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Cavity-QED-based quantum phase gate
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We describe a quantum phase gate in which the two qubits are represented by the photons in the two modes
of the cavity field. The gate is implemented by passing a three-level atom in a cascade configuration through
the cavity. The upper levels of the atom are resonant with one of the cavity modes whereas the lower levels are
appropriately detuned from the other mode of the cavityr Aohase shift is introduced when there is one
photon each in the two modes and the atom is initially in the ground state. We also discuss the one-bit unitary
gate in such a system and discuss potential applications.
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[. INTRODUCTION and sincd0)(0|=(1+ 0,)/2 and|1){1|=(1—-0,)/2, Eq.(1)
has the matrix representation

Quantum computin§l] employs the principle of coherent
superposition and quantum entanglement to solve certain 1 _
problems much faster than on a conventional computer. The Q,=1,1,— Z(l—e‘ N(1L1,— 10— 01+ 0,10,50).
basic building blocks of a quantum computer are quantum @
logic gates. A universal quantum computer can be built from
only two gates, namely, a one-bit unitary gate and a two-bit
conditional quantum phase gate. Such gates have been didere we discuss a quantum phase gate with.
cussed and implemented in many systems including trapped The schematics of the quantum phase gate is shown in
ions [2], Cavity quantum e|ectrodynami¢QED) [3,4], and Flg 1. The cavity has resonant frequencieslaand Vo, and
liquid state nuclear magnetic resonarfibé the photon number stat¢8) and|1) represent logic 0 and 1,

In many schemes to implement quantum logic gates, théespectively. Thus the possible cavity field states|@fed,),
two qubits are represented by two separate systems. For e}1,12), [11,0,), and|1;,1,). We consider a three-level atom
ample, the internal states of an atom represent one qubit arld cascade configuration such that the upper two levels are
the quantum state of the field inside the cavity represent theesonant with the cavity mode 2, i.ex,,= v,, and the lower
other in the recent cavity QED implementation of a quantundevels are detuned by an amoultfrom the cavity mode 1,
phase gatg¢4]. However, experimental realization of typical i.e., wp.=v;+A. Aquantum phase gate withraphase shift
quantum algorithms may require the two qubits to be treateds implemented if the atom in its ground std) passes
on equal footing. In this paper we discuss a quantum phasarough the cavity such thdt) the detuningA is equal to
gate based on cavity QED in which the two qubits are repg,, and(2) the interaction timer of the atom with the cavity
resented by two different modes of the radiation field insideis such thatg,;7=27. Hereg; (i=1,2) are the vacuum
the cavity and the gate is implemented by passing a threeRabi frequencies associated with the interaction of the cavity
level atom through the cavity. Cavity QED with long-lived modes with the respective atomic states. Under these condi-
Rydberg states and high-cavities thus provides a promis- tions, the atomic state is decoupled from the photon states
ing tool for creating entanglement and superpositions necesoth before and after the interaction and it remains in the
sary for the implementation of quantum computing algo-ground statéc). The cavity states also remain unaffected for

rithms. the initial stateg04,0,), |0,,1,), and|1,,0,), and acquire a
m phase shift only for the statd,,1,).
IIl. QUANTUM PHASE GATE In the following we discuss this phase gate, first in a

dressed state picture that brings out the essential physics
The transformation for a two-bit quantum phase gate igather clearly. We then present the exact treatment within the
given byQ,|ay,B,)=exp| 775511,15[32,1”&11:82)! where| a;) dipole approximation and discuss the errors in the implemen-
and|B,) stand for the basis staté3) or |1) of the qubits 1 tation. S
and 2, respectively. Thus the quantum phase gate introduces First we note that the atonfwhich is initially in the
a phasey only when both the qubits in the input states are 1.9round statéc)) will remain completely decoupled with the
A representation of the quantum phase gate is given by theavity field if there is no photon in the mode 1, i.e., when the

operator cavity field states ardaol,oz} and|04,1,). Also in the case
when there is one photon in mode 1 and no photon in mode
_ 2 (|14,0,)), the atom will again remain almost decoupled
=04, 04,0,|+104,1,)(04,1 1 o ; L -
Q,=101,02)(01,02| + 0, _2>< 1l from the cavity field states if the detuniny is sufficiently
+111,0,)(14,0,| +€'7]14,15)(14,1,], (1)  large. The interesting situation is, however, when there is one
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T N In terms of these statebi, can be rewritten as
- | a) v Ho=tga{l+)(+1 == )=}, ®
Ty T |_b5 _____ - with eigenvaluesig, and —#g,. Thus the net effect of the
A j ----- v field at frequencyv, is the dynamic Stark splitting. The
! HamiltonianH, in the interaction picture ofl, is given by
| ¢)
LV

hg . )
Hy=—={|+)(c,1,1]e (49— | —)(c,1,1]e~1(4~00)
FIG. 1. The schematics of the quantum phase gate. The cavity \/E
can hold two modes of frequenciegs andv,. The atomic levels are i(A+go)t i(A—go)t
+ + 2t - 2,
such thatw,,= v, and wy.=v,+A. lc,1,1)(+]e lc,1,1(—e h 9

photon each in the two modes of the cavity, i.e., the initial Wheng,=A, the interaction Hamiltonian simplifies, and
cavity field state ig1;,1,). We analyze this case in the fol- We obtain

lowing.
The effective Hamiltonian for the interaction, in the di- 0, ) .
pole and rotating-wave approximations, is H1|:Eﬂ+><C,111|e_2'At+|C,1,1><+|92'At—|—>
H=Ho+Hy, 3 x(c,1,1—|c,1,1(— [} (10
where

For sufficiently large detuning we can ignore the oscillating
Ho=tivala; +fiv,ala, +fiwpb)(b|+hw,da)(al, “ terms expt-2iAt), resulting in
4

lehgl(a1|b>(c|+a{|c>(b|)+ﬁg2(a2|a>(b|+a£|b>(a|i_), H1|=—fﬁzl{|—)<c,1,1|+|C,1,1}<—|}. (11)

v

where g; (aiT) are the photon annihiIaFion and.creatio_n OP-  The effective Rabi frequency between the levietd and
erators 'for the two'modes. The effective Hamiltonfdnin lc,1,1) is g;/v2. Thus for an interaction time between the
Interaction picture Is atom and the cavity field- such thatg,7= V2, we have

H,=e Hollipy Mol = H +H,, |c,1,1)— —|c,1,1). This completes the description of the
quantum phase gatg ..
where In this dressed picture analysis, we ignored the possibility
of excitation to the dressed stdte ). Also, when the initial
H,=%g(a;|b)(cle *'+allc)(ble™) state of the cavity field i§1,0), there is a finite possibility of

_ _ excitation to the leve|b). This is an important source of
=#9:(|b,0,1)(c,1,1le "**+|c,1,1(b,0,1|e'*"), (6)  error. In the following, we derive the exact solutions for the
probability amplitudes for these two cases and discuss the
H,=%g,(a,|a)(b|+aj|b)(al) amount of error.

=79,(|a,0,0)(b,0,1 +|b,0,1)(a,0,0]). (7)
A. Input state: |¢;)=|c,1,0)
Here we have used the fact that, for an initil,1,) state for For the input statéc,1,0), the wave vector at any time
states for the atom-field system af@0,0), [b,0,1), and  —c,(t)|c,1,0)+Cy(t)|b,0,0). Here the probability ampli-

le1n). _ tudesC, andC, satisfy the following Schidinger equations:
At this point we resort to a dressed state picture and de-

fine the symmetric and antisymmetric states with respect to _dCy At
the field mode 2, |ﬁW=ﬁglcze ,
|+ 1| 0,00+ |b,0,1 aC
=— a; 1 [} L] . —
) \/E( ) 2 |ﬁ§—t2=ﬁglcle 1At (12)
|—)= i(|a,0,0}—|b,0,1}). The initial conditions areC;(0)=1 andC,(0)=0. A solu-
V2 tion of EqQ.(12) subject to these conditions is
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FIG. 2. Real part of probability amplitude vs normalized detun- g 3. Probability vs normalized detuning/g, for gt

ing A/g, for g;t= 2. Dashed line is R&Z;) and dotted line is  _ 2. Dashed line i$C,|? and dotted line i$C,|2.
Re(C,).

The initial conditions ard(0)=1 andD,(0)=D3(0)=0
e—im/z] (Fig. 3. We can get an exact analytical solution for these

equations. These are given in the Appendix. We plot the real
parts of the amplitudes in Fig. 4 and the probabilities for

1A
o

1 A
Cl(t): EeIAt/Z[ ( 1_5) el!)t/2+

g1 . . » being in levels|a), |b), and|c) in Fig. 5. So, ifA/g;>5,
Cat)=—qe A2l M2— g1, (13 Dy(t) will be almost close to-1, or the condition foQ., is
realized.

where
C. Implementation

| 2
Q= A%+4g1. (14 The implementation of the quantum phase gate requires
_ o _ the passage of the three-level atom through a bimodal cavity.
In an ideal situation to implemenQ,, Cy(t)=1 and  There are a number of sources of error. The atomic and cav-
C,(t)=0 may be more appropriate whegt=/m. In Fig. 2 ity lifetimes should be larger than the interaction time of the

we plot the real parts of,(t) andCy(t) as a function of the  atoms with the cavity fields. The photon numbers in the two
normalized detuning\/g;. A condition for achieving the de-

sired behavior isA\/g;>1. For intermediate value af/g;,

the state will return to its initial statge,1,0) except the un-
desired phase factor. This additional phase factor results ir 081 1
an error in the implementation of quantum phase gate Re(D,) ]

1

06f
B. Initial state: |¢,)=|c,1,1) Ul § / Re(D,) |
| \\ 7 A/ 3

For the initial statgc,1,1) for the atom-field system, the  %2[ TaY . i I
wave vector at any time is of the form,(t)) avi YT
=D4(t)|c,1,1)+Dy(t)|b,0,1)+ D4(t)|a,0,0). The corre- = R
sponding equations for the amplitud&s(t), D,(t), and
Dj(t) are

JD )
iﬁ#zﬁngze'“, (15)

., 9D2 —iAt 0
ih——==hgiDe" 'V +hg,D3, (16) Alg
ot
FIG. 4. Real part of probability amplitudes vs normalized de-
i% D3 =1g,D (17) tuning A/g, with the conditionsy, 7= 27 andg,=A. Solid line
at =2 is Re(D,), dashed line Rd},), and dotted line Réj5).
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U(t)=codgtyaa’)|a)(a|+cog gtyaTa)|b)(b]

_.sir\(gt\/ﬁf)aIa b|_.aTsin(gtJ£f)|b a
| l—@ )(b[—i N )al.
(19

1 For interaction timer=7r/2g, the atom-field statgh)|0)
remains unaffected; however, the stdt®|1) evolves to
—ila)|0). The additional phase facteri in the evolution of
the statgb)|1) results in the one-bit unitary operatd , .

In the second region, a short classical pulse with ampli-
tude £ is applied, which prepares the atom in the coherent
superposition:

|a)—{cos@|a)+ie”'?sing|b)},

|b)—{ie'?sin g|a) + cosd|b)}. (20)

FIG. 5. Probability vs normalized detuniny/g, with the con-  Here §=t/2, wheret is the interaction time{) = Ip| &t is
ditions g;7= 27 and g,=A. Solid line is|D,|? dashed line  the Rabi frequency, and is the phase of the dipole moment
D2|?, and dotted lindDs|*. p=|p|e'?=e(alx|b). The cavity field remains i) state.

) ) . . In the third region, the atom again interacts with the cav-
cavity modes should also remain unaltered during the mterl-ty field for the durationr=/2g and the end result is that
action with the atom. As seen above, this requires sufficientlyy o atom exits the cavity in state) and the cavity field is

large detuningA. transformed according to the initial cavity staté$ and|1)

as follows:
I1l. ONE-BIT UNITARY GATE

: : 0 6]0)+e'?sing|1
For a present case of two qubits represented by photons in |0)—{cos6]0) +e'"sin | 1))}

the two modes of the cavity field, the one-bit unitary gate can 11)—{e'¢sin6|0)— cos6| 1))} (21)
be implemented by passing a resonant two-level atom
through the cavity(see Fig. . In addition, a short pulse of Thus the implemented one-bit unitary operatb'” is
classical field is applied midway during the passage through '
the cavity. Thus there are three regions for the interaction of U cosf e ?sing
the atom inside the cavity. 0.6~ —ide:

In the first region, the atom initially in the ground state * le"sing  —cosd
|b) interacts with the cavity quantized field via an interaction =C0Sfo,+Cos¢ sinfoy—singsinfo,. (22
picture Hamiltonian _

The unitary operatOU'MS does not satisfy the addition

H=tg(ala)(b|+a'[b)(al). (18)  property for rotation even fop=0, i.e.,
The associated unitary operaf@] is Ul 0,07 U, Vb, 0- (23
VN As a special case, if we chooge= /4 and¢=0, the states
|0) and|1) are mixed according to
 a 1
@) 123 10)— —=(l0)+ 1),
- V2

—@— | b) 1
|1>—>E(|0>—|1>)- (24)

IV. APPLICATIONS
Classical field A. Grover’s algorithm

FIG. 6. The schematics of the one-bit unitary gate. The atom Grover’s algorithm is a quantum algorithm to find the
interacts with the resonant quantized field in regions 1 and 3 angpecified item from an unsorted data that contdinsems.

interacts with the classical field in region 2. The estimated number of iteration is of the ordeiGifyN)
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and the search is accomplished witk log,N qubits[7-9].
Recently, some cavity QED based implementation of Grov-| 0)
er's algorithm have been proposed. In Reff$0,11], the  |o)
implementation scheme uses a quantum phase gate based ...
dispersive atomic couplinf4]. In another schemglL2], the
interaction of two atoms interacting nonresonantly with the
cavity field[13,14] is used. Here we consider a scheme for

the implementation of Grover’s algorithm with two qubits In the present scheme, a high<avity is initially pre-

baﬁ_ehd on olne- artldt'two-liltGgates’dlslcuss_tid abovg. h pared in the|0,,0,) state. The number of atoms needed in
€ Impiementation of Lrovers aigorithm requires thre€ o g algorithm are 10-12, corresponding to one-bit and

stepqd7]. The first step is to prepare the quantum system with) : .
. . . wo-bit gates. The passage of these atoms with controlled
equal amplitude state for all possib\e=2" states. The iter- g b g

) interaction times will implement all the necessary steps for
ated step has two parts. One is to change the phase of tlﬁg P Y Step

ifiad b d the other i v the diffusi e Grover's algorithm. Additional two atoms may be re-
specitie state. yr, and the other IS to apply the diftusion quired for the readout of the intracavity fields.

transform®D to increase the probability of the specified state

by the inversion about the averag]

FIG. 7. Circuit diagram for the implementation of Grover’s al-
gorithm with two qubits.

B. Measurement of Bell's basis

D, :E - (25) Another interesting application of the quantum logic gates

N T discussed in this paper is in the measurement of Bell's basis
_ ) _ ) that is crucial for quantum teleportatigd5] and quantum

where §;; is the Kronecker delta. This step is carried outyense coding16].
mN/4 times to maximize the probability of the specified  The Bell's basis consists of the following orthogonal set
state. The final step is to measure the whole system to get thg states:
specified state. _

We now discuss how the one-bit unitary gm§¢ and the 1
two-bit quantum phase gat@,, discussed here can be used 1) = E(|01,12>_|11,02>),
to implement the Grover’s algorithm for the simple case of
two qubits withN=4. It is known that the search process
can be carried out only in one step with unit probability of 1
success for this particelllar caEElO].p P g |4h2)= ﬁ(|01'12>+|11’02>)'

The two qubits are initially prepared in the stafg,0,),
i.e., vacuum state for both modes inside the cavity. The one- 1
bit unitary gateU o to each qubit yields the state with _ = _
same amplitude for each state, i.e., [#s) \/§(|01’02> 112D,

ly)=U 717/4,0U i/4,o| 0,,0,) 1
[y = —=(101,02) +[11,15)). (29
= 210003 +103, 1) +11.02)+[11,1)). (29 o

Next step is to change the sign of the phase in the spec” can be shown that the operation

fied state through the phase rotation, or applying the operator

1 2 1
C..z, Which change the sign of the stdie, , 3,): U3/4,0Q 7Y 7/a.0Y 71,0 (30

on the input state yield$0,,0,), |0;,1,), |1;,0,), and

Coo= 0510 ,T=U,lT U,zT -
00~ T 7eQun = Uniz oz o2 |1;,1) for the input statesy), |i2), |ws), and i), re-

Co1=0,Q,=U 1 . spectively.
01=7aQ w209 Thus, for an initial two-mode state inside the cavity, a
Cpo=00Q, =U2 . passage of four ato_ms implementing three one-bit an_d one
10702 Qr=Uzn0Q two-bit gate according to Eq:30) will measure the cavity
C1=0Q,. 27) state in Bell's basis. As before, two more atoms will be re-

quired for the readout of the photon states inside the cavities.
The inversion about the averageperation can be carried
out via the operator ACKNOWLEDGMENTS

D=UL, U2 UtnoU200Q-UruU2u0.  (28) The authors gratefully acknowledge the support from Air
Force Research Laboratorié€Bome, New Yorlk, DARPA-
The circuit diagram corresponding to these operations inQuIST, TAMU Telecommunication and Informatics Task
volving the one-qubit unitary gatél'w5 and the two-qubit Force (TITF) initiative, the Office of Naval Research, and
quantum phase gag, is shown in Fig. 7. the Welch Foundation.

033820-5



ZUBAIRY, KIM, AND SCULLY

APPENDIX: SOLUTION OF EQS. (15-(17)

On eliminatingD; and D5 in Egs. (15—(17) we obtain
the following third-order differential equation f@,:

2

Dy
[

D, oD, |
pe +(97+03)— +iAgiD,=0. (A1)

at?
The initial conditions forD, (att=0) are

#°D,

D, B A
atz gl "

D2:O, ot =

_i911 (AZ)

We consider a solution of the form
D,=Ae“1'+ Bev2!+ Ce 3!,

wherew;, w,, andw; are the roots of the third-order poly-
nomial

Z2+iAZ%+(gi+g3)z+ig5A=0.

The coefficientsA, B, and C satisfy the following linear
equation:

1 1 1 A 0
w; W o3 B|=| —ig; |, (A3)
0 05 w3 C —0:A

PHYSICAL REVIEW A 68, 033820(2003

yielding

A—I(w2+ (1)3)

A= (01— wy)(w3— wy) 9,

A—i(w3ztwq)

B= (w3~ w3)(w1—wy) 9,

A_|((1)l+ (1)2)

C= (a0 (wo—wg) I

We can calculat®,; andD3; from D, by integrating Egs.
(17) and(19), i.e.,

t
D1:1_|91J DzelAtdt
0

__9A oprinp_ 9B oyeian
ig.C A
_ -7 Alwgtid)t
watidC (A4)
and
: t ig;A . ig.B . ig,C
=1— = — w1l __ w2l __ @3
D;=1 |glf0D2dt wor e w0y e 3 evs,
(A5)
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