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Methods of asymptotic analysis in cavity quantum electrodynamics
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The energy-level shift of a ground-state atom in front of a nondispersive dielectric half-space is calculated
by quantizing the electric field by means of a normal-mode expansion and applying second-order perturbation
theory to the electric-dipole Hamiltonianm•E. It is shown that the contributions to this shift coming from
traveling and from evanescent waves can be combined into a single expression which lends itself readily to
asymptotic analysis for large atom-surface separations, while in the opposite asymptotic regime when the atom
is close to the surface the combined expression is less convenient. Employing a Green’s-function formalism
instead of the normal-mode expansion leads directly to the combined formula, and in that case it is advanta-
geous to be able to apply the same transformation backwards and split the energy shift into a sum of distinct
contributions corresponding to different physical processes. The analysis serves to shed light on common
sources of error in the literature and paves the way for the study of more complicated models in cavity quantum
electrodynamics.
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I. INTRODUCTION

The nature of the interaction of an atom with a surfa
depends on the distance between them. If the atom is clo
the surface the interaction is dominated by electrostatics,
the atomic dipole experiences Coulomb forces due to im
charges on the other side of the surface. However, as
worked out by Casimir and Polder@1#, retardation become
important for atoms further away from the surface. This
because the electromagnetic interaction between the a
and the surface has a finite speed of propagation. Cas
and Polder considered an atom in its ground state interac
with a perfectly reflecting surface, but the analysis can
extended to excited-state atoms@2,3#. To be more realistic
one needs to consider atoms interacting with imperfectly
flecting surfaces, which in the simplest case can be mod
by nondispersive dielectrics@4–6#. However, as models fo
the surface become more realistic, they also become m
involved, which often means that crucial results for phy
cally interesting quantities can be obtained only through
merical simulations@4,5#. While for a nondispersive surfac
characterized by a constant refractive index we did man
to obtain analytical results for the energy-level shifts a
modified emission rates of the atom in both nonretarded
retarded limits@6#, this was at the expense of having to en
into a rather involved mathematical derivation@7#. The tech-
nique devised in Ref.@7# and applied in Ref.@6# becomes too
cumbersome for the more complicated problem of an a
interacting with a dispersive and absorbing dielectric surf
@8#. Thus we desire to investigate easier routes to asymp
expressions for energy-level shifts in cavity quantum elec
dynamics.

In this paper we discuss an alternative approach to
problem studied in Ref.@6# where we worked with the mini-
mal coupling Hamiltonianp•A and applied standard first
and second-order perturbation theory. Here we calculate
energy-level shift of an atom close to a nondispersive die
tric surface by using the lowest-order multipole Hamiltonia
1050-2947/2003/68~3!/033813~9!/$20.00 68 0338
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i.e., the electric-dipole interactionm•E, and we apply both
second-order perturbation theory and MacLachlan’s susc
tibility formula obtained from linear-response theory@9#. As
we wish to concentrate on the comparison of the differ
approaches to the problem, we shall consider only grou
state atoms and we shall work at zero temperature. For fi
temperature effects we refer the reader to Ref.@10# and ref-
erences therein.

The system we shall study consists of an atom in front
a nondispersive dielectric half-space; the dielectric is
sumed to have a constant real, frequency-independent re
tive index n. The atom is at a distanceZ away from the
dielectric surface, with its center fixed at the pointr0
5(0,0,Z). As mentioned above, we shall consider the at
to be in its ground state and the system to be at zero t
perature, so that the fluctuations of the radiation field
solely quantum and not thermal.

In the following section we calculate the energy-lev
shift of the atom by quantizing the electromagnetic fie
through a normal-mode expansion and applying seco
order perturbation theory to the dipole Hamiltonianm•E. In
Sec. II B we devise a transformation of the expression for
energy-level shift which allows us to combine the contrib
tions from traveling and evanescent waves into a single
mula. It will then be shown in Sec. II C that this makes t
asymptotic analysis of the level shift rather straightforwa
In Sec. III we shall make contact with Green’s-function a
proaches based on linear-response theory~see, e.g., Refs
@9,4,5#! and compare the formulas for the level shift and t
approximations for its asymptotic analysis with the previo
approach. On the basis of our calculation we are able
vindicate the approximation of using the static polarizabil
in the retarded limit, which many previous workers ha
applied but often without rigorous justification. We discu
the comparison of the various approaches in Sec. IV
summarize our results. The Appendix provides details of
normal-mode functions of the electromagnetic field in t
presence of a dielectric half-space.
©2003 The American Physical Society13-1
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II. THE DIPOLE HAMILTONIAN

We consider a single-electron atom near a dielectric h
space at zero temperature; the dielectric medium is take
be nondispersive and nondissipative, so that the dielec
permittivity of the configuration is

e~r !5H n2 for z,0

1 for z.0,
~2.1!

at all frequencies. We assume that the atom is in its gro
state, with its center fixed at the pointr05(0,0,Z). The in-
teraction between the atom and the dielectric through
quantized electromagnetic field is described by the Ham
tonian

H I52m•E~r ,t !, ~2.2!

where m5e(r2r0) is the electric-dipole moment operato
andE(r ,t) the transverse electric field. This Hamiltonian
the lowest order in the multipole Hamiltonian and corr
sponds to electric-dipole interactions@11#. In contrast to the
minimal coupling Hamiltonianp•A, the Hamiltonian in Eq.
~2.2! automatically includes the electrostatic interaction b
tween the atomic dipole and its image in the dielectric@12#.

In order to quantize the electromagnetic field we need
solve Maxwell’s equations in the presence of a dielec
half-space. We do this by introducing the electromagne
potentialsF(r ,t) and A(r ,t). Since we are considering a
overall neutral system, i.e., the net charge density in
construction is zero, we can setF(r ,t)50. Furthermore, in
the generalized Coulomb gauge

¹•@ e~r !A #50, ~2.3!

the field equations reduce to the wave equation forA(r ,t).
Thus solutions can be obtained by taking combinations
incident, reflected, and refracted waves, and imposing co
nuity conditions at the vacuum-dielectric interface.

Introducing the creation and annihilation operato
an ,an

† , one can express the field operatorE(r ,t) in terms of
the normal modesfn(r )

E~r ,t !5 i (
n
Avn

2
@ane2 ivntfn~r !2an

†eivntfn* ~r !#.

~2.4!

The mode functionsfn(r ) are labeled according to the pola
ization and the wave vector of the incident wave, both
which are amalgamated into the greek indexn; their explicit
form is given by Eqs.~A4!–~A7! in the Appendix.

A. Energy-level shifts

We shall now calculate the energy-level shift by perturb
tion theory. Since the interaction Hamiltonian~2.2! is linear
in the electron chargee, we must calculate the shift up to th
second order of perturbation theory if we want to obtain it
first order in the fine-structure constanta. Being linear in the
electric field,H I creates or annihilates one photon from t
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state it operates on, and thus the first-order shift vanishes
only the second-order shift survives in the total shift,

DE52 (
j ,n

z^ j ;1num•E~r ,t ! u i ;0& z2

Ej2Ei1vn
.

Since we are interested in the change in the energy leve
the atom due to the presence of the dielectric half-space
contributions to the level shifts due to free-space electrom
netic fluctuations should be removed. This can be imp
mented simply by subtracting the corresponding express
for a transparent dielectric withn51. This procedure at the
same time removes all divergences from the formulas@6#. In
addition we make the dipole approximation and assume
the electric field at the positionr of the electron is roughly
the same as that at the positionr0 of the nucleus. Using the
mode expansion~2.4! and the explicit form of the mode
functionsfn(r ) we find for the level shift

DE~n!2DE~n51!

[dE.2
2a

pm2 (
j

8 (
s5i ,'

Eji upsu2

3F E
0

`

dsE
0

1

dt
s3

s11
Ts~ t ! cos~z j i st!

1 E
0

`

dsE
0

1

dt
s3

s11
As~ t !exp~2An221z j i st!G ,

~2.5!

wherez j i 52ZEji [2Z(Ej2Ei). The integration variables
is effectively the photon frequencyvn in units of the fre-
quencyEji of the atomic transition, and the integration va
able t originates from the integration over angles of inc
dence of the photon at the surface. The moduli squares o
matrix elements of the momentum between the ground s
i and excited statesj have been abbreviated by

upiu2[ z^ j upxu i & z21 z^ j upyu i & z2 and up'u2[ z^ j upzu i & z2.
~2.6!

The functionsTs(t) and As(t) are abbreviations related t
the contributions of traveling and of evanescent waves,
spectively, and are given by

Ti~ t !5
1

4 S t2An2211t2

t1An2211t2
2t2

n2t2An2211t2

n2t1An2211t2D ,

~2.7!

T'~ t !5
1

2
~12t2!

n2t2An2211t2

n2t1An2211t2
, ~2.8!

Ai~ t !5
An221

2

~2n211!~n221!t211

~n421!t211
tA12t2,

~2.9!
3-2
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A'~ t !5n2An221
~n221!t211

~n421!t211
tA12t2. ~2.10!

We have used the identity

z^ j umsu i & z25
4pa

m2Eji
2

z^ j upsu i & z2 ~2.11!

in converting the matrix elements of the dipole-moment o
erator into those of the momentum operator. Since only
ground-state shift will be considered, the parameterz j i is
positive for all intermediate statesu j &. Note that the param
eterz j i [2ZEji is just the ratio of the time taken by a virtua
photon to travel one round trip between the atom and
surface (2Z) and the characteristic time scale for an atom
transition (1/Eji ). Therefore, the size ofz j i is a good crite-
rion for the importance of retardation and serves to dis
guish between the retarded and the nonretarded regime
this problem.

B. Transformation

We wish to devise a transformation that enables us
combine the contributions of the traveling waves~the T in-
tegral! and of the evanescent waves~the A integral! to the
total shift ~2.5! into a single integral. To save space let
defineSs as the sum of the two integrals in the square bra
ets of Eq.~2.5! and write

dE.2
2a

pm2 (
j

8 (
s5i ,'

Eji upsu2Ss . ~2.12!

We aim to expressS' andSi each as a single integral. As th
transformation we need turns out to be the same for b
components, we demonstrate the calculation for the perp
dicular component only.

Let us start by considering the traveling part (T integral!
in S' which reads in full

1

2 E0

`

dsE
0

1

dt
s3

s11 F ~12t2!
n2t2An2211t2

n2t1An2211t2G cos~z j i st!.

~2.13!

Making a change of variable fromt to v5sA12t2, we can
write the integral as

ReH 1

2 E0

`

dsE
0

s

dv
1

s11

v3

As22v2
Rpexp~ i z j iAs22v2!J ,

~2.14!

whereRp is the Fresnel reflection coefficient of ap-polarized
@13# incident wave with frequencys and the parallel compo
nentv of the wave vector, i.e.,v/s is the sine of the angle o
incidence,

Rp~s,v !5
n2As22v22An2s22v2

n2As22v21An2s22v2
. ~2.15!
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The evanescent part (A integral! of S' is

n2An221 E
0

`

dsE
0

1

dt
s3

s11 F ~n221!t211

~n421!t211
tA12t2G

3exp~2An221z j i st!. ~2.16!

By changing the variablet to v5sA11(n221)(12t2), we
obtain

E
0

`

dsE
s

ns

dv
v3

s11 F n2An2s22v2

n4~v22s2!1n2s22v2 G
3exp~2z j iAv22s2!. ~2.17!

Since fors<v<ns

n2An2s22v2

n4~v22s2!1n2s22v2

5ReH 1

2iAv22s2 S in2Av22s22An2s22v2

in2Av22s21An2s22v2D J ,

~2.18!

we can rewrite Eq.~2.17! as

ReH 1

2i E0

`

dsE
s

ns

dv
1

s11

v3

Av22s2

3S in2Av22s22An2s22v2

in2Av22s21An2s22v2D exp~2z j iAv22s2 !J .

~2.19!

Moreover, because

An2s22v25 iAv22n2s2 ; vP@ns,`!, ~2.20!

the integrand of Eq.~2.19! is purely imaginary for anyv
>ns. Therefore, we can extend the range of thev integral in
Eq. ~2.19! to infinity without affecting the result, since w
are concerned with its real part only. Hence, choosing
branch cut of the square root appropriately and writi
Av22s252 iAs22v2, we arrive at the following expressio
for Eq. ~2.17!:

ReH 1

2 E0

`

dsE
s

`

dv
1

s11

v3

As22v2
Rp exp~ i z j iAs22v2!J .

~2.21!

We note that the integrands of Eqs.~2.14! and ~2.21! are
exactly the same and that the ranges of theirv integrals
complement each other. Consequently their sum equals
integral over the whole range ofvP@0,̀ ) and we can com-
bine them inS' ,
3-3
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S'5ReH 1

2 E0

`

dsE
0

`

dv
1

s11

v3

As22v2
Rp

3exp~ i z j iAs22v2!J . ~2.22!

Similar manipulations for the parallel component lead

Si5ReH 1

4 E0

`

dsE
0

`

dv
1

s11

v

As22v2

3@s2Rs2~s22v2!Rp#exp~ i z j iAs22v2!J
~2.23!

with Rp given by Eq.~2.15! andRs by

Rs~s,v !5
As22v22An2s22v2

As22v21An2s22v2
, ~2.24!

which is the Fresnel reflection coefficient of ans-polarized
@14# incident wave with frequencys and the parallel compo
nent v of the wave vector, i.e., with an angle of inciden
whose sine isv/s.

In some places we shall find it useful to consider t
above integrals with thes integration rotated byp/2 in the
complex plane. Replacings by iu we find

S'5
1

2 E0

`

du E
0

`

dv
1

u211

v3

Au21v2
Rp

3exp~2z j iAu21v2!, ~2.25!

Si5
1

4 E0

`

du E
0

`

dv
1

u211

v

Au21v2

3@~u21v2! Rp2u2Rs#exp~2z j iAu21v2!,

~2.26!

where Rs,p are now the Fresnel reflection coefficients
imaginary frequenciesiu, that is,

Rs~ iu,v !5
Au21v22An2u21v2

Au21v21An2u21v2
,

Rp~ iu,v !5
n2Au21v22An2u21v2

n2Au21v21An2u21v2
. ~2.27!

Before proceeding to the analysis of the above equatio
we would like to make a few comments. Firstly, the tran
formations leading from~2.13! to ~2.14!, and from~2.16! to
~2.17! are not well behaved in some parts of the domains
integration. As one can easily check, the Jacobians of th
transformations vanish forv50, have a simple pole ats
50, and are divergent but integrable along the linesv5s
03381
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and v5ns, respectively. Luckily the integrand is such th
none of these points cause any problems. Secondly, the p
ence of the Fresnel reflection coefficientsRs,p and the expo-
nential ~propagation! factor exp(izjiAs22v2) in Eqs. ~2.22!
and ~2.23! seem to suggest that one could interpret the s
as arising from interactions between the atom and virt
photons reflected from the interface. However, the expon
tial acquires a real negative argument whens,v and hence
damps the integrands of Eqs.~2.22! and~2.23! exponentially.
This corresponds to the appearance ofevanescent reflecte
waves when the incident angle is above a ‘‘critical angle
This is obviously unphysical since it can never take place
nature. We conclude that, although the above transformat
will turn out to be advantageous for the asymptotic analy
of the level shift in Sec. II C, they distort the picture of th
underlying physical processes.

C. Asymptotic analysis

We shall now analyze the asymptotic behavior of the le
shift in the nonretarded and retarded limits, when the atom
close to or far from, respectively, the surface of the diel
tric. The length scale on which to measure this distance
given by the wavelengths of typical transitions in the ato
Thus the parameterz j i [2ZEji provides a suitable criterion
for characterizing these two asymptotic regimes: we h
z j i !1 in the nonretarded limit, andz j i @1 in the retarded
limit. According to Eq.~2.12! the dependence of the energ
shift on the distance from the surface is all contained in
two integralsSs , so that we will concentrate on examinin
the asymptotic behavior ofSs .

1. The nonretarded regime

Since the analysis for the parallel and the perpendicu
components ofSs is very similar, we demonstrate the calc
lation for just one of them and chooseS' .

For z j i !1 the exponential in Eq.~2.25! damps the inte-
grand only very weakly. However, one cannot approxim
the exponential as its presence is essential for the con
gence of the integral. An alternative strategy is to rescale
integral by making the change of variablesu5x/z j i , v
5y/z j i , which gives

S'5
1

2z j i
2 E0

`

dx E
0

`

dy
1

x21z j i
2

y3

Ax21y2
Rp

3exp~2Ax21y2!. ~2.28!

But this integral is also not convergent in the limitz j i →0
and thus does not lend itself to easy asymptotic analysis.
same would be true if we had rescaled the integral~2.22!,
although its degree of divergence forz j i →0 would be less.

In contrast, if we go back to the original expression~2.5!
before the transformation of Sec. II B, the asymptotic ana
sis for smallz j i is very simple. Scaling thes integration in
Eq. ~2.5! by introducing the new variablew5z j i s we find
3-4
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dE52
2a

pm2 (
j

8 (
s5i ,'

Eji upsu2

z j i
3

3F E
0

`

dw E
0

1

dt
w3

w1z j i
Ts~ t ! cos~wt!

1 E
0

`

dw E
0

1

dt
w3

w1z j i
As~ t !exp~2An221wt!G .

~2.29!

In this integral the limitz j i →0 is without problems. Simply
replacingw1z j i by w in the denominator of the integran
and straightforward integration yield for the level shift in th
nonretarded limit:

dE(nonret);2S n221

n211
D a

16m2Z 3 (
j

8
upiu212up'u2

Eji
2

.

~2.30!

One could also easily derive the next-to-leading order
approximating 1/(w1z j i ).1/w2z j i /w2 in Eq. ~2.29!.

The energy shift~2.30! in the nonretarded limit is of
course exactly the electrostatic shift, which is a separate c
tribution right from the start if one works inp•A coupling
@cf. Eq. ~4.9! in Ref. @6##.

2. The retarded regime

In the retarded regime, whenz j i @1, the exponential in
Eq. ~2.25! strongly damps the integrand. Ifz j i is large then
the only significant contributions to the integral come fro
small Au21v2, i.e., from a region close to the origin in th
(u,v) plane where bothu and v are small. Thus we can
apply Watson’s lemma@15# and approximate the integran
by Taylor expanding its denominator aroundu50,

1

u211
.12u21u47•••. ~2.31!

With this approximation we can calculate the double integ
in Eq. ~2.25! by changing variables into polar coordinat
(u5r cosf andv5r sinf). The result is

S';
c4

'

z j i
4

5
c4

'

16Z 4Eji
4

~2.32!

with c4
' given by

c4
i 52

1

2 H 2n213n28

n221
23

2n422n221

~n221!3/2
ln ~n1An221!

2
6n4

~n221!An211
ln F An21111

n~An2111n!
G J . ~2.33!

In the same way, using the first term of the expans
~2.31! in ~2.26!, we can compute the leading order ofSi . We
obtain
03381
y

n-

l

n

S i;
c4

i

z j i
4

5
c4

i

16Z 4Eji
4

~2.34!

with c4
i given by

c4
'5

6n423n322n212

n221
2

3n2~2n422n211!

~n221!3/2
ln ~n

1An221!2
6n6

~n221!An211
ln F An21111

n~An2111n!
G .

~2.35!

Substituting these results into Eq.~2.12!, we find for the
energy-level shift in the retarded regime

dE(ret);2
a

8pm2Z 4 (
j

8
c4

i upiu21c4
'up'u2

Eji
3

, ~2.36!

which agrees with what we found in Ref.@6#, Eqs.~4.14! and
~4.18!, but only after a great deal more effort and with th
help of the mathematical techniques devised in Ref.@7#.

Although in Ref.@6# we worked inp•A coupling which
gives slightly different expressions, we can see what the
ture of the problem is by inspecting the expression for
energy-level shift in Eq.~2.5! before the transformation
There Watson’s lemma cannot be applied since all one
say is that for largez j i the contributions to the integrals com
from regions where the productst is small. The fact that the
product of the two integration variabless andt is small does
not let one draw any conclusions about each of them in
vidually. In particular, it is fallacious to conclude thats must
be small, sincet can be zero, which would make the produ
st small even ifs is large. The same applies vice versa.

Alternatively, one could attempt to derive an asympto
expression for Eq.~2.5! for largez j i by repeated integration
by parts, either in one or the other variable, or two dime
sionally by applying Stokes’ theorem in the (s,t) plane.
However, this method fails, too, because integration by p
with respect to one variable generates inverse powers of
other which cause the integral over that variable to diverg
the lower limit. Similar problems beset the two-dimension
equivalent of integration by parts. The underlying cause
all these problems is that the arguments of the cosine and
exponential in Eq.~2.5! have a stationary point at (s,t)
5(0,0) in the corner of the domain of integration. The on
way of deriving a correct asymptotic expression for Eq.~2.5!
for largez j i is to subtract this problematic point and treat
separately. We refer the reader to Ref.@7# for the details of
how to do this. In the present context it suffices to note t
the asymptotic analysis in the retarded regime is very sim
in the transformed expressions~2.25! and ~2.26!, but highly
complicated in the expressions for the level shift~2.5! before
the transformation. This is just the reverse of the situation
the nonretarded limit.
3-5
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III. LINEAR-RESPONSE THEORY
AND GREEN’S-FUNCTION FORMALISM

In this section we compare the formulas obtained in S
II with those based on linear-response theory. We shall
that using just the first term of the expansion in Eq.~2.31! is
equivalent to approximating the polarizability in the retard
regime by its static value, which is an approximation that h
been widely adopted in the literature, though often witho
rigorous justification.

In linear-response theory, the response of a system t
external perturbation is described by its susceptibility. If t
external perturbation is weak then one can assume the
sponse of the system to be linear and apply the superpos
principle. For two weakly interacting systems, McLachl
showed that the interaction energy between them can be
pressed in terms of the product of their susceptibility
imaginary frequencies@9#. Applying this formalism to the
problem at hand, one finds that the level shift of a grou
state atom is given by~cf., e.g.,@4#!

dE52
1

2p (
l ,m

E
0

`

djGlm
R ~r0 ,r0 ; i j!P lm~ i j!. ~3.1!

The indicesl ,m refer to Cartesian tensor components, a
P lm( i j) is the atomic polarizability tensor of the groun
state at imaginary frequencies

P lm~ ij!52(
j

8 Eji

^ i um l u j &^ j ummu i &

Eji
2 1j2

5
8pa

m2 (
j

8
1

Eji

^ i upl u j &^ j upmu i &

Eji
2 1j2

. ~3.2!

The susceptibilityGlm of the electric field is the same as th
field’s retarded Green’s function@9#, which can be easily
worked out from classical electromagnetism by consider
the Sommerfeld problem of the radiation by an oscillati
electric dipole near a semi-infinite dielectric@16#. Since we
are not interested in the full interaction energy of the at
with the electromagnetic field, which would be the Lam
shift in free space, but only in the part that is due to t
presence of the dielectric half-space, we can drop the f
space contribution from the Green’s function and consi
only the part that corresponds to the classical dipole field
is reflected by the dielectric. The reflected partGlm

R of the
retarded Green’s function at coinciding spatial points and
frequencies along the positive imaginary axis reads

Glm
R ~r0 ,r0 ; i j!50 ; l 5” m, ~3.3!

Gxx
R ~r0 ,r0 ; i j!5Gyy

R ~r0 ,r0 ; i j!

5
1

8p E
0

`

dk
k

Aj21k2
@~j21k2!Rp2j2Rs#

3exp~22ZAj21k2!, ~3.4!
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Gzz
R ~r0 ,r0 ; i j!5

1

4p E
0

`

dk
k3

Aj21k2
Rp

3exp~22ZAj21k2!, ~3.5!

where the Fresnel reflection coefficientsRs,p are the same as
in Eq. ~2.27! except for the replacement ofu by j andv by
k. We use the expression for the atomic polarizability~3.2!
and write the energy shift as

dE52
4a

m2 (
j

8
1

Eji
S upiu2 E

0

`

dj
Gxx

R ~ ij!

Eji
2 1j2

1up'u2 E
0

`

dj
Gzz

R ~ i j!

Eji
2 1j2D . ~3.6!

If we rescale the integration variables in Eq.~3.4!, ~3.5!, and
~3.6! by the atomic transition energyEji such thatj5Eji u
andk5Eji v, it becomes obvious that the expression for t
energy shift~3.6! derived from linear-response theory is in
deed identical to the one of Eq~2.12! obtained through nor-
mal mode expansion and standard perturbation theory o
one has applied the transformation of Sec. II B and cas
into the form~2.25! and ~2.26!.

Having made contact between the results of the two
proaches, we are in the position to examine the approxi
tions made in the asymptotic analysis of the energy shift
particular, applying Watson’s lemma in the retarded regi
and using just the first term of the expansion~2.31! is
equivalent to approximating

1

Eji
2 1j2

;
1

Eji
2

~3.7!

in Eq. ~3.6!. This amounts to replacing the atomic polari
ability by its value at zero frequency, i.e.,

P lm~ i j!5
8pa

m2 (
j

8
1

Eji

^ i upl u j &^ j upmu i &

Eji
2 1j2

;
8pa

m2 (
j

8
1

Eji
3 ^ i upl u j &^ j upmu i &

[P lm~0!. ~3.8!

According to Eqs.~3.1! and ~3.6!, the shift in the retarded
regime is thus given by

dE(ret);2
1

2p
P lm~0! E

0

`

djGlm
R ~ i j!

52
4a

m2 (
j

8
1

Eji
3 S upiu2 E

0

`

djGxx
R ~ i j!

1up'u2 E
0

`

djGzz
R ~ i j! D . ~3.9!
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As in Sec. II C 2, the integrals in Eq.~3.9! can be calculated
exactly by changing variables into polar coordinates,j
5r cosf andk5r sinf; one finds

E
0

`

djGxx
R ~ i j!5

c4
i

32pZ 4

and

E
0

`

djGzz
R ~ i j!5

c4
'

32pZ 4
. ~3.10!

Substituting these formulas into Eq.~3.9! we recover our
previous result~2.36!.

Thus, in the retarded regime (z j i @1) the leading order of
the ground-state shift is determined by the static value of
atomic polarizability@9#. In other words, in the retarded re
gime it is the contribution of virtual photons with frequenci
much lower than the atomic transition frequency (j!Eji )
that dominates the level shift. The atom is ‘‘static’’ in i
electromagnetic response because the time scale 1/Eji of the
internal evolution of the atom is much shorter than a typi
oscillation period of the relevant virtual photons, so that
fields as seen by the atom are in effect static.

IV. SUMMARY AND DISCUSSION

The main achievement of this paper is the discovery o
transformation between the integral expressions for
energy-level shift as obtained from a normal-mode exp
sion of the field and the application of standard perturbat
theory, on the one hand, and that resulting from line
response theory and employing the retarded Green’s fu
tion, on the other hand. This is of value since it helps grea
or, for more complicated systems, even makes possible
asymptotic analysis of the energy-level shift, which is t
only way to extract physically meaningful information fro
a calculation otherwise amenable only to full-scale numer
analysis in a multidimensional parameter space. It turns
that the result of the normal-mode approach lends itsel
easy asymptotic analysis in the nonretarded regime when
atom is close to the wall but is very awkward to deal with
the retarded regime when the atom is far from the w
whereas the opposite applies to the result of the Gree
function approach—asymptotic analysis is uncomplicated
the retarded regime but difficult in the nonretarded. The
ample system investigated here, an atom close to a non
persive dielectric half-space, is simple enough to allow
explicit demonstration of the various approaches. Howe
for instance, the same system but with absorption and
persion in the dielectric included is orders of magnitu
more difficult to treat@8#, and the knowledge of the transfo
mation devised in this paper is essential for extracting us
asymptotic expressions from otherwise unmanageably c
plicated expressions.

The two approaches differ also in other aspects. In
normal-mode approach the contributions from traveling a
evanescent waves are readily identifiable and sepa
whereas they appear combined in one expression in
03381
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Green’s-function approach. Thus the underlying physi
processes of the emission, propagation, reflection, and r
sorption of virtual photons in the interaction of an atom w
a dielectric wall are transparent and easy to understand in
normal-mode approach. By contrast, the Green’s-funct
approach hides such microscopic processes from view
just considers macroscopic subsystems and their respon
perturbations. While one point of view need nota priori be
any more advantageous than the other, the artificial sep
tion of the system into two subsystem has the drawback
inviting errors in the asymptotic analysis: both atom and fi
susceptibilities depend on the frequencyi j which is inte-
grated from 0 toi` in the expression for the level shift~3.1!
and it is thus ill advised to make approximations in either
the two susceptibilities without considering carefully th
whole integral@17#.

Furthermore, care must be taken when rescaling tw
dimensional integrals. Besides the integral over the f
quencys in Eq. ~2.5! or i j in Eq. ~3.1!, the expressions for
the level shifts also involve an integral over another variab
t in Eq. ~2.5! and k in Eqs. ~3.4! and ~3.5!, which in the
mode-expansion approach can be seen to stem from a
mation over angles of incidence. Simply scaling one varia
with the other@17# is tempting but incorrect if the scaling
variable ranges to either 0 or̀, or even both. In this case
one must consider the rescaling as a variable transforma
of both variables and carefully examine the behavior of
Jacobian throughout the domain of integration. For the in
grals appearing inSi ,' the zeros and singularities of th
Jacobian pose no threats, as we saw in Sec. II B. Howe
that there is an issue and that it may be subtle, one can
for example, by looking at the electrostatic shift. Wh
working in m•E coupling the electrostatic shift is part of th
result of second-order perturbation theory, but the minim
coupling Hamiltonianp•A does not include the electrostat
interaction which must be taken into account separately
that approach@12#. Thus taking the difference of the pertu
bative shift due to them•E Hamiltonian and that due to th
p•A Hamiltonian up to second order ine, given by Eqs.~2.5!
and @6#, respectively, should give the electrostatic shift. U
ing the same notations as in Eqs.~2.6!–~2.10! we find that
the electrostatic shift can be written@18#

2
2a

pm2 (
j

8 (
s5i ,'

Eji upsu2F E
0

`

du E
0

1

dtu2Ts~ t !

3cos~z j i ut!1 E
0

`

du E
0

1

dtu2As~ t !

3exp~2An221z j i ut!G . ~4.1!

This expression can be evaluated directly, though one ha
take care not to separate the two summands since each
by itself is divergent~@6#, Appendix C!. The result is the
well-known expression for the electrostatic shift, namely,
3-7
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2S n221

n211
D a

16m2Z 3 (
j

8
upiu212up'u2

Eji
2

, ~4.2!

plus some ‘‘contact terms,’’ i.e., terms that contribute on
when the atom is sitting directly on the surface of the diel
tric whereZ50. These are physically irrelevant because
macroscopic model is inapplicable anyway for atom-surf
distances of the order of the Bohr radius and below. Alter
tively, one could analyze Eq.~4.1! by applying the transfor-
mation devised is Sec. II B, which greatly simplifies t
calculation and leads to elementary integrals. Surprisin
though, this approach yields just the electrostatic shift~4.2!
but no ‘‘contact terms.’’ The only possible cause for the my
terious disappearance of the contact terms is the sing
behavior of the transformation at a few places in the dom
of integration.

Finally, we would like to comment on the difference b
tween dipole and minimal-coupling Hamiltonians when a
plied in cavity QED. We have seen in this paper and
comparison with the analysis of@6# that there is no grea
advantage or disadvantage to either. Both lead to similar
pressions when the field has been quantized by a nor
mode expansion. Depending on the particular problem
hand, it may or may not be convenient to have the elec
static interaction included in the dipole Hamiltonian
handle it separately when working in minimal couplin
What makes a great deal of difference, however, is whe
one works with a mode expansion or with linear-respo
theory and the Green’s function of the field. The mod
expansion approach permits easy asymptotic analysis in
near zone, and the Green’s-function approach greatly sim
fies the asymptotic analysis in the far zone. The transfor
tion devised in this paper lets one have the best of b
worlds without duplicating a calculation, which for compl
cated systems may not even be possible.
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APPENDIX: NORMAL MODES

In this appendix we provide details about the notatio
used in the text, and also explicit expressions for the nor
modes fn(r ) in the mode expansion~2.4!. We label each
normal mode by its incident wave. For instance, the norm
mode with the incident wave vectorK and the polarization
% is described by the mode functionfn(r ,t) with n
5(%,K). It is helpful to introduce a notation which distin
guishes wave vectors that belong to different sides of
interface. We follow the convention of Carniglia and Mand
@19# and useK for wave vectors belonging to the sidez
.0, andk for those belonging to the other side,z,0. In our
geometry, this means that the incident wave vector is
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K5H K for right-incident modes

k for left-incident modes,
~A1!

and the sum over modes is

(
n

[ (
%

E d3K
~2p!3

5 (
%

F E
Kz,0

d3K

~2p!3
1 E

kz.0

d3k

~2p!3G . ~A2!

The normal modesfn(r ) form an orthogonal, complete se
@20#. For comparison with previous workers@19,21,22# we
point out that we have chosen a slightly different normaliz
tion; in our case the orthonormality relation is

E d3re~r ! f%,K* ~r !•f%8,K8~r !5~2p!3d%%8d
(3)~K2K8!.

~A3!

The two polarizations of the modes are widely known
transverse electric~‘‘TE’’ ! and transverse magnetic~‘‘TM’’ !,
or, in the language of Ref.@17#, s and p wave modes~see
also @13,14#!. The explicit form of thefn(r ) is

fs,K~r !5«̂S eiK•rQ~z!1
Kz2kz

Kz1kz
eiK (R)

•rQ~z!

1
2Kz

Kz1kz
eik•rQ~2z! D , ~A4!

fs,k~r !5
«̂

n S eik•rQ~2z!1
kz2Kz

kz1Kz
eik(R)

•rQ~2z!

1
2kz

kz1Kz
eiK•rQ~z! D , ~A5!

fp,K~r !52S ~K̂3«̂!eiK•rQ~z!

1~K̂ (R)3«̂!
n2Kz2kz

n2Kz1kz

eiK (R)
•rQ~z!

1~ k̂3«̂!
2nKz

n2Kz1kz

eik•rQ~2z!D , ~A6!

fp,k~r !52
1

n S ~ k̂3«̂!eik•rQ~2z!

1~ k̂(R)3«̂!
kz2n2Kz

kz1n2Kz

eik(R)
•rQ~2z!

1~K̂3«̂!
2nkz

kz1n2Kz

eiK•rQ~z!D , ~A7!

where
3-8
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kz52An2K22Kx
22Ky

2 ~A8!

in Eqs.~A4! and ~A6!, and

Kz5Ak2/n22kx
22ky

2 ~A9!

in Eqs.~A5! and~A7!. K (R)5(Kx ,Ky ,2Kz) is the reflected
lle
er
M

03381
wave vector ofK , and similarlyk(R) is of k; K̂ is the unit
vector ofK , and similarly for the other vectors.Q(z) is the
Heaviside step function.

A convenient choice for the unit polarization vector«̂ is

«̂5~K3 ẑ!/uK3 ẑu. ~A10!
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