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Quantum gates with topological phases
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We investigate two models for performing topological quantum gates with the Aharonov-BaBinand
Aharonov-CashefAC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB
effect using charge qubits, whereas the AC effect can be used to perform all single-qubitAdpeiésn and
non-Abelian for spin qubits. Possible experimental setups suitable for a solid-state implementation are briefly
discussed.
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One of the most important problems in the field of quan-DAB and HMW, are also reciprocal to each other. The four
tum information processing is to find a way to fight the fra- effects can be summarized schematically as foll¢ursder
gility of quantum states. At present, decoherence is the maithe electromagnetic duality mapping we also havee, d
cause preventing us to implement usefué., on a large —>,&)
number of qubits quantum algorithms. Several methods
have been proposed in order to solve this problem, including . o .
quantum error correctiofil], noiseless subsysterfig], and AB:(&1)  eciprocal  ACH(H:€)
bang-bang contrd]3]. More recently, holonomic/geometric

[4-6] and topological quantum computatid@C) [7—10] duafl [dual
have attracted an increased interest. cim 3 3
The main drawback of holonomic QC is the adiabaticity DAB:(g.d) reciprocal HMW: (d.g),

condition. In order to remain in the same degenerate eigens- . .

. ) .~ Wwhere for each effect we show the type of particles involved,
pace we need to evolve the system adiabatically. This img 9.(A, B)
poses strong constraints on the time evolution of the system. A" flour.topological effects have some important proper-

There is an apparent conflict between the adiabatic/slow eVQias First the phases arendispersivei.e., they are inde-

lu(;?sri]b?g%l}nﬁ r?ﬁg'g%w;rgngg F:ﬁ:gronfq't?]% Zssqéﬂyv\?ﬁgehslg endent of the velocity of the A particle moving around the
P 9 y ' ne distribution of B particles. This relaxes the adiabaticity

some authors to question the utility of holonomic gates for : . o : :
performing fault tolerant QC. At the same time there arerequwement present in holonomic implementations. Nondis

efforts to relax the adiabaticity condition by using nonadia-\e::;;\e/gyegf gr(i):: eﬁgEIlS] and AC[19,2 effects has been
batic[11] or topological phasefl2,13. P Y-

In this paper we discuss an answer to the following ques: Second, the generated phase depends only ohdre-

tion: Given the known topological effects, how can we usetopy classof the trajectory, and not on the local details or

them t rform tonoloaical ntum oatas@ start with an Shape of the path followed by the particle. Moreover, com-
em to pertorm topological quantum gateye start a pared to the holonomic case, where the path should be area

overview of topological effects and underline their Commonpreserving here this requirement is absent

structure. Next we construct two models which employ The main focus of this paper will be on ;che AB and AC

Aharonov-Bohm and Aharonov-Casher topological phases Qtacts and how they can be used in quantum computing. We

perform qu'antum gates. : consider the following quantum gateB{¢)=diag(1ge'¢)
_Topologlcal phasgsThere are four topological effects (single-qubit phase shiftH=2-Y(11 ) (Hadamardl and

(V\rl:th the correshpé})ndl)nfg p]haSEAEaronlov-Bohn(AB) [1d4]’ Is. Cle)=diag(1,1 1e'%) (controlled—plh_aée gateln order to

Aharonov-CashefAC) [15] and their electromagnetic duals, o . : . .

the dual Aharonov-BohrtDAB) [16], and the He-McKellar- perform an arbitrary unitary operation onnaqubit register

Wilkens (HMW) [17]. Al these four effects have a common (i.e., achieve universalifywe need to implement a qniversal
structure: a pointlike type-A particle moving around a Iinear,SEt of quantum gates. There are several such universal sets,

infinitely long distribution of type-B particles acquires a to- such as{H,P(¢),C(m)} or {H,C(¢)}. We will see below

pological phase. In the Aharonov-Bohm effect, an electrichOW we can implement some of these gates topologically. An

: : ; le of a topological phase g&é¢) for charge qubits
chargee moves around an impenetrable line of magnetic*@MP .
dipoles,&. In the Aharonov-Casher effe¢the reciprocal of (using the Aharonov-Bohm effechas been shown in Ref.

; 21].
the AB effec}, the roles of the two types of particles are The AB and AC phases have a common gauge structure.

interchanged: a magnetic momespin n moves around an |f we expand to first-order Dirac equation for an electron in
infinite line of charge=. In the dual effects, the type-A and an external electromagnetic field, we obtainanrelativis-

-B paiticle} are replaced by their electromagngtic duals: tic) Hamiltonian with a U(1),,¥ SU(2)spin gauge symmetry
—(g, n—d, whereg is a magnetic monopole artia elec- [22]. The corresponding gauge fields are exactly those giving
tric dipole. It is straightforward to see that the dual effects,the two topological effects: the AB and AC correspond to a
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i.e., R(6)=e'%x with =—[I7(t)dt/A. Then the Had-
0

lY .X ancillae amard gate is obtained &b=P(— 7/2)R,(7/4)P(— m/2).
P(o) We now discuss three examples which can be cast into
this framework. The first two are closely relatéathough
X not identica) to models proposed by Lloyl@] and Ericsson
a o>+ i and Sjamyvist [12]. The last one is inspired by the beautiful
- } qubits argument of Dirac on magnetic monopolgz3]. Thus the
b: 11> + topological lattice model described here can be seen as a
unifying scheme for different models.
oi Slw) i1 540 (i) (X,Y)=(A, A), where A is an Abelian anyon. This is

the Lloyd model[8]. An Abelian anyon moving on a loop
FIG. 1. A topological lattice modelX(Y)-type particles are around another anyon picks up a topological phase and all
shown as full circlegsquarey qubits in black, ancillas in gray, and the gates follow as discussed above.

empty spaces on the lattice marked withr (i) (X,Y)= (e,ﬁ); eis an electric charge arﬁ] is a mag-
netic dipole. This is a two-dimensioridD) model similar to
U(1) and SW2) phase, respectively. This suggests an obvithe one described in Rdf12]. At first sight it seems surpris-
ous strategy: acting ocharge (spin)degrees of freedom we ing that in two(spatia) dimensions a charge moving around
obtain a U1) (SU(2), respectively topological phase. a spin picks up a phase. The reason is an interesting anyon-
Abelian phases: A topological lattice modéle now con-  jzation effect. As showed by Reutg24], charged particles
struct a simplgquas) topological model of a quantum reg- with a magnetic moment interacting vigandardMaxwell
ister. Suppose we have two types of particles on a latice, electromagnetism behave like anyons in a
and Y, with the following property. Whenever we move (2 1)-dimensional space time. In 2D a point particle pro-
along a loopy an X particle around ary particle, the wave yjdes a topological obstructiofand hence a loop around it is
function picks up a phase, i.¢XY)—€e"?|XY); nis an  noncontractiblgin the same way as in 3D an infinite string

integer defining the homotopy class of the loop, i.e., thejoes. Unfortunately, the scheme is strictly two dimensional
number of times the loop encircles theY particle. Note that  and cannot be generalized to 325].

the phase changes the sign if we movearoundX. The (i) (X,Y)=(e,9); again,eis an electric charge arglis
phase is topological since it depends only on the homotopy magnetic monopole. This follows from the celebrated ex-
class ofy. ample of Dirac, who proved that the existence of a single

Our qubit register is an alternating array XfandY par-  magnetic monopole, somewhere in the Universe, implies the
ticles, such that we have a((Y) particle for an everfodd  quantization of all electric chargesg=n#c/2, ne Z. If the
qubit index. We use a dual rail encoding: one particle in twoelectric charge moves on a closed path around the magnetic
lattice sites(or modes labeleda and b (this encoding is  monopole, it acquires a phase proportional to the solid angle
characteristic for using “charge” degrees of freedom as qubitjefined by the loogas viewed from the monopol€26]. For
Stat6$. The qub|t states are defined as follows. If the partiClea magnetic mon0p0|e of unit magnetic Charw:é ﬁc/Z)’

(X orY) isin theamode, the qubit is in the logical std®),  the phase acquired by the electron around a loop subtending
and if the particle is in thé mode, the qubit is in logical the solid angld) is ¢ = /2. Clearly, this phase is in general
state|1) (see Fig. 1 Formally, [0)=a)y,lvac) and|1)  not topological, since it is proportional to the solid angle
=b]ylvac) , whereal, andb}y, are creation operators defined by the patkfrom this point of view it is holonomic,

for anX(Y) particle ina andb modes, respectivelyyac) is  with the difference that adiabaticity is not requiyeéiow-

the Fock space vacuum state. In addition, each qubit has algver, if the path is planar and the plane contains the magnetic
a fixed ancilla whose role is to enact the single-qubit phasenonopoleg, then the phase will be always, since the solid
gate diag é'?,1)=€'*P(—¢). If the qubit isX, its ancillais  angle isQ)=2= for any planar paths witly inside. There-

Y and vice versa. To perform the phase gafe), we take fore, for planar paths the phase is topological as it depends
whatever is at the site of the qubit and move it around its only on the homotopy class of. The planar geometry is
ancilla (which is always in the same placeince the phase well suited for theC(7r) phase shift. The downside is that
gate is fixed (i.e., ¢=const), universality also requires arbitrary phase gate(p) are not topological for the reason
ol me . discussed above: universality requiresr ¢ (), and this im-

To do the conditional two-qubit phase g&@éyp), we take  plies that the array of ancillas should be off the plane of
whatever is at thé site of one qubit and move it around the qubits such tha€)/2# & (). Thus, in this example phase gates
b site of the second qubit. We obtain a phase shift if and onlyP(¢) are only holonomic. We point out that since we use
if both particles are in th¢l) state. In this model the only chargelike degrees of freedom for the qubit definition, the
gate which cannot be done topologically is the Hadamardnfluence of the magnetic field on the electron spin is not
gateH. To perform it, the particle should tunnel between therelevant in this case.
two modes(siteg a and b with the usual hopping Hamil- Each of these examples has some drawbacks. The first
tonian H,= 7(t)(a'b+ab'), where 7(t) is the tunneling and third model work in the usual three-dimensional space,
rate. The unitary evolution given [y, acting on the system but they require rather exotic particles, anyons, and magnetic
duringte[0,T] is a single-qubit rotation around theaxis, = monopoles, respectively. The second model works with nor-
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sions. One may argue that modglis also two dimensional,
since anyons exist only in two spatial dimensi¢#g]. Abe- v v
lian anyons appear as quasiparticlesllective excitations

\
[0
in solid-state theories of the fractional quantum Hall effect. b [ ,Ll_/y
z

mal charges and spins, but only in{2) space-time dimen- (a) y
L, X

Abelian and non-Abelian anyons are also essential ingredi
ents of Kitaev topological model of Q{T]. /
Magnetic monopoles arise in spontaneously broken gaugt
theories in which the unbroken grotpis not simply con-
nected,7(H) #1 [28]. An example is the 't Hooft-Polyakov
monopole arising in a gauge theory with a SU{2Y(1) (b) . L
spontaneous symmetry breakif®SB. This suggests a 6 y

straightforward strategyalthough in practice highly non- 4 o o o o o
\
T,

trivial) for generating monopoles: find a SSB in a solid-state

model with nontrivialw,(H). This will generate monopole-

like configurations which can be used in the present scheme
There is a close relationship between anyons and the AE | Y

phase. An(Abelian) anyon can be seen as a composite par- © L o o L] o

ticle made of a point charge with a magnetic-flux tube at-

FIG. 2. Two architectures for a topological single-qubit gdte
tached. Thus, when one anyon goes around another anyon o rec Pood! nge-quir d

; . o =e *72l07yeiBoz (g) Flying spin qubits the electron moves in a
there is a nontrivial braiding of the flux tubes and the WaVEyantum wire(black lin@ with v=(v,,0,0). Static electric fields

function picks _Up a_ F_’hase""- The origin of ,th_'s phase is along two directions,E, and E,, produce the spin rotations
clearly topological: it is the AB phase. Now it is easy to seeg (,)=¢i«”: and R,(6) =€, respectively.V, ,, are the gate
the link with statistics. Since swapping two anyons is equivayoltages producing the phasesd, 3. (b) A lattice of (quasi)static
lent to a half revolution of one particle around the secondspin qubits U is enacted by moving the spiblack dot along the
plus a translation, the anyon statistics is given |Byl)  pathy, e.g., by tunneling on empty lattice sitéspen circles An
=el¥?1 2). From the boson/fermion statisticse' 2= electric fieldE, perpendicular to the plane of the figure is applied
+1), a boson or a fermion will pick up a trivial phase when by top/bottom gatesgray rectangles, shown only for the middle
one particle encircles another one. Hence, in order to have @ubit).
nontrivial phase when one particle is moved around another
(identica) one, we need fractionghnyonig statistics. sive, o= —PfHSOdt/ﬁ:any(;. (Exdl)/%, whereP de-

It should be clear by now that in all the above exampleshotes the path ordered integral.
the topological phase is equivalent to the AB phase, and Moreover,¢ is immune to fluctuations in velocity along
hence it is Abelian. It is known that Abelian phases cannot bee, sincev|XE=0 (and we decomposed=v|+Vv, in com-
used alone to perform universal quantum computation an@lonents along and perpendiculafEprespectively. Nondis-
that non-Abelian phases are necesddily We now turn to  persivity also implies thatv, | can vary, but not itslirection
the AC phase and show how it can produce all single-qubitrhat is to say, once the particle has entered the gate region, it
rotations for spin qubits. should keep the same quantization axis given \byE

Non-Abelian phases: Spin qubite.the original AC setup  [29,30]. This condition is easily satisfied in a mesoscopic
[15], a particle with magnetic moment moving around a context if the electron moves in a 1D quantum wire perpen-
linear charge distribution picks up a topological phase prodicular to the applied electric fiel# (e.g., using top/bottom
portional to the(linean charge density\ and to the homo- or lateral gates Spin rotation withstatic electric fields
topy classneZ of the path,¢ppc=4mnuN/fic [16]. This  (Rashba effegthas been experimentally realized in mesos-
configuration(with an long line of chargescannot be easily copic heterostructurd$1,32].
implemented in practice. A more appropriate setup was pro- Hamiltonian(1) gives us the necessary ingredients to pro-
posed by Casellg29] and later by Sangstest al. [19]. The duce an arbitrary S@) gate [33] U(a,6,B)
infinite line of charge can be replaced by a simple capacitor=e'“’ze' %7ve'#?z py rotating the spin along two different
producing a uniform electric fiel&. A particle moving in  axes[34]. We discuss the following two possible setups for
the static electric field E will see a magnetic field3B=v  implementing spin rotations using the AC phésee Fig. 2

X E/c? which couples to its magnetic momeat The sys- (@) The particle moves in a 1D quantum wire along the

tem is described by the spin-orfsit) Hamiltonian axis, v=(v4,0,0). In this case we need electric fields ori-
ented alongy and z directions produced by top/bottom and

lateral gates, Fig. (2);
Heo=a o (VXE), (1) (b) If only top/bottom gates are available.g., the electric
field is alwaysEy), R, and R, spin rotations can be per-
. formed by moving the particle alorgandy directions, re-
where o is the vector of Pauli matrices andx  spectively, Fig. ).

o o] o o

=gnehldmc (g,, is the gyromagnetic factarlt is straight-
forward to see that the phase producedHyy is nondisper-

Provided that the spin-quantization axis remains the same
during the gate, the phase depends only on the product be-
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TABLE I. Topological gategand the generating effegt®or the
two models described.

H P(¢) Cle)
Lattice model No YegAB) Yes (AB)
Spin qubits YeqAC) Yes (AC) No

tween the gate length and the magnitude of the electric
field, ¢~EL. Here the produc&L plays the role of the
linear charge density in the original AC setup; the homo-
topy class of the pathy is equivalent, in the Casella setup,
to the number of timey passes through the capacitor. From

an implementation point of view, this dependence is appeal

ing, since fabrication errors in the gate lengtican be com-
pensated by fine tuning the applied fidtd
In Table | we summarize the models presented above.
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bits in decoherence-free subspaces and to perform topologi-
cal gates on the encoded qubits. Again, in practice this could
be nontrivial and implementation dependent.

In conclusion, in this paper we analyzed a general frame-
work for constructing topological quantum gates. We have
shown how both Abelian and non-Abelian gates can be per-
formed topologically using the AB and AC effects. Due to
their nondispersivity, topological gates relax flagite strin-
gend adiabaticity requirement present in holonomic QC.
However, no universal set of topological gates has been
found yet. Progress in this direction is expected by using the
concept ofencoded universalityi.e., a nonuniversal set of
gates becomes universal in a suitable qubit encoding. Future
work includes investigating such encodings which could
generate an universal set of topological gates from(iioa-
universa) gates presented here.
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