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Greenberger-Horne-Zeilinger-like proof of Bell's theorem involving observers
who do not share a reference frame
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Vaidman described how a team of three players, each of them isolated in a remote booth, could use a
three-qubit Greenberger-Horne-Zeilinger state to always win a game which would be impossible to always win
without quantum resources. However, Vaidman’s method requires all three players to share a common refer-
ence frame; it does not work if the adversary is allowed to disorientate one player. Here we show how to
always win the game, even if the players do not share any reference frame. The introduced method uses a
12-qubit state which is invariant under any transformafgm® R,® R, (whereR,=U,®U U, ®U,, where
Uj is a unitary operation on a single qubénd requires only single-qubit measurements. A number of further
applications of this 12-qubit state are described.
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[. INTRODUCTION information” was coined by Peres and Scy@&jto designate
information that cannot be represented by a sequence of dis-

In 1991, after months of patient “work” and based on a crete symbols, such as a direction in space or a reference
study of 20 000 events, a gang of players reached an amazitiggme. In this paper we show that there is a method to always
conclusion: in eight roulette wheels of the Gran Casino ofvin Vaidman's game without it being necessary that the
Madrid, six numbers (1 and its two neighbors, 20 and 33players share unspeakable information.
and the opposite number in the roulette wheel, 4, and its two N S€c. Il we review the rules of Vaidman's game and the
neighbors, 19 and 21) occurred with an unexpectedly higlzprlgmal quantum method for always wmnmg.lln Sec. III_ we
frequency(assuming that each of the 37 numbers of the royPropose a quantum method for always winning, even if the
lette wheel appears with the same frequénayhile four players do not share any reference frame. This method re-

uires more qubits, and thus one might think that it must
nulmbers (11, %Zf 28, andb361)3 r?trely_oi%urred. Tritganﬁ Wloﬁequire collective measurements on several qubits, instead of
a large amount ot money by beling in these roulette whee Ssingle-qubit measurements, as in the original method; in Sec.

W/ we shall see that this is not the case. In Sec. V we show
derstood the “method” used by the gang but, after manygia, applications of the method.

attempts, found its own method to defeat the gang: the casino
started to regularly exchange the pieces of the roulette II. VAIDMAN'S GAME
wheels and switch the numbers’ positions. This altered the
roulette wheels’ original “defects” and the gang stopped
winning [1]. The moral is that any winning strategy usually ~ Vaidman proposed the following gani€]. Consider a
has an antidote. team of three players, who are allowed to agree on a com-
In 1999, Vaidmari2] converted Mermin’$3,4] version of  mon strategy and make any preparation before they are taken
the proof of Bell's theorem without inequalities discoveredto three remote and isolated booths. Then, each player is
by Greenberger, Horne, and ZeilinggeHZ) [5-7] into a  asked one of the two possible questions: “WhaZ®’ or
game involving a teana gang of three players, each of “What is X?” Each player must give an answer which is
them completely isolated in a booth, and an oppor@nt limited to one of only two possibilities: “0” or “1.” One of
casing. Under some assumptions, and using only classicahe rules of the game is that either all three players are asked
resources, the maximum probability for the team to wintheZ question or only one player is asked thguestion and
Vaidman’s game is 75%thus a casino gets profit by exploit- the other two are asked thequestion. The team wins if the
ing the remaining 25% Thanks to the fact that rules of the number of 0 answers is oddne or thregin the case of three
game do not forbid the players to share qubits prepared i@ questions, and is evefzero or twg in the case of on&
some entangled state, there is a method which allows them &nd twoX questions.
always win the game. However, there is a simple manipula- Assuming that the four possible combinations of ques-
tion that nullifies the quantum advantage. A hidden assumptions (i.e., Z1,Z,,Z3; Z1,X5,X3; X1,Z5,X5; and
tion of the method is that all three players share a commoiX;,X,,Z3) are asked with the same frequency, no classical
reference frame. If the casino disorientates one of the playeysrotocol allows the players to win the game in more than
so that all three of them do not share a reference frame, ther6% of the runs. For instance, a simple strategy that allows
the advantage of the method is lost. The term “unspeakabléhem to win in 75% of the runs is that each player always
answers 1 to th& question and 0 to th& question. How-
ever, quantum mechanics provides a method to always win
*Electronic address: adan@us.es the game.

A. Rules
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B. GHZ-assisted quantum always winning strategy spin components along two orthogonal directianand x.
The method for always winning is the following. Before Such directions are determined by the preparation of the

entering the isolated booths, the players prepare a large nu ilr:f: t?gﬁgez(gﬁc]—mzmﬁtehgﬂrg%ﬂrg? tﬁlé glgk’neers ;%;2‘32? ti?e
ber of three-qubit systems in the GHZ stj#e-7.9; the opponent finds a way to confuse one of them, then the

1 local measurements performed by the players will not be
IGHZ)= —(|Y0,Y0.Yo0) +1Y1,Y1,Y1))- (1) adequately correlated and thus the advantage provided by the
\/E GHZ state is lost.
Fortunately, there is a method which is still valid even if

Here |Yo,Y0.Yo)=|Y0)®|Yo)®|Yo), where |yo)=(1/\2)  the players do not share two directions. Now, before entering
X(|zo)+i|z1)) and |y)=(1/V2)(|1zo)—i]z1)), |z)=(3)  the booths, the players prepare a large number of 12-qubit
and|zl>=(‘1’). Then, for each three-qubit system, each of thesystems in the state
players takes one of the qubits with him. In case a player is
asked “What isZ?,” he performs a measurement on his qubit
of the observable represented by

Z=|zo)(zo| = |z1)(z4, (2 where|7o)=(1/v2)(| o) +i| 1)) and|71)=(1/v2)(| o)
—i| 1)), where| o) and|¢,) are the four-qubit states

1
|q’>:Eq770,7101770>+|771,771:771>)a (8

and gives the answer 0, if the outcome correspondggo
or the answer 1, if the outcome correspond$zto.

In case a player is asked “What %?,” he performs a | bo)= §(|ZO’21’20'21>_|Z°’Zl’zl’zo>_|21'ZO’Z°’21>
measurement of the observable represented by
+121,20,21,20)), 9
X={[Xo){Xo| = [X1){X4l, (©)

1
where |xo)=(1/\V2)(|zo)+|z1)) and |x))=(1/\2)(|zo) |90)= 2—J§(2lzo,20,21,21>—Izo,zl,20,21>—Izo,zl,zl,z())
—1|z;)), and gives the answer 0, if the outcome corresponds

to |Xo), or the answer 1, if the outcome correspond$xto. —21.20,20,21) — | 21,2021, 20) + 2|21, 21,20, 20)).
The protocol described above allows the team to always

win the game, because the state defined in(BEqcan also be (10

expressed in the following four forms: introduced by Kempeetal. [10] in the context of

decoherence-free fault-tolerant universal quantum computa-

_1 _ _
|GHZ)=3(|20,20,20) — |20,21,21) —|21,20,21) tion [11,12, and recently obtained experimentally using

—|21,21,20)) (4)  parametric down-converted polarization-entangled photons
[13].
=1(129,Xg,X1) + |20, X1, X0) — | 21, X0, Xo) Then, for each 12-qubit system, the first player takes the
first four qubits with him, the second player takes the next
+121,X1,X1)) (5 four qubits, and the third player takes the last four qubits. In
) case a player is asked “WhatZ®,” he performs on his four
=35(]X0,20,X1) — |X0,21,X0) + [X1,Z0,X0) qubits a measurement of the observable represented by
+[x1,21,%1)) (6) Z2=|po){dol | p1)(b1l- (11
=1(—|X0,X0,21) +|X0,X1,Z0) + | X1, X0, Z0) The ot_)servablé_hasthree possible outcomeécorresppnd—
ing to its three eigenvalues 1, 0, and 1). However, if the
+[X1,X1,21)). (7)  qubits have been prepared in the stak® given in Eq.(8),

) ) then only two outcomes can occ(those corresponding to
It can be inferred from Eq4) that if all players measurg,  he eigenvalues-1 and 1). Measuring the observalsieon
then either all of them will obtailzo, or one will thainzo a system prepared in the stat) is then equivalent to reli-
and the other two will obtaw_zl. Analogously, it can be ably discriminating between the stateso) and|#,). The
inferred from Eqs(5)—(7) that, if one player measur@and  pjayer gives the answer 0, if the outcome corresponds to
the other two measurX¥, then either all of them will obtain |¢o), and the answer 1, if the outcome correspondspio.
1, or one will obtain 1 and the other two will obtain 0. In case a player is asked “What ¥?,” he performs a
measurement of the observable represented by
11l. QUANTUM ALWAYS WINNING STRATEGY
WITHOUT UNSPEAKABLE INFORMATION X= o) (ol = [1)(¥l, (12)

The method described above has one drawback that théhere
adversary could use to keep the players from always win- 1

ning. If the qubits are spin states of sgirparticles, then the - + 13
observableZ and X can be identified, respectively, with the Vo) \/§(|¢0> |41)) 13
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1 A. Distinguishing between|¢,) and | ¢,)

[y = —=(lbo) —|o1)). 19 _ o
V2 The stateg¢,) and|¢,) are reliably distinguishable us-

ing single-qubit measurements because they can be ex-

Measuringt on a system prepared in the stffe) is equiva-  pressed as

lent to reliably discriminating betwee) and|4). The

player gives the answer O, if the outcome corresponds to

|io), or the answer 1, if the outcome.correspondwp). | o) = 5(— |Z0,21,X0,X1) +120,21 X1, X0) + 21,20, X0, X1)
The state|¥) can be expressed in the following four
forms: —121,29,%1,%0)), (19
|\I’>=%(|¢o,¢o:¢o>_|¢0:¢1:¢1>_|¢1'¢01¢1>
—| b1, 01, b0)) (19

|¢1> \/§ |201ZOIX01X0> |ZO,Zo,X0,Xl>_|ZO,20,X1,X0>

:%(|¢01¢01¢/1>+|¢01¢11¢0>_|¢11¢01¢0>

+120,20,X1,X1) ~ 20,21, X0, X0) +120,21 X1, X1)

+ 1,1, 91)) (16)
—121.,20,X0.X0) +121,20,X1,X1) + 21,21, X0, X0)
= 7|40, b0, 1) — |0, b1, o) + |1, bo, tho) 121,21, X0, X1) 21,21, X1, X0) + | 21,21, X1, X1)).-
+[ 1, b1, 91)) 17 (20)

=3(— + +
2(= Vo b0, b0 |01 00 |41 o. do) Therefore, if the local measurements Zre(i.e., the compo-
+gh1, 1, 61))- (18 nent along thez direction of the first qubjt Z, (i.e., the
component along the direction of the second qubjtX;
From Eq.(15), it can be inferred that if the three players (i.e., the component along thedirection of the third qubjt
perform measurements to discriminate betw¢eg) and and X, (i.e., the component along the direction of the
|#1), then they will always obtain an odd number of statesfourth qubib then, among the 16 possible outcomes, 4 occur
|$o). From Egs.(16) to (18), it can be inferred that if two  (with equal probability only if the qubits were in the state
players perform measurements to discriminate betwegh | #,), and the other 12 outcomes ocdwith equal probabil-
and|y), and the third performs measurements to discrimi-ity) only if the qubits were in the state,). Note that nowz
nate betweefg,) and| 1), then they will always obtain an andx are not fixed directions, but any two orthogonal direc-
odd number of statelsy;) and|¢). tions instead. This scheme to distinguish betwpgg) and
For our purposes, the fundamental property of the statés,) using only single-qubit measurements has recently been
|¥) is that it is invariant under any transformati®q®R,  experimentally implementefd 3].
®R; (whereR,=U,®U,®U,®U,, whereU; is a unitary
operation on a single qubitThis property derives from the
fact that| ) and|¢,) and any linear combination thereof B. Distinguishing between| ) and | ;)
(such ad ) and|y,)) are invariant under the tensor prod-
uct of four equal unitary operators};®U;®U;®U;. This The states ) and [y;) are not distinguishable using
means that the staféV') is invariant under local rotatlons fixedsingle-qubit measurements. However, any two orthogo-
and the local observables and X' are invariant undetJ; nal states are distinguishable by single-qubit measurements
®U;®U;@U; and thus under rotations of the local setupsaSSlSted by classical communicatiph5]. This means that
[14] Therefore expressiori45)—(18) remain unchanged af- there is asequencef single-qubit measurements which al-
ter local rotations. This implies that even if the adversarylows us to reliably distinguish betweéity) and|¢,). In this
disorientates one or more players, the outcomes of the loc&equence, what is measured on one qubit could depend on
measurements still possess the desired correlations, becaube result of a prior measurement on a different qubit. A
the involved local measurements are rotationally invariant. sequence of single-qubit measurements which allows us to
reliably distinguish betweehy,) and| ) follows from the

fact that these states can be expressed as
IV. MEASURING THE OBSERVABLES BY USING

SINGLE-QUBIT MEASUREMENTS
_ _ _ _ S |ho) = @|29,%0,80,Co) + Bl Zo, 0,81 ,d1) + @|Zg,X1, Do, €0)
One might think that measuring (i.e., distinguishing

between| ¢,) and|¢;)) and X (i.e., distinguishing between +Blz0.%1,01, 1)+ B|21,%0,bo. To)
|o) and |4)) could require collective measurements on +alze Xa.br.e)—B8lz: X .an.d

each player's four qubits. However, as in the original @|21.%0,b1.€1) = Bl21,%1,20,do)
method, only single-qubit measurements are needed. +a|zy,X1,a1,C1), (22)
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| 1) = Blzo.X0,80,C1) + @|Zg,Xg,81,do) + Bl Zg, X1 ,bg . €1)

— a|z9,%1,b1,fo) + @|z1,%0, b0, 1)
_ﬁ|zlixovblveo>+a|zl!X11a01dl>

— Blzy,%1,a1,Co),

where
V3++/6
o 2\/6 ,
3-\6
B:—y
2.6
and

lag)=plzo) +alz1), |a1)=alzo)—plz1),

|bo)=—plzo)+qlz1), [b1)=alzo)+plzy),
lcy)=—s|zo)—r|zy),

|d1)=u|zp)—t|zy),

|Co)=—r[20) +5|z1),
|do) =t[2o) +ulzy),
oy =r|z0) +s|z1),  |e))=5|z0)~r|z),
fo)=—tlzo)+ulzy), [f1)=ulzo)+t|zy),

where

r_w+ﬁm
T 120

_(3=\3)q
S8

hw—@m
- 12a

_(3+\3)p
u_—12,8 .

Note that, for instance, the stalb,) is not orthogonal to
|ag) or |a;). The comparison between expressi¢p$) and

(22

(23

(24)

(29
(26)
(27)
(28)
(29

(30

31)

(32

(33

(34

(35

(36)
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FIG. 1. Protocol for reliably distinguishinigio) and| ) using
a sequence of single-qubit measurements. Example: first, measure
on qubit 1 andX on qubit 2. If the results are, respectivety,and
X1, then measure the observable representedBby|bg)(bg|
—|by){(by| on qubit 3. If the result i%,, then measure the observ-
ableE=|eg){eo| —|e1){e,;] on qubit 4. If the result i®,, then the
state is| 7).

V. OTHER APPLICATIONS
A. No-hidden-variables theorems

Vaidman’'s aim was to reformulate the GHZ proof of
Bell's theorem into a game “which can convert laymen into
admirers of quantum theory” by showing its “miraculous
power” [2]. One obvious application of the method for al-
ways winning Vaidman’s game introduced in this paper is
thus to prove Bell's theorem without inequalities when the
local observers do not share any reference frame. According
to Egs.(15)—(18), one can predict with certainty the value of
either Z; or Aj (with j=1,2,3) from the results of spacelike
separated measurements on the other two four-qubit systems.
Therefore, for any, Z; and &} can be considered “elements
of reality,” as defined by Einstein, Podolsky, and Ro§&@l.
However, it is impossible to assign predefined values, either
0 or 1, to the six observables; and &; satisfying all pre-
dictions given by Eqs(15)—(18).

This proof is of interest, since it shows that a perfect
alignment between the source of entangled states and the
local detectors does not play a fundamental role in Bell's
theorem. For instance, in 1988 Yuval Ne’eman argued that
the answer to the puzzle posed by Bell's theorem was to be
found in the implicit assumption that the detectors were
aligned. Ne’eman apparently believed that the two detectors
were connected through the space-time affine connection of
general relativity[17]. A proof of Bell's theorem without
inequalities and without alignments involving two observers,
eight-qubit states, and only fixed single-qubit measurements
(i.e., without requiring a protocol like the one in Fig. Has
been introduced in Ref18]. The interest of the proof of
Bell's theorem without inequalities for the stdté), given

(22) leads us to a simple protocol for reliably distinguishingin Eq. (8), and the local measurements &fand X, defined
between ¢,) and| ;) using a sequence of single-qubit mea- respectively in Eqs(11) and (12), is that such a proof is

surements. This protocol is shown in Fig. 1.

valid for 100% of the events prepared in the stal®, in-
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stead of only for a smali8%) subset of the events in Ref. where
[18].

Other interesting application of the stati) and the local
observablesZ and X is the Kochen-SpeckéKS) theorem of
impossibility of noncontextual hidden variables in quantum
mechanics[19]. Mermin showed how the GHZ proof of
Bell's theorem could be converted into a proof of the KS —|21,21,21)), (39
theorem[20,21). Analogously, the proof of Bell's theorem
using| V), Z, and X could be converted into ésubspace- . o
depegn|de>r)tproof of the KS theorem, valid evenéfor m?aasure- can be reliably d|st|_ngw_shed frqhﬁ;HZ) by local measure-
ments along imperfectly defined directions. This is of inter-MeNts along ther direction. This method assumes that all
est, because it sheds some extra light on a recent deba?@yersshare a referenc_e fr?‘md“””g the p_rotocol. How-
about whether or not the KS theorem is still valid when ideal®¥&" such an assumption is not needed if each player re-

measurements are replaced by imperfect measurefihts  Places his qubit belonging to a trio prepared|@HZ) by
30, P yimp four qubits belonging to a dozen preparedin). The local

operations[i.e., the rotationR(n;) and the measurement

along thez direction] are replaced by a protocol, using only

single-qubit measurements, for reliably distinguishing be-

tween two four-particle states which are invariant under
Vaidman’s game can also be seen as a scenario in which UjeU;eU;.

the communication complexity of a certain task can be re-

duced if the players are allowed to share some prior en-

tangled state. In Vaidman’s game the task is to always win C. Quantum cryptography

the game. Without quantum resources, this task requires at oier application in which the use of GHZ states provides

least one of the players to send 1 bit to other player after thgqyantages over any classical protocol is the secret sharing
question £ or X) has been posed to him. However, if they scenario[34-37: Alice wishes to convey a cryptographic
initially share a GHZ state, the task does not require anyey o Bob and Charlie in such a way that they both can read
transm|s$|on of classical mformgtlon between the plgyers. it only if they cooperate. In addition, they wish to prevent
A similar example of reduction of the communication 5 eavesdropper from acquiring any information without
complexity needed for a task if the parties share a GHZ statgeing detected. It is assumed that the players share no previ-
was discovered by Cleve and Buhrn{@1], reformulated by 45 secret information nor any secure classical channel but,

Buhrmanet al.[32], and a_ttractively presented by Steane andyjihough it is not usually explicitly stated, it is assumed that
van Dam[33] as follows: a seg:ret |nteg3er numbegk+ng g three partieshare a reference framé@nce more, such a
+nc of apples, wheren;=0, 3, 1, or 3, is distributed requirement can be removed if we replace the GHZ state

among three players, Alice, Bob, and Charlie, of the samgiipy the statg ), and the measurements Bfand X with
team. Each of them is in an isolated booth. The team wins if,easurements of and X.

one of the players, Alice, can ascertain whether the total
number of distributed apples is even or odd. The only com-
munication allowed is that each of the other two players can
send 1 bit to Alice after seeing the number of apples each of To sum up, the interest in rotationally invariant staies,
them got. Assuming that each of the 32 possible variations ofhose invariant unded® - - - ® U, whereU is a unitary op-
apples occurs with the same probability and using only claseration goes beyond their use for decoherence-free fault-
sical communication, Alice cannot guess the correct answeplerant universal quantum computatid©—13, solving the
in more than 75% of the cases. However, the players caByzantine agreement problef88—-4Q, and transmitting
always win if each has a qubit of a trio prepared in the staté€lassical and quantum information between parties who do
|GHZ) given in Eq.(1), and each playgrapplies to his qubit not share a reference frani&3,41. Entangledrotationally
the rotation invariant stategi.e., those invariant unddd,® - - - @ U, ®
, - @UN® - - ®Uy), like the statd W) given in Eq.(8), can
R(nj)=|yo){(Yol + €M7y ){y1l, (37  be used to overcome certain assumptions in the proofs of
nonexistence of hidden variables, can be applied to reduce
wheren; is his number of apples, and then measures the spifp€ communication complexity of certain tasks, even if the
of his qubit along thez direction. Finally, Bob and Charlie parties do not share any reference frame, and to distribute
send their outcomes to Alice. The success of the method ig€Crét keys among parties who do not share unspeakable

guaranteed by the following property: information.

i
|GHZ")= §(|20120121>+|ZO!21120>+|ZlyzOvZO>

B. Reducing the communication complexity
with prior entanglement

D. Conclusion
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