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A many-body density-matrix theory is derived by including quasiparticle renormalization of kinetic energy
and dipole coupling to an external electromagnetic field, as well as the screening and quantum-interference
effects. This theory is applied to a three-level resonant asymmetric double-quantum-well system in which the
ground subband is coupled to the upper tunneling-split doublet by a strong external electromagnetic field. By
using this theory, the quasiparticle energy-level separations and off-diagonal radiative-decay coupling rates,
absorption coefficient, refractive-index function, and scaled subband electron density are calculated as func-
tions of incident photon energy. The effects of quasiparticle renormalization on the quantum interference
between a pair of optically induced polarizations are analyzed. The quantum interference is shown to be robust
against the Coulomb-interaction effect in the mean-field approximation. The roles played by the dephasing rate
and electron density are explained.
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[. INTRODUCTION trons, leading to a depolarization shift of the absorption peak.
[8] If we further look on a femtosecond-time scale, the quan-
When an electromagnetic field is applied to a resonantum kinetics of electrons due to Coulomb scattering plays a
asymmetric double-quantum-well system, there existan-  major role in the absorption spectrum of electrons in quan-
tum interferencebetween a pair of optically induced polar- tum wells[7].
izations of the systerfiL]. The quantum-interference effectis  In order to fully incorporate the effects of the Coulomb
found to be a result of the off-diagonal radiative-decay couJnteraction and quantum interference, we need to generalize
pling (ODRDO) [2,3] which can be systematically derived the many-body density-matrix equatiofg]. The conven-

from a quantum electrodynamic treatment of photons ané||onal calculation for Coulomb-interaction effects is based on

electrons in second quantization. The effect of ODRDC ded perturbation to the systef8], where the electron distribu-
jon function is kept as the equilibrium Fermi-Dirac function.

scribes a nearly resonant absorption of a spontaneously em he existence of a quantum-interference effect introduces a
ted photon from one downward electron transition by an- q

other upward electron transition. In addition, the ODRDCnonequmbnum distribution of electrons and causes the dis-

. . . tribution to depend on the frequency of an incident electro-
effect in the bare-atom picture of a three-level atomic SySte%agnetic field. As a result, both the quasiparticle energy

is equivalept to the electromagnetipally induced transparency, o malization and many-body screening, which determine
effect [_4] In t.he dressed-atom picture, and .the effect ofy,q peak position and strength, are altered by the incident
probe-field gain based on an ODRDC process is connected {ghoton energy. On the other hand, whenever there exists an
an amplification without inversiofb] in the bare-atom pic-  apsorption peak under a strong electromagnetic field, there
ture of a three-level atomic systejl. will be a minimum in the density of electrons in the ground
For noninteracting electrons in quantum wells, bothsybband at that specific photon energy due to transferring
absorption-peak position and strength are fully determine@lectrons from the ground subband to higher subbands.
by the energy-level separation and wave functions derivedherefore, the ODRDC effect will also be modified by the
from the Schrdinger equation. When th€oulomb interac- photon energy through the Coulomb interaction between
tion between electrons is taken into consideration, interactinglectrons since its coupling rate is proportional to the cube of
electrons will form quasiparticles with renormalization of the energy-level separation.
both kinetic energy and dipole coupling to an external elec- In this paper, we will address the following question. How
tromagnetic field[7,8]. The kinetic-energy renormalization do many-body effects alter the quantum interference seen in
includes positive Hartree and negative Fock corrections. Théhe single-particle absorption spectrum? We will first derive
former tends to push energy levels up, while the latter tendthe many-body density-matrix equations by including quasi-
to drag energy levels dowf8]. The renormalization of di- particle renormalization of the kinetic energy and dipole cou-
pole coupling to an external field is caused by the opticallypling to an external electromagnetic field, as well as the
induced polarization of the systef#]. In addition to quasi- screening and quantum-interference effects. We then apply
particle energy renormalization, optically excited electronsour theory to a three-level resonant asymmetric double-
which will polarize the system by creating a statistical dipolequantum-well system in which the ground subband is
moment try to screen the Coulomb interaction between eleccoupled to the upper resonant doublet by a strong electro-
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magnetic field. Finally, using this theory we calculate thefrom one another along one of their main diagonals by a
renormalized energy-level separations, off-diagonalistance equal to one-fourth of this diagonal. The top of the
radiative-decay coupling rates, absorption coefficientsyalence band occurs at the center of the Brillouin zohe (
refractive-index functions, and scaled first-subband electropoint). The conduction-band edge is found either at kthe
density as functions of incident photon energy. The([000]) point or near thek ([111]) or the X ([001]) point.
Coulomb-interaction effect on the quantum interference isThe energy difference between the top of the valence band
analyzed. The quantum-interference effect is found to be roand the bottom of the conduction band is called the band gap
bust against the Coulomb interaction between electrons i&g, which usually depends on the temperature. For ternary
the mean-field approximation. In addition, roles played byalloy materials, such as Mba _,As, InGa_,As,
the dephasing rate and electron density are discussed.  Al,Ga,_,Sb, etc.Eg also depends on the alloy composition
The organization of this paper is as follows. Section Il isindex x.
devoted to the derivation of a many-body density-matrix When a binary compound, such as GaAs, is sandwiched
theory for the calculation of time-resolved absorption spechetween ternary alloy materials, such as@4, _,As, or be-
tra, including quantum-interference effects. Numerical retween different binary compounds, such as AlAs, the differ-
sults and discussions are presented in Sec. lll for the opticance in their band gapSEg causes the bottom of the con-
spectra in three-level resonant asymmetric double quantumuction band and the top of the valence band to take on a
wells, where the quasiparticle energy-level renormalizationstepped shape in the resulting heterostructure. The step
screening effect, and quantum-interference effect ar@eight in the conduction band iE. while the step height in
analyzed and explained. The paper is briefly concluded inhe valence band iAE, with AE.+AE,=AEg. The elec-
Sec. IV. trons in the GaAs “well” material become confined by the
potential barrierAE.. Similarly, the holes in the GaAs

Il. MODEL AND THEORY “well” material are also confined by the potential barrier
AE, . If the width of the GaAs layer is comparable to the de
‘Broglie wavelengths of the electrons and holes, the whole
system will enter into a quantum regime, with particle mo-

In this paper, we only consider the dynamics of the radia
tive decay of conduction electrons in an intersubband
transition qu_antum-well system. The scattering effdets- tion across the layers quantizgti0]. In this case, we term
ergy relaxation and dephasing of optical cohergrficem this “well” a quantum well
ot.her electroqs, phonons, |rr.1pur|t|es,.and |nt§rface roughness In this paper, we only discuss the intersubband transitions
will be taken into account simply by introducing a ho_moge-of conduction electrons in quantum wells. Noninteracting
neous level broadening in steady state for electrons in quarb'articles, such as electrons, inside a quantum (eelfined

tum V\_/ells: The renormalization of kinetiq energy anq dip.olein the z direction) obey the Sckirdinger equation
coupling is included under the mean-field approximation.

The screening effect is incorporated into our theory in the 72 d 1 d
long-wavelength limit under the self-consistent-field ap- -5 | = 52|42 +Uow(2) (2) =E¢(2), (1)
proach. The quantum interference between optically induced 2 dz| m*(z) dz

polarizations is considered in a quantum electrodynamic

treatment of spontaneous emission under the rotating—wav\ﬁherem*(z) is the effective masm,, (mg) of the electron
approximation. W B

Detailed di . includi body effects i in the well (barriep material,E is the energy of the electron,
elailed discussions on Including many-body: efiects 'nUQW(z)zAEc is the height of the potential barrier of the

density-matrix equations can be found in a book edited by : :
. ) e uantum well for the electron, anfl(z) is the wave function
Chow and Koch9]. In this section, we will first present a d )

brief revi P conduct t lis. After that. th of the electron in the quantum well. It is easy to show that
priet review ot semiconductor quantum welis. Afterthat, they, energyE of the electron in the quantum well will be
importance of the Coulomb interaction between electrons

will be discussed and a criteria for including the Coulombquantlzed into multiple subbandﬁ (k) with level index;

interaction will be given. Finally, many-body density-matrix z: dlir'ei:cigﬁ ;/\}a.\}\évcgglgrlift?ﬁelg-lglca':pcﬁqu;zigdiIt(;uflreget(r)ntorlieon
equations will be derived by including the quantum-

interference effect on electron intersubband transitions in ¥VIthII’] the plane{10]. The corresponding wave function for

(0) i )
three-level resonant asymmetric double-quantum-well sysSach subbang; (k) is denoted byp;(z). The energy of the

tem. Based on these equations, optical spectra will be calc/€ctron in the quantum well can be written as
lated for different dephasing rates and electron densities, and

effects of the Coulomb interaction on the quantum interfer- 72K2
ence between optically induced polarizations will be ana- EQ(k)=Ej+——, 2
lyzed. 2my (k)

A. Semiconductor quantum wells which has a nonparabolic dispersion. Héteis the edge of

Bulk 11I-V binary semiconducting compounds, such asthe jth subband. A large nonparabolic effect can destroy the
InP, InAs, InSb, GaP, GaAs, GaSb, AlAs, AlSb, etc., crystal-quantum interference in the systefd]. The effective
lize in the zinc-blende structufd0]. Their lattices consist of k-dependent effective mass; (k) of the electron in Eq(2)
two interpenetrating, face-centered cubic lattices, displacets found to be{8]

033804-2



INTERPLAY BETWEEN COULOMB INTERACTION AND . .. PHYSICAL REVIEW A68, 033804 (2003

1—-P, Here, ¢, is the dielectric constant of the quantum-well mate-
L (3)  rial. In order to determine the importance of the excitonic

interaction, we estimate the ratio of to Er to be

1 P

m* (k) my(k) Mg

where P; is the quantum-well dwelling probability for the

Ve
electron in thejth subband and; (k) is given by[8] v 2 9)
EF K2Ra% ZRa’
mg . E, 2
mi(k) ~ 3| Eg+ E; +#2k2/2my, wherea§f4wepe,ﬁ2/mwe2 is the effective Bohr radius of
the two-dimensional electron gas in the quantum well. As an
1 example, we choose,=12, m,,=0.067Mn, for GaAs well
Ec+Ao+E;+72k%/2my @ material, and_,,=100 A. ForV¢=Eg, we get
with free-electron masmy. In Eq. (4), Eg and A, are the 1 4&1B 1 )
energy gap and spin-orbit splitting for the well material, re- nZD:W L, =4x10" cm ™2, (10
B

spectively, ancE, is the interband Kane matrix elemei].

The complete form of the wave function for a single electron ] ) .
in the quantum well can be written as which is within the typical range of required electron density

in quantum-well devices. Moreover, the screening of the
1 Coulomb interactior{ 6] between electrons in the quantum
l/fjk(f) ——expk- r|\)¢>,(2) (5)  Wwell is known to t_>e proportional tozp. Thls.explalns why '
V2w we need to consider the Coulomb-interaction effects on in-
tersubband electron transitions in the quantum well.
wherer=(r|,z) with rj being a two-dimensional position
vector in the plane perpendicular to the growth direction, and ¢, second-quantization of interacting-electron system
the plane-wave part of the wave function corresponds to the
free (nonquantized motion experienced by the electron
within this plane. For simplicity, we only show here the en-
velope part of the wave functiofi] for the electron in the
quantum well. The Bloch function associated with the wave

The total Hamiltonian operator for interacting electrons in
a quantum well in the absence of an electromagnetic field is
written as

function in the bulk material and the spinor part of the wave H(1) = Ho(t) + V(D) T VR(D). 1D

function for electron spins are irrelevant for discussing the
intersubband transitions of conduction electrons. By using the creatioannihilatior) operatorC! k(t) [Cjk(t)]
for electrons, the free-electron Hamiltoniag(t) in Eq. (11)

B. Importance of Coulomb interaction simply takes the form
Let us start by considering a single quantum well which
contains an electron gas. At zero temperatdre 0 K), the > _ O AT A

: S . . . t)=2, E;(K)C,-(t)Cik(t), 12
maximum kinetic energy of a noninteracting-electron gas is Hol) % i () lk( JCik(®) (12

the Fermi energy, defined by

ﬁzk,zz the Hartree-type interaction is
F~ 2my,’ (6) T
wm2221mmmwm%wmym
wherekgz=+/27n, is the Fermi wave vector ant, is the kg ka ]
two-dimensional density of electrons in the quantum well. If (13

we define the mean distan&between two electrons by ] o
and the Fock-type interaction is

4 _
2 TR Ngp=1, (7 1
3 PR At
Ve)=2 2 2 2 Vi @G
" ky,kp q#0 T1i2.13l4 Jz 4l Jakata
where ngp=n,p/Ly and L,y is the width of the quantum R R R
well, the average excitonic interaction between two electrons X Cjzgz_d(t)Cja,ﬁz(t)CuEl(t)- (14)
is [6]
, Here, nj(k,t) is the occupation probability for electrons in
VC:e__ ] (8) the jth subband with wave vectdt. We have defined the
dmepeR Coulomb interaction matrix in Eq$13) and(14) by
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e2
C =
Vi1 D 2 e ATt gD A@)] i1 K -
><f_:dzf_:dz’¢J*l(z)¢1*2(z’) : 0 /,-(-\\
xexp(—alz—2') ¢}, (2)4;,(2), (19 > - ! —
jK K bk K gk

where A is the cross-sectional area of the quantum-well

sample and Y;(t) is the so-called Thomas-Fermi screen- (a) (b)

ing length[6] resulting from a two-dimensional electron gas.

Under the electric quantum limit.e., only the ground state FIG. 1. Feynman diagrams in momentum space for the Hartree

is occupied, grg(t) is given by (a) and Fock(b) approximations used for the second and third terms
in Eq.(20). Here, the solid straight lines with an arrow represent the

o P Green’s function for noninteracting conduction electrons and the

f kdk{ ————ny(k,t)]. dashed lines stand for the Coulomb potential between two electrons.

0 IE (K1) The labelsj,j, are the subband indexdsk’ are the wave vectors

(16) of electrons, and is the wave vector of the Coulomb potential.

o2
qTF(t):( )

2mege,

In Eqg. (15), the form factor due to finite-size quantization is

found to be[6] Ej(k,t)zEJ(O)(k)+2 2 Vﬁl,jjl(o)njl(k’,t)
j1.k
f(CI)Zf+wdzf+mdz’|¢1(Z)|zexp(—QIz—z’|)|d>1(z’)|2. k'#k o
o =2 V5 (k=KDng k'), (20
P 171 1
(17 i1,k

The time dependence in the screening lengtiy(t) makes
the Coulomb interactiol”

1112~j4j3
on time.

and the quasiparticle-renormalized dipole-coupling energy
(q) between electrons rely pecomes

+
D. Mean-field theory Ajj'(k,t)=€‘5L(t)J7v dz¢F (2)z¢:(2)
In the following, we introduce the mean-field approxima-

tion to the four-operator term in Eq14), which leads us to Zkiizls c . )

; : - z jEj ijlvjsj'(“(_k |)pj3j1(k 1),
A ; RN DA ENE
legﬁa(t)cjzgz,a(t)stkz(t)cukl(t)”qsﬁo

(21)
~ (€l d OGN & (DT (V6 4k,
R R R R where & (1) is the time-dependent amplitude of a spatially
—((CJT ‘ _d(t)Cj4|;1(t)>>CJT ‘ +&(t)ng,;z(t)5,;2,,5,,;1. uniform electromagnetic field. Equatiof®0) and(21) result
22 T from a quasiparticle theory which includes renormalization
(18 of both kinetic energy and dipole coupling to an external
electromagnetic field. The second and third interaction terms
Under the mean-field approximation, the total Hamiltonianin Eq. (20) are illustrated by Feynman diagrams in Fig&)1
operator in Eq(11), including an additional interaction with and Xb), respectively.S;;,(t) in Eq. (19) represents the

a uniform electromagnetic field, can be simplified as screening effect in the long-wavelength limit, i.g->0. By
using the self-consistent-field approddj, S;;(t) is given
i’ by
=2 EQk okt — 2 Ay (ko (k)
ik IS m#n

) Sij0=22 2 pueK OV}, 11n(0),  (22)
+ E_S“/(t)(f”r(k,t) (19) mn-g’
Ji'ik
. o which generates a so-called depolarization shift of absorption
Here, o (k)=C()Cjk(t). In Eq. (19, the peaks[8]. Here, pyn(kt) for m#n is the off-diagonal
quasiparticle-renormalized kinetic energy under the meandensity-matrix element representing an optically induced po-
field approximation is larization of the electron-gas system.
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E. Many-body density-matrix equations

By introducing a statistical average &q,j(k,t) through a

density operatorf)(t) of the system, we get the density-

matrix elements

pii (KO =(oj(k,O)=Tr{ojj(k,)p(D)}. (29

The equation-of-motion for the operat&q,j(k,t) [1] leads
us to the following density-matrix equations fgr#|’
(optically-induced polarization

d 1
P (kD=1 20 [Him(Dpmj (K1) = pym(K, O H o (1]

1
5 (vt yieji k), (24)

wherevy; is the homogeneous broadeningj tif subband due
to electron scattering ant{;(t) is the matrix elements of
the Hamiltonian operator in Eq19). Forj=]' (occupation
probability), we have

d d 2
P (D= 2k == 2 2 1ML pjen(K, 1) Hony (1) .
(25

(=Y

1

J
StPiir (Ko ==s(y+y)pj (Ko )+ o [Ejk )~

m#j

- ; Ajn(K,t) pmjr (K, @ 51)

m#j’

PHYSICAL REVIEW A68, 033804 (2003

Substituting Eq.(19) into Eq. (25) in the presence of the
strong electromagnetic field, we get

m#j

(9 . — .
S0 = 2 2 Im[ Ak Dpjm(k oy i),

m#j

7 % lm[ ij(ker 't

i’

x| 2 pn«k',wL;t)v;.J-AO)]],
Kk’ ii’

(26)

at i J( s WL ) .

Inserting Eq.(19) into Eq. (24), we find

E; (k1) +hio 1pjj (Ko ;t)

2 i#i’
7 2 Anp(kDpmk o0+ (ko 2 {E piir (K o DIV, 1 (0) =V, i(0)]
Kk’ i, i’

m# j i#i’ m#j’
7 2 pmi(koLD {E pn,<k',wL:t)vj‘€.mi<0>]—E 2 pim(k oD

K’

-
ii

Sy
1,1

i#i
Xz [2 pii’(k,va;t)Vgﬂr,jri(o)]a
k’

wherew, is the frequency of the electromagnetic field.

F. Quantum-interference effect

(27)

a resonant coupling between energy leuejs andE; g due

to their alignment in energies. The resonant coupling creates
a doublet from these two degenerate energy levels. The dou-
blet is labeled by (k) andE{”)(k). Moreover, we denote

In the following, we limit ourselves to a three-level model E;, by E{(k) and assume tha&{ (k) — ES (k) <EQ)()
for the resonant asymmetric double quantum wells, as dis— E{”’(k). To excite an intersubband transition of electrons
played in Fig. 2. In this double-quantum-well system, thein quantum wells, one requires a nonzero component of the
deep/narrow left quantum well has two confined states laincident electromagnetic field along the growt) @lirection.
beled byE,, andE, , and the shallow/wide right quantum The other component of apatially uniformincident field
well has only one confined state labeledlys . There exists does not directly interaddipole coupling with electrons in
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quantum wells. For this reason, an incident electromagnetiequationg1] in the presence of off-diagonal radiative-decay
field is assumed to be polarized in thdirection with photon  coupling for noninteracting electrons and E(&6) and (27)

energyfiw, close toE® (k) —E{(k). for interacting electrons, after the rotating-wave approxima-
By combining the previously derived density-matrix tion [1] we obtain the following:

d 2 2
anl(kawL;t) (kD) ——Na(K, 0 ;1) + 2831 14 Q31(K, 1) Ing(K, 0 ;1) + Im[A Tk D) p1ak o ;1) + ATk, ) pra(K, 0 ;1)]

4
+2{B31,1d Q21(K,t) 1+ 82114 Qa1(K, D T} RE pog(K, 0 ;1) ] — 7 %: Im{p1K, e ;t)

4
X[sz(k/:wL?t)Vgl,lio)JFP’fs(k/:wL?t)Vgl,liO)]}—gZ Im{p1a(k, ;)[ pTaK", @ ; t)V31 140)
k/

+pisk’, vat)V31 1401}, (29
2 2
anz(k,wl_;t)= (kD) — MoK, 0 1) + 2835 5 QoK 1) Ins(K, @ ;1) — Im[A Tk D) prak o ;) + Ay, 1) p3a(K, 0 ;1)]
4
— 22114 Qa1(K, 1) IR pog(K, 0 ;1) ] — 7 % Im{pTa(k, o ;t)[p1a(k’, o ;t)V(1:2,21(O)

+p13K' o ; )V1321(0)]} 7 2 Im{po3(K, 0 ;t)[ pog(K’, wLat)V3322(0)+P23(k' wLat)VSZZZ{O)]}’

(29

1 1 i
ap12(k:wL;t):_§(71+ 72)P12(kva;t)+i[921(k-t)_wL]P12(k-wL;t)_mplz(kva;t)+%Alz(kat)[nz(k:wL;t)

—ny(Ko )]+ + AlS(k t)psa(K, ;) — A*g(k t)p13(K, @ ;1) = B21.1d QLaa(K, ) ]pra(K, 0 51)

2i

7 —p1Ak, “’Lat)z {p2s(K', wLat)[V13 140)— V23 240) 1+ p3(k’, wLat)[V12 140)— sz 240)]}

2- ’ ’ C

N 2K, ; t)E [p1AK' o ; t)V1221(0)+P13(k w1 Vi53,(0)]

2i

7 —psak, wL,t)E [p1aK', wL:t)V12 310)+p1a(K’, wL:t)Vla’ 310)]

2- ’ ’ C

g Mk 2 [padk o )VE2(0) +prdK 0L 1D Vi {0)]

2
ﬁ —p1sK, o ; t)E [p2s(k' 0 ; t)V3322(0)+P23(k/ o ; t)Vszze(O)]a (30)

1 1 i
apls(k,wL =- 5(7’1+ Y3)p1a K o ;D) Fi[Qa(K,t) —w ]p1g(K, 0 ;1) — mpls(k:wL O+ %Als(k,t)[ns(k,wL b
—ny(Ko )]+ + Alz(k t)poa(K,w ;t) — Azs(k t)p1oAK, ;1) — Ba1,14 Qoa(K, D) ]pra( K, 0 51)
2i
7 P13k, ‘UL,t)E {p2s(K', ‘I’L,t)[V13 140)— V33 32(0)]+P23(k’ (‘)L’t)[VlZ 140)— V32 340)]}
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2i ’ ’ C
% P2k o ; t)E [p1aK' @ ;t)V T 5(0)+ pra(K' 0 )V 5(0)]
2. ’ ’ C
—zn a(k,w; t)E [p1A K", 0 ;t)V5 340) + p1a(K' @ ;1) V5 5(0)]
1(K, wL,t)Z [p1aAK', wLvt)V1231(0)+P13(k’:wL;t)v(1:3,31(0)]

2
ﬁ —p1Ak, wLat)E [p2s(k', wLat)V23 340)+ pao(K’, wLat)VZZ 340)], (31

1

d 1 , i
aPZS(kva ) =- 5(72"‘ ¥3)p23(K, @ ;1) +iQ35(K,1) pog(K, 0 ;1) — [m + m}l)za(k,wL )+ %Azs(k,t)

i
X[ng(k, o ;1) —ny(k, vat)]+ A Ak, t)pra(K, o ;1) — %Als(k,t)P’fz(kawLit)
+ B2z 24 Qaa(k, 1) 1p3a(K, 0 ;1) —{Ba1.1d Qa1(k,t) Ina(K, ;1) + Bag1d Qoy(k, 1) Ina(K, e ;1))

2i
7 —paak,oL; t)Z 1p23K' 0 ; t)[Vzgzio) V3332(0)1+st(k/ o, t)[szza(O) Vszss(o)]}
2 ’ * ’ C
7 —pisK o ; t)E [p1A K o ; t)V2112(0)+P13(k oL 8)V351140)]
2
na(k vat)E [p2s(K' @ ;t V2332(0)+P23(k’ ot szsa(o)]
2
g pldk oD 2 [palk oL Ve of0) + prdk' oy 1)Viga{0)]

2i ’ C * ’ C
+zn2(ker;t)Z [p2a(K' o ;)V73340) + poa(k", ;1) V3554 0)], (32)
k/

whereh Q0 (k,t) = E;(k,t) — Ej(k,t) with K2k

Ak t)=— Z [ng,ai“z_ IZ'|)P"§3(k’ o ;1)
k/

Ej(k,t)= E<°>(k)+22 Vi i, (0N (K w5t

+V§3,2 k=K' pagk 0L ;1)1 (39

K #K
_ z Ve (K=K'Dng (K olit). (33 while for j>j’ we_haveA”,(k,t_)z_AJ*,j(k,t). In Egs.(28)—
11 1 (32), we have defined the radiative-decay rate for subbands
with j=1,2,3 by[1]
For j<j’ [excludingA,4(k,t)] we get

1
_ WZEJ Bii il Qi (kD)]. (36)
A“,(k,t)ze&(t)ﬁx dzd>j (2)z¢j/(2)
Here, Bj;. i [Qiri(k,1)] in Egs. (28)—(32) and (36) is the

K #k . o real part of the radiative-decay coupling matrix elements,
= 2 [V (k=K' )prk' o ;1) given by[1]

kl

. 203

VG (KR DpisK 001, (34 etk

(KK Dpsk ol GO g L ra (0 ]1= =T r0y (k0 1d; d

3fiege,c®
and (37)
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] _T_ TABLE I. Conduction-band offset\E;/AE.,, step height
AU, well widthsLyy, /Ly, middle barrier thickneskg, and elec-
AE 5 tron densityn,p for samples 1 and 2 shown in Fig. 2 with different
E oL E iR ¢ electron densities.
A A l Sample AEy/AE, AU Lyy/Lws Lg Moo
I 7 T no. (meV) (meV) A) (A) (x10%"cm™3)
A
EC1 | 4 1 249/101 148 75/85 50 0.8
V 2 249/101 148 75/85 50 1.6
q AU / /
(<A< K<) n2D
E whereL, is the total length of the double quantum wells.
L Using Eq.(40) we get the Lorentz ratigpolarizability) as[6]
v
(o,:1) Plawy;t)
o )= ——%—+
— 7 O™ e ()
FIG. 2. lllustration of three-level resonant asymmetric double 2 A%k K,
guantum wells with intersubband field coupling. The barrier mate- el AE 2(1) [ATAk D paak 0 1)
rial is Al 3:=Gay ¢S, and the materials for the left and right wells 0
are GaAs and Al,dGay 79AS, respectively. Two degenerate elec- 3(k t)piak, o ;1) +A 3(k t) ok, i)}, (41)

tron transitions in the system are indicated by the thick dashed

arrows.Ly, andLy,, are the widths of the left and right wells, and which becomes independent &f(t) under the weak-field
LB is the thickness of the middle ba.rna.Ecl and AECZ are the I|m|t [gL(t)_>0] The tlme dependent Complex d|e|ectr|c

conduction-band offsets for the left and right wells, and is the  fnction can be calculated from the Lorentz red,
step height between the bottoms of the two wells. The electromag-

netic field £ (t) is assumed to be polarized in thealirection. The e(w ;1) =€+ x(w;1). (42)
lower-energy state in the left well contains electron density

illustrated by three circles filled with+ " signs at their centers. All  The absorption coefficient is found to bg]
the parameters for this sample are summarized in Tables | and Il

where 6(x) is the Heaviside step function and a(w ;t)= [Npr(wp) +1]Im[ x(w ;1) ],

(43

L
Nn(w_;t)c

+
d”,=f dz¢f (2)z¢/(2). (39
- whereNp(w ) = 1[expfiw_/kgT) — 1] is the Bose function
for incident photons and the refractive-index function in Eq.

From Eg.(37) we obtain thediagonal radiative-decay rate (43) is given by

Bii ijl Qi+i(k,t)] for j>i whenj’=i andi’=j. The rest of
the off-diagonalradiative-decay rates reflect the coupling be- 1
tween two optical transitions, i.e., from leviélto j and from N(w, ;)= ——fe+Re x(w,:1)]

level i’ to i. The quantum-interference effect is taken into V2

consideration by including B5;:4Q5(k,t)] and

Bs114Qx(k,1)] terms in Egs.(30) and (31), respectively + et Re (o ;) ]} +H{Im[ x (o ;) ]}
[1]. The scaled density for electronsjith subband is calcu- (44)
lated as

In Eq. (43), a(w,;t)>0 indicates photon absorption by
N<(w|_,t)=i 2 ni(k,w, ;) (39) electrons in quantum wells While(w,_;t)_<0_ corresppnds
to a gain for the external electromagnetic field provided by
electrons in the quantum wells.
G. Dielectric function and optical absorption

Based on the calculated density-matrix elements, the sta- Ill. NUMERICAL RESULTS AND DISCUSSION

tistically averaged polarizatiofper unit volumg of the sys- In this section, we present the steady-state optical spectra
tem can be found from for resonant asymmetric double quantum wells with inter-
subband couplingsee Fig. 2. For the samples used in our
Plw t)=— )2 A%k, t)prak @ ;t) numerical study, the barrier material is)AlG&, g5AS and the
t L AgL(t) L materials for the left and right quantum wells are GaAs and
Al 20dG8 79AS, respectively. The electron density in the
Askiprgk oL i)+ A%k, pag( K, 1], quantum wells is denoted asp. There are two confined

(40)  electron states in the left quantum well, indicatedeyy and

033804-8
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TABLE II. Calculated single-well electron energy levels 1.00 v T v y r Y v T
=E,; andE,, in the left quantum well ané&g, in the right well for

o [ 0 ]
the sample shown in Fig. 2, as well as the energy levels of the 099 --==~ [531,12/ B( )31'12 .
tunneling-split doubleE, andE;. =  ——8 /B(O) 1
= 0.98 | 21,13 21,13 i
s 0
Ei=E; (meV) E, (meV) Ejg(meV) E, (meV) E;(meV) 8 I
0.97
45 173 173 170 176 t_g L
S
0.96
g
o

E, , and one confined electron state in the right quantumg' 0.95
well, denoted byE; g. The sample parameters and the calcu- o
. . @ 0.94

lated energy levels in the left and right quantum wells are @ I
summarized in Tables | and Il. The upper energy level in the® 0.93
left quantum well is aligned with the energy level in the right ' . . . ) A . . .
guantum well, producing a tunneling-split doublet. The 115 120 125 130 135 140
strong external electromagnetic field applied to the system is Photon Energy ( meV )
polarized in thez direction. The frequency of the electromag-
netic field is set close to the energy separation between the FIG. 3. Scaled off-diagonal radiative-decay couplings
lower level in the left quantum well and the doublet. As aBa;.15/ 851, (solid curve and B, 15/ 8515 (dashed curveat k
result, the three-level model for the intersubband-coupled=0 for sample 1 as functions of photon enefgy, , whereg;j mn
quantum wellg1] can be adopted here after the inclusion ofand B{},, represent the quasiparticle and single-particle off-
Coulomb-interaction effects. diagonal radiative-decay coupling rates, respectively.

In our calculation, we have takenr=4 K, &
=20 kV/cm (equivalent to 2 W for this field strengthaver-  relatively stronger compared to the corrections to the two
age dielectric constar{=12, andy;=y, for j=1, 2, 3. For  higher subbands. This leads to a decrease in the energy-level
the left (right) well, we have foundA;=0.341(0.333 eV, separations. The dependence of the energy-level separations
Ep,=22.71 (20.50 eV, Eg=1.52 (1.78 eV, and AE;;  on the photon energyw, is because the Hartree-energy cor-
=248.77 meV for the barrier height of the left well. The rection is proportional to the subband densit( ) which
chemical potential of the noninteracting-electron gas is caldepends on%w, through the many-body density-matrix
culated to beu(nyp,T)—E;=2.75(5.50 meV atT=4 K equations. WheneveN,(w,) reaches either of its two
for sample 1(2). In addition, we takey,/85%)1,=5 atk=0  minima[see Fig. 40)], the energy-level separations show a
for Figs. 3—6 and vary this ratio in Fig. 7, angb};,is  peak at the same photon energy due to a reduced Hartree
defined in Eq(37) for single-particle energy-level separation correction to the ground subbafmbt shown here Based on
ﬁQ(z%)- these reasons, the decrease of the off-diagonal radiative-

Figure 3 presents the ratios of quasiparticle off-diagonaliecay coupling rates by the Coulomb interaction between
radiative-decay coupling rates for sample 1 from many-bodylectrons can be easily explained since they have a cubic
density-matrix theory including the quantum-interference efdependence on the energy-level separations, as shown by Eq.
fect. It is clear from the figure thatBs 1851  (37).
/321,13/,8(201)113<1. This reflects the reduction of the quantum-  We display in Fig. 4 absorption coefficientsw,) [in
interference effect by the quasiparticle renormalization. WeFig. 4@)] and scaled first-subband densitdg ) [in Fig.
note that the Hartree-energy correction to the first subband (b)] calculated from the many-body density-matrix equa-

0.8 T T T T 1.0 T T T T

Quasiparticle w/ QI (a)
----- Quasiparticle w/o QI

o
(=)
T
1

I
~

o
)

04 e

Scaled First-Subband Densities

Absorption Coefficients ( 10°cm™)

Quasiparticle w/ QI
o----- Quasiparticle w/o QI (b) 1
00 1 1 1 1 0.2 1 1 n 1 I 1 n
115 120 125 130 135 140 115 120 125 130 135 140
Photon Energy (meV) Photon Energy (meV)

FIG. 4. Calculated absorption coefficiem{w,) (a) and scaled first-subband density(w,) (b) of quasiparticles from the many-body
density-matrix equations for the cases wislid curve$ and without(dashed curveshe quantum-interferend®l) effects for sample 1 as
functions offw_ . Including QI means we take nonzero off-diagonal radiative-decay coupliggs, 821,13, and B3 23.
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o
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115 120 125 130 135

Photon Energy ( meV)
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130 135
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125
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o
-
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o
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FIG. 5. Calculatedr(w,) (8 andN,(w,) (b) from density-matrix equations which include the quantum-interference effect for the cases
of the single-particle theorysolid curve$, the quasiparticle theory for sample 1 as functions af .

tions for the cases witlisolid curve$ and without(dashed two absorption peaks becomes more and more insignificant
curves quantum-interference effects. From Figapwe find  with the increase ofy, due to suppression of the quantum-
that the quantum-interference effect deepens the minimurinterference effect. Moreover, it is known that the Coulomb-
between the two absorption peaks. Moreover, a small asyninteraction effect depends on the electron densjty. At the
metry in the strengths of the two absorption peaks is creategiame time, both absorption peaks are broadened wjth
by this effect, as it slightly increases the separation betweehrom Fig. 1b), we find that the two absorption peaks are
the peaks. Thev, dependence oN;(w ) in Fig. 4b) is  pushed even lower in energy with increaseg, due to an
correlated to the features found in Figa$ Whenever there enhanced Hartree correction to the first subb@menparing
is an absorption peak, there will be a minimumNRp(w,) at  thin and thick solid curves but the peak positions are not
the same photon energy due to transferring electrons frorahanged from the single-particle thedigomparing thin and
the lowest subband to the upper tunneling-split doublet. Théhick dashed curvesin addition, the strengths of the two
maximum of N;(w,) between the two minima is reduced absorption peaks are increased witf, due to more elec-
slightly by quantum interference. From this figure, we findtrons being available for intersubband transitiGcemparing
that the quantum-interference effect predicted for this systerthin and thick dashed curvesFinally, the enhanced Fock
[1] is robust against the Coulomb interaction between eleccorrection to the dipole coupling a5y, is increased tends to
trons in the mean-field approximation. reduce the strengths of the absorption peaks even more.
Figure 5 is used to exhibit the Coulomb-interaction effect,
where a(w) [in Fig. 5@] andN;(w,) [in Fig. 5b)] from
single-particle(dash-dotted curveésand quasiparticlésolid We have derived many-body density-matrix equations by

curves theories including the quantum-interference effectincyding quasiparticle renormalization of kinetic energy and
are compared. The two absorption peaks in Fi@) &re

IV. CONCLUSIONS

significantly shifted down in energy by the Coulomb interac- 3430 — T T 1
tion between electrons due to a strong Hartree correctiontc | ----- Single-Particle
the first subband as explained in the discussion of Fig. 3. The 3.428 Quasiparticle

strengths of the two absorption peaks are also reduced due t@
a Fock correction to the dipole coupling as can be seen frorr%
Eq. (34). The depolarization shift of the absorption peak is §
expected to be suppressed due to equal subband density 't
the lowest subband and one of the higher subbands at th.g
photon energy where the peak absorption occurs. The shif£

3.426

3.424

down in energy of the two minima iN;(w ) can clearly be é’
seen from Fig. Bb) by comparing the two curves. S
Both quantum-interference and Coulomb-interaction ef-g 3422 S
fects can also affect the refractive-index functiofw, ). In o i
Fig. 6 we see that th& feature observed im(w,) as a 5420 _ L L

function of fw_ is shifted down in energy when the

Coulomb-interaction effects are included. At the same time,

n(w_) near the photon energies of two absorption peaks is

enhanced. On the other hand, we find that the quantum- F|G. 6. Calculated refractive-index functiom(w,) from the

interference effect slightly increase¢w, ) near the photon single-particle(dashed cunjeand the quasiparticlésolid curve

energy of the lower absorption peékot shown. density-matrix equations including the the quantum-interference ef-
From Fig. 7a), we find that the minimum between the fect for sample 1 as functions dfw, .

120 125 130

Photon Energy (meV)

135 140
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02 0.4

Absorption Coefficients ( 10°cm’™)
Absorption Coefficients (10°cm™)

0~0 1 n 1 1 n 1 A n n 1 1 A
115 120 125 130 135 140 15 120 125 130 135 140
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ey

FIG. 7. Calculatedr(w,) for different dephasing rateg, in (a) and for comparison between samples 1 and @jrfrom density-matrix
equations which include the quantum-interference effedi@)llm(w,) of sample 1 for the case of the quasiparticle theory WHVIB(zol),lf 5
(solid curve, 7 (dashed curveand 9 (dash-dotted curyeat k=0 are compared. lb), a(w, ) with yOI,B(Z%ZZS atk=0 for samples 1

(thick curves and 2(thin curve$ are compared for the cases of the single-particle thetaghed curvesand the quasiparticle theofgolid
curves.

dipole coupling to a strong electromagnetic field, as well aoff-diagonal density-matrix elements. If one wants to see dy-
screening and quantum-interference effects. We have appliathmical effects of Coulomb scatterifig] on quantum inter-
these equations to a three-level resonant asymmetric doublference, we can make use of a Fano-type couplitt)
quantum-well system in which the ground subband isthrough ultrafast inelastic phonon scattering of quantum-well
coupled to the upper tunneling-split doublet by the electroelectrons to continuum states in the contact Igyié. The
magnetic field. Using these equations, we have calculated theoulomb-scattering effect can also be included in our current
quasiparticle energy-level separations and off-diagonamany-body density-matrix equations by adding a
radiative-decay coupling rates, absorption coefficientBoltzmann-type collision integrdl7]. Moreover, in this pa-
refractive-index function, and scaled subband electron derper, we only discuss the intersubband coupling by an exter-
sity as functions of incident photon energy. From the calcunal electromagnetic field. For interband coupling between
lated results, we have analyzed the role played by quantumoles in the valence band and electrons in conduction band,
interference in the quasiparticle renormalization. The quanan (8x8)— k- p theory[1] must be employed for the calcu-
tum interference in the system has been shown to be robugition of hole states in valence band.
against the Coulomb interaction between electrons in the
mean-field approximation. The effects of dephasing rate and
electron density have also been explored.

In this paper, we display numerical results for absorption
spectra in steady state, and employ a homogeneous level We would like to thank AHPCC, where these calculations
broadening for the dephasing rate in equations determining/ere carried out.
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