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Methods of asymptotic analysis in cavity quantum electrodynamics

Claudia Eberleihand Shin-Tza W&
IDepartment of Physics & Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, England
2Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
(Received 28 May 2003; published 26 September 2003

The energy-level shift of a ground-state atom in front of a nondispersive dielectric half-space is calculated
by quantizing the electric field by means of a normal-mode expansion and applying second-order perturbation
theory to the electric-dipole Hamiltoniga- E. It is shown that the contributions to this shift coming from
traveling and from evanescent waves can be combined into a single expression which lends itself readily to
asymptotic analysis for large atom-surface separations, while in the opposite asymptotic regime when the atom
is close to the surface the combined expression is less convenient. Employing a Green’s-function formalism
instead of the normal-mode expansion leads directly to the combined formula, and in that case it is advanta-
geous to be able to apply the same transformation backwards and split the energy shift into a sum of distinct
contributions corresponding to different physical processes. The analysis serves to shed light on common
sources of error in the literature and paves the way for the study of more complicated models in cavity quantum
electrodynamics.
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. INTRODUCTION i.e., the electric-dipole interactiop- E, and we apply both
second-order perturbation theory and MacLachlan’s suscep-
The nature of the interaction of an atom with a surfacetibility formula obtained from linear-response the¢8). As
depends on the distance between them. If the atom is close e wish to concentrate on the comparison of the different
the surface the interaction is dominated by electrostatics, i.eapproaches to the problem, we shall consider only ground-
the atomic dipole experiences Coulomb forces due to imagstate atoms and we shall work at zero temperature. For finite
charges on the other side of the surface. However, as firsemperature effects we refer the reader to RE@] and ref-
worked out by Casimir and Poldét], retardation becomes erences therein.
important for atoms further away from the surface. This is The system we shall study consists of an atom in front of
because the electromagnetic interaction between the atoen nondispersive dielectric half-space; the dielectric is as-
and the surface has a finite speed of propagation. Casimgumed to have a constant real, frequency-independent refrac-
and Polder considered an atom in its ground state interactingve index n. The atom is at a distanc& away from the
with a perfectly reflecting surface, but the analysis can balielectric surface, with its center fixed at the poirg
extended to excited-state atorf33]. To be more realistic =(0,0,2). As mentioned above, we shall consider the atom
one needs to consider atoms interacting with imperfectly reto be in its ground state and the system to be at zero tem-
flecting surfaces, which in the simplest case can be modelegerature, so that the fluctuations of the radiation field are
by nondispersive dielectridgl—6]. However, as models for solely quantum and not thermal.
the surface become more realistic, they also become more In the following section we calculate the energy-level
involved, which often means that crucial results for physi-shift of the atom by quantizing the electromagnetic field
cally interesting quantities can be obtained only through nuthrough a normal-mode expansion and applying second-
merical simulation$4,5]. While for a nondispersive surface order perturbation theory to the dipole HamiltonignE. In
characterized by a constant refractive index we did manag8ec. Il B we devise a transformation of the expression for the
to obtain analytical results for the energy-level shifts andenergy-level shift which allows us to combine the contribu-
modified emission rates of the atom in both nonretarded antlons from traveling and evanescent waves into a single for-
retarded limitd 6], this was at the expense of having to entermula. It will then be shown in Sec. Il C that this makes the
into a rather involved mathematical derivatiof]. The tech-  asymptotic analysis of the level shift rather straightforward.
nique devised in Ref.7] and applied in Ref.6] becomes too In Sec. Il we shall make contact with Green’s-function ap-
cumbersome for the more complicated problem of an atonproaches based on linear-response thgsee, e.g., Refs.
interacting with a dispersive and absorbing dielectric surfac¢9,4,5]) and compare the formulas for the level shift and the
[8]. Thus we desire to investigate easier routes to asymptotigpproximations for its asymptotic analysis with the previous
expressions for energy-level shifts in cavity quantum electroapproach. On the basis of our calculation we are able to
dynamics. vindicate the approximation of using the static polarizability
In this paper we discuss an alternative approach to thén the retarded limit, which many previous workers have
problem studied in Ref6] where we worked with the mini- applied but often without rigorous justification. We discuss
mal coupling Hamiltoniarp-A and applied standard first- the comparison of the various approaches in Sec. IV and
and second-order perturbation theory. Here we calculate theummarize our results. The Appendix provides details of the
energy-level shift of an atom close to a nondispersive dielechormal-mode functions of the electromagnetic field in the
tric surface by using the lowest-order multipole Hamiltonian,presence of a dielectric half-space.
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Il. THE DIPOLE HAMILTONIAN state it operates on, and thus the first-order shift vanishes and

We consider a single-electron atom near a dielectric hah‘—Only the second-order shift survives in the total shift,

space at zero temperature; the dielectric medium is taken to i1, e ECrot) i ;0>|2
be nondispersive and nondissipative, so that the dielectric AE=- Y, E_E

e . . . j,v i —LEj + w,
permittivity of the configuration is

n2 for z<0 Since we are interested in the change in the energy levels of

(2.1)  the atom due to the presence of the dielectric half-space, all

contributions to the level shifts due to free-space electromag-
etic fluctuations should be removed. This can be imple-
ented simply by subtracting the corresponding expressions

e(r)=

1 for z>0,

at all frequencies. We assume that the atom is in its groun
state, with its center fixed at the poirg=(0,02). The in- for a transparent dielectric with=1. This procedure at the

teraction between the atom and the dielectric through thgame time removes all divergences from the form{@sin

?Ounailggzed electromagnetic field is described by the Hamll'addition we make the dipole approximation and assume that

the electric field at the position of the electron is roughly
H=—p-E(r,0), 2.2 the same as t_hat at the positiogof t_h_e nucleus. Using the
mode expansior(2.4) and the explicit form of the mode

where u=e(r —r,) is the electric-dipole moment operator functionsf,(r) we find for the level shift
andE(r,t) the transverse electric field. This Hamiltonian is

the lowest order in the multipole Hamiltonian and corre-AE(N) —AE(n=1)

sponds to electric-dipole interactiofikl]. In contrast to the

minimal coupling Hamiltoniarp- A, the Hamiltonian in Eq. =SE~—
(2.2) automatically includes the electrostatic interaction be- m
tween the atomic dipole and its image in the dieledtti2].

In order to quantize the electromagnetic field we need to
solve Maxwell's equations in the presence of a dielectric
half-space. We do this by introducing the electromagnetic Lo
potentials®(r,t) and A(r,t). Since we are considering an - S 7 s
overall neutral system, i.e., the net charge density in our * fo dsfo dts+ 1A(,(t)exp( n“=1Zsy ),
construction is zero, we can sét(r,t)=0. Furthermore, in 2.5
the generalized Coulomb gauge :

2a

! E.lp |2
2 ; g;yl j||p(r|

o0 1 53
X fo olsfO dtmﬂ(t)cos(éjist)

V.[ e(r)A ]=0, 2.3 yvheregj!=22EjiEZZ(Ej—Ei). The integration variable
is effectively the photon frequency, in units of the fre-
the field equations reduce to the wave equation/or,t). quencyE;; of the atomic transition, and the integration vari-
Thus solutions can be obtained by taking combinations ofPle t originates from the integration over angles of inci-
incident, reflected, and refracted waves, and imposing contdence of the photon at the surface. The moduli squares of the
nuity conditions at the vacuum-dielectric interface. matrix elements of the momentum between the ground state
Introducing the creation and annihilation operatorsi @nd excited stateshave been abbreviated by

1 . .
a,,a,, one can express the field operakfr,t) in terms of o o o
the normal modes, (r) Ipy12=Kilpuli)P+ilpyli)I*  and IpLIZEI<J|pz|I>!22- .

E(r,t)=i >, \/&[ave‘iwvtfy(r)—aze‘wv‘fj(r)]_ The functions7,(t) and A,(t) are abbreviations related to
v 2 the contributions of traveling and of evanescent waves, re-
(2.4 spectively, and are given by

The mode function$§,(r) are labeled according to the polar- > 5 5 ~ >
ization and the wave vector of the incident wave, both of 7 ) 1it=yn"—1+t _p e —1+t
which are amalgamated into the greek indexheir explicit | 4\ t+n?—1+t2  n%t+n?—1+t?)’

form is given by Eqs(A4)—(A7) in the Appendix. (2.7
A. Energy-level shifts 1 n%t—n°—1+t?

, T.(H)=5(1-t%) . (2.9
We shall now calculate the energy-level shift by perturba- 2 n2t+ Jn2—1+1t2

tion theory. Since the interaction Hamiltonié2.2) is linear

in the electron charge, we must calculate the shift up to the > 2 9 2

second order of perturbation theory if we want to obtainitto 4 (t) n“—1 (@2n"+ 1)(n"- D™+ 1t ey

first order in the fine-structure constant Being linear in the 2 (n*=1)t?+1 ’
electric field,H, creates or annihilates one photon from the (2.9
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(n2—1)t2+1 The evanescent par{(integra) of S, is
A (H)=n?n?-1—————tJ1-t2.  (2.10
(n*=1)t*+1 » 18 |(n?=1t?+1
nz\/nz—lf dsf dt ty1—t?
We have used the identity 0 o stli(n*-1)t?+1
' _ Xexp — \/nz—lgjist). (2.1
o 3P = 2, 1P (2.11)

2E2

By changing the variableto v =sy1+(n*—1)(1—t%), we

in converting the matrix elements of the dipole-moment op- obtain

erator into those of the momentum operator. Since only the 5
ground-state shift will be considered, the paramelgris f“ denS do v
positive for all intermediate statéf). Note that the param- s+1
eter{;;=2ZE;; is just the ratio of the time taken by a virtual

photon to travel one round trip between the atom and the ><exp(—§ji\/v2—sz). (2.17
surface (Z) and the characteristic time scale for an atomic

transition (1E;). Therefore, the size of;; is a good crite-  Since forssv=<ns

rion for the importance of retardation and serves to distin-

guish between the retarded and the nonretarded regimes in n2\n?s?— 2

this problem.

n?Jn?s?2—y? ]

n4(v?—s?)+n?s?— 2

n*(v2-s?)+n?s?—yp?

B. Transformation Re| 1 (inz\/vz_sz_ \/nzsz_vz)]

We wish to devise a transformation that enables us to T2 o227 722
combine the contributions of the traveling wavd#ise 7 in- 2iu® =" lin*\o® =™+ Vn*s*—v
tegra) and of the evanescent wavéke A integra) to the (2.18
total shift (2.5) into a single integral. To save space let us
defineS, as the sum of the two integrals in the square brackwe can rewrite Eq(2.17) as
ets of Eq.(2.5 and write

e{l = (s 1 3

2a , R —f dsf dv

B i EilelS 212 2lJo s st pfos?
am? T oS

in?\v2—s?—\n?s?—p?
We aim to express, andS; each as a single integral. As the ( CN > 2) expl— gji Vo?-¢? )} -
transformation we need turns out to be the same for both in\v?—s*+n*s*~u
components, we demonstrate the calculation for the perpen- (2.19
dicular component only.

Let us start by considering the traveling pafiategra) Moreover, because

in S, which reads in full
Zf ds f dt
(2.13  =ns. Therefore, we can extend the range of thetegral in
Eqg. (2.19 to infinity without affecting the result, since we
Making a change of variable fromto v =sy1—t?, we can are concerned with its real part only. Hence, choosing the
write the integral as branch cut of the square root appropriately and writing

Jv?—s?=—is?—v?, we arrive at the following expression
1 (= s 1 8
_ [ = i7o g2 — 1,2
Re{zfo dsf0 dvS+1 SZ_UZR expligjiVs —v )],

for Eq. (2.17):
1 (= » 1 v
(214) RQ{EJ de de‘F_l ?Rpexmgﬂysz—vz)
whereRP is the Fresnel reflection coefficient ofpapolarized 0 ° NS (2.21)

[13] incident wave with frequency and the parallel compo-
nentv of the wave vector, i.ey/s is the sine of the angle of

Jn?s?—p?2=i\v?—n?s? VY vel[ns»), (2.20
n%t—+/n—

) )zwi

cos(¢jist).

the integrand of Eq(2.19 is purely imaginary for any

We note that the integrands of Eq2.14) and(2.2]) are

incidence, exactly the same and that the ranges of theimntegrals
2 T3 553 complement each other. Consequently their sum equals the
n?yJs?—v?—\n?s?— -
RP(s,v)= _ (2.19 integral over the whole range ofe[0,0) and we can com-
2 [2_.2 22 .2 . B
n?yJs’—v?+n?s’—v bine them inS, ,
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— none of these points cause any problems. Secondly, the pres-
VST ence of the Fresnel reflection coefficieR3P and the expo-
nential (propagation factor exp{gj Js?—v?) in Egs.(2.22
X exp(i ¢j; m)] (2.22  and(2.23 seem to suggest that one could interpret the shift
as arising from interactions between the atom and virtual
photons reflected from the interface. However, the exponen-
Similar manipulations for the parallel component lead to tjg| acquires a real negative argument wisenv and hence
damps the integrands of Eq2.22) and(2.23 exponentially.
S—Rel = ds d This corresponds to the appearanceevénescent reflected
I vs+1 \/ﬁ waves when the incident angle is above a “critical angle.”
This is obviously unphysical since it can never take place in
nature. We conclude that, although the above transformations
X[s?R°—(s*~v?)RPlexpli {ji VSZ—UE)] will turn out to be advantageous for the asymptotic analysis
of the level shift in Sec. Il C, they distort the picture of the
(2.23 underlying physical processes.

1 (= o 1 3 andv =ns, respectively. Luckily the integrand is such that
S =R f dsf dvs+1

with RP given by Eq.(2.15 andRS® by
C. Asymptotic analysis

\/SZ_UZ_ \/nZSZ_UZ

' (2.24 We shall now analyze the asymptotic behavior of the level
V2= 02+ n?s?—p? shift in the nonretarded and retarded limits, when the atom is
close to or far from, respectively, the surface of the dielec-
which is the Fresnel reflection coefficient of ampolarized  tric. The length scale on which to measure this distance is
[14] incident wave with frequencyg and the parallel compo- given by the wavelengths of typical transitions in the atom.
nentv of the wave vector, i.e., with an angle of incidence Thus the parametef;;=2ZE;; provides a suitable criterion
whose sine ig/s. for characterizing these two asymptotic regimes: we have
In some places we shall find it useful to consider the;;<1 in the nonretarded limit, and;;>1 in the retarded
above integrals with the integration rotated byr/2 in the I|m|t According to Eq.(2.12 the dependence of the energy

R3(s,v)=

complex plane. Replacingby iu we find shift on the distance from the surface is all contained in the
two integralsS,., so that we will concentrate on examining
1 fw foc 1 v . the asymptotic behavior af, .
= —— ——
u?+1 Ju’+o?

1. The nonretarded regime

Xexp(— £jivut+uv?), (2.29 Since the analysis for the parallel and the perpendicular
components o8, is very similar, we demonstrate the calcu-

s 1 fwd f q 1 lation for just one of them and choosg .
() u v For {,;<1 the exponential in Eq2.25 damps the inte-
+1 JuZ+ o2 I i
° 0 Ul grand only very weakly. However, one cannot approximate
X[(U2+02) RP—U2RS]exp — & JuZ+v?), the exponential as its presence is essential for the conver-
i

gence of the integral. An alternative strategy is to rescale the
(2.26 integral by making the change of variables=x/{;, v
where R>P are now the Fresnel reflection coefficients at=y/51'i , which gives
imaginary frequenciegu, that is,

3
\/u2+U2_ \/n2u2+v2 J J' y
l
NN T 24j +§J by

n2JuZ+ 02— Jn2u? X exp(— VX +y?). (2.28

RP(iu,v)= . 2.2
(iu.v) n?\Ju?+v2+ Jn?u?+v? (220

R3(iu,v)=

But this integral is also not convergent in the lingif—0
Before proceeding to the analysis of the above equationgnd thus does not lend itself to easy asymptotic analysis. The

we would like to make a few comments. Firstly, the trans-same would be true if we had rescaled the inte¢?a??2),
formations leading fronf2.13) to (2.14, and from(2.16 to  although its degree of divergence fgr—0 would be less.
(2.17 are not well behaved in some parts of the domains of In contrast, if we go back to the original expressi@mb)
integration. As one can easily check, the Jacobians of thedeefore the transformation of Sec. Il B, the asymptotic analy-
transformations vanish fop =0, have a simple pole &  sis for small{; is very simple. Scaling the integration in
=0, and are divergent but integrable along the liness Eq. (2.5 by introducing the new variable= ;;s we find
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2a ’ E”|pa'|2 Cﬂl Cﬂl
-3 Y Sp (234
P T 4 16z%8
) 1 W3
X fo dw fo dtyrg, T coswy with c} given by
. 3
+f dwfldt WA (exp(— VP Tw)|. . 6n*—3n°-2n?+2  3n%(2n*-2n2+1)
0 0o W+ §ji Cs= n2—1 a (n2—1)3/2 In(n
(2.29
, 6n® JnZ+1+1
In this integral the limit{;; — 0 is without problems. Simply +yn°=1)— 2 1)yt 1 In 21|
replacingw+ ¢;; by w in the denominator of the integrand (n )N n(vn n)
and straightforward integration yield for the level shift in the (2.35
nonretarded limit:
2_q 21 20p |2 Substituting these results into E(R.12), we find for the
sgtmonren_ _ [ M~ @  Ipyl*+2lp, | ' energy-level shift in the retarded regime
n’+1)16m?2* 7 EZ
2.3
(230 N . 1L N
One could also easily derive the next-to-leading order by 8mm2z4 4 E];si . (238

approximating 1A+ ;) =1Mw—¢j; /w? in Eq. (2.29.

The energy shift(2.30 in the nonretarded limit is of
course exactly the electrostatic shift, which is a separate convhich agrees with what we found in R¢é], Egs.(4.14) and
tribution right from the start if one works ip-A coupling  (4.18, but only after a great deal more effort and with the

[cf. Eq.(4.9) in Ref. [6]]. help of the mathematical techniques devised in R&f.
Although in Ref.[6] we worked inp-A coupling which
2. The retarded regime gives slightly different expressions, we can see what the na-

ture of the problem is by inspecting the expression for the
energy-level shift in Eq.(2.5 before the transformation.
There Watson’s lemma cannot be applied since all one can
say is that for large;; the contributions to the integrals come
from regions where the produst is small. The fact that the
product of the two integration variablesandt is small does
not let one draw any conclusions about each of them indi-
vidually. In particular, it is fallacious to conclude thaimust
be small, sincé can be zero, which would make the product
11—+ utE ... (2.3  stsmall even ifsis large. The same applies vice versa.
u?+1 Alternatively, one could attempt to derive an asymptotic
expression for Eq(2.5) for large {j; by repeated integration
With this approximation we can calculate the double integraby parts, either in one or the other variable, or two dimen-
in Eg. (2.29 by changing variables into polar coordinates sionally by applying Stokes’ theorem in the,{) plane.

In the retarded regime, whef};>1, the exponential in
Eq. (2.29 strongly damps the integrand. df; is large then
the only significant contributions to the integral come from
small Ju?+v?, i.e., from a region close to the origin in the
(u,v) plane where bothu and v are small. Thus we can
apply Watson’s lemma15] and approximate the integrand
by Taylor expanding its denominator aroune- 0,

(u=r cos¢ andv =r sin¢). The result is However, this method fails, too, because integration by parts
with respect to one variable generates inverse powers of the
Cﬁ Cﬁ other which cause the integral over that variable to diverge at

Si~ g_ﬁ: 1624Ej4i (232 the lower limit. Similar problems beset the two-dimensional

equivalent of integration by parts. The underlying cause of
all these problems is that the arguments of the cosine and the

with ¢z given b
49 y exponential in Eq.(2.5) have a stationary point ats{t)

2 _ 4_ppn2_ =(0,0) in the corner of the domain of integration. The only
I 112n“+3n—8 2n"—2n“—-1 S . .
ch=— 5 5 —-3— 7 In(n++n?—1) way of deriving a correct asymptotic expression for E5)
n“—1 (n°=1) for large ¢j; is to subtract this problematic point and treat it
separately. We refer the reader to Réf} for the details of
4

B 6n | YNt 1+1 (233  how to do this. In the present context it suffices to note that
(n-=1)yn?+1 | n(Yn?+1+n) ' ' the asymptotic analysis in the retarded regime is very simple

in the transformed expressiof.25 and(2.26), but highly
In the same way, using the first term of the expansioncomplicated in the expressions for the level stiff) before
(2.31) in (2.26, we can compute the leading order&f We  the transformation. This is just the reverse of the situation in
obtain the nonretarded limit.
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Ill. LINEAR-RESPONSE THEORY
AND GREEN'S-FUNCTION FORMALISM GZRZ(rO,rO;ig) f

/ 2

In this section we compare the formulas obtained in Sec. £t
Il with those based on linear-response theory. We shall see ><exp(—zz\/g?+ K2, (3.5
that using just the first term of the expansion in Ej31) is
equivalent to approximating the polarizability in the retardedwhere the Fresnel reflection coefficiefRsP are the same as
regime by its static value, which is an approximation that hasn Eq. (2.27) except for the replacement afby £ andv by
been widely adopted in the literature, though often withoutx. We use the expression for the atomic polarizabi(By?2)
rigorous justification. and write the energy shift as

In linear-response theory, the response of a system to an
external perturbation is described by its susceptibility. If the Gsx(ig)
external perturbation is weak then one can assume the re- E=-— E |D\||2J’ dfﬁ
sponse of the system to be linear and apply the superposition ité

principle. For two weakly interacting systems, McLachlan = GRig)
showed that the interaction energy between them can be ex- +|pi|2 f dgz_) ) (3.6)
pressed in terms of the product of their susceptibility at Eﬁ+§2

imaginary frequencie$9]. Applying this formalism to the
problem at hand, one finds that the level shift of a ground{f we rescale the integration variables in £g.4), (3.5, and
state atom is given bicf., e.g.,[4]) (3.6) by the atomic transition enerdy;; such thatt=E; u
andx=E;; v, it becomes obvious that the expression for the
1 w energy shift(3.6) derived from linear-response theory is in-
OE=— 2—2 f déGR (ro,ro;i M n(i€). (3.)  deed identical to the one of B&.12) obtained through nor-
mTIim Jo . R
mal mode expansion and standard perturbation theory once
one has applied the transformation of Sec. Il B and cast it
The indicesl,m refer to Cartesian tensor components, andntg the form(2.25 and(2.26).

m(1€) is the atomic polarizability tensor of the ground  Having made contact between the results of the two ap-

state at imaginary frequencies proaches, we are in the position to examine the approxima-
tions made in the asymptotic analysis of the energy shift. In
. () el 1) particular, applying Watson’s lemma in the retarded regime
H,m(|§)=2; Eji E2 + ¢2 and using just the first term of the expansi¢h3l is
J1

equivalent to approximating

(3.2 1 1

8ma v, 1 (ilpliXilpmli)
-2 Ej E_A_
Ef+& E;

Ef+¢& (3.7
The susceptibilityG,,,, of the electric field is the same as the
field’s retarded Green’s functiof®], which can be easily

worked out from classical electromagnetism by considerin
the Sommerfeld problem of the radiation by an oscillating

n Eqg. (3.6). This amounts to replacing the atomic polariz-
gab|I|ty by its value at zero frequency, i.e.,

electric dipole near a semi-infinite dielectfit6]. Since we m,.(i6)= 8ma S (il pmli)

are not interested in the full interaction energy of the atom m m2 T E;j E?i + &

with the electromagnetic field, which would be the Lamb :

shift in free space, but only in the part that is due to the 87a

presence of the dielectric half-space, we can drop the free- NT 2 E3 <||pI|J><J|pm||>

space contribution from the Green’s function and consider

only the part that corresponds to the classical dipole field that =I1,,(0). (3.9

is reflected by the dielectric. The reflected p@lﬁ11 of the
retarded Green’s function at coinciding spatial points and folAccording to Egs.(3.1) and (3.6), the shift in the retarded
frequencies along the positive imaginary axis reads regime is thus given by

R ey — 1 *
G (rg.r0;i€)=0 VI#m, (3.3 5E(ret)~_znlm(o) fo déGR (i€)

GR(ro.ro;i€)=GH(ro,ro;i€)

=——; <|D||2f déGR(i€)

[(£%+ k*)RP— €°R°]

Y -
“8mlo B R
X exp( — 2 Z\E2+ k), (3.9
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As in Sec. Il C 2, the integrals in E¢3.9) can be calculated Green’s-function approach. Thus the underlying physical
exactly by changing variables into polar coordinatés, processes of the emission, propagation, reflection, and reab-

=r cos¢ and k=r sin ¢; one finds sorption of virtual photons in the interaction of an atom with
| a dielectric wall are transparent and easy to understand in the
* R, Cq normal-mode approach. By contrast, the Green’s-function
déG(i8) = ——; . : ) .
0 32724 approach hides such microscopic processes from view and
just considers macroscopic subsystems and their response to
and perturbations. While one point of view need reopriori be

. any more advantageous than the other, the artificial separa-
f‘” dEGR(i £) = Cq (3.10 tion of the system into two subsystem has the drawback of
0 2z 30524 ' inviting errors in the asymptotic analysis: both atom and field
susceptibilities depend on the frequen@y which is inte-
Substituting these formulas into E¢3.9) we recover our grated from O tde in the expression for the level shif8.1)
previous resul{2.36). and it is thus ill advised to make approximations in either of
Thus, in the retarded regimé;(>1) the leading order of the two susceptibilities without considering carefully the
the ground-state shift is determined by the static value of thavhole integral[17].
atomic polarizability[9]. In other words, in the retarded re-  Furthermore, care must be taken when rescaling two-
gime it is the contribution of virtual photons with frequencies dimensional integrals. Besides the integral over the fre-
much lower than the atomic transition frequenay<E;;)  quencysin Eq. (2.5 ori in Eg. (3.1), the expressions for
that dominates the level shift. The atom is “static” in its the level shifts also involve an integral over another variable,
electromagnetic response because the time scBljedfithe  tin Eq. (2.5 and « in Egs. (3.4) and (3.9, which in the
internal evolution of the atom is much shorter than a typicalmode-expansion approach can be seen to stem from a sum-
oscillation period of the relevant virtual photons, so that themation over angles of incidence. Simply scaling one variable

fields as seen by the atom are in effect static. with the other[17] is tempting but incorrect if the scaling
variable ranges to either 0 o¥, or even both. In this case
IV. SUMMARY AND DISCUSSION one must consider the rescaling as a variable transformation

of both variables and carefully examine the behavior of the

The main achievement of this paper is the discovery of @acobian throughout the domain of integration. For the inte-
transformation between the integral expressions for thgrals appearing ir5) | the zeros and singularities of the
energy-level shift as obtained from a normal-mode expanjacobian pose no threats, as we saw in Sec. Il B. However,
sion of the field and the application of standard perturbationhat there is an issue and that it may be subtle, one can see,
theory, on the one hand, and that resulting from linearfor example, by looking at the electrostatic shift. When
response theory and employing the retarded Green’s funguorking in u- E coupling the electrostatic shift is part of the
tion, on the other hand. This is of value since it helps greatlyesult of second-order perturbation theory, but the minimal
or, for more complicated systems, even makes possible th&upling Hamiltoniamp- A does not include the electrostatic
asymptotic analysis of the energy-level shift, which is thejnteraction which must be taken into account separately in
only way to extract physically meaningful information from that approachi12]. Thus taking the difference of the pertur-
a calculation otherwise amenable only to full-scale numericapative shift due to theu- E Hamiltonian and that due to the
analysis in a multidimensional parameter space. It turns ou$. A Hamiltonian up to second order & given by Eqs(2.5)
that the result of the normal-mode approach lends itself tand[6], respectively, should give the electrostatic shift. Us-

easy asymptotic analysis in the nonretarded regime when thﬁg the same notations as in Eq8.6)—(2.10 we find that
atom is close to the wall but is very awkward to deal with in the electrostatic shift can be writt¢a8]

the retarded regime when the atom is far from the wall,

whereas the opposite applies to the result of the Green’s-

function approach—asymptotic analysis is uncomplicated in 2w " 1

the retarded regime but difficult in the nonretarded. The ex- - —— >’ % Eji|p(r|2[ f duf dtw?7,(t)
ample system investigated here, an atom close to a nondis- amm? T o= 0 0

persive dielectric half-space, is simple enough to allow the . 1

explicit demonstration of the various approaches. However, X cos({jut) + f duf dtu? A, (1)

for instance, the same system but with absorption and dis- 0 0

persion in the dielectric included is orders of magnitude

more difficult to trea{8], and the knowledge of the transfor- xexp(—n?—1 Zub)
mation devised in this paper is essential for extracting useful

asymptotic expressions from otherwise unmanageably com-

plicated expressions.

The two approaches differ also in other aspects. In th@his expression can be evaluated directly, though one has to
normal-mode approach the contributions from traveling andake care not to separate the two summands since each taken
evanescent waves are readily identifiable and separatby itself is divergent([6], Appendix Q. The result is the
whereas they appear combined in one expression in theell-known expression for the electrostatic shift, namely,

) 4.0
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n2—1 a ) |p”|2+ 2|p, |? K for right-incident modes
Tl a2 273 4 2 ' (4.2 “ |k for leftincident modes (AL)
n“+1/16m-Z> 7] Eji ,
and the sum over modes is

plus some “contact terms,” i.e., terms that contribute only
when the atom is sitting directly on the surface of the dielec- d’c
tric where Z=0. These are physically irrelevant because the EV = % f (2m)3
macroscopic model is inapplicable anyway for atom-surface
distances of the order of the Bohr radius and below. Alterna- d3K 3
tively, one could analyze Ed4.1) by applying the transfor- = E { J 3+ f 3l (A2)
mation devised is Sec. Il B, which greatly simplifies the e Kz<0 (2) k>0 (277)

calculation and leads to elementary integrals. Surprisingly,

: : . : : The normal modes,(r) form an orthogonal, complete set
though, this approach yields just the electrostatic qHif2) X / :
but no “contact terms.” The only possible cause for the mys-[zo]‘ For comparison with previous workeft9,21,24 we

terious disappearance of the contact terms is the singulfrom_t.OUt that we have chosen a _slightly _diffe_rent normaliza-
behavior of the transformation at a few places in the domai lon; in-our case the orthonormality relation is
of integration.

Finally, we would like to comment on the difference be- f dBre(r) £5 () -for (N =(2m)38,, S~ K").
tween dipole and minimal-coupling Hamiltonians when ap- (A3)
plied in cavity QED. We have seen in this paper and in
comparison with the analysis ¢6] that there is no great The two polarizations of the modes are widely known as
advantage or disadvantage to either. Both lead to similar exransverse electri¢TE” ) and transverse magnetitTM” ),
pressions when the field has been quantized by a normabr, in the language of Ref17], s and p wave modegsee
mode expansion. Depending on the particular problem aiiso[13,14). The explicit form of thef (r) is

hand, it may or may not be convenient to have the electro-

static interaction included in the dipole Hamiltonian or ol iker K=Kz
handle it separately when working in minimal coupling. fsk(r)=¢le™'0(z)+ K,7K,°C 0(2)
What makes a great deal of difference, however, is whether
one works with a mode expansion or with linear-response Kz r
theory and the Green's function of the field. The mode- TKTKC 0(-2) ], (A4)
expansion approach permits easy asymptotic analysis in the
near zone, and the Green’s-function approach greatly simpli- = K—K, =
fies the asymptotic analysis in the far zone. The transforma- . (r)= —(e'k"®(—z)+ 2 2aik®rg(—g)
tion devised in this paper lets one have the best of both ' n Ko+ K,
worlds without duplicating a calculation, which for compli- k,
cated systems may not even be possible. + me‘“@(z) , (A5)
z z
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.~ 2nK, .
APPENDIX: NORMAL MODES +(kxg) ————e*"O(-2) |,  (A6)
n°K,+k,

In this appendix we provide details about the notations
used in the text, and also explicit expressions for the normal 1 . .
modesf,(r) in the mode expansiof2.4). We label each fou(r) == (kX £)e* 0 (~2)
normal mode by its incident wave. For instance, the normal
mode with the incident wave vect@€ and the polarization K 2k
o is described by the mode functioh,(r,t) with » +(kPx g) 2 —* K®rg(—z)
=(0,K). Itis helpful to introduce a notation which distin- T N°K;
guishes wave vectors that belong to different sides of the
interface. We follow the convention of Carniglia and Mandel S0 Z K-
[19] and useK for wave vectors belonging to the side +(Kxe) , nZKZe 0@ ], (A7)

>0, andk for those belonging to the other sides0. In our

geometry, this means that the incident wave vector is where
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k,=—n?K2—KZ—KJ (A8)
in Egs.(A4) and (A6), and
K,= Vk?/n?—kg—kg (A9)

in Egs.(A5) and(A7). K(®=(K, ,K,,—K,) is the reflected

PHYSICAL REVIEW A68, 033813(2003

wave vector ofk, and similarlyk® is of k; K is the unit
vector ofK, and similarly for the other vector€)(z) is the
Heaviside step function.

A convenient choice for the unit polarization vectois

e=(ICX2)/|KKX 7. (A10)
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