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Interplay between Coulomb interaction and quantum interference in three-level resonant
asymmetric double quantum wells
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A many-body density-matrix theory is derived by including quasiparticle renormalization of kinetic energy
and dipole coupling to an external electromagnetic field, as well as the screening and quantum-interference
effects. This theory is applied to a three-level resonant asymmetric double-quantum-well system in which the
ground subband is coupled to the upper tunneling-split doublet by a strong external electromagnetic field. By
using this theory, the quasiparticle energy-level separations and off-diagonal radiative-decay coupling rates,
absorption coefficient, refractive-index function, and scaled subband electron density are calculated as func-
tions of incident photon energy. The effects of quasiparticle renormalization on the quantum interference
between a pair of optically induced polarizations are analyzed. The quantum interference is shown to be robust
against the Coulomb-interaction effect in the mean-field approximation. The roles played by the dephasing rate
and electron density are explained.
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I. INTRODUCTION

When an electromagnetic field is applied to a reson
asymmetric double-quantum-well system, there existsquan-
tum interferencebetween a pair of optically induced pola
izations of the system@1#. The quantum-interference effect
found to be a result of the off-diagonal radiative-decay c
pling ~ODRDC! @2,3# which can be systematically derive
from a quantum electrodynamic treatment of photons
electrons in second quantization. The effect of ODRDC
scribes a nearly resonant absorption of a spontaneously e
ted photon from one downward electron transition by a
other upward electron transition. In addition, the ODRD
effect in the bare-atom picture of a three-level atomic sys
is equivalent to the electromagnetically induced transpare
effect @4# in the dressed-atom picture, and the effect
probe-field gain based on an ODRDC process is connecte
an amplification without inversion@5# in the bare-atom pic-
ture of a three-level atomic system@6#.

For noninteracting electrons in quantum wells, bo
absorption-peak position and strength are fully determi
by the energy-level separation and wave functions deri
from the Schro¨dinger equation. When theCoulomb interac-
tion between electrons is taken into consideration, interac
electrons will form quasiparticles with renormalization
both kinetic energy and dipole coupling to an external el
tromagnetic field@7,8#. The kinetic-energy renormalizatio
includes positive Hartree and negative Fock corrections.
former tends to push energy levels up, while the latter te
to drag energy levels down@8#. The renormalization of di-
pole coupling to an external field is caused by the optica
induced polarization of the system@7#. In addition to quasi-
particle energy renormalization, optically excited electro
which will polarize the system by creating a statistical dipo
moment try to screen the Coulomb interaction between e
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trons, leading to a depolarization shift of the absorption pe
@8# If we further look on a femtosecond-time scale, the qua
tum kinetics of electrons due to Coulomb scattering play
major role in the absorption spectrum of electrons in qu
tum wells @7#.

In order to fully incorporate the effects of the Coulom
interaction and quantum interference, we need to genera
the many-body density-matrix equations@7#. The conven-
tional calculation for Coulomb-interaction effects is based
a perturbation to the system@8#, where the electron distribu
tion function is kept as the equilibrium Fermi-Dirac functio
The existence of a quantum-interference effect introduce
nonequilibrium distribution of electrons and causes the d
tribution to depend on the frequency of an incident elect
magnetic field. As a result, both the quasiparticle ene
renormalization and many-body screening, which determ
the peak position and strength, are altered by the incid
photon energy. On the other hand, whenever there exist
absorption peak under a strong electromagnetic field, th
will be a minimum in the density of electrons in the groun
subband at that specific photon energy due to transfer
electrons from the ground subband to higher subban
Therefore, the ODRDC effect will also be modified by th
photon energy through the Coulomb interaction betwe
electrons since its coupling rate is proportional to the cube
the energy-level separation.

In this paper, we will address the following question. Ho
do many-body effects alter the quantum interference see
the single-particle absorption spectrum? We will first der
the many-body density-matrix equations by including qua
particle renormalization of the kinetic energy and dipole co
pling to an external electromagnetic field, as well as
screening and quantum-interference effects. We then a
our theory to a three-level resonant asymmetric doub
quantum-well system in which the ground subband
coupled to the upper resonant doublet by a strong elec
04-1
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magnetic field. Finally, using this theory we calculate t
renormalized energy-level separations, off-diago
radiative-decay coupling rates, absorption coefficien
refractive-index functions, and scaled first-subband elec
density as functions of incident photon energy. T
Coulomb-interaction effect on the quantum interference
analyzed. The quantum-interference effect is found to be
bust against the Coulomb interaction between electron
the mean-field approximation. In addition, roles played
the dephasing rate and electron density are discussed.

The organization of this paper is as follows. Section II
devoted to the derivation of a many-body density-mat
theory for the calculation of time-resolved absorption sp
tra, including quantum-interference effects. Numerical
sults and discussions are presented in Sec. III for the op
spectra in three-level resonant asymmetric double quan
wells, where the quasiparticle energy-level renormalizati
screening effect, and quantum-interference effect
analyzed and explained. The paper is briefly concluded
Sec. IV.

II. MODEL AND THEORY

In this paper, we only consider the dynamics of the rad
tive decay of conduction electrons in an intersubba
transition quantum-well system. The scattering effects~en-
ergy relaxation and dephasing of optical coherence! from
other electrons, phonons, impurities, and interface roughn
will be taken into account simply by introducing a homog
neous level broadening in steady state for electrons in qu
tum wells. The renormalization of kinetic energy and dipo
coupling is included under the mean-field approximatio
The screening effect is incorporated into our theory in
long-wavelength limit under the self-consistent-field a
proach. The quantum interference between optically indu
polarizations is considered in a quantum electrodyna
treatment of spontaneous emission under the rotating-w
approximation.

Detailed discussions on including many-body effects
density-matrix equations can be found in a book edited
Chow and Koch@9#. In this section, we will first present
brief review of semiconductor quantum wells. After that, t
importance of the Coulomb interaction between electr
will be discussed and a criteria for including the Coulom
interaction will be given. Finally, many-body density-matr
equations will be derived by including the quantum
interference effect on electron intersubband transitions
three-level resonant asymmetric double-quantum-well s
tem. Based on these equations, optical spectra will be ca
lated for different dephasing rates and electron densities,
effects of the Coulomb interaction on the quantum interf
ence between optically induced polarizations will be a
lyzed.

A. Semiconductor quantum wells

Bulk III-V binary semiconducting compounds, such
InP, InAs, InSb, GaP, GaAs, GaSb, AlAs, AlSb, etc., cryst
lize in the zinc-blende structure@10#. Their lattices consist of
two interpenetrating, face-centered cubic lattices, displa
03380
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from one another along one of their main diagonals by
distance equal to one-fourth of this diagonal. The top of
valence band occurs at the center of the Brillouin zoneG
point!. The conduction-band edge is found either at theG
(@000#) point or near theL (@111#) or theX (@001#) point.
The energy difference between the top of the valence b
and the bottom of the conduction band is called the band
EG, which usually depends on the temperature. For tern
alloy materials, such as AlxGa12xAs, InxGa12xAs,
Al xGa12xSb, etc.,EG also depends on the alloy compositio
index x.

When a binary compound, such as GaAs, is sandwic
between ternary alloy materials, such as AlxGa12xAs, or be-
tween different binary compounds, such as AlAs, the diff
ence in their band gapsDEG causes the bottom of the con
duction band and the top of the valence band to take o
stepped shape in the resulting heterostructure. The
height in the conduction band isDEc while the step height in
the valence band isDEv with DEc1DEv5DEG. The elec-
trons in the GaAs ‘‘well’’ material become confined by th
potential barrierDEc . Similarly, the holes in the GaAs
‘‘well’’ material are also confined by the potential barrie
DEv . If the width of the GaAs layer is comparable to the
Broglie wavelengths of the electrons and holes, the wh
system will enter into a quantum regime, with particle m
tion across the layers quantized@10#. In this case, we term
this ‘‘well’’ a quantum well.

In this paper, we only discuss the intersubband transiti
of conduction electrons in quantum wells. Noninteracti
particles, such as electrons, inside a quantum well~confined
in the z direction! obey the Schro¨dinger equation

2
\2

2

d

dzF 1

m* ~z!

d

dzGf~z!1UQW~z!f~z!5Ef~z!, ~1!

wherem* (z) is the effective massmW (mB) of the electron
in the well ~barrier! material,E is the energy of the electron
UQW(z)5DEc is the height of the potential barrier of th
quantum well for the electron, andf(z) is the wave function
of the electron in the quantum well. It is easy to show th
the energyE of the electron in the quantum well will be
quantized into multiple subbandsEj

(0)(k) with level index j
51, 2, 3, . . . ,wherek is the in-plane~perpendicular to the
z direction! wave vector of the electron due to its free motio
within the plane@10#. The corresponding wave function fo
each subbandEj

(0)(k) is denoted byf j (z). The energy of the
electron in the quantum well can be written as

Ej
(0)~k!5Ej1

\2k2

2mj* ~k!
, ~2!

which has a nonparabolic dispersion. HereEj is the edge of
the j th subband. A large nonparabolic effect can destroy
quantum interference in the system@1#. The effective
k-dependent effective massmj* (k) of the electron in Eq.~2!
is found to be@8#
4-2
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1

mj* ~k!
5

Pj

mj~k!
1

12Pj

mB
, ~3!

where Pj is the quantum-well dwelling probability for th
electron in thej th subband andmj (k) is given by@8#

m0

mj~k!
511

Ep

3 F 2

EG1Ej1\2k2/2mW

1
1

EG1D01Ej1\2k2/2mW
G ~4!

with free-electron massm0. In Eq. ~4!, EG and D0 are the
energy gap and spin-orbit splitting for the well material, r
spectively, andEp is the interband Kane matrix element@1#.
The complete form of the wave function for a single electr
in the quantum well can be written as

c jkW~rW !5
1

A2p
exp~kW•rW i!f j~z!, ~5!

where rW5(rW i ,z) with rW i being a two-dimensional positio
vector in the plane perpendicular to the growth direction, a
the plane-wave part of the wave function corresponds to
free ~nonquantized! motion experienced by the electro
within this plane. For simplicity, we only show here the e
velope part of the wave function@1# for the electron in the
quantum well. The Bloch function associated with the wa
function in the bulk material and the spinor part of the wa
function for electron spins are irrelevant for discussing
intersubband transitions of conduction electrons.

B. Importance of Coulomb interaction

Let us start by considering a single quantum well wh
contains an electron gas. At zero temperature (T50 K), the
maximum kinetic energy of a noninteracting-electron gas
the Fermi energy, defined by

EF5
\2kF

2

2mW
, ~6!

wherekF5A2pn2D is the Fermi wave vector andn2D is the
two-dimensional density of electrons in the quantum well
we define the mean distanceR̄ between two electrons by

4

3
pR̄3n3D51, ~7!

where n3D5n2D /LW and LW is the width of the quantum
well, the average excitonic interaction between two electr
is @6#

V̄C5
e2

4pe0e rR̄
. ~8!
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Here,e r is the dielectric constant of the quantum-well ma
rial. In order to determine the importance of the exciton
interaction, we estimate the ratio ofV̄C to EF to be

V̄C

EF
5

2

kF
2R̄aB*

, ~9!

whereaB* 54pe0e r\
2/mWe2 is the effective Bohr radius o

the two-dimensional electron gas in the quantum well. As
example, we choosee r512, mW50.067m0 for GaAs well
material, andLW5100 Å. ForV̄C5EF , we get

n2D5
1

p~aB* !2
A4aB*

3LW
5431011 cm22, ~10!

which is within the typical range of required electron dens
in quantum-well devices. Moreover, the screening of
Coulomb interaction@6# between electrons in the quantu
well is known to be proportional ton2D . This explains why
we need to consider the Coulomb-interaction effects on
tersubband electron transitions in the quantum well.

C. Second-quantization of interacting-electron system

The total Hamiltonian operator for interacting electrons
a quantum well in the absence of an electromagnetic fiel
written as

Ĥ~ t !5Ĥ0~ t !1V̂H~ t !1V̂F~ t !. ~11!

By using the creation~annihilation! operatorĈjkW
† (t) @ĈjkW(t)#

for electrons, the free-electron HamiltonianĤ0(t) in Eq. ~11!
simply takes the form

Ĥ0~ t !5(
j ,kW

Ej
(0)~k!ĈjkW

†
~ t !ĈjkW~ t !, ~12!

the Hartree-type interaction is

V̂H~ t !52 (
kW1 ,kW2

(
j 1 , j 2

Vj 1 j 2 , j 1 j 2

C ~0!nj 2
~k2 ,t !Ĉj 1kW1

†
~ t !Ĉj 1kW1

~ t !,

~13!

and the Fock-type interaction is

V̂F~ t !5
1

2 (
kW1 ,kW2

(
qW Þ0

(
j 1 j 2 , j 3 j 4

Vj 1 j 2 , j 4 j 3

C ~q!Ĉj 1kW11qW
†

~ t !

3Ĉj 2kW22qW
†

~ t !Ĉj 3kW2
~ t !Ĉj 4kW1

~ t !. ~14!

Here, nj (k,t) is the occupation probability for electrons i
the j th subband with wave vectorkW . We have defined the
Coulomb interaction matrix in Eqs.~13! and ~14! by
4-3
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Vj 1 j 2 , j 4 j 3

C ~q!5
e2

2e0e rA@q1qTF~ t !F~q!#

3E
2`

1`

dzE
2`

1`

dz8f j 1
* ~z!f j 2

* ~z8!

3exp~2quz2z8u!f j 4
~z!f j 3

~z8!, ~15!

where A is the cross-sectional area of the quantum-w
sample and 1/qTF(t) is the so-called Thomas-Fermi scree
ing length@6# resulting from a two-dimensional electron ga
Under the electric quantum limit~i.e., only the ground state
is occupied!, qTF(t) is given by

qTF~ t !5S e2

2pe0e r
D E

0

1`

kdkF2
]

]E1~k,t !
n1~k,t !G .

~16!

In Eq. ~15!, the form factor due to finite-size quantization
found to be@6#

F~q!5E
2`

1`

dzE
2`

1`

dz8uf1~z!u2exp~2quz2z8u!uf1~z8!u2.

~17!

The time dependence in the screening length 1/qTF(t) makes
the Coulomb interactionVj 1 j 2 , j 4 j 3

C (q) between electrons rely

on time.

D. Mean-field theory

In the following, we introduce the mean-field approxim
tion to the four-operator term in Eq.~14!, which leads us to

Ĉj 1kW11qW
†

~ t !Ĉj 2kW22qW
†

~ t !Ĉj 3kW2
~ t !Ĉj 4kW1

~ t !iqW Þ0

'2 ^̂ Ĉj 1kW11qW
†

~ t !Ĉj 3kW2
~ t !&&Ĉj 2kW22qW

†
~ t !Ĉj 4kW1

~ t !dkW11qW ,kW2

2 ^̂ Ĉj 2kW22qW
†

~ t !Ĉj 4kW1
~ t !&&Ĉj 1kW11qW

†
~ t !Ĉj 3kW2

~ t !dkW22qW ,kW1
.

~18!

Under the mean-field approximation, the total Hamiltoni
operator in Eq.~11!, including an additional interaction with
a uniform electromagnetic field, can be simplified as

Ĥ~ t !5(
j ,kW

Ej
(0)~k,t !ŝ j j ~k,t !2 (

j , j 8;kW

j Þ j 8

D j j 8~k,t !ŝ j j 8~k,t !

1 (
j , j 8;kW

S j j 8~ t !ŝ j j 8~k,t !. ~19!

Here, ŝ j j 8(k,t)5ĈjkW
† (t)Ĉj 8kW(t). In Eq. ~19!, the

quasiparticle-renormalized kinetic energy under the me
field approximation is
03380
ll

.

n-

Ej~k,t !5Ej
(0)~k!12 (

j 1 ,kW8
Vj j 1 , j j 1

C ~0!nj 1
~k8,t !

2 (
j 1 ,kW8

kW8ÞkW

Vj j 1 , j 1 j
C ~ ukW2kW8u!nj 1

~k8,t !, ~20!

and the quasiparticle-renormalized dipole-coupling ene
becomes

D j j 8~k,t !5eEL~ t !E
2`

1`

dzf j* ~z!zf j 8~z!

2 (
kW8

kW8ÞkW

(
j 1 , j 3

j 1Þ j 3

Vj j 1 , j 3 j 8
C

~ ukW2kW8u!r j 3 j 1
~k8,t !,

~21!

whereEL(t) is the time-dependent amplitude of a spatia
uniform electromagnetic field. Equations~20! and~21! result
from a quasiparticle theory which includes renormalizati
of both kinetic energy and dipole coupling to an extern
electromagnetic field. The second and third interaction te
in Eq. ~20! are illustrated by Feynman diagrams in Figs. 1~a!
and 1~b!, respectively.S j j 8(t) in Eq. ~19! represents the
screening effect in the long-wavelength limit, i.e.,q→0. By
using the self-consistent-field approach@6#, S j j 8(t) is given
by

S j j 8~ t !52 (
m,n

mÞn

(
kW8

rmn~k8,t !Vjn, j 8m
C

~0!, ~22!

which generates a so-called depolarization shift of absorp
peaks @8#. Here, rmn(k,t) for mÞn is the off-diagonal
density-matrix element representing an optically induced
larization of the electron-gas system.

FIG. 1. Feynman diagrams in momentum space for the Har
~a! and Fock~b! approximations used for the second and third ter
in Eq. ~20!. Here, the solid straight lines with an arrow represent
Green’s function for noninteracting conduction electrons and
dashed lines stand for the Coulomb potential between two electr
The labelsj , j 1 are the subband indexes,k,k8 are the wave vectors
of electrons, andq is the wave vector of the Coulomb potential.
4-4
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E. Many-body density-matrix equations

By introducing a statistical average toŝ j 8 j (k,t) through a
density operatorr̂(t) of the system, we get the density
matrix elements

r j j 8~k,t !5 ^̂ ŝ j 8 j~k,t !&&[Tr$ŝ j 8 j~k,t !r̂~ t !%. ~23!

The equation-of-motion for the operatorŝ j 8 j (k,t) @1# leads
us to the following density-matrix equations forj Þ j 8
~optically-induced polarization!:

]

]t
r j j 8~k,t !5

1

i\ (
m

@Hjm~ t !rm j8~k,t !2r jm~k,t !H m j8~ t !#

2
1

2
~g j1g j 8!r j j 8~k,t !, ~24!

whereg j is the homogeneous broadening ofj th subband due
to electron scattering andHjm(t) is the matrix elements o
the Hamiltonian operator in Eq.~19!. For j 5 j 8 ~occupation
probability!, we have

]

]t
r j j ~k,t ![

]

]t
nj~k,t !52

2

\ (
m

Im@r jm~k,t !Hm j~ t !#.

~25!
el
di
he
la

03380
Substituting Eq.~19! into Eq. ~25! in the presence of the
strong electromagnetic field, we get

]

]t
nj~k,vL ;t !5

2

\ (
m

mÞ j

Im@Dm j~k,t !r jm~k,vL ;t !#,

2
4

\ (
m

mÞ j

ImH r jm~k,vL ;t !

3(
kW8

F (
i ,i 8

iÞ i 8

r i i 8~k8,vL ;t !Vmi8, j i
C

~0!G J ,

~26!

which leads to

]

]t (
j

nj~k,vL ;t ![0.

Inserting Eq.~19! into Eq. ~24!, we find
]

]t
r j j 8~k,vL ;t !52

1

2
~g j1g j 8!r j j 8~k,vL ;t !1

1

i\
@Ej~k,t !2Ej 8~k,t !1\vL#r j j 8~k,vL ;t !

2
1

i\ (
m

mÞ j

D jm~k,t !rm j8~k,vL ;t !

1
1

i\ (
m

mÞ j 8

Dm j8~k,t !r jm~k,vL ;t !1
2

i\
r j j 8~k,vL ;t !(

kW8
H (

i , i 8

iÞ i 8

r i i 8~k8,vL ;t !@Vji 8, j i
C

~0!2Vj 8 i 8, j 8 i
C

~0!#J
1

2

i\ (
m

mÞ j

rm j8~k,vL ;t !(
kW8

H (
i ,i 8

iÞ i 8

r i i 8~k8,vL ;t !Vji 8,mi
C

~0!J 2
2

i\ (
m

mÞ j 8

r jm~k,vL ;t !

3(
kW8

H (
i ,i 8

iÞ i 8

r i i 8~k8,vL ;t !Vmi8, j 8 i
C

~0!J , ~27!
tes
ou-

ns
the
wherevL is the frequency of the electromagnetic field.

F. Quantum-interference effect

In the following, we limit ourselves to a three-level mod
for the resonant asymmetric double quantum wells, as
played in Fig. 2. In this double-quantum-well system, t
deep/narrow left quantum well has two confined states
beled byE1L andE2L , and the shallow/wide right quantum
well has only one confined state labeled byE1R. There exists
s-

-

a resonant coupling between energy levelsE2L andE1R due
to their alignment in energies. The resonant coupling crea
a doublet from these two degenerate energy levels. The d
blet is labeled byE2

(0)(k) andE3
(0)(k). Moreover, we denote

E1L by E1
(0)(k) and assume thatE3

(0)(k)2E2
(0)(k)!E2

(0)(k)
2E1

(0)(k). To excite an intersubband transition of electro
in quantum wells, one requires a nonzero component of
incident electromagnetic field along the growth (z) direction.
The other component of aspatially uniform incident field
does not directly interact~dipole coupling! with electrons in
4-5
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quantum wells. For this reason, an incident electromagn
field is assumed to be polarized in thez direction with photon
energy\vL close toE2

(0)(k)2E1
(0)(k).

By combining the previously derived density-matr
03380
icequations@1# in the presence of off-diagonal radiative-dec
coupling for noninteracting electrons and Eqs.~26! and~27!
for interacting electrons, after the rotating-wave approxim
tion @1# we obtain the following:
d

dt
n1~k,vL ;t !5

2

t2~k,t !
n2~k,vL ;t !12b31,13@V31~k,t !#n3~k,vL ;t !1

2

\
Im@D12* ~k,t !r12~k,vL ;t !1D13* ~k,t !r13~k,vL ;t !#

12$b31,12@V21~k,t !#1b21,13@V31~k,t !#%Re@r23~k,vL ;t !#2
4

\ (
kW8

Im$r12~k,vL ;t !

3@r12* ~k8,vL ;t !V21,12
C ~0!1r13* ~k8,vL ;t !V21,13

C ~0!#%2
4

\ (
kW8

Im$r13~k,vL ;t !@r12* ~k8,vL ;t !V31,12
C ~0!

1r13* ~k8,vL ;t !V31,13
C ~0!#%, ~28!

d

dt
n2~k,vL ;t !52

2

t2~k,t !
n2~k,vL ;t !12b32,23@V32~k,t !#n3~k,vL ;t !2

2

\
Im@D12* ~k,t !r12~k,vL ;t !1D23~k,t !r23* ~k,vL ;t !#

22b21,13@V31~k,t !#Re@r23~k,vL ;t !#2
4

\ (
kW8

Im$r12* ~k,vL ;t !@r12~k8,vL ;t !V12,21
C ~0!

1r13~k8,vL ;t !V13,21
C ~0!#%2

4

\ (
kW8

Im$r23~k,vL ;t !@r23~k8,vL ;t !V33,22
C ~0!1r23* ~k8,vL ;t !V32,23

C ~0!#%,

~29!

d

dt
r12~k,vL ;t !52

1

2
~g11g2!r12~k,vL ;t !1 i @V21~k,t !2vL#r12~k,vL ;t !2

1

t2~k,t !
r12~k,vL ;t !1

i

\
D12~k,t !@n2~k,vL ;t !

2n1~k,vL ;t !#1
i

\
D13~k,t !r23* ~k,vL ;t !2

i

\
D23* ~k,t !r13~k,vL ;t !2b21,13@V31~k,t !#r13~k,vL ;t !

2
2i

\
r12~k,vL ;t !(

kW8
$r23~k8,vL ;t !@V13,12

C ~0!2V23,22
C ~0!#1r23* ~k8,vL ;t !@V12,13

C ~0!2V22,23
C ~0!#%

2
2i

\
n2~k,vL ;t !(

kW8
@r12~k8,vL ;t !V12,21

C ~0!1r13~k8,vL ;t !V13,21
C ~0!#

2
2i

\
r23* ~k,vL ;t !(

kW8
@r12~k8,vL ;t !V12,31

C ~0!1r13~k8,vL ;t !V13,31
C ~0!#

1
2i

\
n1~k,vL ;t !(

kW8
@r12~k8,vL ;t !V12,21

C ~0!1r13~k8,vL ;t !V13,21
C ~0!#

1
2i

\
r13~k,vL ;t !(

kW8
@r23~k8,vL ;t !V33,22

C ~0!1r23* ~k8,vL ;t !V32,23
C ~0!#, ~30!

d

dt
r13~k,vL ;t !52

1

2
~g11g3!r13~k,vL ;t !1 i @V31~k,t !2vL#r13~k,vL ;t !2

1

t3~k,t !
r13~k,vL ;t !1

i

\
D13~k,t !@n3~k,vL ;t !

2n1~k,vL ;t !#1
i

\
D12~k,t !r23~k,vL ;t !2

i

\
D23~k,t !r12~k,vL ;t !2b31,12@V21~k,t !#r12~k,vL ;t !

2
2i

\
r13~k,vL ;t !(

kW8
$r23~k8,vL ;t !@V13,12

C ~0!2V33,32
C ~0!#1r23* ~k8,vL ;t !@V12,13

C ~0!2V32,33
C ~0!#%
4-6
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2
2i

\
r23~k,vL ;t !(

kW8
@r12~k8,vL ;t !V12,21

C ~0!1r13~k8,vL ;t !V13,21
C ~0!#

2
2i

\
n3~k,vL ;t !(

kW8
@r12~k8,vL ;t !V12,31

C ~0!1r13~k8,vL ;t !V13,31
C ~0!#

1
2i

\
n1~k,vL ;t !(

kW8
@r12~k8,vL ;t !V12,31

C ~0!1r13~k8,vL ;t !V13,31
C ~0!#

1
2i

\
r12~k,vL ;t !(

kW8
@r23~k8,vL ;t !V23,32

C ~0!1r23* ~k8,vL ;t !V22,33
C ~0!#, ~31!

d

dt
r23~k,vL ;t !52

1

2
~g21g3!r23~k,vL ;t !1 iV32~k,t !r23~k,vL ;t !2F 1

t2~k,t !
1

1

t3~k,t !Gr23~k,vL ;t !1
i

\
D23~k,t !

3@n3~k,vL ;t !2n2~k,vL ;t !#1
i

\
D12* ~k,t !r13~k,vL ;t !2

i

\
D13~k,t !r12* ~k,vL ;t !

1b23,23@V32~k,t !#r23* ~k,vL ;t !2$b21,13@V31~k,t !#n3~k,vL ;t !1b31,12@V21~k,t !#n2~k,vL ;t !%

2
2i

\
r23~k,vL ;t !(

kW8
$r23~k8,vL ;t !@V23,22

C ~0!2V33,32
C ~0!#1r23* ~k8,vL ;t !@V22,23

C ~0!2V32,33
C ~0!#%

2
2i

\
r13~k,vL ;t !(

kW8
@r12* ~k8,vL ;t !V21,12

C ~0!1r13* ~k8,vL ;t !V21,13
C ~0!#

2
2i

\
n3~k,vL ;t !(

kW8
@r23~k8,vL ;t !V23,32

C ~0!1r23* ~k8,vL ;t !V22,33
C ~0!#

1
2i

\
r12* ~k,vL ;t !(

kW8
@r12~k8,vL ;t !V12,31

C ~0!1r13~k8,vL ;t !V13,31
C ~0!#

1
2i

\
n2~k,vL ;t !(

kW8
@r23~k8,vL ;t !V23,32

C ~0!1r23* ~k8,vL ;t !V22,33
C ~0!#, ~32!
nds

ts,
where\V i j (k,t)5Ei(k,t)2Ej (k,t) with

Ej~k,t !5Ej
(0)~k!12 (

j 1 ,kW8
Vj j 1 , j j 1

C ~0!nj 1
~k8,vL ;t !

2 (
j 1 ,kW8

kW8ÞkW

Vj j 1 , j 1 j
C ~ ukW2kW8u!nj 1

~k8,vL ;t !. ~33!

For j , j 8 @excludingD23(k,t)] we get

D j j 8~k,t !5eEL~ t !E
2`

1`

dzf j* ~z!zf j 8~z!

2 (
kW8

kW8ÞkW

@Vj 2,1j 8
C

~ ukW2kW8u!r12~k8,vL ;t !

1Vj 3,1j 8
C

~ ukW2kW8u!r13~k8,vL ;t !#, ~34!

and
03380
D23~k,t !52 (
kW8

kW8ÞkW

@V22,33
C ~ ukW2kW8u!r23* ~k8,vL ;t !

1V23,23
C ~ ukW2kW8u!r23~k8,vL ;t !#, ~35!

while for j . j 8 we haveD j j 8(k,t)5D j 8 j
* (k,t). In Eqs.~28!–

~32!, we have defined the radiative-decay rate for subba
with j 51,2,3 by@1#

1

t j~k,t !
5(

i , j
b j i ,i j @V j i ~k,t !#. ~36!

Here, b j j 8,i i 8@V i 8 i(k,t)# in Eqs. ~28!–~32! and ~36! is the
real part of the radiative-decay coupling matrix elemen
given by @1#

b j j 8,i i 8@V i 8 i~k,t !#5
2e2V i 8 i

3
~k,t !

3\e0e rc
3

u@V i 8 i~k,t !#dj j 8dii 8 ,

~37!
4-7
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whereu(x) is the Heaviside step function and

dj j 85E
2`

1`

dzf j* ~z!zf j 8~z!. ~38!

From Eq. ~37! we obtain thediagonal radiative-decay rate
b j i ,i j @V i 8 i(k,t)# for j . i when j 85 i and i 85 j . The rest of
theoff-diagonalradiative-decay rates reflect the coupling b
tween two optical transitions, i.e., from levelj 8 to j and from
level i 8 to i. The quantum-interference effect is taken in
consideration by including b21,13@V21(k,t)# and
b31,12@V21(k,t)# terms in Eqs.~30! and ~31!, respectively
@1#. The scaled density for electrons inj th subband is calcu
lated as

Nj~vL ,t !5
2

n2D
(

kW
nj~k,vL ;t !. ~39!

G. Dielectric function and optical absorption

Based on the calculated density-matrix elements, the
tistically averaged polarization~per unit volume! of the sys-
tem can be found from

P~vL ;t !52S 1

LzAEL~ t ! D(kW
D12* ~k,t !r12~k,vL ;t !

1D13* ~k,t !r13~k,vL ;t !1D23* ~k,t !r23~k,vL ;t !],

~40!

FIG. 2. Illustration of three-level resonant asymmetric dou
quantum wells with intersubband field coupling. The barrier ma
rial is Al0.35Ga0.65As, and the materials for the left and right wel
are GaAs and Al0.208Ga0.792As, respectively. Two degenerate ele
tron transitions in the system are indicated by the thick das
arrows.LW1 andLW2 are the widths of the left and right wells, an
LB is the thickness of the middle barrier.DEc1 and DEc2 are the
conduction-band offsets for the left and right wells, andDU is the
step height between the bottoms of the two wells. The electrom
netic fieldEL(t) is assumed to be polarized in thez direction. The
lower-energy state in the left well contains electron densityn2D

illustrated by three circles filled with ‘‘2 ’’ signs at their centers. All
the parameters for this sample are summarized in Tables I and
03380
-

a-

where Lz is the total length of the double quantum well
Using Eq.~40! we get the Lorentz ratio~polarizability! as@6#

x~vL ;t !5
P~vL ;t !

e0EL~ t !

52S 1

e0LzAE L
2~ t !

D(
kW

@D12* ~k,t !r12~k,vL ;t !

1D13* ~k,t !r13~k,vL ;t !1D23* ~k,t !r23~k,vL ;t !%, ~41!

which becomes independent ofEL(t) under the weak-field
limit @EL(t)→0#. The time-dependent complex dielectr
function can be calculated from the Lorentz ratio@6#,

e~vL ;t !5e r1x~vL ;t !. ~42!

The absorption coefficient is found to be@6#

a~vL ;t !5
vL

n~vL ;t !c
@Nph~vL!11#Im@x~vL ;t !#,

~43!

whereNph(vL)51/@exp(\vL /kBT)21# is the Bose function
for incident photons and the refractive-index function in E
~43! is given by

n~vL ;t !5
1

A2
$e r1Re@x~vL ;t !#

1A$e r1Re@x~vL ;t !#%21$Im@x~vL ;t !#%2%1/2.

~44!

In Eq. ~43!, a(vL ;t).0 indicates photon absorption b
electrons in quantum wells whilea(vL ;t),0 corresponds
to a gain for the external electromagnetic field provided
electrons in the quantum wells.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the steady-state optical spe
for resonant asymmetric double quantum wells with int
subband coupling~see Fig. 2!. For the samples used in ou
numerical study, the barrier material is Al0.35Ga0.65As and the
materials for the left and right quantum wells are GaAs a
Al0.208Ga0.792As, respectively. The electron density in th
quantum wells is denoted asn2D . There are two confined
electron states in the left quantum well, indicated byE1L and

TABLE I. Conduction-band offsetsDEc1 /DEc2, step height
DU, well widthsLW1 /LW2, middle barrier thicknessLB , and elec-
tron densityn2D for samples 1 and 2 shown in Fig. 2 with differen
electron densities.

Sample
no.

DEc1 /DEc2

~meV!
DU

~meV!
LW1 /LW2

~Å!
LB

~Å!
n2D

(31011cm22)

1 249/101 148 75/85 50 0.8
2 249/101 148 75/85 50 1.6

-

d

g-

I.
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E2L , and one confined electron state in the right quant
well, denoted byE1R. The sample parameters and the calc
lated energy levels in the left and right quantum wells
summarized in Tables I and II. The upper energy level in
left quantum well is aligned with the energy level in the rig
quantum well, producing a tunneling-split doublet. T
strong external electromagnetic field applied to the system
polarized in thez direction. The frequency of the electroma
netic field is set close to the energy separation between
lower level in the left quantum well and the doublet. As
result, the three-level model for the intersubband-coup
quantum wells@1# can be adopted here after the inclusion
Coulomb-interaction effects.

In our calculation, we have takenT54 K, EL
520 kV/cm ~equivalent to 2 W for this field strength!, aver-
age dielectric constante r512, andg j5g0 for j 51, 2, 3. For
the left ~right! well, we have foundD050.341 ~0.333! eV,
Ep522.71 ~20.50! eV, EG51.52 ~1.78! eV, and DEc1
5248.77 meV for the barrier height of the left well. Th
chemical potential of the noninteracting-electron gas is c
culated to bem(n2D ,T)2E152.75 ~5.50! meV at T54 K
for sample 1~2!. In addition, we takeg0 /b21,12

(0) 55 at k50
for Figs. 3–6 and vary this ratio in Fig. 7, andb21,12

(0) is
defined in Eq.~37! for single-particle energy-level separatio
\V21

(0) .
Figure 3 presents the ratios of quasiparticle off-diago

radiative-decay coupling rates for sample 1 from many-bo
density-matrix theory including the quantum-interference
fect. It is clear from the figure thatb31,12/b31,12

(0) ,
b21,13/b21,13

(0) ,1. This reflects the reduction of the quantum
interference effect by the quasiparticle renormalization.
note that the Hartree-energy correction to the first subban

TABLE II. Calculated single-well electron energy levelsE1L

5E1 andE2L in the left quantum well andER in the right well for
the sample shown in Fig. 2, as well as the energy levels of
tunneling-split doubletE2 andE3.

E1L5E1 ~meV! E2L ~meV! E1R ~meV! E2 ~meV! E3 ~meV!

45 173 173 170 176
03380
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relatively stronger compared to the corrections to the t
higher subbands. This leads to a decrease in the energy-
separations. The dependence of the energy-level separa
on the photon energy\vL is because the Hartree-energy co
rection is proportional to the subband densityNj (vL) which
depends on\vL through the many-body density-matri
equations. WheneverN1(vL) reaches either of its two
minima @see Fig. 4~b!#, the energy-level separations show
peak at the same photon energy due to a reduced Ha
correction to the ground subband~not shown here!. Based on
these reasons, the decrease of the off-diagonal radia
decay coupling rates by the Coulomb interaction betwe
electrons can be easily explained since they have a c
dependence on the energy-level separations, as shown b
~37!.

We display in Fig. 4 absorption coefficientsa(vL) @in
Fig. 4~a!# and scaled first-subband densitiesN1(vL) @in Fig.
4~b!# calculated from the many-body density-matrix equ

e

FIG. 3. Scaled off-diagonal radiative-decay couplin
b31,12/b31,12

(0) ~solid curve! and b21,13/b21,13
(0) ~dashed curve! at k

50 for sample 1 as functions of photon energy\vL , whereb i j ,mn

and b i j ,mn
(0) represent the quasiparticle and single-particle o

diagonal radiative-decay coupling rates, respectively.
y
FIG. 4. Calculated absorption coefficienta(vL) ~a! and scaled first-subband densityN1(vL) ~b! of quasiparticles from the many-bod
density-matrix equations for the cases with~solid curves! and without~dashed curves! the quantum-interference~QI! effects for sample 1 as
functions of\vL . Including QI means we take nonzero off-diagonal radiative-decay couplingsb31,12, b21,13, andb23,23.
4-9
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FIG. 5. Calculateda(vL) ~a! andN1(vL) ~b! from density-matrix equations which include the quantum-interference effect for the c
of the single-particle theory~solid curves!, the quasiparticle theory for sample 1 as functions of\vL .
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tions for the cases with~solid curves! and without~dashed
curves! quantum-interference effects. From Fig. 4~a! we find
that the quantum-interference effect deepens the minim
between the two absorption peaks. Moreover, a small as
metry in the strengths of the two absorption peaks is crea
by this effect, as it slightly increases the separation betw
the peaks. ThevL dependence ofN1(vL) in Fig. 4~b! is
correlated to the features found in Fig. 4~a!. Whenever there
is an absorption peak, there will be a minimum inN1(vL) at
the same photon energy due to transferring electrons f
the lowest subband to the upper tunneling-split doublet. T
maximum of N1(vL) between the two minima is reduce
slightly by quantum interference. From this figure, we fi
that the quantum-interference effect predicted for this sys
@1# is robust against the Coulomb interaction between e
trons in the mean-field approximation.

Figure 5 is used to exhibit the Coulomb-interaction effe
wherea(vL) @in Fig. 5~a!# andN1(vL) @in Fig. 5~b!# from
single-particle~dash-dotted curves! and quasiparticle~solid
curves! theories including the quantum-interference effe
are compared. The two absorption peaks in Fig. 5~a! are
significantly shifted down in energy by the Coulomb intera
tion between electrons due to a strong Hartree correctio
the first subband as explained in the discussion of Fig. 3.
strengths of the two absorption peaks are also reduced d
a Fock correction to the dipole coupling as can be seen f
Eq. ~34!. The depolarization shift of the absorption peak
expected to be suppressed due to equal subband dens
the lowest subband and one of the higher subbands a
photon energy where the peak absorption occurs. The
down in energy of the two minima inN1(vL) can clearly be
seen from Fig. 5~b! by comparing the two curves.

Both quantum-interference and Coulomb-interaction
fects can also affect the refractive-index functionn(vL). In
Fig. 6 we see that theZ feature observed inn(vL) as a
function of \vL is shifted down in energy when th
Coulomb-interaction effects are included. At the same tim
n(vL) near the photon energies of two absorption peak
enhanced. On the other hand, we find that the quant
interference effect slightly increasesn(vL) near the photon
energy of the lower absorption peak~not shown!.

From Fig. 7~a!, we find that the minimum between th
03380
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two absorption peaks becomes more and more insignific
with the increase ofg0 due to suppression of the quantum
interference effect. Moreover, it is known that the Coulom
interaction effect depends on the electron densityn2D . At the
same time, both absorption peaks are broadened withg0.
From Fig. 7~b!, we find that the two absorption peaks a
pushed even lower in energy with increasedn2D due to an
enhanced Hartree correction to the first subband~comparing
thin and thick solid curves!, but the peak positions are no
changed from the single-particle theory~comparing thin and
thick dashed curves!. In addition, the strengths of the tw
absorption peaks are increased withn2D due to more elec-
trons being available for intersubband transitions~comparing
thin and thick dashed curves!. Finally, the enhanced Foc
correction to the dipole coupling asn2D is increased tends to
reduce the strengths of the absorption peaks even more

IV. CONCLUSIONS

We have derived many-body density-matrix equations
including quasiparticle renormalization of kinetic energy a

FIG. 6. Calculated refractive-index functionn(vL) from the
single-particle~dashed curve! and the quasiparticle~solid curve!
density-matrix equations including the the quantum-interference
fect for sample 1 as functions of\vL .
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FIG. 7. Calculateda(vL) for different dephasing ratesg0 in ~a! and for comparison between samples 1 and 2 in~b! from density-matrix
equations which include the quantum-interference effect. In~a!, a(vL) of sample 1 for the case of the quasiparticle theory withg0 /b21,12

(0) 55
~solid curve!, 7 ~dashed curve! and 9 ~dash-dotted curve! at k50 are compared. In~b!, a(vL) with g0 /b21,12

(0) 55 at k50 for samples 1
~thick curves! and 2~thin curves! are compared for the cases of the single-particle theory~dashed curves! and the quasiparticle theory~solid
curves!.
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dipole coupling to a strong electromagnetic field, as well
screening and quantum-interference effects. We have app
these equations to a three-level resonant asymmetric dou
quantum-well system in which the ground subband
coupled to the upper tunneling-split doublet by the elect
magnetic field. Using these equations, we have calculated
quasiparticle energy-level separations and off-diago
radiative-decay coupling rates, absorption coefficie
refractive-index function, and scaled subband electron d
sity as functions of incident photon energy. From the cal
lated results, we have analyzed the role played by quan
interference in the quasiparticle renormalization. The qu
tum interference in the system has been shown to be ro
against the Coulomb interaction between electrons in
mean-field approximation. The effects of dephasing rate
electron density have also been explored.

In this paper, we display numerical results for absorpt
spectra in steady state, and employ a homogeneous
broadening for the dephasing rate in equations determin
ys

n.
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off-diagonal density-matrix elements. If one wants to see
namical effects of Coulomb scattering@7# on quantum inter-
ference, we can make use of a Fano-type coupling@11#
through ultrafast inelastic phonon scattering of quantum-w
electrons to continuum states in the contact layer@12#. The
Coulomb-scattering effect can also be included in our curr
many-body density-matrix equations by adding
Boltzmann-type collision integral@7#. Moreover, in this pa-
per, we only discuss the intersubband coupling by an ex
nal electromagnetic field. For interband coupling betwe
holes in the valence band and electrons in conduction ba
an (838)2k•p theory@1# must be employed for the calcu
lation of hole states in valence band.
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