;f’\x\_\ ,rJ”N\'\—\_\
LL(k):_Z+§|nk +§ kzlnk 1-loop 1-loop

iera ierark 1 KAk 2 + 4
2K Ak ke \/k2+ —k

FIG. 7. One-loop electron factor and two-loop polarization.

1 Jk*+4 \/k2+ +k| k
=3 —=- + =P (k)
@2 ek 8 3 4 1 Ink?
Lups(k)=————Ink*- 5
1 2 K2 k 41—k
+ ok (k)——[ ®(k)+Ink?—1 } (24)
+1 e Vk?+4 \/k2+ +k
=lIn
2 k \/k7+ —k
where
9x/k2+ \/k2 4+k
T2 \/k2 —k
(k) kfl dz I1+k22(1—z) -
= n . T
0 1—k2z2 k?z 4 e +k ! d(k)— 4<I>(k)
k3\/sz \/sz k Tk
Inserting in the skeleton integral in E) the electron factor (29

(el m)k?L (K), one-loop polarization operator squared, and ) ) )
the multiplicity factor 3 we obtain the radiative correction in Inserting the electron factore{ m)k“Lyes(k) together with
the form the one-loop polarization operator squared and the multiplic-

ity factor 3 in the skeleton integral in EQR), we obtain the
radiative correction in the form

480°%(Za)® 3
@4y _~— ‘=7 2
B ( ) fdkkzLL(k)' 29 SE) = M fdkK‘LHFs< WIZ. (30

It is easy to check explicitly that this integral is both ultra- Aftér numerical calculations we obtain

violet and infrared finite. The infrared finiteness nicely cor- o¥(Za)
relates with the physical understanding that for the diagrams 5Efj‘gs= —3.48722)
in Fig. 5 there is no correction of lower ordef(Za)* gen-

erated at the atomic scale.

Er (31)

After numerical calculations we obtain or
SE{s=—0.00447 kHz (32
3 5 3
Za)’[m ; ;
(4)_ a’( r for the ground state in muonium.
SE(M=0.07734) . ( m) m (27)

E. Diagrams with one-loop electron factor and two-loop
electron vacuum polarization

or
1. Lamb shift
An integral representation for the correction generated by
(4)—
OE["=0.007774) kHz (28) the diagrams in Fig. 7 is obtained from the skeleton integral
in Eq. (1) in the standard way
for the 1S level in hydrogen. 32a%(Za)"

SE®)=— ( ) fdkLL (K)l 5. (33)

, - s
2. Hyperfine splitting
We calculate the contribution to hyperfine splitting gener-Calculating this integral numerically we obtain

ated by the diagrams in Fig. 5 using an explicit expression 3 s 3
for the electron factor like in the case of the Lamb shift (5)_ a’(Za) m

g . . O0E[>'=2.19134) m, (34
above. This is a different electron factor which corresponds 3.\m
to a different spin projection. It was obtained in Rdf5] and
has the form or
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m %: T ¢ +2/<(D.7(+(/O~l(

FIG. 9. One-loop polarization insertions in the electron factor.

F. Diagrams with one-loop polarization insertions in the

FIG. 8. One-loop polarization insertions in the electron factor electron factor and in the external phaton

and external photon. 1. Lamb shift

The contribution to the Lamb shift generated by the dia-
grams in Fig. 8 is similar to the contribution in E@3), the
only difference is that now we consider a radiatively cor-
rected electron factor in Fig. 9 and a one-loop polarization
2. Hyperfine splitting insertion in the external photon. Insertions in the skeleton

. . ) i . integral in Eq.(1) lead to the expression
We obtain the radiative correction to hyperfine splitting

generated by the diagrams in Fig. 7 inserting the electron

SE(®=0.220244) kHz (35)

for the 1S level in hydrogen.

factor (a/ w)k?Lyes(K) together with the two-loop polariza- © 32a3(Za) @1
tion operator and the multiplicity factor 2 in the skeleton OBV =~ —— o f dkLm (k) e, (39
integral in Eq.(2), mn?
5) 16a3(Za) * where the parametric representation for the electron factor
OEHEs= 73 Er 0 dkkLyrs(K) 1 ze. 36 with one-loop polarization insertion in Fig. 9 has the form
[13]
After numerical calculations we obtain
od 2
(Za) 2.1) ve/3)
SEG) = —4.680 q1) Er (37 Lo (k)= dv— L (k,N), (40
7T U
or wherex?=4/(1—v?), andL,(k,\) is the one-loop electron
SEB) = —0.006 00 kHz (38  factor in Fig. 6 for a massive photon with mass An ex-
plicit representation for this electron factor was obtained in
for the ground state in muonium. Ref.[13],
|
L k= 1 fld L nl 1 k?x(1-x)| k®x(1—x) f (31| k2x(1—x)
LM =1 o AN 5600 Taoen | aede P TIIN Ta50n
2y(x=y)+1-x 1 kzy(l—y)) y(1-y)
dxf +—In| 1+ - K[ 2y(x—y)+1—x
-, | 2d00) i@ G0 | 2d0onaiioy oy KAy

31 (x k2 2 1 2
_(2x2+4x—4)}]—Zfodxfody(x—y)[m{x(yZ_§y)_§yz_§y}

+ ! ! 4 x2—2x+ = Lox (41)
—_— X X=—£X —_(,
a*(x,y,\) 13 3/ a2(xy.)
[
where ] a®(Za)®(m,\3
SE(?=0.037361) — —— —|m (43)
d(x,\) = X2+ \2(1—x), ™
or
2 = +k2y(1-y).

Calculating the integral in Eq39) numerically we obtain for the 1S level in hydrogen.
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M

2. Hyperfine splitting

We obtain the radiative correction to hyperfine splitting
generated by the diagrams in Fig. 8 inserting the radiatively
corrected electron factoif 7)k?L{%2(k) in Fig. 9 together

with the one-loop polarization operator and the multiplicity

factor 2 in the skeleton integral in EQ),

16a3(Za)

w*ns

SE(D) = e | deLlion.. @9

The parametric
L{ZY(k) has the forn{16]

1 v¥(1-v?/3)
L&zﬁlg(k)ZJOdvﬁLHFs(k'x), (46)

wherex?=4/(1—v?), andLyrg(k,\) is the one-loop elec-

tron factor in Fig. 6 for a massive photon with massAn

representation for the electron factor

FIG. 10. One-loop polarization insertions in the electron factor.

o (4 I NG ) 10 8 4o |3
1(X,y)— ; X+? y + ;'f‘;‘f’ X y
1 Z) 4 53
M A (53

4-x? .
ba(x,y) = ) (1=x)y~. (54)

After numerical calculations we obtain

explicit representation for this electron factor was obtained

in Ref.[16]
_1 1 X A(N;X,Y)
'-HFs(k')‘)_2fodxjody(k2y(1—y)+x2+>\2(1—x)
K?B(\;X,Y) )
ieya—yeeana—xp) 4
where
(N;X,y)=ag(X,y) al(x’y)xz+)\2(1_x)'
B(\: =b +b M+b
(N;X,Y)=bo(X,Y) 1(x,y)X2+)\2(1_x) 2(X,Y)
A2(1-X) )2
X2+ N2(1-x)] 49

and

) 1-x 2
ap(X,y)=(1—x) _X—ZT+ X

2
1- ;) y21 (50)

52
Xy 1 ( )

6 a®(Za)
SE{s=—0.53335)———E¢ (55)
T
or
SE(8s=—0.00068 kHz (56)

for the ground state in muonium.

G. Diagrams with two one-loop polarization insertions
in the electron factor

1. Lamb shift

The contribution to the Lamb shift generated by the dia-
grams in Fig. 10 is similar to the correction generated by the
one-loop polarization insertion in the electron factor calcu-
lated in Ref.[13]. The explicit expression for this correction

SE(N=—

16a3(Za)® ( m,) 3
——— | =/ m

= LEYo-LEY0)
- f dk

0 k2

a*n3

(57)

differs from the respective expression in R3] only due
to the difference between the electron factor with one one-
loop polarization insertion. (>Y(k) in Eq. (40) (see Fig. 9
and the electron factor with two one-loop polarization inser-
tions L®Y(k) in Fig. 11.

The photon line with two one-loop polarization insertions
has the form

foae 09

+2 T T 4+ 7 4

SN

FIG. 11. Two one-loop polarization insertions in the electron
factor.
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vi(l-v /3) va(1— 02/3) k2
K212(k?) = fdvlf — s
vi(1- v1/3) va(1— vg/a) 1 A2 A3
J'dvlj 2 1 2|52.12 2.2l (58)
wherex2=4/(1-v?) and\3=4/(1-v3).
Then the electron factor with two one-loop polarization insertions in Fig. 11 can be written as
vi(1- v/3)v(1 v/3))\L(k>\))\L(k)\)
L(31)(k)—j dvlf 1 1/9) U3 22 (AL 12 L(KA2)]
_fld v3(1-v?3) L v 1+v 16 202 N -
= 0 U—l_v2 v ? nl_v 3 L( , ) ( )
|
Calculating the integral for the energy shift in E&7) nu- o3(Za)
merically we obtain SE{[2=—0.3090%7) >—Er (64)
SE( = —0.0126103) L 2" m,)3 60
L =-0. 0 )W ) m (60) or
or SE{N=—0.00040 kHz (65)
SE{V=-0.00127 kHz (61)

for the 1S level in hydrogen.

2. Hyperfine splitting

The contribution to hyperfine splitting generated by the
diagrams in Fig. 10 is similar to the correction generated by
the one-loop polarization insertion in the electron factor

which was calculated in Ref16]. The explicit expression
for this correction has the form

8a3(Za) o
SEts=— 3 3 Er fo kLK), (62)
where[compare Eq(59)]
2 2 2
(l v /3) v 1+v
L(3.1) - -7 _
HFS(k)_J dv 2 3 Inl—v
16 2
— g 3 |LurskN). (63

After numerical calculations we obtain

m

FIG. 12. Two-loop polarization insertions in the electron factor.

for the ground state in muonium.

H. Diagrams with two-loop polarization insertion in the
electron factor

1. Lamb shift

The contribution to the Lamb shift generated by the dia-
grams in Fig. 12 is similar to the correction generated by the
one-loop polarization insertion in the electron factor which
was calculated in Ref13]. The explicit expression for this
correction

m|\* (= LE20-LEA0)
—| m| dk
m 0 k2

differs from the respective expression in R3] only due

to the difference between the electron factor with one-loop
polarization insertior (*Y(k) in Eq. (40) (see Fig. 9 and
the electron factor with the two-loop polarization insertion
L32(k) in Fig. 13,

L2
+2-49(\:‘- +4'&—r +2T&T

FIG. 13. Two-loop polarization insertions in the electron factor.

16a3(Za)®

SE®)=—

(66)

a*nd

O

¢ [4

2 +

042106-7
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L2k _2 1 pdv 3—u2 (1402 Li 1-v
L ()_301_02( U)( U) |2 1+U 2 7- +2 r
+2 Li 1o +3 1+v| Lt I1+v| FIG. 14. 7 lept larizati tribution to hyperfi litti
—INn ) —In . . n rization ntri on mn Itting.
o\ 155 2N, " ng—, Inv 7 lepton polarization contribution to hyperfine splitting
11 04 1+ andLyr<(k,\) is the electron factor with a massive photon
+ 1_6(3_”2)(“”2)+Z In"— from Eq. (47).
After numerical calculations we obtain
3 o 1-0v? )
+5v(8=v?)In——=20(3=v?)Iny ® a3(Za)
3
_ _ 2
+gu(5-3v >}LL(k,x>, 67 o
(8) —
wherex?=4/(1—v?), and the electron factor with a massive SEhrs= —0.00016 kHz (73

photonL (k,\) is written explicitly in Eq.(41).

A convenient expression for the subtracted massive ele
tron factorL (k,\)—L,(O,\) was obtained in Ref13], and
using those old formulas we immediately obtain IIil. 7 POLARIZATION CONTRIBUTION

The one-loopr-lepton polarization contribution to hyper-

m, |3 fine splitting generating the diagrams in Fig. 14 may be cal-
m m (68) culated exactly. Again the scattering approximation is suffi-
cient for calculation of this correctiofsee, e.g., Ref.17)).
First time the r-lepton contribution was estimated in Ref.
[18]. At that moment this correction was of purely academic
interest, and a crude step-function model for the one-loop
polarization spectral function was used in Hé#]. Due to a
spectacular experimental progress during the last two de-
cades, now we need a more accurate result forrthepton
contribution to hyperfine splitting.

The general expression for this correction has the form

The contribution to hyperfine splitting generated by the(compare, e.g., Ref2])
diagrams in Fig. 12 is similar to the correction generated by

Jor the ground state in muonium.

a(Za)®
m°n3

SE®=-0.245717)

or
SE®=-0.02470 kHz (69)

for the 1S level in hydrogen.

2. Hyperfine splitting

the one-loop polarization insertion in the electron factor SE a(Za)~ d*k 1 1
which was calculated in Ref16]. The explicit expression L P72 K2 K2+ 2m K
for this correction has the form TH ' MuKo
1 3k5—2k? | -
8a3(Za o + 1rs
5EI(-18IQS:#EF JO dkLE2 k), (70 k?—2m, ko [ k?—2mekq
where
where
1 3 (1-0v23)
li,= | do—F—F——- (75
sy . 2 (1 vdy ) o[ 1-v o Ami+k¥(1-0v?)
L,(ﬂ':s)(k)zgf 71 (3=vA)(1+v?)| Lig| — 75
°1-v is the one-loopr-lepton vacuum polarization, the dimension-
— 3 1+v 1+v 1+v less parameteru is given by the expressionu

+2Li| |+ g I In———Ing—nv =m./(2m,), and the Fermi energi, unlike the expres-
sion in Eq.(3), does not include the factortla,. The ex-
11 5 ) v 1+v pression in Eq(74) may be obtained from the integral for
+ E(3_U )(1+v9)+ 4 Inl_v the skeleton graphs with two exchanged photons by the sub-
3 ) stitution 1k®—21,,, where the additional factor 2 has the
2 - 2 combinatorial origin.
| zv3=v)In—7—=20(3=v%)Inv After the Wick rotation, transition to the four-dimensional

3 spherical coordinates, and to the dimensionless integration
42 (5 13,2 momenta measured in t_he units of the electron mass the ex-
gu(5-3v )] Lurs(kM), (72) pression in Eq(74) acquires the form

042106-8
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o 1 To extract the leading terms in the asymptotic expansion of
EFSJ dkk{—(\/l-i-,u,zkz—,u,k) this integral we introduce an auxiliary parameterwhich
0 mk satisfies the inequality&o<m_/m, . We use the parameter
1 1) 1 o to separate the momentum integration into two regions, a
— —(Mk 1+ p?k?— u?k?— —) — Z(J4+K2=k) region of small momenta €q=<o, and a region of large
2 2] Kk momentas<(q<. In the region of small momenta we use
the low-momentum expansion of the polarization operator

_a(Za) Mg

7T2 mp,

T

1/(k k2 1\] (2 v3(1-0v2/3) .
Z| = __ = - 7 and obtain
+5 4\/4+kz 7 2”[0 dv4m3
> +k3(1-v?) _ (e q 1
Me 561=8f dol (V1+a*~a)— 5| aVi+a*~g*~3
0
a(Za) mg 2 2
= e, —Eg. (76) 4 (m, 6 1\ (m,
2 N ~| — _ _
a2 m, ><15 . 5Ina+5In2+2 m) (81

This is a finite integral which can be calculated numerically

. . - ! In the region of large moment@=>1 we use the large mo-
with arbitrary accuracy. Numerically we obtain 9 g > 9

mentum expansion of the skeleton integrand and obtain

8e,=0.0191906. . .. 7
€r 77 5€>:focd (E)Jl 1)2(1—02/3)
One can also obtain an analytic expression for leading 1 . q 29/ Jo v A\ 2 ) )
terms in the expansion of thelepton polarization contribu- m. +a7%(1-0v%)
tion to the hyperfine splitting over the small parameters . )
m,/m,, me/m,, andm,/m,. Let us describe briefly calcu- 6 m 6 6 7\ (m,
i e - : ; ; ~|zIn——ZIno— ZIn2+ || =~ (82)
lation of the leading terms in this expansion. First, we write 5 m 5 5 50/\m.| °
M T

the dimensionless contribution to the energy splitting as a
sum of two terms For the intermediate momentg= o both approximations for
the integrand are valid simultaneously, so in the sum of the

* 1 1 low-momenta and high-momenta integrals aHdependent
— (] 21,2 _ _ / 21,2
561_8f0 dkk{,uk( Lt wk = pk) Z(Mk 1+ pk terms cancel and we obtaincaindependent result

1\ r1 1)2(1—1)2/3) - - 6 m, 51 m, 2
T R vi(A-v3) _ _[6 51 ~
M k 2) fo dv 4m2 y (78) 561 561 + 561 5 |an+ 55 m. 0.019185.
— +k3(1-v?) (83
m

e
The leading terms in the asymptotic expression for the

w [ 1 1/k 7-lepton contribution were also estimated in Rlf8]. We
562=8f dkk — (Va+ k*—k)+ Sl zVv4t k* disagree with both terms obtained in Rg18]. However,
0 - numerically for the real parameters of thdepton, the dif-
K2 1 1 v2(1-0v2/3) ference between the result in REE8] and in Eq.(83) is only
- —) } f r———————, (790  about 4<10 3,
4 2)1Jo  am?

Comparing the approximate result in E®3) with the
result of the numerical calculation of the integral in E£6),
we see that their difference is aboux30 . Due to overall

which correspond to the two first and two last terms in theSmallness of the correction under consideration, this means

integral e, is proportional tanZ/m?2, and is too small to be Phenomenological purposes. o _
of any interest for us here. The integi@d,, as we will see, Finally, the 7 polarization contribution to the hyperfine

is proportional to a much larger paramemei/mf, and gives splitting may be approximated by the expression
a leading contribution t@&e,. To calculate it we once again

— +k(1-v?)
e

rescale the integration momentuge= ek, SE = Se a(Za) Mg _ Elnm7+5—1 a(Za) mem,
T g2 om, "6 m, 28] 52 o2 T
” 2 a 2 2 1 (84)
0€,=8 o dg (V1+q —Q)—E qvl+qg —q -3
or numerically
1 v3(1-v?3)
XJ’ dv 2 . (80 SE,=0.0022 kHz (85)
’ (—’ +0(1-v?) _ |
m, for the ground state in muonium.
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IV. DISCUSSION OF RESULTS ordera®(Za)®m should be as large as 1 kHz for th& level

. . . in hydrogen. Corrections of this magnitude are phenomeno-
In this paper we calculated a series of nonrecoil correcy

tions of ordera®(Za)®m to the Lamb shift, and a series of logically relevant at the current level of experimental and

nonrecoil corrections of order®(Za)Eg to hyperfine split- theoretical accuracgsee, e.g., Ret.L]). We expect that the

. . e largest contribution will be generated by the gauge invariant
ting generated by the diagrams in Figs. 2, 3, 4, 5, 7, 8, 10 : L ; e X
and 12. Collecting all contributions to the Lamb shift in Eq. $et of diagrams with insertions of three radiative photons in

the electron line in the skeleton diagrams in Fig. 1. Work on
;?d Equ ((é:;)) v%g.é%)%inEq. (27), Eq.(34), Eq.(43), Eq. (60), calculation of the contribution of these diagrams as well as

of all other remaining corrections of ordef(Za«)°m to the
03(Za)® [m, |2 Lar_nl_:) shift, and c_orrections of orde’(Za)Eg to hyperfine _
5EL°‘=2.65186)T<—r) m (86) spllttmg_, is now in progress, and we hope to report on its
m results in the near future.
We also obtained above thelepton polarization contri-

or bution to the hyperfine splitting
tot_
O0E,”"=0.266536) kHz (87) o 6| mT+ 51| a(Za) mem#E .
for the 1S level in hydrogen. 7 \5 nmﬂ 25/ 2 mf Fo (90)

Collecting all contributions to hyperfine splitting in Eq.

(9), Eq.(16), Eq.(21), Eq.(31), Eq.(36), Eq.(55), EQ.(64),  which numerically gives
and Eq.(72) we obtain

S6E.=0.0022 kHz (9D
3
tot _ a’(Za)
0EFs=—1.3581) — Er (88 for the ground state in muonium.

The magnitude of this contribution is comparable to a
or number of other new corrections, obtained recently, for ex-
ample, to some nonlogarithmic three-loop radiative-recoil

SE[Sts=—0.00174 kHz (890  corrections[19], and to the contributions due the two-loop

hadron polarizations in Ref20].
for the ground state in muonium.

Both the corrections to the Lamb shift and hyperfine
could be easily estimated before the actual calculation is car-
ried out. They are suppressed by an additional faefer in This work was supported by the NSF, Grant No. PHY-
comparison with the corrections of the lower orderainin ~ 0138210. The work of V. A. Shelyuto was also supported in
the case of the Lamb shift this means that corrections opart by the RFBR, Grant No. 03-02-16843.

ACKNOWLEDGMENTS

[1] M.1. Eides, H. Grotch, and V.A. Shelyuto, Phys. R&842, 63 [12] M.1. Eides and H. Grotch, Phys. Lett. 801, 127 (1993.

(2001. [13] M.1. Eides and H. Grotch, Phys. Lett. B8 389(1993.

[2] M.1. Eides, S.G. Karshenboim, and V.A. Shelyuto, Ann. Phys.[14] M.l. Eides, H. Grotch, and V.A. Shelyuto, Phys. Rev5A,
(N.Y.) 205, 231(199). 2447 (1997).

[3] G. Kallen and A. Sabry, K. Dan. Vidensk. Selsk. Mat. Fys. [15] M.I. Eides, S.G. Karshenboim, and V.A. Shelyuto, Phys. Lett.
Medd. 29, 17 (1955. B 229 285(1989; Pis’'ma Zh. Kksp. Teor. Fiz50, 3 (1989

[4] J. SchwingerParticles, Sources and Field&\ddison-Wesley, [JETP Lett.50, 1 (1989]; Yad. Fiz.50, 1636(1989 [Sov. J.
Reading, MA, 1978 Vol. 2. Nucl. Phys.50, 1015(1989].

[5] P.A. Baikov and D.J. Broadhurst, e-print hep-ph/9504398.  [16] M.I. Eides, S.G. Karshenboim, and V.A. Shelyuto, Phys. Lett.

[6] P.A. Baikov, Phys. Lett. BB85 404 (1996. B 249 519(1990.

[7] K.G. Chetyrkin, J.H. Kan, and M. Steinhauser, Nucl. Phys. B [17] M.I. Eides, H. Grotch, and V.A. Shelyuto, Phys. Rev.6D,
482, 213(1996; 505, 40 (1997). 113003(2003.

[8] K.G. Chetyrkin, R. Harlander, J.H. Kun, and M. Steinhauser, [18] J.R. Sapirstein, E.A. Terray, and D.R. Yennie, Phys. Rev. Lett.
Nucl. Instrum. Methods Phys. Res.389 354 (1997). 51, 982(1983; Phys. Rev. D29, 2290(1984.

[9] K.G. Chetyrkin, R. Harlander, J.H. K, and M. Steinhauser, [19] M.l. Eides, H. Grotch, and V.A. Shelyuto, Phys. Rev.6B,
Nucl. Phys. B503 354 (1997. 013003(2002.

[10] M.I. Eides and H. Grotch, Phys. Rev.3%, 3360(1995. [20] S.I. Eidelman, S.G. Karshenboim, and V.A. Shelyuto, Can. J.

[11] G. Bhatt and H. Grotch, Ann. Phy&\.Y.) 178 1 (1987. Phys.80, 1297(2002.

042106-10



