
PHYSICAL REVIEW A 68, 034305 ~2003!
Quantum gates with topological phases

Radu Ionicioiu
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~Received 29 April 2003; published 12 September 2003!

We investigate two models for performing topological quantum gates with the Aharonov-Bohm~AB! and
Aharonov-Casher~AC! effects. Topological one- and two-qubit Abelian phases can be enacted with the AB
effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates~Abelian and
non-Abelian! for spin qubits. Possible experimental setups suitable for a solid-state implementation are briefly
discussed.
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One of the most important problems in the field of qua
tum information processing is to find a way to fight the fr
gility of quantum states. At present, decoherence is the m
cause preventing us to implement useful~i.e., on a large
number of qubits! quantum algorithms. Several metho
have been proposed in order to solve this problem, includ
quantum error correction@1#, noiseless subsystems@2#, and
bang-bang control@3#. More recently, holonomic/geometri
@4–6# and topological quantum computation~QC! @7–10#
have attracted an increased interest.

The main drawback of holonomic QC is the adiabatic
condition. In order to remain in the same degenerate eig
pace we need to evolve the system adiabatically. This
poses strong constraints on the time evolution of the syst
There is an apparent conflict between the adiabatic/slow e
lution and the requirement of performing as many gates
possible during the coherence time of the system, which
some authors to question the utility of holonomic gates
performing fault tolerant QC. At the same time there a
efforts to relax the adiabaticity condition by using nonad
batic @11# or topological phases@12,13#.

In this paper we discuss an answer to the following qu
tion: Given the known topological effects, how can we u
them to perform topological quantum gates?We start with an
overview of topological effects and underline their comm
structure. Next we construct two models which empl
Aharonov-Bohm and Aharonov-Casher topological phase
perform quantum gates.

Topological phases.There are four topological effect
~with the corresponding phases!: Aharonov-Bohm~AB! @14#,
Aharonov-Casher~AC! @15# and their electromagnetic dual
the dual Aharonov-Bohm~DAB! @16#, and the He-McKellar-
Wilkens ~HMW! @17#. All these four effects have a commo
structure: a pointlike type-A particle moving around a line
infinitely long distribution of type-B particles acquires a t
pological phase. In the Aharonov-Bohm effect, an elec
chargee moves around an impenetrable line of magne
dipolesmW . In the Aharonov-Casher effect~the reciprocal of
the AB effect!, the roles of the two types of particles a
interchanged: a magnetic moment~spin! mW moves around an
infinite line of chargese. In the dual effects, the type-A an
-B particles are replaced by their electromagnetic dualse

→g, mW →dW , whereg is a magnetic monopole anddW a elec-
tric dipole. It is straightforward to see that the dual effec
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DAB and HMW, are also reciprocal to each other. The fo
effects can be summarized schematically as follows~under
the electromagnetic duality mapping we also haveg→e, dW

→mW ):

AB: ~e,mW ! reciprocal
↔

AC:~mW ,e!

duall ldual

DAB: ~g,dW ! reciprocal
↔

HMW: ~dW ,g!,

where for each effect we show the type of particles involv
e.g. ~A, B!.

All four topological effects have some important prope
ties. First, the phases arenondispersive, i.e., they are inde-
pendent of the velocity of the A particle moving around t
line distribution of B particles. This relaxes the adiabatic
requirement present in holonomic implementations. Nond
persivity of both AB @18# and AC @19,20# effects has been
verified experimentally.

Second, the generated phase depends only on thehomo-
topy classof the trajectory, and not on the local details
shape of the path followed by the particle. Moreover, co
pared to the holonomic case, where the path should be
preserving, here this requirement is absent.

The main focus of this paper will be on the AB and A
effects and how they can be used in quantum computing.
consider the following quantum gates:P(w)5diag(1,eiw)
~single-qubit phase shift!, H5221/2(1 21

1 1 ) ~Hadamard!, and
C(w)5diag(1,1,1,eiw) ~controlled-phase gate!. In order to
perform an arbitrary unitary operation on an-qubit register
~i.e., achieve universality!, we need to implement a universa
set of quantum gates. There are several such universal
such as$H,P(w),C(p)% or $H,C(w)%. We will see below
how we can implement some of these gates topologically.
example of a topological phase gateP(w) for charge qubits
~using the Aharonov-Bohm effect! has been shown in Ref
@21#.

The AB and AC phases have a common gauge struct
If we expand to first-order Dirac equation for an electron
an external electromagnetic field, we obtain a~nonrelativis-
tic! Hamiltonian with a U(1)em3SU(2)spin gauge symmetry
@22#. The corresponding gauge fields are exactly those giv
the two topological effects: the AB and AC correspond to
©2003 The American Physical Society05-1
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U(1) and SU~2! phase, respectively. This suggests an ob
ous strategy: acting oncharge (spin)degrees of freedom we
obtain a U~1! ~SU~2!, respectively! topological phase.

Abelian phases: A topological lattice model.We now con-
struct a simple~quasi! topological model of a quantum reg
ister. Suppose we have two types of particles on a latticeX
and Y, with the following property. Whenever we mov
along a loopg an X particle around anY particle, the wave
function picks up a phase, i.e.,uXY&→einwuXY&; n is an
integer defining the homotopy class of the loop, i.e.,
number of times the loopg encircles theY particle. Note that
the phase changes the sign if we moveY around X. The
phase is topological since it depends only on the homot
class ofg.

Our qubit register is an alternating array ofX andY par-
ticles, such that we have anX(Y) particle for an even~odd!
qubit index. We use a dual rail encoding: one particle in t
lattice sites~or modes! labeled a and b ~this encoding is
characteristic for using ‘‘charge’’ degrees of freedom as qu
states!. The qubit states are defined as follows. If the parti
(X or Y) is in thea mode, the qubit is in the logical stateu0&,
and if the particle is in theb mode, the qubit is in logica
state u1& ~see Fig. 1!. Formally, u0&[aX(Y)

† uvac& and u1&
[bX(Y)

† uvac& , whereaX(Y)
† and bX(Y)

† are creation operator
for anX(Y) particle ina andb modes, respectively;uvac& is
the Fock space vacuum state. In addition, each qubit has
a fixed ancilla whose role is to enact the single-qubit ph
gate diag (eiw,1)5eiwP(2w). If the qubit isX, its ancilla is
Y and vice versa. To perform the phase gateP(w), we take
whatever is at thea site of the qubit and move it around it
ancilla ~which is always in the same place!. Since the phase
gate is fixed ~i.e., w5const), universality also require
w/p¹Q.

To do the conditional two-qubit phase gateC(w), we take
whatever is at theb site of one qubit and move it around th
b site of the second qubit. We obtain a phase shift if and o
if both particles are in theu1& state. In this model the only
gate which cannot be done topologically is the Hadam
gateH. To perform it, the particle should tunnel between t
two modes~sites! a and b with the usual hopping Hamil-
tonian Hh5t(t)(a†b1ab†), where t(t) is the tunneling
rate. The unitary evolution given byHh acting on the system
during tP@0,T# is a single-qubit rotation around thex axis,

FIG. 1. A topological lattice model;X(Y)-type particles are
shown as full circles~squares!, qubits in black, ancillas in gray, an
empty spaces on the lattice marked with ‘‘1. ’’
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i.e., Rx(u)[eiusx, with u52*0
Tt(t)dt/\. Then the Had-

amard gate is obtained asH5P(2p/2)Rx(p/4)P(2p/2).
We now discuss three examples which can be cast

this framework. The first two are closely related~although
not identical! to models proposed by Lloyd@8# and Ericsson
and Sjöqvist @12#. The last one is inspired by the beautif
argument of Dirac on magnetic monopoles@23#. Thus the
topological lattice model described here can be seen a
unifying scheme for different models.

~i! (X,Y)5(A, A), where A is an Abelian anyon. This is
the Lloyd model@8#. An Abelian anyon moving on a loop
around another anyon picks up a topological phase and
the gates follow as discussed above.

~ii ! (X,Y)5(e,mW ); e is an electric charge andmW is a mag-
netic dipole. This is a two-dimensional~2D! model similar to
the one described in Ref.@12#. At first sight it seems surpris
ing that in two~spatial! dimensions a charge moving aroun
a spin picks up a phase. The reason is an interesting an
ization effect. As showed by Reuter@24#, charged particles
with a magnetic moment interacting viastandardMaxwell
electromagnetism behave like anyons in
(211)-dimensional space time. In 2D a point particle pr
vides a topological obstruction~and hence a loop around it i
noncontractible! in the same way as in 3D an infinite strin
does. Unfortunately, the scheme is strictly two dimensio
and cannot be generalized to 3D@25#.

~iii ! (X,Y)5(e,g); again,e is an electric charge andg is
a magnetic monopole. This follows from the celebrated
ample of Dirac, who proved that the existence of a sin
magnetic monopole, somewhere in the Universe, implies
quantization of all electric charges:eg5n\c/2, nPZ. If the
electric charge moves on a closed path around the magn
monopole, it acquires a phase proportional to the solid an
defined by the loop~as viewed from the monopole! @26#. For
a magnetic monopole of unit magnetic charge (eg5\c/2),
the phase acquired by the electron around a loop subten
the solid angleV is w5V/2. Clearly, this phase is in genera
not topological, since it is proportional to the solid ang
defined by the path~from this point of view it is holonomic,
with the difference that adiabaticity is not required!. How-
ever, if the path is planar and the plane contains the magn
monopoleg, then the phase will be alwaysp, since the solid
angle isV52p for any planar paths withg inside. There-
fore, for planar paths, the phase is topological as it depen
only on the homotopy class ofg. The planar geometry is
well suited for theC(p) phase shift. The downside is tha
arbitrary phase gatesP(w) are not topological for the reaso
discussed above: universality requiresw/p¹Q, and this im-
plies that the array of ancillas should be off the plane
qubits such thatV/2p¹Q. Thus, in this example phase gat
P(w) are only holonomic. We point out that since we u
chargelike degrees of freedom for the qubit definition, t
influence of the magnetic field on the electron spin is n
relevant in this case.

Each of these examples has some drawbacks. The
and third model work in the usual three-dimensional spa
but they require rather exotic particles, anyons, and magn
monopoles, respectively. The second model works with n
5-2
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mal charges and spins, but only in (211) space-time dimen
sions. One may argue that model~i! is also two dimensional
since anyons exist only in two spatial dimensions@27#. Abe-
lian anyons appear as quasiparticles~collective excitations!
in solid-state theories of the fractional quantum Hall effe
Abelian and non-Abelian anyons are also essential ingr
ents of Kitaev topological model of QC@7#.

Magnetic monopoles arise in spontaneously broken ga
theories in which the unbroken groupH is not simply con-
nected,p1(H)ÞI @28#. An example is the ’t Hooft-Polyakov
monopole arising in a gauge theory with a SU(2)→U(1)
spontaneous symmetry breaking~SSB!. This suggests a
straightforward strategy~although in practice highly non
trivial! for generating monopoles: find a SSB in a solid-st
model with nontrivialp1(H). This will generate monopole
like configurations which can be used in the present sche

There is a close relationship between anyons and the
phase. An~Abelian! anyon can be seen as a composite p
ticle made of a point charge with a magnetic-flux tube
tached. Thus, when one anyon goes around another an
there is a nontrivial braiding of the flux tubes and the wa
function picks up a phaseeiw. The origin of this phase is
clearly topological: it is the AB phase. Now it is easy to s
the link with statistics. Since swapping two anyons is equi
lent to a half revolution of one particle around the seco
plus a translation, the anyon statistics is given byu2 1&
5eiw/2u1 2&. From the boson/fermion statistics (eiw/25
61), a boson or a fermion will pick up a trivial phase whe
one particle encircles another one. Hence, in order to ha
nontrivial phase when one particle is moved around ano
~identical! one, we need fractional~anyonic! statistics.

It should be clear by now that in all the above examp
the topological phase is equivalent to the AB phase,
hence it is Abelian. It is known that Abelian phases canno
used alone to perform universal quantum computation
that non-Abelian phases are necessary@4#. We now turn to
the AC phase and show how it can produce all single-qu
rotations for spin qubits.

Non-Abelian phases: Spin qubits.In the original AC setup
@15#, a particle with magnetic momentmW moving around a
linear charge distribution picks up a topological phase p
portional to the~linear! charge densityl and to the homo-
topy classnPZ of the path,fAC54pnml/\c @16#. This
configuration~with an long line of charges! cannot be easily
implemented in practice. A more appropriate setup was p
posed by Casella@29# and later by Sangsteret al. @19#. The
infinite line of charge can be replaced by a simple capac
producing a uniform electric fieldE. A particle moving in
the static electric field E will see a magnetic fieldB5v
3E/c2 which couples to its magnetic momentmW . The sys-
tem is described by the spin-orbit~so! Hamiltonian

Hso5a sW •~v3E!, ~1!

where sW is the vector of Pauli matrices anda
5gme\/4mc2 (gm is the gyromagnetic factor!. It is straight-
forward to see that the phase produced byHso is nondisper-
03430
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sive, w52P*Hso dt/\5a P*gsW •(E3dl)/\, whereP de-
notes the path ordered integral.

Moreover,w is immune to fluctuations in velocity alon
E, sincevi3E50 ~and we decomposedv5vi1v' in com-
ponents along and perpendicular toE, respectively!. Nondis-
persivity also implies thatuv'u can vary, but not itsdirection.
That is to say, once the particle has entered the gate regio
should keep the same quantization axis given byv3E
@29,30#. This condition is easily satisfied in a mesoscop
context if the electron moves in a 1D quantum wire perp
dicular to the applied electric fieldE ~e.g., using top/bottom
or lateral gates!. Spin rotation with static electric fields
~Rashba effect! has been experimentally realized in meso
copic heterostructures@31,32#.

Hamiltonian~1! gives us the necessary ingredients to p
duce an arbitrary SU~2! gate @33# U(a,u,b)
5eiaszeiusyeibsz by rotating the spin along two differen
axes@34#. We discuss the following two possible setups f
implementing spin rotations using the AC phase~see Fig. 2!.

~a! The particle moves in a 1D quantum wire along thex
axis, v5(vx ,0,0). In this case we need electric fields o
ented alongy and z directions produced by top/bottom an
lateral gates, Fig. 2~a!;

~b! If only top/bottom gates are available~e.g., the electric
field is alwaysEx), Ry and Rz spin rotations can be per
formed by moving the particle alongz andy directions, re-
spectively, Fig. 2~b!.

Provided that the spin-quantization axis remains the sa
during the gate, the phase depends only on the product

FIG. 2. Two architectures for a topological single-qubit gateU
5eiaszeiusyeibsz. ~a! Flying spin qubits: the electron moves in a
quantum wire~black line! with v5(vx ,0,0). Static electric fields
along two directions,Ey and Ez , produce the spin rotations
Rz(a)[eiasz and Ry(u)[eiusy, respectively.Va,u,b are the gate
voltages producing the phasesa,u,b. ~b! A lattice of (quasi)static
spin qubits: U is enacted by moving the spin~black dot! along the
pathg, e.g., by tunneling on empty lattice sites~open circles!. An
electric fieldEx perpendicular to the plane of the figure is appli
by top/bottom gates~gray rectangles, shown only for the midd
qubit!.
5-3
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BRIEF REPORTS PHYSICAL REVIEW A68, 034305 ~2003!
tween the gate lengthL and the magnitude of the electr
field, w;EL. Here the productEL plays the role of the
linear charge densityl in the original AC setup; the homo
topy classn of the pathg is equivalent, in the Casella setu
to the number of timesg passes through the capacitor. Fro
an implementation point of view, this dependence is app
ing, since fabrication errors in the gate lengthL can be com-
pensated by fine tuning the applied fieldE.

In Table I we summarize the models presented above
So far we investigated only how to perform the ga

topologically, but we said nothing about protecting the act
qubit states. A straightforward strategy is to encode the

TABLE I. Topological gates~and the generating effects! for the
two models described.

H P(w) C(w)

Lattice model No Yes~AB! Yes ~AB!

Spin qubits Yes~AC! Yes ~AC! No
et

03430
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bits in decoherence-free subspaces and to perform topo
cal gates on the encoded qubits. Again, in practice this co
be nontrivial and implementation dependent.

In conclusion, in this paper we analyzed a general fram
work for constructing topological quantum gates. We ha
shown how both Abelian and non-Abelian gates can be p
formed topologically using the AB and AC effects. Due
their nondispersivity, topological gates relax the~quite strin-
gent! adiabaticity requirement present in holonomic Q
However, no universal set of topological gates has b
found yet. Progress in this direction is expected by using
concept ofencoded universality, i.e., a nonuniversal set o
gates becomes universal in a suitable qubit encoding. Fu
work includes investigating such encodings which cou
generate an universal set of topological gates from the~non-
universal! gates presented here.
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