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Polarization operator contributions to the Lamb shift and hyperfine splitting
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We calculate radiative corrections to the Lamb shift of ordera3(Za)5m and radiative corrections to hyper-
fine splitting of ordera3(Za)EF generated by the diagrams with insertions of radiative photons and electron
polarization loops in the graphs with two external photons. We also obtain the radiative-recoil correction to
hyperfine splitting in muonium generated by the diagrams with thet polarization loop.
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I. INTRODUCTION

Nonrecoil corrections of ordera3(Za)5m to the Lamb
shift and corrections of ordera3(Za)EF to hyperfine split-
ting are generated by three-loop radiative insertions in
skeleton diagram in Fig. 1. Respective corrections of low
orders ina generated by one- and two-loop radiative ins
tions are already well known~see, e.g., Ref.@1#!. The crucial
observation, which greatly facilitates further calculations,
that the scattering approximation is adequate for calcula
of all corrections of orderan(Za)5m and an(Za)EF ~see,
e.g., a detailed proof in Ref.@2#!. One may easily understan
the physical reasons which lead to this conclusion. Cons
the matrix elements of the skeleton diagram in Fig. 1 w
the on shell external electron lines calculated between
free-electron spinors, and multiplied by the square of
Schrödinger-Coulomb wave function at the origin. They a
described by the infrared divergent integral

2
16~Za!5

pn3 S mr

m D 3

mE
0

` dk

k4
d l0 ~1!

in the case of the Lamb shift, and by the infrared diverg
integral

8Za

pn3
EFE

0

` dk

k2
~2!

in the case of hyperfine splitting. In these integralsk is the
dimensionless momentum of the exchanged photons m
sured in the units of the electron mass. We define the Fe
energyEF as

EF5
16

3
Z4a2

m

M
~11am!S mr

m D 3

chR̀ , ~3!

wherem is the electron mass,M is the muon mass,mr is the
reduced mass,a is the fine structure constant,c is the veloc-
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ity of light, h is the Planck constant,R` is the Rydberg
constant,am is the muon anomalous magnetic moment, a
Z is the nucleus charge in terms of the electron chargeZ
51 for hydrogen and muonium!.

Let us consider radiative insertions in the skeleton tw
photon diagram in Fig. 1. Account of these corrections eff
tively leads to insertion of an additional factorL(k) in the
divergent integrals above, and while this factor has at mo
logarithmic asymptotic behavior at large momenta and d
not spoil the ultraviolet convergence of the integrals, in t
low-momentum region it behaves asL(k);k2 ~again up to
logarithmic factors!, and improves the low-frequency beha
ior of the integrand. However, the integral for the Lamb sh
is sometimes still divergent after inclusion of the radiati
corrections because the two-photon-exchange diagram,
with radiative corrections, contains a contribution of the p
vious order inZa. This spurious contribution should be re
moved by subtracting the leading low-momentum term fro
L(k)/k4. The result of such subtraction is a convergent in
gral, where the low integration momenta~of atomic order
mZa) in the exchange loops are suppressed, and the e
tive loop integration momenta are of orderm. Then it is clear
that small virtuality of the external electron lines would le
to an additional suppression of the matrix element under c
sideration, and it is sufficient to consider the diagrams o
with on-mass-shell external momenta for calculation of
contributions to the energy shifts. As an additional bonus
this approach one does not need to worry about the ultra
let divergence of the one-loop radiative corrections. The s
traction automatically eliminates any ultraviolet diverge
terms and the result is both ultraviolet and infrared finite.

Below we consider contributions to the Lamb shift a
hyperfine splitting generated by radiative insertions in
skeleton diagram in Fig. 1. We also obtain radiative-rec
correction to hyperfine splitting generated by thet polariza-
tion loop.

FIG. 1. Skeleton two-photon diagram.
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II. CORRECTIONS OF ORDER a3
„Za…

5m TO LAMB
SHIFT AND OF ORDER a3

„Za…EF TO HYPERFINE
SPLITTING

A. Diagrams with three one-loop electron vacuum
polarizations

1. Lamb shift

Each polarization loop in the diagrams in Fig. 2 corr
sponds to insertion of the vacuum polarization opera
(a/p)k2I 1e in the Lamb shift skeleton integral in Eq.~1!,
where

I 1e5E
0

1

dv
v2~12v2/3!

41k2~12v2!
. ~4!

Inserting also the multiplicity factor 4, we obtain an analy
expression for the contribution to the Lamb shift genera
by the diagrams in Fig. 2 in the form

dEL
(1)52

64a3~Za!5

p4n3 S mr

m D 3

mE
0

`

dkk2I 1e
3 . ~5!

Calculating the integral numerically we obtain

dEL
(1)520.021 458~1!

a3~Za!5

p2n3 S mr

m D 3

m ~6!

or

dEL
(1)520.002 16 kHz ~7!

for the 1S level in hydrogen.

2. Hyperfine splitting

We obtain the expression for the radiative correction
hyperfine splitting generated by the diagrams in Fig. 2
inserting the polarization loops in the skeleton integral in E
~2!,

dEHFS
(1) 5

32a3~Za!

p4n3
EFE

0

`

dkk4I 1e
3 . ~8!

After numerical calculations we have

dEHFS
(1) 52.568 3~4!

a3~Za!

p2
EF ~9!

or

dEHFS
(1) 50.003 29 kHz ~10!

for the ground state in muonium.

FIG. 2. Three one-loop polarizations.
04210
-
r

d
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y
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B. Diagrams with two-loop and one-loop electron vacuum
polarizations

1. Lamb shift

The integral for the diagrams in Fig. 3 is obtained fro
the skeleton integral in Eq.~1! by insertion of the one-loop
vacuum polarization (a/p)k2I 1e , and the two-loop vacuum
polarization (a/p)2k2I 2e ~see, e.g., Refs.@3,4#!

I 2e5
2

3E0

1 vdv

41k2~12v2!
H ~32v2!~11v2!FLi2S 2

12v
11v D

12 Li2S 12v
11v D1

3

2
ln

11v
12v

ln
11v

2
2 ln

11v
12v

ln vG
1F11

16
~32v2!~11v2!1

v4

4 G ln11v
12v

1F3

2
v~32v2!ln

12v2

4
22v~32v2!ln vG

1
3

8
v~523v2!J , ~11!

where the dilogarithm Li2(x) is defined as Li2(z)5
2*0

zdt ln(12t)/t.
Inserting in the skeleton integral in Eq.~1! also the mul-

tiplicity factor 6, we obtain an analytic expression for th
contribution to the Lamb shift generated by the diagra
with the one- and two-loop polarization blocks in Fig. 3,

dEL
(2)52

96a3~Za!5

p4n3 S mr

m D 3

mE
0

`

dkI1eI 2e . ~12!

After numerical calculations we obtain

dEL
(2)520.390 152~7!

a3~Za!5

p2n3 S mr

m D 3

m ~13!

or

dEL
(2)520.039 21 kHz ~14!

for the 1S level in hydrogen.

2. Hyperfine splitting

In the case of hyperfine splitting we obtain the express
for the energy shift generated by the diagrams in Fig. 3 w
the help of the skeleton integral in Eq.~2!,

dEHFS
(2) 5

48a3~Za!

p4n3
EFE

0

`

dkk2I 1eI 2e . ~15!

FIG. 3. One- and two-loop polarizations.
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After numerical calculations we have

dEHFS
(2) 53.559 9~2!

a3~Za!

p2
EF ~16!

or

dEHFS
(2) 50.004 56 kHz ~17!

for the ground state in muonium.

C. Diagrams with three-loop electron vacuum polarization

1. Lamb shift

For calculation of the correction generated by the d
grams in Fig. 4 we need the three-loop vacuum polariza
operator (a/p)3k2I 3e . This operator in QED and QCD wa
considered in a series of papers@5–9#. As a result, eight
leading terms in the low- and seven in the high-moment
asymptotic expansions in the powers of the momentum w
calculated analytically. Some of the coefficients were p
sented in Refs.@7,9# only in theMS̃ scheme and only for the
case of QCD. We adjusted these results for the case of
momentum renormalization scheme used in QED, and c
structed an interpolation which approximates the three-l
polarization operator for all Euclidean momenta.

The skeleton integral in Eq.~1! remains infrared divergen
even after insertion of the three-loop vacuum polarizat
since I 3e(0)Þ0. This linear infrared divergence is effec
tively cut off at the characteristic atomic scalemZa if we
restore finite virtualities of the external electron lines. As w
already mentioned in the Introduction, such infrared div
gence lowers the power of the factorZa, and respective
would-be-divergent contribution turns out to be of ord
a3(Za)4. This correction was calculated in Ref.@10#, and
we will not discuss it here. We carry out the subtraction
the leading low-frequency asymptote of the polarization
erator insertion, which corresponds to the subtraction of
leading low-frequency asymptote in the integrand for
contribution to the energy shiftĨ 3e(k)[I 3e(k)2I 3e(0), and
insert the subtracted expression in the formula for the La
shift in Eq.~1!. We also insert an additional factor 2 in ord
to take into account possible insertions of the polarizat
operator in both photon lines. Then the contribution to
energy shift has the form

dEL
(3)52

32a3~Za!5

p4n3 S mr

m D 3

mE
0

` dk

k2
Ĩ 3e . ~18!

Calculating the integral numerically we obtain

FIG. 4. Three-loop polarizations.
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dEL
(3)5 1.015 88~5!

a3~Za!5

p2n3 S mr

m D 3

m ~19!

or

dEL
(3)50.102 10 kHz ~20!

for the 1S level in hydrogen.

2. Hyperfine splitting

In the case of hyperfine splitting there is no problem
infrared divergence for the radiative correction generated
the three-loop polarization insertions in Fig. 4. This corre
tion is given by the integral

dEHFS
(3) 5

16a3~Za!

p4n3
EFE

0

`

dkI3e , ~21!

which arises after insertion of the doubled three-loop po
ization operator in the skeleton integral in Eq.~2!.

After numerical calculations we obtain

dEHFS
(3) 51.647 9~5!

a3~Za!

p2
EF ~22!

or

dEHFS
(3) 50.002 11 kHz ~23!

for the ground state in muonium.

D. Diagrams with one-loop electron factor and two one-loop
electron vacuum polarizations

1. Lamb shift

An analytic expression for the correction of ord
a3(Za)5 generated by the gauge invariant set of diagram
Fig. 5 can be obtained from the skeleton integral in Eq.~1! in
the same way as the other corrections above. But this
proach requires the knowledge of a new element, namely,
gauge invariant electron factorLL(k) in Fig. 6 which de-
scribes all possible insertions of the radiative photon in
electron line with two external photons. An explicit expre
sion for the electron factor was obtained in different forms
Refs.@11–14# ~we use the expression from Ref.@14#!

FIG. 5. One-loop electron factor and two one-loop polarizatio

FIG. 6. One-loop electron factor.
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LL~k!52
1

4
1

1

2
ln k21

1

8

k2

12k2
ln k2

2
Ak214

2k
ln

Ak2141k

Ak2142k
1

1

kAk214
ln

Ak2141k

Ak2142k

23F 1

k2
2

Ak214

2k3
ln

Ak2141k

Ak2142k
G1

k

8
F~k!

1
1

2k
F~k!2

2

k2 F1

k
F~k!1 ln k221G , ~24!

where

F~k!5kE
0

1 dz

12k2z2
ln

11k2z~12z!

k2z
. ~25!

Inserting in the skeleton integral in Eq.~1! the electron factor
(a/p)k2LL(k), one-loop polarization operator squared, a
the multiplicity factor 3 we obtain the radiative correction
the form

dEL
(4)52

48a3~Za!5

p4n3 S mr

m D 3

mE
0

`

dkk2LL~k!I 1e
2 . ~26!

It is easy to check explicitly that this integral is both ultr
violet and infrared finite. The infrared finiteness nicely co
relates with the physical understanding that for the diagra
in Fig. 5 there is no correction of lower ordera2(Za)4 gen-
erated at the atomic scale.

After numerical calculations we obtain

dEL
(4)50.0773~4!

a3~Za!5

p2n3 S mr

m D 3

m ~27!

or

dEL
(4)50.007 77~4! kHz ~28!

for the 1S level in hydrogen.

2. Hyperfine splitting

We calculate the contribution to hyperfine splitting gen
ated by the diagrams in Fig. 5 using an explicit express
for the electron factor like in the case of the Lamb sh
above. This is a different electron factor which correspon
to a different spin projection. It was obtained in Ref.@15# and
has the form
04210
-
s

-
n
t
s

LHFS~k!52
3

k2
2

4

k2
ln k22

1

4

ln k2

12k2

1
1

2 F ln k22
Ak214

k
ln

Ak2141k

Ak2142k
G

1
9

2

Ak214

k3
ln

Ak2141k

Ak2142k

2
4

k3Ak214
ln

Ak2141k

Ak2142k
1

1

4k
F~k!2

4

k3
F~k!.

~29!

Inserting the electron factor (a/p)k2LHFS(k) together with
the one-loop polarization operator squared and the multip
ity factor 3 in the skeleton integral in Eq.~2!, we obtain the
radiative correction in the form

dEHFS
(4) 5

24a3~Za!

p4n3
EFE

0

`

dkk4LHFS~k!I 1e
2 . ~30!

After numerical calculations we obtain

dEHFS
(4) 523.487 2~2!

a3~Za!

p2
EF ~31!

or

dEHFS
(4) 520.004 47 kHz ~32!

for the ground state in muonium.

E. Diagrams with one-loop electron factor and two-loop
electron vacuum polarization

1. Lamb shift

An integral representation for the correction generated
the diagrams in Fig. 7 is obtained from the skeleton integ
in Eq. ~1! in the standard way

dEL
(5)52

32a3~Za!5

p4n3 S mr

m D 3

mE
0

`

dkLL~k!I 2e . ~33!

Calculating this integral numerically we obtain

dEL
(5)52.191 3~4!

a3~Za!5

p2n3 S mr

m D 3

m, ~34!

or

FIG. 7. One-loop electron factor and two-loop polarization.
6-4
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POLARIZATION OPERATOR CONTRIBUTIONS TO THE LAMB . . . PHYSICAL REVIEW A68, 042106 ~2003!
dEL
(5)50.220 24~4! kHz ~35!

for the 1S level in hydrogen.

2. Hyperfine splitting

We obtain the radiative correction to hyperfine splitti
generated by the diagrams in Fig. 7 inserting the elect
factor (a/p)k2LHFS(k) together with the two-loop polariza
tion operator and the multiplicity factor 2 in the skeleto
integral in Eq.~2!,

dEHFS
(5) 5

16a3~Za!

p4n3
EFE

0

`

dkk2LHFS~k!I 2e . ~36!

After numerical calculations we obtain

dEHFS
(5) 524.680 9~1!

a3~Za!

p2
EF ~37!

or

dEHFS
(5) 520.006 00 kHz ~38!

for the ground state in muonium.

FIG. 8. One-loop polarization insertions in the electron fac
and external photon.
04210
n

F. Diagrams with one-loop polarization insertions in the
electron factor and in the external photon

1. Lamb shift

The contribution to the Lamb shift generated by the d
grams in Fig. 8 is similar to the contribution in Eq.~33!, the
only difference is that now we consider a radiatively co
rected electron factor in Fig. 9 and a one-loop polarizat
insertion in the external photon. Insertions in the skele
integral in Eq.~1! lead to the expression

dEL
(6)52

32a3~Za!5

p4n3 S mr

m D 3

mE
0

`

dkLL
(2,1)~k!I 1e , ~39!

where the parametric representation for the electron fa
with one-loop polarization insertion in Fig. 9 has the for
@13#

LL
(2,1)~k!5E

0

1

dv
v2~12v2/3!

12v2
LL~k,l!, ~40!

wherel254/(12v2), andLL(k,l) is the one-loop electron
factor in Fig. 6 for a massive photon with massl. An ex-
plicit representation for this electron factor was obtained
Ref. @13#,

r

FIG. 9. One-loop polarization insertions in the electron fact
LL~k,l!5
1

k4E0

1

dx~11x!F lnS 11
k2x~12x!

d~x,l! D2
k2x~12x!

d~x,l! G2
1

4k2E0

1

dx~3x21!lnS 11
k2x~12x!

d~x,l! D
2E

0

1

dxE
0

x

dyH 2y~x2y!112x

2d~x,l!
1

1

k2
lnS 11

k2y~12y!

d~x,l! D2
y~12y!

2d~x,l!a2~x,y,l!
$k2@2y~x2y!112x#

2~2x214x24!%J 2
3

4E0

1

dxE
0

x

dy~x2y!H k2

a4~x,y,l!
FxS y22

2

3
yD2

1

3
y22

2

3
yG

1
1

a4~x,y,l!
S 1

3
x31x222x1

4

3D2
12x

a2~x,y,l!
J , ~41!
where

d~x,l!5x21l2~12x!,

a2~x,y,l!5d~x,l!1k2y~12y!. ~42!

Calculating the integral in Eq.~39! numerically we obtain
dEL
(6)50.037 36~1!

a3~Za!5

p2n3 S mr

m D 3

m ~43!

or

dEL
(6)50.003 75 kHz ~44!

for the 1S level in hydrogen.
6-5
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2. Hyperfine splitting

We obtain the radiative correction to hyperfine splitti
generated by the diagrams in Fig. 8 inserting the radiativ
corrected electron factor (a/p)k2LHFS

(2,1)(k) in Fig. 9 together
with the one-loop polarization operator and the multiplic
factor 2 in the skeleton integral in Eq.~2!,

dEHFS
(6) 5

16a3~Za!

p4n3
EFE

0

`

dkk2LHFS
(2,1)~k!I 1e . ~45!

The parametric representation for the electron fac
LHFS

(2,1)(k) has the form@16#

LHFS
(2,1)~k!5E

0

1

dv
v2~12v2/3!

12v2
LHFS~k,l!, ~46!

wherel254/(12v2), andLHFS(k,l) is the one-loop elec-
tron factor in Fig. 6 for a massive photon with massl. An
explicit representation for this electron factor was obtain
in Ref. @16#

LHFS~k,l!5
1

2E0

1

dxE
0

x

dyS A~l;x,y!

k2y~12y!1x21l2~12x!

2
k2B~l;x,y!

@k2y~12y!1x21l2~12x!#2D , ~47!

where

A~l;x,y!5a0~x,y!1a1~x,y!
l2~12x!

x21l2~12x!
, ~48!

B~l;x,y!5b0~x,y!1b1~x,y!
l2~12x!

x21l2~12x!
1b2~x,y!

3S l2~12x!

x21l2~12x!
D 2

, ~49!

and

a0~x,y!5~12x!22x22
12x

x
1

2

x S 12
2

xD y2, ~50!

a1~x,y!5S 2

x
23~12x! D y1S 4

x2
2

2

x
22D y2, ~51!

b0~x,y!5xS 12
x

2D y1S 2
4

x
111xD y21S 6

x2
2

4

x
23D y3

1
2

x
y4, ~52!
04210
ly

r

d

b1~x,y!5S 4

x
2122x1

x2

2 D y21S 2
10

x2
1

8

x
1422xD y3

1S 12
2

xD y4, ~53!

b2~x,y!5
42x2

x2
~12x!y3. ~54!

After numerical calculations we obtain

dEHFS
(6) 520.533 3~5!

a3~Za!

p2
EF ~55!

or

dEHFS
(6) 520.000 68 kHz ~56!

for the ground state in muonium.

G. Diagrams with two one-loop polarization insertions
in the electron factor

1. Lamb shift

The contribution to the Lamb shift generated by the d
grams in Fig. 10 is similar to the correction generated by
one-loop polarization insertion in the electron factor calc
lated in Ref.@13#. The explicit expression for this correctio

dEL
(7)52

16a3~Za!5

p4n3 S mr

m D 3

mE
0

`

dk
LL

(3,1)~k!2LL
(3,1)~0!

k2

~57!

differs from the respective expression in Ref.@13# only due
to the difference between the electron factor with one o
loop polarization insertionLL

(2,1)(k) in Eq. ~40! ~see Fig. 9!
and the electron factor with two one-loop polarization ins
tions LL

(3,1)(k) in Fig. 11.
The photon line with two one-loop polarization insertio

has the form

FIG. 10. One-loop polarization insertions in the electron fact

FIG. 11. Two one-loop polarization insertions in the electr
factor.
6-6
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k2I 1
2~k2!5E

0

1

dv1E
0

1

dv2

v1
2~12v1

2/3!

12v1
2

v2
2~12v2

2/3!

12v2
2

k2

~l1
21k2!~l2

21k2!

5E
0

1

dv1E
0

1

dv2

v1
2~12v1

2/3!

12v1
2

v2
2~12v2

2/3!

12v2
2

1

l1
22l2

2 F l1
2

l1
21k2

2
l2

2

l2
21k2G , ~58!

wherel1
254/(12v1

2) andl2
254/(12v2

2).
Then the electron factor with two one-loop polarization insertions in Fig. 11 can be written as

LL
(3,1)~k!5E

0

1

dv1E
0

1

dv2

v1
2~12v1

2/3!

12v1
2

v2
2~12v2

2/3!

12v2
2

@l1
2LL~k,l1!2l2

2LL~k,l2!#

l1
22l2

2

5E
0

1

dv
v2~12v2/3!

12v2 FvS 12
v2

3 D ln
11v
12v

2
16

9
1

2v2

3 GLL~k,l!. ~59!
he
b

to
ia-
the
ch

op

n

or or.
Calculating the integral for the energy shift in Eq.~57! nu-
merically we obtain

dEL
(7)520.012 610~3!

a3~Za!5

p2n3 S mr

m D 3

m ~60!

or

dEL
(7)520.001 27 kHz ~61!

for the 1S level in hydrogen.

2. Hyperfine splitting

The contribution to hyperfine splitting generated by t
diagrams in Fig. 10 is similar to the correction generated
the one-loop polarization insertion in the electron fac
which was calculated in Ref.@16#. The explicit expression
for this correction has the form

dEHFS
(7) 5

8a3~Za!

p4n3
EFE

0

`

dkLHFS
(3,1)~k!, ~62!

where@compare Eq.~59!#

LHFS
(3,1)~k!5E

0

1

dv
v2~12v2/3!

12v2 FvS 12
v2

3 D ln
11v
12v

2
16

9
1

2v2

3 GLHFS~k,l!. ~63!

After numerical calculations we obtain

FIG. 12. Two-loop polarization insertions in the electron fact
04210
y
r

dEHFS
(7) 520.309 05~7!

a3~Za!

p2
EF ~64!

or

dEHFS
(7) 520.000 40 kHz ~65!

for the ground state in muonium.

H. Diagrams with two-loop polarization insertion in the
electron factor

1. Lamb shift

The contribution to the Lamb shift generated by the d
grams in Fig. 12 is similar to the correction generated by
one-loop polarization insertion in the electron factor whi
was calculated in Ref.@13#. The explicit expression for this
correction

dEL
(8)52

16a3~Za!5

p4n3 S mr

m D 3

mE
0

`

dk
LL

(3,2)~k!2LL
(3,2)~0!

k2
,

~66!

differs from the respective expression in Ref.@13# only due
to the difference between the electron factor with one-lo
polarization insertionLL

(2,1)(k) in Eq. ~40! ~see Fig. 9! and
the electron factor with the two-loop polarization insertio
LL

(3,2)(k) in Fig. 13,

. FIG. 13. Two-loop polarization insertions in the electron fact
6-7
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LL
(3,2)~k!5

2

3E0

1 vdv

12v2 H ~32v2!~11v2!FLi2S 2
12v
11v D

12 Li2S 12v
11v D1

3

2
ln

11v
12v

ln
11v

2
2 ln

11v
12v

lnvG
1F11

16
~32v2!~11v2!1

v4

4 G ln11v
12v

1F3

2
v~32v2!ln

12v2

4
22v~32v2!ln vG

1
3

8
v~523v2!J LL~k,l!, ~67!

wherel254/(12v2), and the electron factor with a massiv
photonLL(k,l) is written explicitly in Eq.~41!.

A convenient expression for the subtracted massive e
tron factorLL(k,l)2LL(0,l) was obtained in Ref.@13#, and
using those old formulas we immediately obtain

dEL
(8)520.245 71~7!

a3~Za!5

p2n3 S mr

m D 3

m ~68!

or

dEL
(8)520.024 70 kHz ~69!

for the 1S level in hydrogen.

2. Hyperfine splitting

The contribution to hyperfine splitting generated by t
diagrams in Fig. 12 is similar to the correction generated
the one-loop polarization insertion in the electron fac
which was calculated in Ref.@16#. The explicit expression
for this correction has the form

dEHFS
(8) 5

8a3~Za!

p4n3
EFE

0

`

dkLHFS
(3,2)~k!, ~70!

where

LHFS
(3,2)~k!5

2

3E0

1 vdv

12v2 H ~32v2!~11v2!FLi2S 2
12v
11v D

12Li2S 12v
11v D1

3

2
ln

11v
12v

ln
11v

2
2 ln

11v
12v

ln vG
1F11

16
~32v2!~11v2!1

v4

4 G ln11v
12v

1F3

2
v~32v2!ln

12v2

4
22v~32v2!ln vG

1
3

8
v~523v2!J LHFS~k,l!, ~71!
04210
c-

y
r

andLHFS(k,l) is the electron factor with a massive photo
from Eq. ~47!.

After numerical calculations we obtain

dEHFS
(8) 520.123 9~6!

a3~Za!

p2
EF ~72!

or

dEHFS
(8) 520.000 16 kHz ~73!

for the ground state in muonium.

III. t POLARIZATION CONTRIBUTION

The one-loopt-lepton polarization contribution to hyper
fine splitting generating the diagrams in Fig. 14 may be c
culated exactly. Again the scattering approximation is su
cient for calculation of this correction~see, e.g., Ref.@17#!.
First time thet-lepton contribution was estimated in Re
@18#. At that moment this correction was of purely academ
interest, and a crude step-function model for the one-lo
polarization spectral function was used in Ref.@18#. Due to a
spectacular experimental progress during the last two
cades, now we need a more accurate result for thet-lepton
contribution to hyperfine splitting.

The general expression for this correction has the fo
~compare, e.g., Ref.@2#!

dEt5
a~Za!

p2m
ẼFE d4k

ip2

1

k2 F 1

k212mmk0

1
1

k222mmk0
G 3k0

222k2

k222mek0

I 1t , ~74!

where

I 1t5E
0

1

dv
v2~12v2/3!

4mt
21k2~12v2!

~75!

is the one-loopt-lepton vacuum polarization, the dimensio
less parameter m is given by the expressionm

5me /(2mm), and the Fermi energyẼF , unlike the expres-
sion in Eq.~3!, does not include the factor 11am . The ex-
pression in Eq.~74! may be obtained from the integral fo
the skeleton graphs with two exchanged photons by the s
stitution 1/k2→2I 1t , where the additional factor 2 has th
combinatorial origin.

After the Wick rotation, transition to the four-dimension
spherical coordinates, and to the dimensionless integra
momenta measured in the units of the electron mass the
pression in Eq.~74! acquires the form

FIG. 14. t lepton polarization contribution to hyperfine splitting
6-8
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dEt5
a~Za!

p2

me

mm
EF8E

0

`

dkkF 1

mk
~A11m2k22mk!

2
1

2 S mkA11m2k22m2k22
1

2D2
1

k
~A41k22k!

1
1

2 S k

4
A41k22

k2

4
2

1

2D G E
0

1

dv
v2~12v2/3!

4mt
2

me
2

1k2~12v2!

[det

a~Za!

p2

me

mm
EF . ~76!

This is a finite integral which can be calculated numerica
with arbitrary accuracy. Numerically we obtain

det50.019 190 6. . . . ~77!

One can also obtain an analytic expression for lead
terms in the expansion of thet-lepton polarization contribu-
tion to the hyperfine splitting over the small paramet
mm /mt , me /mm , andme /mt . Let us describe briefly calcu
lation of the leading terms in this expansion. First, we wr
the dimensionless contribution to the energy splitting a
sum of two terms

de158E
0

`

dkkF 1

mk
~A11m2k22mk!2

1

2 S mkA11m2k2

2m2k22
1

2D G E
0

1

dv
v2~12v2/3!

4mt
2

me
2

1k2~12v2!

, ~78!

de258E
0

`

dkkF2
1

k
~A41k22k!1

1

2 S k

4
A41k2

2
k2

4
2

1

2D G E
0

1

dv
v2~12v2/3!

4mt
2

me
2

1k2~12v2!

, ~79!

which correspond to the two first and two last terms in
square brackets in the integrand in Eq.~76!, respectively. The
integralde2 is proportional tome

2/mt
2 , and is too small to be

of any interest for us here. The integralde1, as we will see,
is proportional to a much larger parametermm

2 /mt
2 , and gives

a leading contribution todet . To calculate it we once agai
rescale the integration momentumq5mk,

de158E
0

`

dqF ~A11q22q!2
q

2 S qA11q22q22
1

2D G
3E

0

1

dv
v2~12v2/3!

S mt

mm
D 2

1q2~12v2!

. ~80!
04210
g

s

a

e

To extract the leading terms in the asymptotic expansion
this integral we introduce an auxiliary parameters which
satisfies the inequality 1!s!mt /mm . We use the paramete
s to separate the momentum integration into two regions
region of small momenta 0<q<s, and a region of large
momentas<q,`. In the region of small momenta we us
the low-momentum expansion of the polarization opera
and obtain

de1
,58E

0

s

dqF ~A11q22q!2
q

2 S qA11q22q22
1

2D G
3

4

15S mm

mt
D 2

'S 6

5
ln s1

6

5
ln 21

1

2D S mm

mt
D 2

. ~81!

In the region of large momentaq@1 we use the large mo
mentum expansion of the skeleton integrand and obtain

de1
.5E

s

`

dqS 9

2qD E
0

1

dv
v2~12v2/3!

S mt

mm
D 2

1q2~12v2!

'S 6

5
ln

mt

mm
2

6

5
ln s2

6

5
ln 21

77

50D S mm

mt
D 2

. ~82!

For the intermediate momentaq.s both approximations for
the integrand are valid simultaneously, so in the sum of
low-momenta and high-momenta integrals alls-dependent
terms cancel and we obtain as-independent result

de15de1
,1de1

.5S 6

5
ln

mt

mm
1

51

25D S mm

mt
D 2

'0.019 185.

~83!

The leading terms in the asymptotic expression for
t-lepton contribution were also estimated in Ref.@18#. We
disagree with both terms obtained in Ref.@18#. However,
numerically for the real parameters of thet lepton, the dif-
ference between the result in Ref.@18# and in Eq.~83! is only
about 431023.

Comparing the approximate result in Eq.~83! with the
result of the numerical calculation of the integral in Eq.~76!,
we see that their difference is about 531026. Due to overall
smallness of the correction under consideration, this me
that the analytic expression in Eq.~83! is sufficient for all
phenomenological purposes.

Finally, the t polarization contribution to the hyperfin
splitting may be approximated by the expression

dEt5det

a~Za!

p2

me

mm
EF'S 6

5
ln

mt

mm
1

51

25Da~Za!

p2

memm

mt
2

EF ,

~84!

or numerically

dEt50.002 2 kHz ~85!

for the ground state in muonium.
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IV. DISCUSSION OF RESULTS

In this paper we calculated a series of nonrecoil corr
tions of ordera3(Za)5m to the Lamb shift, and a series o
nonrecoil corrections of ordera3(Za)EF to hyperfine split-
ting generated by the diagrams in Figs. 2, 3, 4, 5, 7, 8,
and 12. Collecting all contributions to the Lamb shift in E
~6!, Eq. ~13!, Eq. ~18!, Eq. ~27!, Eq. ~34!, Eq. ~43!, Eq. ~60!,
and Eq.~68! we obtain

dEL
tot52.6519~6!

a3~Za!5

p2n3 S mr

m D 3

m ~86!

or

dEL
tot50.266 53~6! kHz ~87!

for the 1S level in hydrogen.
Collecting all contributions to hyperfine splitting in Eq

~9!, Eq. ~16!, Eq. ~21!, Eq. ~31!, Eq. ~36!, Eq. ~55!, Eq. ~64!,
and Eq.~72! we obtain

dEHFS
tot 521.358~1!

a3~Za!

p2
EF ~88!

or

dEHFS
tot 520.001 74 kHz ~89!

for the ground state in muonium.
Both the corrections to the Lamb shift and hyperfi

could be easily estimated before the actual calculation is
ried out. They are suppressed by an additional factora/p in
comparison with the corrections of the lower order ina. In
the case of the Lamb shift this means that corrections
ys

s.

B

,

,

04210
-

0,

r-

f

ordera3(Za)5m should be as large as 1 kHz for the 1S level
in hydrogen. Corrections of this magnitude are phenome
logically relevant at the current level of experimental a
theoretical accuracy~see, e.g., Ref.@1#!. We expect that the
largest contribution will be generated by the gauge invari
set of diagrams with insertions of three radiative photons
the electron line in the skeleton diagrams in Fig. 1. Work
calculation of the contribution of these diagrams as well
of all other remaining corrections of ordera3(Za)5m to the
Lamb shift, and corrections of ordera3(Za)EF to hyperfine
splitting, is now in progress, and we hope to report on
results in the near future.

We also obtained above thet lepton polarization contri-
bution to the hyperfine splitting

dEt5S 6

5
ln

mt

mm
1

51

25Da~Za!

p2

memm

mt
2

EF , ~90!

which numerically gives

dEt50.0022 kHz ~91!

for the ground state in muonium.
The magnitude of this contribution is comparable to

number of other new corrections, obtained recently, for
ample, to some nonlogarithmic three-loop radiative-rec
corrections@19#, and to the contributions due the two-loo
hadron polarizations in Ref.@20#.
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@JETP Lett.50, 1 ~1989!#; Yad. Fiz. 50, 1636 ~1989! @Sov. J.
Nucl. Phys.50, 1015~1989!#.

@16# M.I. Eides, S.G. Karshenboim, and V.A. Shelyuto, Phys. Le
B 249, 519 ~1990!.

@17# M.I. Eides, H. Grotch, and V.A. Shelyuto, Phys. Rev. D67,
113003~2003!.

@18# J.R. Sapirstein, E.A. Terray, and D.R. Yennie, Phys. Rev. L
51, 982 ~1983!; Phys. Rev. D29, 2290~1984!.

@19# M.I. Eides, H. Grotch, and V.A. Shelyuto, Phys. Rev. D65,
013003~2002!.

@20# S.I. Eidelman, S.G. Karshenboim, and V.A. Shelyuto, Can
Phys.80, 1297~2002!.
6-10


