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Hydrodynamic flow of expanding Bose-Einstein condensates
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We study expansion of quasi-one-dimensiofid)) Bose-Einstein condensatBEC) after switching off the
confining harmonic potential. Exact solution of dynamical equations is obtained in the framework of the
hydrodynamic approximation and it is compared with the direct numerical simulation of the full problem,
showing excellent agreement at realistic values of physical parameters. We analyze the maximum of the current
density and estimate the velocity of expansion. The results of the 1D analysis provides also qualitative under-
standing of some properties of BEC expansion observed in experiments.
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Many current experiments with Bose-Einstein conden-stages of time, too. It turns out that such evolution also ad-
sates(BEC) include regime of a free expansion of the gasmits a rather complete analytical description in a number of
which initially was (magnetically or opticallytrapped by a cases, and, in particular, when the initial density distribution
confining potential1,2]. The respective phase of the BEC is smooth enough, or in terms of BEC in the limit of a large
evolution is of practical interest since much information humber of atoms which leads to the so-called Thomas-Fermi
about coherent matter waves is experimentally obtained dffF) approximation. Then the hydrodynamic approach al-
this stage(say, by absorption imagifgand also because of ows one to describe analytically evolution of the density and
the importance of a free BEC flow in the context of recent|yVE|OCity fields of the condensate. The evolution of BEC at
proposed new devices, for example, an atomic |§3krAt initial stages appears to be quite rich. For example, as it has
ultralow temperatures, a trapped BEC is well described byeen recently shown in R€iB], it may display wave break-
the three-dimensional3D) Gross-Pitaevski(GP) equation ing for some specific initial distributions of the BEC density.
which in the absence of a trap potential is known as a non- In the present Brief Report we describe the free expansion
linear Schrdinger (NLS) equation. In a number of specific of @ BEC initially confined in a harmonic potential. On the
cases it can be reduced to a quasi-one-dimensional one. Mob&sis of the hydrodynamic approach we find the time depen-
specifically, this happens when one can negldue to some dence of the density and velocity distributions and calculate
reason} interaction between transverse modes. In the absuch characteristics of the gas flow as the value and space
sence of a trap the prob|em thus reduces to an integrab@"‘ld time coordinates of the maximum of current, velocity of
model, 1D NLS equation, which is a very well-studied fun-the “edge” points of the condensate, as well as asymptotic
damental model of the nonlinear physics. density and velocity distributions. Also, we show that simple

The problem of theoretical description of evolution of analytical estimates of the 1D problem allow one to give
BEC confined by harmonic potential with varying param- qualitative understanding of the phenomena observed in ex-
eters has been addressed in several pdgérin the experi- ~ periments with effectively 2D BEC.
ment[5] the realization of BEC expansion in quasi-1D wave- Let us start with the 3D GP equation for the order param-
guide has been reported and again excellent agreement heier = (r,t),
been found with theoretical predictions at long enough val-
ues of time of evolution. These results have been confirmed _ 2 2
by numerical solution of corresponding dynamical equations (94l 3 (R52M)A gt Virap() 9+ Gol 179, (D
for the quasi-1D cask4,6]. In the present paper, we give a
complete analytical treatment of this problem. We considewhere we use the standard notatigg= 4 nf2as/m, ag be-
only BECs with positive scattering lengths. In terms of theing thes-wave scattering length, which is considered positive
NLS equation, the situation we are dealing with correspondgsind m being the atomic mas$/;,,(r) is a trap potential.
to the evolution of an initially localized pulse with the initial Considering the case of a two-dimensional drop let BE[Z
profile corresponding to the ground state of a BEC confinedve take Vtrap=(m/2)w2x2, where o is the harmonic-
in a parabolic potential, i.e., to the defocusing NLS equatiorpscillator frequency, and in the transverse directioe., in
with zero boundary conditions at infinity. As it is known, the direction orthogonal to theaxis) the size of the conden-
such a problem does not have soliton solutions, and indepesate is supposed large enough to be considered infinite in the
dent of the number of particles the condensate will spreadirst approximation. In the longitudinal direction the size of
out and its density will tend to zero with time. The formal the condensate is of the order of magnitade(%/mw)Y?. It
analytical description of the respective solutiort-atc was  is convenient to introduce some typical reference frequency
obtained rather long add@]. However, for practical purposes wg so that the trap frequency is measured in unitswgf
of analysis of experimental data it is desirable to have av=rvwgy, v being the dimensionless trap frequency. To make
description of the condensate evolution during the initialthe dynamical equation dimensionless, we introduce
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3 f what follows we deal mainly with two parametersand u,
y(rt)y=(2 ﬁwagas)‘l’zexr{ikL-rL—iﬁt>\P(x,t), which completely define the initial distribution of the con-
@) densate density.
After switching off the potential, the condensate evolves
#i/mwo=a2v, and make a change according to Eq(3) with »=0. If evolution does not lead to
wave breaking of the pulse, then we still can neglect the
dispersion effects and use the hydrodynamic approximation
for description of this evolution. As we shall see, this is the
case of initial distribution6), so that the hydrodynamic ap-
i(9W/at) + (PW]x2) — 2|V |20 = L 22w, 3) proximation is valid even at asymptotically large values of
time considered in Ref7]. Therefore we pass from the NLS

where the primes were suppressed. The dimensionless BERIUation(3) to its hydrodynamic representation. We repre-
wave function® (x,t) is normalized according to sentW(xt) in the form

wherer | =(y,z) andaj=
of independent variables=2""aox’ and t=2Y%'/w,.
This results in the canonical form of the NLS equation with
a parabolic potential,

47 Nagg V(x,t)= \/p(x,t)ex;<ifxv(x’,t)dx’

. NG
| " woorax= T, @

so that substitution of Eq9) into Eq. (3) with »=0 yields

whereN is the total number of particles argis an effective . L
area of the transverse cross section of the condensate. 2Pt (pv)x=0, svitvoytpy=0, (10)
A stationary solutionW(x,t)=W¥(x)exp(—iut), corre- o ) L .

sponding to the ground state of BEC, is givenbyx) sat- Which is subject to the initial conditions
isfying the equation

ying the eq p(x0=po(X), v(X,0=0, (1)

2 2 2y 12,2
(d*W/dx®) + pW = 2{W[*W =35V, (3 wherepy(x) is taken to be the initial distributiof6). In Eq.

(10) we have neglected the higher space derivatives of the

subject to the zero boundary condition|xft— 2 and having densityp(x,t) that correspond to the quantum-pressure con-
no other zeros. The eigenvalpe(chemical potentialis de-  ipution.

term'inec'i by normalizatior(4). In dimensionless units the A problem similar to Eqs(10) and (11) was studied in
longitudinal 5|ze_of the condensa’ge is of the order of magniy,gniinear optics long agpL0] for the opposite sign of the
tude 1 ¥» and if u>v, the considerable part of the con- “pressure” p, in Eq. (10) which corresponds to evolution of
densate can be described by the TF approximation in which, gptical beam in a focusing Kerr medium. More complex
the term with the second space derivative in E).can be  jhitia| conditions were considered in Refd1,17, and in the

neglected almost everywhere, so that recent paper[8] the same nonlinear geometrical optics
_ 2 1 122 method has been applied to the investigation of wave break-
o) =[Wre(X)|*=3(n—2v°%%), ®  ing phenomena in BEC. Here we shall apply the method of
. o Ref.[10] to the problem of BEC expansion.
with normalization We look for a solution of Eqs(10) and(11) in the form
Zalv (2u)%?
f_myl‘I’TF(X)IZdFT- (7) p(x,t)=%(t)(l—vzxzmuf(t)z), p(X, ) =x(1),
(12)

The TF approximation6) fails at the tails of the density
distribution where the density decays exponentially|xds where according to Eq11) the functionsf(t) and ¢(t) must
— instead of vanishing at finite distande|=\2u/v  satisfy the initial conditions
(called TF radius according to Eq(6). Since only a small
part of the condensate’s mass is concentrated in these tails f(0)=1, ¢(0)=0. (13
(for example, foru=2 andv=0.5, it is less than 1.5%), in _— . . . .
the limit x> v distribution (6) is assumed to be a good ap- Egtt\)/\?gg:#?tr; :;52)((%)2) into Eq. (10) gives the relationship
proximation of the initial density distribution of BEC before '
switching off the external potential. Y
By equating Eqs(4) and (7) we determine the value of SO=F" /21, (149
the dimensionless chemical potentjalin terms of experi- a5 well as the differential equation féft),
mentally measurable parameters,
f2f" =212, (15)
u=[2Y3rv(Nagay/S)]?" (8
This equation can be readily solved with the initial condi-
Then the conditionu> v yields the criterionVa.a/S>1 of  tions f(0)=1, f'(0)=2f(0)¢(0)=0 [see Egs.(13) and
applicability of the TF approximation in physical units. In (14)] to give
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dvt=2\T(f— 1) +In[2f—1+2F(f-1)].  (16)

This formula determines implicitly as a function oft and,
hence, the distribution of density(x,t) according to Eq.
(12). Then the functiong(t) is determined by Eq(14), so
that distribution of velocitie® (x,t) =Xx¢(t) is given by

v(x,t)=[xv/f(t)]y1—1/f(t). (17)

Thus, Egs.(12), (14), and (16) give the complete analytic
solution of the posed problem in the TF approximation.

One of the effects which accompanies the expansion of
the condensate is a nonmonotonic behavior of the current 0 L | L | 1
density 0 20 ¢ 40 60

O =p(X,Dv(X,1). (18) FIG. 1. Time dependence of the front velocity(t) for u=2

and for differenty (solid line »=0.1, dotted liner=0.2, and
dashed linev=0.5). In the inset the corresponding initial distribu-
tions of the condensate densjiy(x) are depicted.

Equating its derivatives with respectxandt to zero yields
with the use of Eqgs(10), (12), and(17) its maximum value
as well as corresponding values>oaindt:

(2)%?2 From Eq.(22) we can easily find asymptotic distribution
(X tm) = 57 , of particles on their velocities:
2
o
W(v)dv==—|1— =—|dv, (23
Xn=\3ul2v2, to=[\V3+In(2+3)]4v, (19 2v 2u
which with the use of Eq(8) can be expressed in terms of Which gives the number of atoms with velocities in the in-
experimentally measurable parameters terval (v,v+dv). Also, in the framework of the TF approxi-
mation, Eq(12), and with the use of Eq15) one obtains the
Jn(Xm tm) =1.17v(Nagay/S) , velocity of the condensate front,
Xm=2.74v"2(Nagay/S)?, 1 df 112
" (A@20/S) vi(t)= %;a: 2u| 1=/ (29)

t,=[V3+In(2+3)]/4v~0.760" L. (20)
which att—o asymptotically goes tw(®)=2u. The

The maximum of the density flow is proportional to the corresponding plots are shown in Fig. 1.
number of particlesV, although the time coordinate of the  To verify the above findings, we have carried out numeri-
current maximum does not depend on the density but only ogal simulations of the condensate dynamics governed by Eq.
the condensate aspect ratio Let us consider the typical (3) after switching off the trap potential, i.e., with=0.
experiments on the condensate witf= 10> atoms of ®’Rb  |nitial profile of the condensate was taken as a numerical
with scattering lengtiags~5 nm[13]. Taking the length scale solution of Eq.(5).
of the condensate of the order af~1 um (which corre- In agreement with analytical predictions we found that
sponds to the frequenay,~5x 10° Hz) and transversal ra- during expansion the current densilyx,t)=p(x,t)v(x,t)
dius~10 um one can obtain for=0.2 the maximum of the has a maximuntsee Fig. 2 The space and time coordinates
current densityJ,,~100 atomgum 2 ms ! in the coordi-  of this maximum which were calculated with the use of the
natex,~11.5 um (initial TF radius was~=13.3 um) and at  TF approximation and by direct numerical calculations prac-
the timet,,~1.1 ms. tically coincide (see Fig. 3 The discrepancy between the

In asymptotic limit of larget, whenf(t)>f(0), wehave analytical and numerical calculations increases with increase

f(t)y=2ut, H(t)=1/2t. (21)
Hence, solution(12) takes the form ; 02 \
_ _ N \ -
p(X,t)zm(l—Xz/B,utZ), v(x,H)=x/2t. (22 00 \\ 4
These formulas describe a hydrodynamic flow “by inertia” T N - -

when the density becomes so small that the pressure does not !

accelerate the gas anymdfactor 1/2 in the second formula  FG. 2. Spatiotemporal behavior of the density fldg,t) for
(22) corresponds to definition of the “time” variable in EQs. ;=2 andv=0.2.

(10].
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FIG. 3. Dependence of the maximum of the density flow with coordif@tend time(b). Here solid thick lines correspond to the
analytical solution and thin lines show the results of numerical calculations.

of the parameter (see Fig. 3which can be explained by the pansion of the condensate cloud was observed. To follow the
loss of the accuracy of the TF approximation in accordanceeal experimental setup we take= const which corresponds
with the criterionu>v. to constant density, at the condensate cenfaee Eq.(6)]
Let us estimate the time when we can consider an expargnd look for the front velocities¢(t) with different» which
sion of the condensate cloud only in the axial direction. Incorrespond to different sizeégumber of particlesV) of the
the particular case of the pancake geometry this can be dof@ndensate in the transversal directions as was shown in Fig.
by a comparison of the respective kinetic parts of the initiall- For larger values of (more narrow profile of the conden-
3D GP equation. This gives us a criterium/TL~a2/af sgte the front veIQC|tyvf is higher than for fche condt_an;ate
~0.01<1, whereT, and T, are characteristic times of the with smallerv. This result of the 1D model is in qualitative
processes in the axial and the radial direction of the conderfdreement with the experimental observations where faster
sate, respectively. Considering time scaT, one can ne- €XPansion of the condensate Cl(?Ud was observed in the di-
glect the kinetics of the condensate in the radial direction angection with smaller transverse sige,2].
thus consider it to be unchanged in this direction. In order to  \.V.K. is grateful to A. B. Shvartsburg for valuable dis-
estimateT, and T, we notice that velocity has an order of cussions. A.M.K. is grateful to the staff of Centro desiEa
magnitudev ~ i [see Eq.(24)] and thusTy=a, /\/u, a, da Mafeia Condensada, Universidade de Lisboa, for kind
being the transverse radius. In the case of numerical calcthospitality. The work of V.A.B. was financially supported by
lations reported in Figs. 1 and 2 one estimags 0.4 ms(1  the FCT under Grant No. SFRH/BPD/5632/2001. The work
dimensional unjt and T, ~40 ms (100 dimensional uni)}s of A.M.K. in Lisbon was financially supported by NATO.
and thus the asymptotic limit described by E2{l) is indeed  A.M.K. also thanks RFBRGrant No. 01-01-00696or par-
achieved. tial support. V.V.K. acknowledges support from the Program
To conclude, it is interesting to make a comparison of our'Human Potential-Research Training Networks,” Contract
simplified 1D model with some experiments where the ex-No. HPRN-CT-2000-00158.
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