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Cavity-QED-based quantum phase gate
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We describe a quantum phase gate in which the two qubits are represented by the photons in the two modes
of the cavity field. The gate is implemented by passing a three-level atom in a cascade configuration through
the cavity. The upper levels of the atom are resonant with one of the cavity modes whereas the lower levels are
appropriately detuned from the other mode of the cavity. Ap phase shift is introduced when there is one
photon each in the two modes and the atom is initially in the ground state. We also discuss the one-bit unitary
gate in such a system and discuss potential applications.
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I. INTRODUCTION

Quantum computing@1# employs the principle of coheren
superposition and quantum entanglement to solve cer
problems much faster than on a conventional computer.
basic building blocks of a quantum computer are quant
logic gates. A universal quantum computer can be built fr
only two gates, namely, a one-bit unitary gate and a two
conditional quantum phase gate. Such gates have been
cussed and implemented in many systems including trap
ions @2#, cavity quantum electrodynamics~QED! @3,4#, and
liquid state nuclear magnetic resonance@5#.

In many schemes to implement quantum logic gates,
two qubits are represented by two separate systems. Fo
ample, the internal states of an atom represent one qubit
the quantum state of the field inside the cavity represent
other in the recent cavity QED implementation of a quant
phase gate@4#. However, experimental realization of typic
quantum algorithms may require the two qubits to be trea
on equal footing. In this paper we discuss a quantum ph
gate based on cavity QED in which the two qubits are r
resented by two different modes of the radiation field ins
the cavity and the gate is implemented by passing a th
level atom through the cavity. Cavity QED with long-live
Rydberg states and high-Q cavities thus provides a promis
ing tool for creating entanglement and superpositions ne
sary for the implementation of quantum computing alg
rithms.

II. QUANTUM PHASE GATE

The transformation for a two-bit quantum phase gate
given byQhua1 ,b2&5exp(ihda1,1db2,1)ua1 ,b2&, whereua1&
and ub2& stand for the basis statesu0& or u1& of the qubits 1
and 2, respectively. Thus the quantum phase gate introd
a phaseh only when both the qubits in the input states are
A representation of the quantum phase gate is given by
operator

Qh5u01,02&^01,02u1u01,12&^01,12u

1u11,02&^11,02u1eihu11,12&^11,12u, ~1!
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and sinceu0&^0u5(11sz)/2 andu1&^1u5(12sz)/2, Eq.~1!
has the matrix representation

Qh511122
1

4
~12eih!~1112211sz22sz1121sz1sz2!.

~2!

Here we discuss a quantum phase gate withh5p.
The schematics of the quantum phase gate is show

Fig. 1. The cavity has resonant frequencies atn1 andn2, and
the photon number statesu0& andu1& represent logic 0 and 1
respectively. Thus the possible cavity field states areu01,02&,
u01,12&, u11,02&, andu11,12&. We consider a three-level atom
in cascade configuration such that the upper two levels
resonant with the cavity mode 2, i.e.,vab5n2, and the lower
levels are detuned by an amountD from the cavity mode 1,
i.e.,vbc5n11D. A quantum phase gate with ap phase shift
is implemented if the atom in its ground stateuc& passes
through the cavity such that~1! the detuningD is equal to
g2, and~2! the interaction timet of the atom with the cavity
is such thatg1t5A2p. Here gi ( i 51,2) are the vacuum
Rabi frequencies associated with the interaction of the ca
modes with the respective atomic states. Under these co
tions, the atomic state is decoupled from the photon sta
both before and after the interaction and it remains in
ground stateuc&. The cavity states also remain unaffected f
the initial statesu01,02&, u01,12&, andu11,02&, and acquire a
p phase shift only for the stateu11,12&.

In the following we discuss this phase gate, first in
dressed state picture that brings out the essential phy
rather clearly. We then present the exact treatment within
dipole approximation and discuss the errors in the implem
tation.

First we note that the atom~which is initially in the
ground stateuc&) will remain completely decoupled with th
cavity field if there is no photon in the mode 1, i.e., when t
cavity field states areu01,02& and u01,12&. Also in the case
when there is one photon in mode 1 and no photon in m
2 (u11,02&), the atom will again remain almost decouple
from the cavity field states if the detuningD is sufficiently
large. The interesting situation is, however, when there is
©2003 The American Physical Society20-1
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photon each in the two modes of the cavity, i.e., the ini
cavity field state isu11,12&. We analyze this case in the fo
lowing.

The effective Hamiltonian for the interaction, in the d
pole and rotating-wave approximations, is

H5H01H1 , ~3!

where

H05\n1a1
†a11\n2a2

†a21\vbcub&^bu1\vacua&^au,
~4!

H15\g1~a1ub&^cu1a1
†uc&^bu!1\g2~a2ua&^bu1a2

†ub&^au!,
~5!

whereai (ai
†) are the photon annihilation and creation o

erators for the two modes. The effective HamiltonianHI in
interaction picture is

H I[e2 iH0t/\H 1eiH0t/\5H11H2 ,

where

H15\g1~a1ub&^cue2 iDt1a1
†uc&^bueiDt!

5\g1~ ub,0,1&^c,1,1ue2 iDt1uc,1,1&^b,0,1ueiDt!, ~6!

H25\g2~a2ua&^bu1a2
†ub&^au!

5\g2~ ua,0,0&^b,0,1u1ub,0,1&^a,0,0u!. ~7!

Here we have used the fact that, for an initialu11,12& state for
the cavity and the stateuc& for the atom, the only allowed
states for the atom-field system areua,0,0&, ub,0,1&, and
uc,1,1&.

At this point we resort to a dressed state picture and
fine the symmetric and antisymmetric states with respec
the field mode 2,

u1&[
1

A2
~ ua,0,0&1ub,0,1&),

u2&[
1

A2
~ ua,0,0&2ub,0,1&).

FIG. 1. The schematics of the quantum phase gate. The ca
can hold two modes of frequenciesn1 andn2. The atomic levels are
such thatvab5n2 andvbc5n11D.
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In terms of these states,H2 can be rewritten as

H25\g2$u1&^1u2u2&^2u%, ~8!

with eigenvalues\g2 and2\g2. Thus the net effect of the
field at frequencyn2 is the dynamic Stark splitting. The
HamiltonianH1 in the interaction picture ofH2 is given by

H1I5
\g1

A2
$u1&^c,1,1ue2 i (D1g2)t2u2&^c,1,1ue2 i (D2g2)t

1uc,1,1&^1uei (D1g2)t2uc,1,1&^2uei (D2g2)t%. ~9!

Wheng25D, the interaction Hamiltonian simplifies, an
we obtain

H1I5
\g1

A2
$u1&^c,1,1ue22iDt1uc,1,1&^1ue2iDt2u2&

3^c,1,1u2uc,1,1&^2u%. ~10!

For sufficiently large detuning we can ignore the oscillati
terms exp(62iDt), resulting in

H1I52
\g1

A2
$u2&^c,1,1u1uc,1,1&^2u%. ~11!

The effective Rabi frequency between the levelsu2& and
uc,1,1& is g1 /A2. Thus for an interaction time between th
atom and the cavity fieldt such thatg1t5A2p, we have
uc,1,1&→2uc,1,1&. This completes the description of th
quantum phase gateQp .

In this dressed picture analysis, we ignored the possib
of excitation to the dressed stateu1&. Also, when the initial
state of the cavity field isu1,0&, there is a finite possibility of
excitation to the levelub&. This is an important source o
error. In the following, we derive the exact solutions for t
probability amplitudes for these two cases and discuss
amount of error.

A. Input state: zc1‹Äzc,1,0‹

For the input stateuc,1,0&, the wave vector at any timet
is a superposition ofuc,1,0& and ub,0,0& states, i.e.,uc1&
5C1(t)uc,1,0&1C2(t)ub,0,0&. Here the probability ampli-
tudesC1 andC2 satisfy the following Schro¨dinger equations:

i\
]C1

]t
5\g1C2eiDt,

i\
]C2

]t
5\g1C1e2 iDt. ~12!

The initial conditions areC1(0)51 andC2(0)50. A solu-
tion of Eq. ~12! subject to these conditions is

ity
0-2
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C1~ t !5
1

2
eiDt/2H S 12

D

V DeiVt/21S 11
D

V De2 iVt/2J ,

C2~ t !52
g1

V
e2 iDt/2~eiVt/22e2 iVt/2!, ~13!

where

V[AD214g1
2. ~14!

In an ideal situation to implementQp , C1(t)51 and
C2(t)50 may be more appropriate wheng1t5Ap. In Fig. 2
we plot the real parts ofC1(t) andC2(t) as a function of the
normalized detuningD/g1. A condition for achieving the de
sired behavior isD/g1@1. For intermediate value ofD/g1,
the state will return to its initial stateuc,1,0& except the un-
desired phase factor. This additional phase factor result
an error in the implementation of quantum phase gateQp .

B. Initial state: zc2‹Äzc,1,1‹

For the initial stateuc,1,1& for the atom-field system, the
wave vector at any time is of the formuc2(t)&
5D1(t)uc,1,1&1D2(t)ub,0,1&1D3(t)ua,0,0&. The corre-
sponding equations for the amplitudesD1(t), D2(t), and
D3(t) are

i\
]D1

]t
5\g1D2eiDt, ~15!

i\
]D2

]t
5\g1D1e2 iDt1\g2D3 , ~16!

i\
]D3

]t
5\g2D2 . ~17!

FIG. 2. Real part of probability amplitude vs normalized detu
ing D/g1 for g1t5A2p. Dashed line is Re(C1) and dotted line is
Re(C2).
03382
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The initial conditions areD1(0)51 andD2(0)5D3(0)50
~Fig. 3!. We can get an exact analytical solution for the
equations. These are given in the Appendix. We plot the
parts of the amplitudes in Fig. 4 and the probabilities
being in levelsua&, ub&, and uc& in Fig. 5. So, ifD/g1@5,
D1(t) will be almost close to21, or the condition forQp is
realized.

C. Implementation

The implementation of the quantum phase gate requ
the passage of the three-level atom through a bimodal ca
There are a number of sources of error. The atomic and c
ity lifetimes should be larger than the interaction time of t
atoms with the cavity fields. The photon numbers in the t

- FIG. 3. Probability vs normalized detuningD/g1 for g1t
5A2p. Dashed line isuC1u2 and dotted line isuC2u2.

FIG. 4. Real part of probability amplitudes vs normalized d
tuning D/g1 with the conditionsg1t5A2p andg25D. Solid line
is Re(D1), dashed line Re(D2), and dotted line Re(D3).
0-3
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cavity modes should also remain unaltered during the in
action with the atom. As seen above, this requires sufficie
large detuningD.

III. ONE-BIT UNITARY GATE

For a present case of two qubits represented by photon
the two modes of the cavity field, the one-bit unitary gate c
be implemented by passing a resonant two-level a
through the cavity~see Fig. 6!. In addition, a short pulse o
classical field is applied midway during the passage thro
the cavity. Thus there are three regions for the interaction
the atom inside the cavity.

In the first region, the atom initially in the ground sta
ub& interacts with the cavity quantized field via an interacti
picture Hamiltonian

H5\g~aua&^bu1a†ub&^au!. ~18!

The associated unitary operator@6# is

FIG. 5. Probability vs normalized detuningD/g1 with the con-
ditions g1t5A2p and g25D. Solid line is uD1u2, dashed line
uD2u2, and dotted lineuD3u2.

FIG. 6. The schematics of the one-bit unitary gate. The at
interacts with the resonant quantized field in regions 1 and 3
interacts with the classical field in region 2.
03382
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U~ t !5cos~gtAaa†!ua&^au1cos~gtAa†a!ub&^bu

2 i
sin~gtAaa†!

Aaa†
aua&^bu2 ia†

sin~gtAaa†!

Aaa†
ub&^au.

~19!

For interaction timet5p/2g, the atom-field stateub&u0&
remains unaffected; however, the stateub&u1& evolves to
2 i ua&u0&. The additional phase factor2 i in the evolution of
the stateub&u1& results in the one-bit unitary operatorUu,f

i .
In the second region, a short classical pulse with am

tude E is applied, which prepares the atom in the coher
superposition:

ua&→$cosuua&1 ie2 ifsinuub&%,

ub&→$ ieifsinuua&1cosuub&%. ~20!

Hereu5Vt/2, wheret is the interaction time,V5upuE/\ is
the Rabi frequency, andf is the phase of the dipole momen
p5upueif5e^auxub&. The cavity field remains inu0& state.

In the third region, the atom again interacts with the ca
ity field for the durationt5p/2g and the end result is tha
the atom exits the cavity in stateub& and the cavity field is
transformed according to the initial cavity statesu0& and u1&
as follows:

u0&→$cosuu0&1eifsinuu1&)%

u1&→$e2 ifsinuu0&2cosuu1&)%. ~21!

Thus the implemented one-bit unitary operatorUu,f
i is

Uu,f
i 5S cosu eifsinu

e2 ifsinu 2cosu D
5cosusz1cosf sinusx2sinf sinusy . ~22!

The unitary operatorUu,f
i does not satisfy the addition

property for rotation even forf50, i.e.,

Uu11u2,0
i ÞUu1,0

i Uu2,0
i . ~23!

As a special case, if we chooseu5p/4 andf50, the states
u0& and u1& are mixed according to

u0&→
1

A2
~ u0&1u1&),

u1&→
1

A2
~ u0&2u1&). ~24!

IV. APPLICATIONS

A. Grover’s algorithm

Grover’s algorithm is a quantum algorithm to find th
specified item from an unsorted data that containsN items.
The estimated number of iteration is of the order ofO(AN)
d

0-4
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and the search is accomplished withn5 log2N qubits @7–9#.
Recently, some cavity QED based implementation of Gr
er’s algorithm have been proposed. In Refs.@10,11#, the
implementation scheme uses a quantum phase gate bas
dispersive atomic coupling@4#. In another scheme@12#, the
interaction of two atoms interacting nonresonantly with t
cavity field @13,14# is used. Here we consider a scheme
the implementation of Grover’s algorithm with two qubi
based on one- and two-bit gates discussed above.

The implementation of Grover’s algorithm requires thr
steps@7#. The first step is to prepare the quantum system w
equal amplitude state for all possibleN52n states. The iter-
ated step has two parts. One is to change the phase o
specified state byp, and the other is to apply the diffusio
transformD to increase the probability of the specified sta
by the inversion about the average@7#

Di j 5
2

N
2d i j , ~25!

where d i j is the Kronecker delta. This step is carried o
pAN/4 times to maximize the probability of the specifie
state. The final step is to measure the whole system to ge
specified state.

We now discuss how the one-bit unitary gateUu,f
i and the

two-bit quantum phase gateQp discussed here can be us
to implement the Grover’s algorithm for the simple case
two qubits withN54. It is known that the search proce
can be carried out only in one step with unit probability
success for this particular case@7,10#.

The two qubits are initially prepared in the stateu01,02&,
i.e., vacuum state for both modes inside the cavity. The o
bit unitary gateUp/4,0 to each qubit yields the state wit
same amplitude for each state, i.e.,

uc&5Up/4,0
1 Up/4,0

2 u01 ,02&

5
1

2
~ u01,02&1u01 ,12&1u11 ,02&1u11 ,12&). ~26!

Next step is to change the sign of the phase in the sp
fied state through the phase rotation, or applying the oper
Ca,b , which change the sign of the stateua1 ,b2&:

C0,05sx1sx2Qp5Up/2,0
1 Up/2,0

2 Qp ,

C0,15sx1Qp5Up/2,0
1 Qp ,

C1,05sx2Qp5Up/2,0
2 Qp ,

C1,15Qp . ~27!

The inversion about the averageoperation can be carrie
out via the operator

D5Up/2,0
1 Up/2,0

2 Up/4,0
1 Up/4,0

2 QpUp/4,0
1 Up/4,0

2 . ~28!

The circuit diagram corresponding to these operations
volving the one-qubit unitary gateUu,f

i and the two-qubit
quantum phase gateQh is shown in Fig. 7.
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In the present scheme, a high-Q cavity is initially pre-
pared in theu01,02& state. The number of atoms needed
Grover’s algorithm are 10–12, corresponding to one-bit a
two-bit gates. The passage of these atoms with contro
interaction times will implement all the necessary steps
the Grover’s algorithm. Additional two atoms may be r
quired for the readout of the intracavity fields.

B. Measurement of Bell’s basis

Another interesting application of the quantum logic ga
discussed in this paper is in the measurement of Bell’s b
that is crucial for quantum teleportation@15# and quantum
dense coding@16#.

The Bell’s basis consists of the following orthogonal s
of states:

uc1&5
1

A2
~ u01,12&2u11,02&),

uc2&5
1

A2
~ u01,12&1u11,02&),

uc3&5
1

A2
~ u01,02&2u11,12&),

uc4&5
1

A2
~ u01,02&1u11,12&). ~29!

It can be shown that the operation

U3p/4,0
1 QpUp/4,0

2 Up/4,0
1 ~30!

on the input state yieldsu01,02&, u01,12&, u11,02&, and
u11,12& for the input statesuc1&, uc2&, uc3&, and uc4&, re-
spectively.

Thus, for an initial two-mode state inside the cavity,
passage of four atoms implementing three one-bit and
two-bit gate according to Eq.~30! will measure the cavity
state in Bell’s basis. As before, two more atoms will be
quired for the readout of the photon states inside the cavit

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from A
Force Research Laboratories~Rome, New York!, DARPA-
QuIST, TAMU Telecommunication and Informatics Tas
Force ~TITF! initiative, the Office of Naval Research, an
the Welch Foundation.

FIG. 7. Circuit diagram for the implementation of Grover’s a
gorithm with two qubits.
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APPENDIX: SOLUTION OF EQS. „15…–„17…

On eliminatingD1 and D3 in Eqs. ~15!–~17! we obtain
the following third-order differential equation forD2:

]3D2

]t3
1 iD

]2D2

]t2
1~g1

21g2
2!

]D2

]t
1 iDg2

2D250. ~A1!

The initial conditions forD2 ~at t50) are

D250,
]D2

]t
52 ig1 ,

]2D2

]t2
52g1D. ~A2!

We consider a solution of the form

D25Aev1t1Bev2t1Cev3t,

wherev1 , v2, andv3 are the roots of the third-order poly
nomial

z31 iDz21~g1
21g2

2!z1 ig2
2D50.

The coefficientsA, B, and C satisfy the following linear
equation:

S 1 1 1

v1 v2 v3

v1
2 v2

2 v3
2
D S A

B

C
D 5S 0

2 ig1

2g1D
D , ~A3!
.

.J

M

03382
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A5
D2 i ~v21v3!

~v12v2!~v32v1!
g1 ,

B5
D2 i ~v31v1!

~v22v3!~v12v2!
g1 ,

C5
D2 i ~v11v2!

~v32v1!~v22v3!
g1 .

We can calculateD1 andD3 from D2 by integrating Eqs.
~17! and ~19!, i.e.,

D1512 ig1E
0

t

D2eiDtdt

52
ig1A

v11 iD
e(v11 iD)t2

ig1B

v21 iD
e(v21 iD)t

2
ig1C

v31 iD
e(v31 iD)t ~A4!

and

D3512 ig1E
0

t

D2dt52
ig1A

v1
ev1t2

ig1B

v2
ev2t2

ig1C

v3
ev3.

~A5!
.
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