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Spin-dependent observable effect for free particles using the arrival time distribution
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The mean arrival time of free particles is computed using the quantum-mechanical probability current. This
is uniquely determined in the nonrelativistic limit of Dirac equation, although the "Siitger probability
current has an inherent nonuniqueness. Since the Dirac probability current contains a spin-dependent term, an
arrival time distribution based on the probability current shows an observable spin-dependent effect, even for
free particles. This arises essentially from relativistic quantum dynamics, but persists even in the nonrelativistic
regime.
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[. INTRODUCTION operator for the arrival time in quantum mechanics which is
conjugate to the Hamiltonian, but then it has been shown that
The treatment of time in quantum mechanics is a mucksuch an operator does not have a basis of orthonormal eigen-
debated question. A testimony to this is the proliferation ofstate45]. However, Delgado and Mud&] have proposed an
recent paper§l] on the problems of tunneling time, decay interesting approach by constructing a self-adjoint operator
time, dwell time, and the arrival time. In this paper we arehaving dimensions of time which is relevant to the arrival
specifically concerned with the issue of arrival tifréd. time distribution, but then its conjugate Hamiltonian has an
In classical mechanics, a patrticle follows a definite trajec-unbounded spectrum. The implications of this approach have
tory; hence the time at which a particle reaches a given lobeen studied in detail by Delgad@].
cation is a well-defined concept. On the other hand, in stan- In this paper we adopt the definition of arrival time dis-
dard quantum mechanics, the meaning of arrival time igribution in terms of the quantum probability current density
rather problematic. Indeed, there exists an extensive litera}(x=X,t). Interpreting the equation of continuity in terms of
ture on the treatment of arrival time distribution in quantumthe flow of physical probability, the Born interpretation for

mechanicg3]. the squared modulus of the wave function and its time de-
Using the Born interpretation(x,t,) |2, |#(x,t)|?. .. rivative suggest that the mean arrival time of the particles
give the position probability distributions at different instantsreaching a detector located dtmay be written as
t1, to . ... Now, thequestion that immediately arises is that
if we fix the positions atk=X,, X, ..., can thefunctions o
[p(X1,0)|%, |¥(X5,1)|?. .. give the time probability distri- - J; [9(x=X,1)[tdt
butions at different positionX;, X, ... ? It iswell known T=— . 2
that if at any instantt=t;, [*2|y(x,t=t;)|?d®>x=1, the f |3(x=X,1)|dt
0

probability of finding the particle anywhere at that instant is

unity. But if we fix the position at, sax= X, andt is varied,

the value of the integraf | ¢s(x=Xy,t)|?dt#1. In this case However, we emphasize that the definition of the mean ar-
what may be pictured is that at a given point, sdy,the  rival time used in Eq(2) is not a uniquely derivable result
relevant probability changes with time and this change ofvithin standard quantum mechanics. It should also be noted

probability is governed by the following continuity equation that J(x,t) can be negative, hence one needs to take the
which suggests a “flow of probability”: modulus sign in order to use the above definition. However,

the Bohmian model of quantum mechanics in terms of the
d 2 causal trajectories of individual particles implies the above
EW(X*W +V-J(x,1)=0, (1) expression for the mean arrival time in a unique W&y
Although the quantum probability current interpreted as
where J(x,t) = (i%/2m) (¢ V * — 4* V) is the probability the streamlines of a conserved flux has been used for study-
current density. ing the tunneling times of Dirac electrof9], it is easily
Different approaches for analyzing the problem of arrivalseen that in nonrelativistic quantum mechanics the form of
time distribution have been suggested using the path intghe probability current density isot unique a point which
grals and positive-operator-valued measuds A straight-  has been explored by a number of autht8—12. If we
forward procedure would be to try to construct a self-adjointreplaceJ by J’' in Eq. (1) whereJ' =J+ 8J, with V-4&J
=0, J’ satisfies the same probability conservation as given
by Eq. (1). Then this new current density will lead to a
*Electronic address: mani@bose.res.in different distribution function for the arrival timg¢l12].
"Electronic address: archan@bose.res.in Hence the question arisé®w one can uniquely fix the ar-
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rival time distribution via the quantum probability current in time distribution is not contingent on any specific form of the
the regime of nonrelativistic quantum mechanics? relativistic wave equation, in the following detailed study we

In order to address the above question, we take a vitadpecifically use the Dirac equation for spinparticles.
clue from the interesting result that Hollap@i3] showed in
the context of analyzing the uniqueness of the Bohmiany. spIN-DEPENDENT EFFECT ON THE ARRIVAL TIME
model of quantum mechanics, viz., that the Dirac equation DISTRIBUTION USING DIRAC EQUATION
implies auniqueexpression for the probability current den- _ ) o
sity for spin4 particles in the nonrelativistic regime. In Sec. ~ The Dirac equation for &ree particleis
[I' we highlight the feature that the uniqueness of the prob-

. o i dy [hC d
ability current density is @enericconsequence adny rela- i — (._ai —+,3moC2) W, (3)
tivistic equation of quantum dynamics. In Sec. lll, the par- ot ' IX;
ticular case of the spin-dependent probability current densi%here
as derived from the Dirac equation is discussed. Subse-
quently, in Sec. IV, using the nonrelativistic limit of the 0 o )

! B (¥
arrival time distribution of free particles for an initial Gauss- op 0 ) A= ( o —lI ) Y= zpz)'
ian wave packet. Such a line of investigation has not been
explored sufficiently; to the best of our knowledge, only  y is a four-component column matrix ang are the Pauli
Leavens[14] has studied this issue specifically in terms of matrices. Choosing a representation whereand ¢, are

Dirac current density, we compute the effect of spin on the

the Bohmian causal model of spjnparticles. two-component spinors, one gets two coupled equations
Iy AP,  imgc?
II. UNIQUENESS OF THE PROBABILITY CURRENT W = —Co;j F - 7 1, (4)
DENSITY FOR ANY RELATIVISTIC WAVE EQUATION X
The probability current obtained from any consistent rela- AP Iy imoc?
tivistic quantum wave equation has to satisfy twvariant St - coi X t—a v 5)

form of the continuity equatiow,j*=0, where the zeroth

component ofj* is associated with the probability density.  combining Egs(4) and(5) one gets
Now, let us replacg* by j# which should again be con-
served, i.e.g,j*=0, wherej*=j*+a*, a* being an arbi-
trary four-vector. But then the zeroth componghwill have
to reproduce the same probability densjty and hencea®
=0. This current as seen from another Lorentz frame i-Or positive energies, one can taig~exp(-iEt/%), where
j*’=j*+a*". Then in this framg® =j°+a%, and again E is the total energy. In the nonrelativistic limi= moC?
from the previous argumer® =0. But we know that the and then we hav&+myc?=2mc?. Then using this with
only four-vector whose fourth component vanishes in allEd. (5 one can write

frames is the null vector. Hen@ =0.

9 9 EIA
2 nton=—cinta 2 g
at X! ox!

Thus, for any consistent relativistic quantum wave equa- _ ific Iy _ if !
. o . o . S ——————— =~ —. (7)
tion satisfying the covariant form of the continuity equation, (E+mc?) ' ox 2mgc ' gy
the relativistic current is uniquely fixed. Unique expressions
for the conserved currents have been explicitly derived byPutting this value ofj, in Eg. (6), one gets
Holland[15] for the Dirac equation, the Klein-Gordon equa-
tion, and also for the coupled Maxwell-Dirac equations. a—p+V-J=O ®

Now, an interesting point is that this uniqueness will be at
preserved in the nonrelativistic regime. Hence, giay
relativistic wave equation' one can calculate the unique forrr\thereJ is the Dirac current in the nonrelativistic limit that
of the current which can be used in the nonrelativistic re-can be decomposed into two terms, as was shown by Holland
gime. Then using thénormalized modulus of the probabil- [13,19, as
ity current density as the arrival time distribution, if one

S . - i%

calculates the; mean arrival tlme_, it can be used to emplr!ca}lly J=——[¢ o(o- V)b — (Vi o) o]

test any relativistic wave equation, such as the relativistic 2m

Kemmer equatior{16] for the massive spin-0 and spin-1 in 5

bosons. = — [ (V)= (VD ]+ =—V X (¢, o)
Of late, a unique form of the probability current density Zm[l//l & Vi)l 2m o

expression has been derived in the nonrelativistic limit of the 9)

relativistic Kemmer equation for spin-0 and spin-1 particles
[17]. Although the general scheme we outline for testing aandp= ;. ¥, is a two-component spinor which can be
relativistic quantum wave equation in terms of the arrivalwritten for a particle in a spin eigenstate as
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_ IS(x,t) (x—ut)?
1= d(xHx=|Rx.,Hexg — X (10 R(x,t)=(2mwo?) exg — oz (15)
g
Here (x,t) is the Schrdinger wave function ang is a
spin eigenstate. Putting this form @f in the expression for and
current in Eq.(9) one gets
3 [ At 1
1 1 S(x,t)=— —tan > | +mu-| x— S ut
J= —pVS+_(VpX9=Ji+J; (11) 2 2mo3 2
_ 272
with (Xx—ut)“A-t 16
8mojo?

s=(hl2)x'ox, p=R% x'x=1.

with u=#k/m, the initial group velocity taken along the

The first termJ; in Eq. (11) is independent of spin, while .
i i InEq. (1) is i p pin, whi axis, and

the second ternig contains the contribution of the spin of a

free particle to the unique conserved vector current in the

nonrelativistic limit. Now, since the mean arrival time given

by Eq. (2) can be computed by using the unique expression

for J in Eq. (11), one can thus obtain a spin-dependent con-

tribution to the expression for the mean time of arrival for The total current density can be calculated using (Ed). to

free particles. This could be experimentally measurable. Ope (we setm=1, =1)

the other hand, if one ignores the spin-dependent term one

would obtain the mean arrival time given by (x—ut)t) - yt . zt .
( u+t 40'30'2 ) X+ ( 4(7(2)0'2> yr ( 40(2,0'2) z

f|ai|tdt
P Y
20?2

T=— .
[1alar
0
where the contribution of spin is contained in the second
In the following section we will study the situations where term only.

h2t2 1/2

1+——
4m203

(17

o=0

J=p

~ (x—=ut).

(12 +p X+ Ty , (18

the difference between the magnitudesraind r; is signifi- We can now compute and 7, numerically by substituting
cant, thereby enhancing the feasibility of detecting the pregq. (18) in Egs.(2) and(12), respectively. It is instructive to
dicted spin-dependent effect. examine the behavior of the contribution of spin-dependent
term towards the mean arrival time. For this purpose, we
IV. THE COMPUTED EFFECTS ON THE ARRIVAL define a quantity
TIME DISTRIBUTION

We consider a freely evolving Gaussian wave packet in o fo |Jtdt
the two separate caseé @ndB) corresponding to an ini- Te=——. (19
tially symmetricand anasymmetricwave packets, respec- J |34 dt
tively. 0

1. Case A: Symmetric wave packet We first computer, for a range of the initial velocity in

Let us consider a Gaussian wave packet for a free $pin-units of m=1, and#=1. We find that the spin of a free
particle of massn centered at the poink=0, y=0, andz particle contributes towards altering its mean arrival time for
=0. We choose the spin to be directed alongzteis, i.e. a wide range of initial velocities. This feature holds gener-
(s=12): ally, except for very small magnitudes of velocity where the

spin-dependent contribution may be negligible depending on
1 X2 the location of the detector vis-a-vis the direction of the ini-
P(x,t=0)= —23Mexp(ik~x)ex;( - —2) . (13  tial group velocityu. This feature is shown in Fig. 1 where
(2map) 40g we plot the variation ofrg with u. The initial wave packet is
peaked at the origin witleo=0.01. The detector position is
chosen atx=1,y=1, z=1). We find that the difference of

The time evolved wave function can be written as

iIS(x,t) magnitude betweem and r; can be increased by choosing
Y= R(x,t)exr{ Pt (14 asymmetric detector positions as well as asymmetric spread
for the initial wave packet, an example of which we will now
where discuss.
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FIG. 1. The spin-dependent contribution to the mean arrival §(x v 7 t)=fikx— ——

time computed at the poid=1, y=1, z=1 is plotted against the
initial group velocity of the packet along theaxis (in units of 7
=1=m).

2. Case B: Asymmetric wave packet

We consider an initial free particle wave packet in three

dimensions which is centered at the pamnt —x,, y=0, z
=0:

1 1/4 (Xt x0)?
H 1
sy za=0-| ] exmkmxp[——mz
(y)? (2)?
Xex'{_ﬁ ex;{—z : (20)

where a,b,c are positive constant§Such a form for the
wave function was considered by Finkelstgl2] in the con-
text of arrival time distribution$.The particle is given an
initial velocity in the x direction represented by=7#k/m.
The time evolved wave function is given by

Y exd i (kx—Kk2t/2)]

aBy
y2
=

vixy.zh)=| —j

azbzcz)

(X+x;,—kt)?
Xexpg — —————|ex
2a?

Z2
Xexp — —|, 21
2y (21
wherea=(a%+it)¥2, g=(b%+it)¥? y=(c®+it)2
Writing the wave function as
iS(x,y,z,t
¢(x,y,z,t):R(x,y,z,t)ex;{(Ty) 22

one obtains
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a2pb2c2\ ¥ 1
R(x,y,z,t)= 3

aT (p2+q2)1/4
a2(x+x;—kt)?
Xexg - ———
2(a*+1?)
b2y2 CZZZ
Xexg ————|exg - ——
2(b*+1?) 2(c*+1?)
(23
and
hk2t ht g )+ﬁt(x+x1—kt)2
2 2" WP T
. hty? . htz? 24
2(b*+12)  2(c*+t?)
with
p=a’b?c®—a’t?>—b?t?>—c%t?,
q=a’b%t+a?c’t+b2c?t—t3. (25)

Considering again a spih-particle with spin directed
along thez axis (s= %2), the total current density defined in
Eqg. (11) is given by(in units of A=1=m)

t . zt .
J=p Y ]

( (x+x1—ut)t) -
u+ X (

+ z
(a*+t?) b4+t2)y (c*+1?)
b%y . a®(x+x;—ut).
+p|— X Y|, 26
Pl b+ ) (a%+ 2) G

where the second term represents the spin-dependent contri-
bution to the current.

We compute numerically the arrival timesand r; . Fig-

ure 2 shows the variation af and 7, with the initial group
velocitiesu of the wave packet. Here we choose the param-
eters ax;=0, a=0.001,b=0.4, c=0.01. Accordingly the
mean arrival time is computed at the positier1.0, y
=2.0,z=1.0. One sees that the difference in the magnitudes

of = and7; can be suitably enhanced by a judicious choice of
asymmetric initial spreads and detector positions.

V. CONCLUDING REMARKS

Let us now summarize the salient features of our scheme.
For measuring the spin of a particle, it is usually subjected to
an external field, as in a Stern-Gerlach apparatus. But the
scheme we suggest would enable to detect a spin-dependent
effect without using any external field. Such an observable
effect thus highlights the feature that the spin of a particle is
anintrinsic property and isiot contingent on the presence of
an external field. As demonstrated in this paper, the spin-
dependent term in the Dirac probability current densiby-

042105-4



SPIN-DEPENDENT OBSERVABLE EFFECT FOR FEE .. PHYSICAL REVIEW A 68, 042105 (2003

0865 . . . ing an interesting difference between the magnitudes of the
[ total spin of a particle and its other static properties such as
mass and charge. This is because the measurability of the
property of spin of a free particle arises from the relativistic
nature of the dynamical evolution of the wave function
where the relevant wave function is fundamentally four-
component(or two-component even in thenonrelativistic
limit.

Now, since the spin-dependent term which contributes
significantly to the arrival time distribution has been com-
puted in the nonrelativistic regime by starting from the rela-

0.86

0.855

0.85

0.845

0.84

0835 L L L tivistic Dirac equation, this provides a rather rare example of
0 5000 10000 13000 200 an empirically detectable manifestation of a relativistic dy-
u namical equation in theonrelativistic regime This effect

cannotbe deriveduniquelyfrom the Schrdinger dynamics.

A future line of investigation as an offshoot of this paper
could be to explore the possibilities of using the relativistic
quantum-mechanical wave equations of particles with spins
other than spin; (such as using the Kemmer equation

tributes significantlyto the computed mean arrival time for a [16,17] for spin-0 and spin-1 bosoh# order to compute the

range of suitably chosen parameters of the Gaussian wa@Pin-dependent terms in the probability current densities and

packet. Thus if the arrival time distribution can be measuredtheir effects on the arrival time distribution. Such a study

this predicted spin-dependent effect would be empiricallyS€€mMS worthwhile becaus_e the arrlvlal' time d|str|bgt|on may

verifiable. provide a means of checking the validity of the various sug-
One may also perceive the significance of such an eﬁe(ﬁ;ested_relativistic quantumTr_nechan_igal e_quations which have

as follows. Although the dynamical properties of free par-Otherwise eluded any empirical verification.

ticles such as position, momentum, and energy are measur-

abl_e, one cannot measure_thmtic or _innate particle prop- ACKNOWLEDGMENTS

erties such as charge without using any external field.

Nevertheless, the scheme we have discussed shows that theWe thank Peter Holland for stimulating suggestions and

magnitude of total spin can be measureithout subjecting  for his discussions with A.S.M. We are also grateful to Rick

the particle to an external field. Leavens for his helpful comments on the initial version of
Another implication of measuring the spin-dependent arthis paper. M.A. acknowledges the financial support from

rival times for free particles could be to view this as imply- CSIR, India.

FIG. 2. The mean arrival times (upper curve and 7; (lower
curve computed at the point=1, y=2, z=1 are plotted against
the initial group velocity of the packet along theaxis. anda
=0.001,b=0.4, c=0.01, x;=0 (in units ofA=1=m).
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