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Hydrodynamic flow of expanding Bose-Einstein condensates
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We study expansion of quasi-one-dimensional~1D! Bose-Einstein condensate~BEC! after switching off the
confining harmonic potential. Exact solution of dynamical equations is obtained in the framework of the
hydrodynamic approximation and it is compared with the direct numerical simulation of the full problem,
showing excellent agreement at realistic values of physical parameters. We analyze the maximum of the current
density and estimate the velocity of expansion. The results of the 1D analysis provides also qualitative under-
standing of some properties of BEC expansion observed in experiments.

DOI: 10.1103/PhysRevA.68.035603 PACS number~s!: 03.75.Kk
n
as

C
on
d
f
tly

b

on
c

ab
ab
n-

of
-

e
t
a
e
n
a
de
he
nd
l
e

io
,

pe
ea
al

s

tia

ad-
of

ion
e
rmi
al-
nd
at
has

y.
ion
e
en-
ate
ace
of
tic
le
ve
ex-

m-

ive

-
the

of

ncy

ke
Many current experiments with Bose-Einstein conde
sates~BEC! include regime of a free expansion of the g
which initially was ~magnetically or optically! trapped by a
confining potential@1,2#. The respective phase of the BE
evolution is of practical interest since much informati
about coherent matter waves is experimentally obtaine
this stage~say, by absorption imaging!, and also because o
the importance of a free BEC flow in the context of recen
proposed new devices, for example, an atomic laser@3#. At
ultralow temperatures, a trapped BEC is well described
the three-dimensional~3D! Gross-Pitaevskii~GP! equation
which in the absence of a trap potential is known as a n
linear Schro¨dinger ~NLS! equation. In a number of specifi
cases it can be reduced to a quasi-one-dimensional one. M
specifically, this happens when one can neglect~due to some
reasons! interaction between transverse modes. In the
sence of a trap the problem thus reduces to an integr
model, 1D NLS equation, which is a very well-studied fu
damental model of the nonlinear physics.

The problem of theoretical description of evolution
BEC confined by harmonic potential with varying param
eters has been addressed in several papers@4#. In the experi-
ment@5# the realization of BEC expansion in quasi-1D wav
guide has been reported and again excellent agreemen
been found with theoretical predictions at long enough v
ues of time of evolution. These results have been confirm
by numerical solution of corresponding dynamical equatio
for the quasi-1D case@4,6#. In the present paper, we give
complete analytical treatment of this problem. We consi
only BECs with positive scattering lengths. In terms of t
NLS equation, the situation we are dealing with correspo
to the evolution of an initially localized pulse with the initia
profile corresponding to the ground state of a BEC confin
in a parabolic potential, i.e., to the defocusing NLS equat
with zero boundary conditions at infinity. As it is known
such a problem does not have soliton solutions, and inde
dent of the number of particles the condensate will spr
out and its density will tend to zero with time. The form
analytical description of the respective solution att→` was
obtained rather long ago@7#. However, for practical purpose
of analysis of experimental data it is desirable to have
description of the condensate evolution during the ini
1050-2947/2003/68~3!/035603~4!/$20.00 68 0356
-

at

y

-

ore

-
le

-
has
l-
d
s

r

s

d
n

n-
d

a
l

stages of time, too. It turns out that such evolution also
mits a rather complete analytical description in a number
cases, and, in particular, when the initial density distribut
is smooth enough, or in terms of BEC in the limit of a larg
number of atoms which leads to the so-called Thomas-Fe
~TF! approximation. Then the hydrodynamic approach
lows one to describe analytically evolution of the density a
velocity fields of the condensate. The evolution of BEC
initial stages appears to be quite rich. For example, as it
been recently shown in Ref.@8#, it may display wave break-
ing for some specific initial distributions of the BEC densit

In the present Brief Report we describe the free expans
of a BEC initially confined in a harmonic potential. On th
basis of the hydrodynamic approach we find the time dep
dence of the density and velocity distributions and calcul
such characteristics of the gas flow as the value and sp
and time coordinates of the maximum of current, velocity
the ‘‘edge’’ points of the condensate, as well as asympto
density and velocity distributions. Also, we show that simp
analytical estimates of the 1D problem allow one to gi
qualitative understanding of the phenomena observed in
periments with effectively 2D BEC.

Let us start with the 3D GP equation for the order para
eterc[c(r ,t),

i\~]c/]t ! 52~\2/2m!Dc1Vtrap~r !c1g0ucu2c, ~1!

where we use the standard notationg054p\2as /m, as be-
ing thes-wave scattering length, which is considered posit
and m being the atomic mass;Vtrap(r ) is a trap potential.
Considering the case of a two-dimensional drop let BEC@9#,
we take Vtrap5(m/2)v2x2, where v is the harmonic-
oscillator frequency, and in the transverse direction~i.e., in
the direction orthogonal to thex axis! the size of the conden
sate is supposed large enough to be considered infinite in
first approximation. In the longitudinal direction the size
the condensate is of the order of magnitudea5(\/mv)1/2. It
is convenient to introduce some typical reference freque
v0 so that the trap frequency is measured in units ofv0 ,
v5nv0 , n being the dimensionless trap frequency. To ma
the dynamical equation dimensionless, we introduce
©2003 The American Physical Society03-1



e

ith

B

n
-
ic

ta

p-
e

f

n

-

es

the
tion
he
-
of

e-

the
on-

f
ex

cs
ak-
of

i-

BRIEF REPORTS PHYSICAL REVIEW A68, 035603 ~2003!
c~r ,t !5~2A2pa0
2as!

21/2expS ik'•r'2 i
\k'

2

2m
t DC~x,t !,

~2!

wherer'5(y,z) anda0
25\/mv05a2n, and make a chang

of independent variablesx5221/4a0x8 and t521/2t8/v0.
This results in the canonical form of the NLS equation w
a parabolic potential,

i ~]C/]t ! 1 ~]2C/]x2! 22uCu2C5 1
2 n2x2C, ~3!

where the primes were suppressed. The dimensionless
wave functionC(x,t) is normalized according to

E
2`

`

uC~x,t !u2dx5
4p

21/4

Nasa0

S
, ~4!

whereN is the total number of particles andS is an effective
area of the transverse cross section of the condensate.

A stationary solutionC(x,t)5C(x)exp(2imt), corre-
sponding to the ground state of BEC, is given byC(x) sat-
isfying the equation

~d2C/dx2! 1mC22uCu2C5 1
2 n2x2C, ~5!

subject to the zero boundary condition atuxu→` and having
no other zeros. The eigenvaluem ~chemical potential! is de-
termined by normalization~4!. In dimensionless units the
longitudinal size of the condensate is of the order of mag
tude m1/2/n and if m@n, the considerable part of the con
densate can be described by the TF approximation in wh
the term with the second space derivative in Eq.~5! can be
neglected almost everywhere, so that

r0~x![uCTF~x!u25 1
2 ~m2 1

2 n2x2!, ~6!

with normalization

E
2A2m/n

A2m/n
uCTF~x!u2dx5

~2m!3/2

3n
. ~7!

The TF approximation~6! fails at the tails of the density
distribution where the density decays exponentially asuxu
→` instead of vanishing at finite distanceuxu5A2m/n
~called TF radius! according to Eq.~6!. Since only a small
part of the condensate’s mass is concentrated in these
~for example, form52 andn50.5, it is less than 1.5%), in
the limit m@n distribution ~6! is assumed to be a good a
proximation of the initial density distribution of BEC befor
switching off the external potential.

By equating Eqs.~4! and ~7! we determine the value o
the dimensionless chemical potentialm in terms of experi-
mentally measurable parameters,

m5@21/43pn~Nasa0/S!#2/3. ~8!

Then the conditionm@n yields the criterionNasa/S@1 of
applicability of the TF approximation in physical units. I
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what follows we deal mainly with two parametersn andm,
which completely define the initial distribution of the con
densate density.

After switching off the potential, the condensate evolv
according to Eq.~3! with n50. If evolution does not lead to
wave breaking of the pulse, then we still can neglect
dispersion effects and use the hydrodynamic approxima
for description of this evolution. As we shall see, this is t
case of initial distribution~6!, so that the hydrodynamic ap
proximation is valid even at asymptotically large values
time considered in Ref.@7#. Therefore we pass from the NLS
equation~3! to its hydrodynamic representation. We repr
sentC(x,t) in the form

C~x,t !5Ar~x,t !expS i Ex

v~x8,t !dx8 D , ~9!

so that substitution of Eq.~9! into Eq. ~3! with n50 yields

1
2 r t1~rv !x50, 1

2 v t1vvx1rx50, ~10!

which is subject to the initial conditions

r~x,0!5r0~x!, v~x,0!50, ~11!

wherer0(x) is taken to be the initial distribution~6!. In Eq.
~10! we have neglected the higher space derivatives of
densityr(x,t) that correspond to the quantum-pressure c
tribution.

A problem similar to Eqs.~10! and ~11! was studied in
nonlinear optics long ago@10# for the opposite sign of the
‘‘pressure’’rx in Eq. ~10! which corresponds to evolution o
an optical beam in a focusing Kerr medium. More compl
initial conditions were considered in Refs.@11,12#, and in the
recent paper@8# the same nonlinear geometrical opti
method has been applied to the investigation of wave bre
ing phenomena in BEC. Here we shall apply the method
Ref. @10# to the problem of BEC expansion.

We look for a solution of Eqs.~10! and ~11! in the form

r~x,t !5
m

2 f ~ t !
~12n2x2/2m f ~ t !2!, v~x,t !5xf~ t !,

~12!

where according to Eq.~11! the functionsf (t) andf(t) must
satisfy the initial conditions

f ~0!51, f~0!50. ~13!

Substitution of Eq.~12! into Eq. ~10! gives the relationship
betweenf (t) andf(t),

f~ t !5 f 8~ t !/2 f ~ t !, ~14!

as well as the differential equation forf (t),

f 2f 952n2. ~15!

This equation can be readily solved with the initial cond
tions f (0)51, f 8(0)52 f (0)f(0)50 @see Eqs.~13! and
~14!# to give
3-2
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4nt52Af ~ f 21!1 ln@2 f 2112Af ~ f 21!#. ~16!

This formula determines implicitlyf as a function oft and,
hence, the distribution of densityr(x,t) according to Eq.
~12!. Then the functionf(t) is determined by Eq.~14!, so
that distribution of velocitiesv(x,t)5xf(t) is given by

v~x,t !5@xn/ f ~ t !#A121/ f ~ t !. ~17!

Thus, Eqs.~12!, ~14!, and ~16! give the complete analytic
solution of the posed problem in the TF approximation.

One of the effects which accompanies the expansion
the condensate is a nonmonotonic behavior of the cur
density

J~x,t !5r~x,t !v~x,t !. ~18!

Equating its derivatives with respect tox andt to zero yields
with the use of Eqs.~10!, ~12!, and~17! its maximum value
as well as corresponding values ofx and t:

Jm~xm ,tm!5
~2m!3/2

27
,

xm5A3m/2n2, tm5@A31 ln~21A3!#4n , ~19!

which with the use of Eq.~8! can be expressed in terms
experimentally measurable parameters

Jm~xm ,tm!51.17n~Nasa0/S! ,

xm52.74n22/3~Nasa0/S!1/3,

tm5@A31 ln~21A3!#/4n '0.76n21. ~20!

The maximum of the density flow is proportional to th
number of particlesN, although the time coordinate of th
current maximum does not depend on the density but only
the condensate aspect ration. Let us consider the typica
experiments on the condensate withN5105 atoms of 87Rb
with scattering lengthas'5 nm@13#. Taking the length scale
of the condensate of the order ofa0'1 mm ~which corre-
sponds to the frequencyv0;53103 Hz) and transversal ra
dius'10 mm one can obtain forn50.2 the maximum of the
current densityJm'100 atomsmm22 ms21 in the coordi-
natexm'11.5mm ~initial TF radius was'13.3mm) and at
the timetm'1.1 ms.

In asymptotic limit of larget, when f (t)@ f (0), wehave

f ~ t !>2nt, f~ t !>1/2t . ~21!

Hence, solution~12! takes the form

r~x,t !>
m

4nt
~12x2/8mt2!, v~x,t !>x/2t . ~22!

These formulas describe a hydrodynamic flow ‘‘by inerti
when the density becomes so small that the pressure doe
accelerate the gas anymore@factor 1/2 in the second formul
~22! corresponds to definition of the ‘‘time’’ variable in Eqs
~10!#.
03560
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From Eq.~22! we can easily find asymptotic distributio
of particles on their velocities:

W~v !dv5
m

2n S 12
v2

2m Ddv, ~23!

which gives the number of atoms with velocities in the i
terval (v,v1dv). Also, in the framework of the TF approxi
mation, Eq.~12!, and with the use of Eq.~15! one obtains the
velocity of the condensate front,

v f~ t !5Am

2

1

n

d f

dt
5F2mS 12

1

f D G
1/2

, ~24!

which at t→` asymptotically goes tov f(`)>A2m. The
corresponding plots are shown in Fig. 1.

To verify the above findings, we have carried out nume
cal simulations of the condensate dynamics governed by
~3! after switching off the trap potential, i.e., withn50.
Initial profile of the condensate was taken as a numer
solution of Eq.~5!.

In agreement with analytical predictions we found th
during expansion the current densityJ(x,t)5r(x,t)v(x,t)
has a maximum~see Fig. 2!. The space and time coordinate
of this maximum which were calculated with the use of t
TF approximation and by direct numerical calculations pr
tically coincide ~see Fig. 3!. The discrepancy between th
analytical and numerical calculations increases with incre

FIG. 1. Time dependence of the front velocityv f(t) for m52
and for differentn ~solid line n50.1, dotted linen50.2, and
dashed linen50.5). In the inset the corresponding initial distribu
tions of the condensate densityr0(x) are depicted.

FIG. 2. Spatiotemporal behavior of the density flowJ(x,t) for
m52 andn50.2.
3-3
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FIG. 3. Dependence of the maximum of the density flow with coordinate~a! and time~b!. Here solid thick lines correspond to th
analytical solution and thin lines show the results of numerical calculations.
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of the parametern ~see Fig. 3! which can be explained by th
loss of the accuracy of the TF approximation in accorda
with the criterionm@n.

Let us estimate the time when we can consider an exp
sion of the condensate cloud only in the axial direction.
the particular case of the pancake geometry this can be d
by a comparison of the respective kinetic parts of the ini
3D GP equation. This gives us a criteriumT0 /T''a2/a'

2

'0.01!1, whereT0 andT' are characteristic times of th
processes in the axial and the radial direction of the cond
sate, respectively. Considering time scalet!T' one can ne-
glect the kinetics of the condensate in the radial direction
thus consider it to be unchanged in this direction. In orde
estimateT0 and T' we notice that velocity has an order o
magnitudev;Am @see Eq.~24!# and thusT0.a' /Am, a'

being the transverse radius. In the case of numerical ca
lations reported in Figs. 1 and 2 one estimatesT0;0.4 ms~1
dimensional unit! and T';40 ms ~100 dimensional units!
and thus the asymptotic limit described by Eq.~21! is indeed
achieved.

To conclude, it is interesting to make a comparison of o
simplified 1D model with some experiments where the
.

g

. B
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pansion of the condensate cloud was observed. To follow
real experimental setup we takem5const which correspond
to constant densityr0 at the condensate center@see Eq.~6!#
and look for the front velocitiesv f(t) with differentn which
correspond to different sizes~number of particlesN) of the
condensate in the transversal directions as was shown in
1. For larger values ofn ~more narrow profile of the conden
sate! the front velocityv f is higher than for the condensa
with smallern. This result of the 1D model is in qualitativ
agreement with the experimental observations where fa
expansion of the condensate cloud was observed in the
rection with smaller transverse size@1,2#.
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