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Spin-dependent observable effect for free particles using the arrival time distribution

Md. Manirul Ali,1,* A. S. Majumdar,1,† Dipankar Home,2 and Shyamal Sengupta3

1S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700098, India
2Department of Physics, Bose Institute, Calcutta 700009, India

3Jadavpur University, Calcutta 700032, India
~Received 16 June 2003; published 9 October 2003!

The mean arrival time of free particles is computed using the quantum-mechanical probability current. This
is uniquely determined in the nonrelativistic limit of Dirac equation, although the Schro¨dinger probability
current has an inherent nonuniqueness. Since the Dirac probability current contains a spin-dependent term, an
arrival time distribution based on the probability current shows an observable spin-dependent effect, even for
free particles. This arises essentially from relativistic quantum dynamics, but persists even in the nonrelativistic
regime.
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I. INTRODUCTION

The treatment of time in quantum mechanics is a mu
debated question. A testimony to this is the proliferation
recent papers@1# on the problems of tunneling time, deca
time, dwell time, and the arrival time. In this paper we a
specifically concerned with the issue of arrival time@2#.

In classical mechanics, a particle follows a definite traj
tory; hence the time at which a particle reaches a given
cation is a well-defined concept. On the other hand, in s
dard quantum mechanics, the meaning of arrival time
rather problematic. Indeed, there exists an extensive lit
ture on the treatment of arrival time distribution in quantu
mechanics@3#.

Using the Born interpretation,uc(x,t1)u2, uc(x,t2)u2 . . .
give the position probability distributions at different instan
t1 , t2 . . . . Now, thequestion that immediately arises is th
if we fix the positions atx5X1 , X2 . . . , can thefunctions
uc(X1 ,t)u2, uc(X2 ,t)u2 . . . give the time probability distri-
butions at different positionsX1 , X2 . . . ? It is well known
that if at any instantt5t i , *2`

1`uc(x,t5t i)u2d3x51, the
probability of finding the particle anywhere at that instant
unity. But if we fix the position at, say,x5X1 andt is varied,
the value of the integral*0

`uc(x5X1,t)u2dtÞ1. In this case
what may be pictured is that at a given point, say,X1 the
relevant probability changes with time and this change
probability is governed by the following continuity equatio
which suggests a ‘‘flow of probability’’:

]

]t
uc~x,t !u21“•J~x,t !50, ~1!

where J(x,t)5( i\/2m)(c“c* 2c*“c) is the probability
current density.

Different approaches for analyzing the problem of arriv
time distribution have been suggested using the path i
grals and positive-operator-valued measures@4#. A straight-
forward procedure would be to try to construct a self-adjo
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operator for the arrival time in quantum mechanics which
conjugate to the Hamiltonian, but then it has been shown
such an operator does not have a basis of orthonormal ei
states@5#. However, Delgado and Muga@6# have proposed an
interesting approach by constructing a self-adjoint opera
having dimensions of time which is relevant to the arriv
time distribution, but then its conjugate Hamiltonian has
unbounded spectrum. The implications of this approach h
been studied in detail by Delgado@7#.

In this paper we adopt the definition of arrival time di
tribution in terms of the quantum probability current dens
J(x5X,t). Interpreting the equation of continuity in terms o
the flow of physical probability, the Born interpretation fo
the squared modulus of the wave function and its time
rivative suggest that the mean arrival time of the partic
reaching a detector located atX may be written as

t̄5

E
0

`

uJ~x5X,t !utdt

E
0

`

uJ~x5X,t !udt

. ~2!

However, we emphasize that the definition of the mean
rival time used in Eq.~2! is not a uniquely derivable resul
within standard quantum mechanics. It should also be no
that J(x,t) can be negative, hence one needs to take
modulus sign in order to use the above definition. Howev
the Bohmian model of quantum mechanics in terms of
causal trajectories of individual particles implies the abo
expression for the mean arrival time in a unique way@8#.

Although the quantum probability current interpreted
the streamlines of a conserved flux has been used for st
ing the tunneling times of Dirac electrons@9#, it is easily
seen that in nonrelativistic quantum mechanics the form
the probability current density isnot unique, a point which
has been explored by a number of authors@10–12#. If we
replaceJ by J8 in Eq. ~1! where J85J1dJ, with “•dJ
50, J8 satisfies the same probability conservation as giv
by Eq. ~1!. Then this new current densityJ8 will lead to a
different distribution function for the arrival time@12#.
Hence the question ariseshow one can uniquely fix the ar
©2003 The American Physical Society05-1
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rival time distribution via the quantum probability current
the regime of nonrelativistic quantum mechanics?

In order to address the above question, we take a v
clue from the interesting result that Holland@13# showed in
the context of analyzing the uniqueness of the Bohm
model of quantum mechanics, viz., that the Dirac equat
implies auniqueexpression for the probability current de
sity for spin-12 particles in the nonrelativistic regime. In Se
II we highlight the feature that the uniqueness of the pr
ability current density is agenericconsequence ofany rela-
tivistic equation of quantum dynamics. In Sec. III, the p
ticular case of the spin-dependent probability current den
as derived from the Dirac equation is discussed. Sub
quently, in Sec. IV, using the nonrelativistic limit of th
Dirac current density, we compute the effect of spin on
arrival time distribution of free particles for an initial Gaus
ian wave packet. Such a line of investigation has not b
explored sufficiently; to the best of our knowledge, on
Leavens@14# has studied this issue specifically in terms
the Bohmian causal model of spin-1

2 particles.

II. UNIQUENESS OF THE PROBABILITY CURRENT
DENSITY FOR ANY RELATIVISTIC WAVE EQUATION

The probability current obtained from any consistent re
tivistic quantum wave equation has to satisfy thecovariant
form of the continuity equation]m j m50, where the zeroth
component ofj m is associated with the probability densit
Now, let us replacej m by j̄ m which should again be con
served, i.e.,]m j̄ m50, where j̄ m5 j m1am, am being an arbi-
trary four-vector. But then the zeroth componentj̄ 0 will have
to reproduce the same probability densityj 0, and hencea0

50. This current as seen from another Lorentz frame
j m85 j m1am8. Then in this framej 085 j 01a08, and again
from the previous argumenta0850. But we know that the
only four-vector whose fourth component vanishes in
frames is the null vector. Henceam50.

Thus, for any consistent relativistic quantum wave eq
tion satisfying the covariant form of the continuity equatio
the relativistic current is uniquely fixed. Unique expressio
for the conserved currents have been explicitly derived
Holland @15# for the Dirac equation, the Klein-Gordon equ
tion, and also for the coupled Maxwell-Dirac equations.

Now, an interesting point is that this uniqueness will
preserved in the nonrelativistic regime. Hence, givenany
relativistic wave equation, one can calculate the unique fo
of the current which can be used in the nonrelativistic
gime. Then using the~normalized! modulus of the probabil-
ity current density as the arrival time distribution, if on
calculates the mean arrival time, it can be used to empiric
test any relativistic wave equation, such as the relativis
Kemmer equation@16# for the massive spin-0 and spin-
bosons.

Of late, a unique form of the probability current dens
expression has been derived in the nonrelativistic limit of
relativistic Kemmer equation for spin-0 and spin-1 partic
@17#. Although the general scheme we outline for testing
relativistic quantum wave equation in terms of the arriv
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time distribution is not contingent on any specific form of t
relativistic wave equation, in the following detailed study w
specifically use the Dirac equation for spin-1

2 particles.

III. SPIN-DEPENDENT EFFECT ON THE ARRIVAL TIME
DISTRIBUTION USING DIRAC EQUATION

The Dirac equation for afree particleis

i\
]c

]t
5S \c

i
a i

]

]xi
1bm0c2Dc, ~3!

where

a i5S 0 s i

s i 0 D , b5S I 0

0 2I D , c5S c1

c2
D .

c is a four-component column matrix ands i are the Pauli
matrices. Choosing a representation wherec1 and c2 are
two-component spinors, one gets two coupled equations

]c1

]t
52cs i

]c2

]xi
2

im0c2

\
c1 , ~4!

]c2

]t
52cs i

]c1

]xi
1

im0c2

\
c2 . ~5!

Combining Eqs.~4! and ~5! one gets

]

]t
~c1

†c1!52cc1
†s i

]c2

]xi
2c

]c2
†

]xi
s ic1 . ~6!

For positive energies, one can takec2}exp(2iEt/\), where
E is the total energy. In the nonrelativistic limit,E>m0c2

and then we haveE1m0c2>2m0c2. Then using this with
Eq. ~5! one can write

c252
i\c

~E1m0c2!
s i

]c1

]xi
52

i\

2m0c
s i

]c1

]xi
. ~7!

Putting this value ofc2 in Eq. ~6!, one gets

]r

]t
1“•J50, ~8!

whereJ is the Dirac current in the nonrelativistic limit tha
can be decomposed into two terms, as was shown by Hol
@13,15#, as

J52
i\

2m
@c1

†s~s•“ !c12~“c1
†
•s!sc1#

52
i\

2m
@c1

†~“c1!2~“c1
†!c1#1

\

2m
“3~c1

†sc1!

~9!

andr5c1
†c1 . c1 is a two-component spinor which can b

written for a particle in a spin eigenstate as
5-2
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c15c~x,t !x[FR~x,t !expS iS~x,t !

\ D Gx. ~10!

Herec(x,t) is the Schro¨dinger wave function andx is a
spin eigenstate. Putting this form ofc1 in the expression for
current in Eq.~9! one gets

J5
1

m
r“S1

1

m
~“r3s![Ji1Js ~11!

with

s5~\/2!x†sx, r5R2, x†x51.

The first termJi in Eq. ~11! is independent of spin, while
the second termJs contains the contribution of the spin of
free particle to the unique conserved vector current in
nonrelativistic limit. Now, since the mean arrival time give
by Eq. ~2! can be computed by using the unique express
for J in Eq. ~11!, one can thus obtain a spin-dependent c
tribution to the expression for the mean time of arrival f
free particles. This could be experimentally measurable.
the other hand, if one ignores the spin-dependent term
would obtain the mean arrival time given by

t̄ i5

E
0

`

uJi utdt

E
0

`

uJi udt

. ~12!

In the following section we will study the situations whe
the difference between the magnitudes oft̄ and t̄ i is signifi-
cant, thereby enhancing the feasibility of detecting the p
dicted spin-dependent effect.

IV. THE COMPUTED EFFECTS ON THE ARRIVAL
TIME DISTRIBUTION

We consider a freely evolving Gaussian wave packe
the two separate cases (A and B) corresponding to an ini-
tially symmetricand anasymmetricwave packets, respec
tively.

1. Case A: Symmetric wave packet

Let us consider a Gaussian wave packet for a free sp1
2

particle of massm centered at the pointx50, y50, andz
50. We choose the spin to be directed along thez axis, i.e.
(s5 1

2 ẑ):

c~x,t50!5
1

~2ps0
2!3/4

exp~ ik•x!expS 2
x2

4s0
2D . ~13!

The time evolved wave function can be written as

c~x,t !5R~x,t !expF iS~x,t !

\ G , ~14!

where
04210
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R~x,t !5~2ps2!23/4expF2
~x2ut !2

4s2 G ~15!

and

S~x,t !52
3\

2
tan21S \t

2ms0
2D 1mu•S x2

1

2
ut D

1
~x2ut !2\2t

8ms0
2s2

~16!

with u5\k/m, the initial group velocity taken along thex
axis, and

s5s0F11
\2t2

4m2s0
4G1/2

. ~17!

The total current density can be calculated using Eq.~11! to
be ~we setm51, \51)

J5rF S u1
~x2ut!t

4s0
2s2 D x̂1S yt

4s0
2s2D ŷ1S zt

4s0
2s2D ẑG

1rF2S y

2s2D x̂1
~x2ut!

2s2 ŷG , ~18!

where the contribution of spin is contained in the seco
term only.

We can now computet̄ andt̄i numerically by substituting
Eq. ~18! in Eqs.~2! and~12!, respectively. It is instructive to
examine the behavior of the contribution of spin-depend
term towards the mean arrival time. For this purpose,
define a quantity

t̄s5

E
0

`

uJsutdt

E
0

`

uJsudt

. ~19!

We first computet̄s for a range of the initial velocityu in
units of m51, and\51. We find that the spin of a free
particle contributes towards altering its mean arrival time
a wide range of initial velocities. This feature holds gen
ally, except for very small magnitudes of velocity where t
spin-dependent contribution may be negligible depending
the location of the detector vis-a-vis the direction of the i
tial group velocityu. This feature is shown in Fig. 1 wher
we plot the variation oft̄s with u. The initial wave packet is
peaked at the origin withs050.01. The detector position i
chosen at (x51, y51, z51). We find that the difference o
magnitude betweent̄ and t̄ i can be increased by choosin
asymmetric detector positions as well as asymmetric spr
for the initial wave packet, an example of which we will no
discuss.
5-3
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2. Case B: Asymmetric wave packet

We consider an initial free particle wave packet in thr
dimensions which is centered at the pointx52x1 , y50, z
50:

c~x,y,z,t50!5S 1

p3a2b2c2D 1/4

exp~ ikx!expF2
~x1x1!2

2a2 G
3expF2

~y!2

2b2 GexpF2
~z!2

2c2 G , ~20!

where a,b,c are positive constants.~Such a form for the
wave function was considered by Finkelstein@12# in the con-
text of arrival time distributions.! The particle is given an
initial velocity in the x direction represented byu5\k/m.
The time evolved wave function is given by

c~x,y,z,t !5S a2b2c2

p3 D 1/4
exp@ i ~kx2k2t/2!#

abg

3expF2
~x1x12kt!2

2a2 GexpF2
y2

2b2G
3expF2

z2

2g2G , ~21!

wherea5(a21 i t )1/2, b5(b21 i t )1/2, g5(c21 i t )1/2.
Writing the wave function as

c~x,y,z,t !5R~x,y,z,t !expF iS~x,y,z,t !

\ G ~22!

one obtains

FIG. 1. The spin-dependent contribution to the mean arr
time computed at the pointx51, y51, z51 is plotted against the
initial group velocity of the packet along thex axis ~in units of \
515m!.
04210
R~x,y,z,t !5S a2b2c2

p3 D 1/4
1

~p21q2!1/4

3expF2
a2~x1x12kt!2

2~a41t2!
G

3expF2
b2y2

2~b41t2!
GexpF2

c2z2

2~c41t2!
G
~23!

and

S~x,y,z,t !5\kx2
\k2t

2
2

\

2
tan21~q/p!1

\t~x1x12kt!2

2~a41t2!

1
\ty2

2~b41t2!
1

\tz2

2~c41t2!
~24!

with

p5a2b2c22a2t22b2t22c2t2,

q5a2b2t1a2c2t1b2c2t2t3. ~25!

Considering again a spin-1
2 particle with spin directed

along thez axis (s5 1
2 ẑ), the total current density defined i

Eq. ~11! is given by~in units of \515m)

J5rF S u1
~x1x12ut!t

~a41t2!
D x̂1

yt

~b41t2!
ŷ1

zt

~c41t2!
ẑG

1rF2
b2y

~b41t2!
x̂1

a2~x1x12ut!

~a41t2!
ŷG , ~26!

where the second term represents the spin-dependent co
bution to the current.

We compute numerically the arrival timest̄ and t̄ i . Fig-
ure 2 shows the variation oft̄ and t̄ i with the initial group
velocitiesu of the wave packet. Here we choose the para
eters asx150, a50.001,b50.4, c50.01. Accordingly the
mean arrival time is computed at the positionx51.0, y
52.0, z51.0. One sees that the difference in the magnitu
of t̄ andt̄ i can be suitably enhanced by a judicious choice
asymmetric initial spreads and detector positions.

V. CONCLUDING REMARKS

Let us now summarize the salient features of our sche
For measuring the spin of a particle, it is usually subjected
an external field, as in a Stern-Gerlach apparatus. But
scheme we suggest would enable to detect a spin-depen
effect without using any external field. Such an observab
effect thus highlights the feature that the spin of a particle
an intrinsic property and isnot contingent on the presence o
an external field. As demonstrated in this paper, the sp
dependent term in the Dirac probability current densitycon-

l

5-4
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tributes significantlyto the computed mean arrival time for
range of suitably chosen parameters of the Gaussian w
packet. Thus if the arrival time distribution can be measur
this predicted spin-dependent effect would be empirica
verifiable.

One may also perceive the significance of such an ef
as follows. Although the dynamical properties of free p
ticles such as position, momentum, and energy are mea
able, one cannot measure thestatic or innate particle prop-
erties such as charge without using any external fie
Nevertheless, the scheme we have discussed shows tha
magnitude of total spin can be measuredwithout subjecting
the particle to an external field.

Another implication of measuring the spin-dependent
rival times for free particles could be to view this as impl

@1# See, for example, relevent recent reviews inTime in Quantum
Mechanics, edited by J.G. Muga, R. Sala Mayato, and I.
Egusquiza~Springer-Verlag, Berlin, 2002!.

@2# For an in-depth review, see, J.G. Muga and C.R. Leave
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Unruh, Phys. Rev. A57, 4130 ~1998!; J.J. Halliwell and E.
Zafiris, Phys. Rev. D57, 3351~1998!; J. Kijowski, Phys. Rev.
A 59, 897~1999!; A.D. Baute, R. Sala Mayato, J.P. Palao, J.
Muga, and I.L. Egusquiza,ibid. 61, 022118~2000!; K.-I. Aoki,
A. Horikoshi, and E. Nakamura,ibid. 62, 022101~2000!.

@4# J. Leon, J. Julve, P. Pitanga, and F.J. de Urries, Phys. Re
61, 062101~2000!; I.L. Egusquiza and J.G. Muga,ibid. 62,
032103~2000!; J. Oppenheim, B. Reznik, and W. Unruh,
Phys. A35, 7641~2002!; D. Alonso, R. Sala Mayato, and C.R
Leavens, Phys. Rev. A66, 042108~2002!; J.A. Damborenea,
I.L. Egusquiza, G.C. Hegerfeldt, and J.G. Muga,ibid. 66,
052104~2002!.
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FIG. 2. The mean arrival timest̄ ~upper curve! and t̄ i ~lower
curve! computed at the pointx51, y52, z51 are plotted agains
the initial group velocity of the packet along thex axis. anda
50.001,b50.4, c50.01, x150 ~in units of \515m!.
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ing an interesting difference between the magnitudes of
total spin of a particle and its other static properties such
mass and charge. This is because the measurability of
property of spin of a free particle arises from the relativis
nature of the dynamical evolution of the wave functio
where the relevant wave function is fundamentally fou
component~or two-component!, even in thenonrelativistic
limit.

Now, since the spin-dependent term which contribu
significantly to the arrival time distribution has been com
puted in the nonrelativistic regime by starting from the re
tivistic Dirac equation, this provides a rather rare example
an empirically detectable manifestation of a relativistic d
namical equation in thenonrelativistic regime. This effect
cannotbe deriveduniquelyfrom the Schro¨dinger dynamics.

A future line of investigation as an offshoot of this pap
could be to explore the possibilities of using the relativis
quantum-mechanical wave equations of particles with sp
other than spin1

2 ~such as using the Kemmer equatio
@16,17# for spin-0 and spin-1 bosons! in order to compute the
spin-dependent terms in the probability current densities
their effects on the arrival time distribution. Such a stu
seems worthwhile because the arrival time distribution m
provide a means of checking the validity of the various su
gested relativistic quantum-mechanical equations which h
otherwise eluded any empirical verification.
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