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Pair dynamics in the formation of molecules in a Bose-Einstein condensate

Pascal Naidon* and Franc¸oise Masnou-Seeuws
Laboratoire Aime´ Cotton, CNRS, Baˆtiment 505, Campus d’Orsay, 91405 Orsay Cedex, France

~Received 28 February 2003; published 25 September 2003!

We revisit the mean-field treatment of photoassociation and Feshbach resonances in a Bose-Einstein con-
densate previously used by various authors. Generalizing the Cherny and Shanenko approach@Phys. Rev. E62,
1646 ~2000!# where the finite size of the potentials is explicitly introduced, we develop a two-channel model
for a mixed atomic-molecular condensate. Besides the individual dynamics of the condensed and noncon-
densed atoms, the model also takes into account their pair dynamics by means of pair wave functions. We show
that the resulting set of coupled equations can be reduced to the usual coupled Gross-Pitaevski� equations when
the time scale of the pair dynamics is short compared to that of the individual dynamics. Such time scales are
discussed in the case of typical photoassociation experiments with cw lasers. We show that the individual
dynamics plays a minor role, demonstrating the validity of the rates predicted by the usual models describing
photoassociation in a nondegenerate gas.
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I. INTRODUCTION

The possibility of transforming an atomic condensate i
a molecular condensate is presently a major challenge@1–6#.
Several routes are considered to couple a condensate o
atoms with a condensate of molecules which are all in
same vibrational state of a molecular electronic potentia
Feshbach resonance in the electronic ground state ca
swept by a time-dependent magnetic field, and recent exp
ments@5,6# have observed oscillations in the number of
oms in the condensate. Alternatively, the photoassocia
process, which can be considered as an optically indu
Feshbach resonance, creates a molecular condensate
excited electronic state. In the latter case, a stabilization
cess must be introduced to avoid destruction of this cond
sate by spontaneous emission as was observed recently@7#. A
two-pulse STIRAP~stimulated Raman adiabatic passag!
scheme has been theoretically discussed@8–10# in view of
transferring the population to bound levels in the grou
electronic state.

In a nondegenerate gas, ultracold molecules are form
through combination of a photoassociation step with a st
lization step using spontaneous emission@11–13#. In both
cases the efficiency is controlled by the dipole transition m
ments, which depend markedly upon details of the electro
potential curves: the search for efficient mechanisms re
upon accurate spectroscopic data@14,15# and it was shown
that whereas photoassociation is efficient at large inter
clear distances, the stabilization process is governed by
probability of finding the two atoms at intermediate distanc
@15,16#. Making ultracold molecules thus involves an inte
play between long-range and short-range dynamics. Up
now, most experiments have used cw lasers. The us
chirped pulses, i.e., laser pulses with a time-dependent
quency, could increase the formation rates@17#. From the
theoretical point of view, sweeping a time-dependent m
netic field through a Feshbach resonance is equivalen
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photoassociating with a chirped pulse.
In a condensate, most theoretical treatments at pre

rely upon coupled Gross-Pitaevski� equations, where the dy
namics in the atomic and the molecular condensates as
as the coupling between them are described by mean-
effective potentials@3,8,18#. Details of the potentials are
omitted owing to ad function approximation~contact poten-
tial!. The knowledge of the molecular potential curves a
dipole transition moments is necessary only to determ
scattering lengths, binding energies and to accurately c
pute the coupling parameter between atomic and molec
phases. The success of such calculations relies on the
short time scale of the microscopic dynamics compared
the condensate dynamics.

The validity of the~one-body! mean-field approximation
has been recently questioned by several authors, particu
in the case of a time-dependent coupling term, and mod
using Hartree-Fock-Bogoliubov equations of motion ha
been proposed@19#. However, such calculations rely on thed
function approximation for the potentials and couplin
terms. The ultraviolet divergence caused by this approxim
tion is solved by a renormalization procedure, as discusse
detail by Kokkelmanset al. @20#. Recently, Cherny and
Shanenko@21,22# have shown that in the description of th
dynamics of an atomic condensate, issues associated wit
contact potentials can be avoided by considering the e
potential and pair wave functions having the correct no
structure at short interatomic distance.

The aim of the present work is to revisit the problem
coupled atomic and molecular condensates in the framew
of a Cherny treatment. For the sake of clarity, we shall c
sider only a two-channel model for Feshbach resonanc
photoassociation. The paper is organized as follows. We
present a three-field model describing a two-channel c
pling in a Bose system. We then derive one-body and tw
body mean-field equations, and show how the pair wa
functions can be eliminated and lead to effective one-bo
mean-field equations, without using contact potentials. In
last section, we interpret the one-color photoassociation
BEC in terms of one-body and two-body modes. Definitio
©2003 The American Physical Society12-1
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of the pair wave functions in an inhomogeneous system
given in the Appendix.

II. THREE-FIELD MODEL

A. Many-body Hamiltonian

We consider three kinds of atoms in the atomic-molecu
system: the ground-state atomsa, colliding in the lower
channel and the atomsb andc of the bound pairs in the uppe
channel. As described in Fig. 1, the free atomsa, interact
through the potentialUaa(r ), while the molecules vibrate in
the potentialUbc(r ). In the case of photoassociation, th
latter potential corresponds to an excited electronic stat
the molecule. For each species, we define a quantum fi
ĉa , ĉb , andĉc .

This description of the system is a phenomenologi
starting point. It would be rigorous if the statesa, b, andc
corresponded to well-defined atomic internal states, whic
true only at large interatomic distances. Indeed, when
atoms come close to each other, their internal states ch
because their electronic clouds overlap. This means that
instance, the ket 1/A2ĉa

†(x)ĉa
†(y)u0& is related to the ‘‘mo-

lecular’’ ket 1/A2(ux,y&1uy,x&) ^ ufaa
el &, whereufaa

el & is the
molecular electronic ket depending on the distanceux2yu.

Bearing in mind this phenomenological aspect, we c
write the many-body Hamiltonian of the system in terms
ĉa , ĉb , andĉc :

Ĥ5 (
i 5a,b,c

E d3x ĉ i
†~x!S 2

\2¹2

2m
1V~x!1Ei D ĉ i~x!

1E E d3xd3y
ĉa

†~x!ĉa
†~y!

A2
Uaa~x2y!

ĉa~y!ĉa~x!

A2

1E E d3xd3y ĉb
†~x!ĉc

†~y!Ubc~x2y!ĉc~y!ĉb~x!

1E E d3xd3y ĉb
†~x!ĉc

†~y!Hint~x,y!
ĉa~y!ĉa~x!

A2

1H.c., ~1!

wherem is the mass of the atoms andEa , Eb , Ec are the
internal energies of isolated atoms~see Fig. 1!. V is the po-
tential trapping the atoms,Uaa (Ubc) is the interaction po-
tential between atoms of the lower~upper! channel, andHint
is the matrix element coupling the two channels~which can
be time dependent!. No specific approximation is made re
garding these potentials, so that the Hamiltonian is built
microscopic grounds. In this respect, our approach is v
close to that of Ref.@23#, the major difference being that w
consider the two channels explicitly. Note that there are
terms involving the potentialsUab , Uac , Ubb , etc.: since
the atomsb andc are bound, we neglect their collisions wit
other atoms. Moreover, three-body potentials, as well
spontaneous emission~in the case of photoassociation!, are
not taken into account in this Hamiltonian.
03361
re

r

of
ld:

l

is
o
ge
or

n
f

n
ry

o

s

B. Dynamics of a two-atom system

One can easily derive the usual dynamics of a two-at
system from the many-body Hamiltonian. For instance, c
sider the two-body state

uV&5E E d3xd3yS FA~x,y,t !
ca

†~x!ca
†~y!

A2

1FM~x,y,t !cb
†~x!cc

†~y!D u0&,

whereFA andFM are the two components of the two-bod
wave function for the lower and upper channels. As we w
consider continuum states in the lower channel and bo
states in the upper channel,A stands for ‘‘atomic’’ andM
for ‘‘molecular.’’ This state evolves according to the Schr¨-
dinger equationi\(duV&/dt)5ĤuV&. Using the canonical
commutation relations @ĉ i(x),ĉ j

†(y)#5d i j d
3(x2y) and

@ĉ i(x),ĉ j (y)#50, one finds a set of equations describing
general two-channel coupling:

i\
dFA

dt
5S 2

\2~¹x
21¹y

2!

2m
1V~x!1V~y!

1Uaa~x2y!12EaDFA1Hint* ~x,y!FM , ~2!

i\
dFM

dt
5S 2

\2~¹x
21¹y

2!

2m
1V~x!1V~y!

1Ubc~x2y!1Eb1EcDFM1Hint~x,y!FA .

~3!

Usually, one can separate the motion of the center of m
R5(x1y)/2 and only the relative coordinater5x2y is con-
sidered:

i\
dFA~r ,t !

dt
5S 2

\2¹ r
2

m
1Uaa~r !12EaDFA~r ,t !

1Hint* ~r !FM~r ,t !, ~4!

i\
dFM~r ,t !

dt
5S 2

\2¹ r
2

m
1Ubc~r !1Eb1EcDFM~r ,t !

1Hint~r !FA~r ,t !. ~5!

C. Dynamics of a many-atom system

In the more general case of a many-body state, the
dynamics is given by the equations of motion for the fie
operators in the Heisenberg picture. These equations are
tained from the Heisenberg equationsi\(dÔ/dt)5@Ô,Ĥ#,
using the canonical commutation relations. In the case
photoassociation with a continuous laser, we may actu
rotate the field operators and use the rotating field appr
2-2
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FIG. 1. Schematic representations of two coupled channels.~a! Coupling with a photoassociation laser of frequencyv/2p: the
asymptotic separation between the dressed potentials is given by a detuningD5Eb1Ec22Ea2\v. ~b! Feshbach resonance: a magne
field is adjusted to couple the two channels by hyperfine interaction. The potentials are separated asymptotically by a detuninD5Eb

1Ec22Ea .
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mation in order to remove the oscillatory time dependence
Hint @24#. In either case, we find

i\
dĉa~x!

dt
5S 2

\2¹x
2

2m
1V~x!

1E d3y Uaa~x2y!ĉa
†~y!ĉa~y! D ĉa~x!

1A2E d3y ĉa
†~y!Hint* ~x,y!ĉb~x!ĉc~y!,

~6!

i\
dĉb~x!ĉc~y!

dt
5S 2

\2~¹x
21¹y

2!

2m
1V~x!

1V~y!1Ubc~x2y!1\D D ĉb~x!ĉc~y!

1Hint~x,y!
ĉa~x!ĉa~y!

A2
, ~7!

where underlining has been used as a notational conveni
for symmetrizing certain quantities; for instance,A(x,y) ac-
tually means1

2 @A(x,y)1A(y,x)#. In Eq. ~7!, we introduced
the ‘‘detuning’’ D between the two asymptotic curves~see
Fig. 1! and we neglected many-body terms corresponding
collisions or coupling with atoms external to the pair cons
ered. Keeping these terms would be inconsistent with
fact that we neglected other potentials such asUab , Uac .

D. Coupling with a single bound state

Usually, the interaction is tuned to couple the atoms in
ground-state channel to a single stationary bound state in
upper channel: a rovibrational level of the potentialUbc with
03361
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binding energyEbound. The relative motion of the bound
atoms is then described by the stationary wave functionwM

satisfying

S 2
\2¹ r

2

m
1Ubc~r ! DwM~r !52EboundwM~r !. ~8!

Here the zero of energy is set toEb1Ec . To achieve
population of this single level, one must remain in the p
turbative regime, where the typical intensity of the coupli

H̄ int remains smaller than the energy splittings between
molecular levels. This condition has been discussed in de
by Vatasescuet al. @24#, in the case of photoassociation in
trap of cold alkali-metal atoms, considering various cw la
intensities and detuningsD and comparing the Rabi period t
the classical vibrational period of the molecular level.

When wM is indeed the only bound level affecting th
coupling, we can approximate the operatorĉb(x)ĉc(y)
by its projection ĉM@(x1y)/2#wM(x2y) onto this bound
level, where the ‘‘time-dependent coefficient’’ĉM(R)
5*d3rwM* (r )ĉb@R1(r /2)#ĉc@R2(r /2)# defines a molecu-
lar field. The description of the system can then be redu
to two fieldsĉa and ĉM , satisfying

i\
dĉa~x!

dt
5S 2

\2¹x
2

2m
1V~x!

1E d3y Uaa~x2y!ĉa
†~y!ĉa~y! D ĉa~x!

1A2E d3y W* ~x,y!ĉa
†~y!ĉM~x1y!/2,

~9!
2-3
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i\
dĉM~x!

dt
5S 2

\2¹x
2

4m
12V~x!1\d D ĉM~x!

1E d3r WS x1
r

2
,x2

r

2D
3

ĉaS x1
r

2D ĉaS x2
r

2D
A2

, ~10!

whereW(x,y)5Hint(x,y)wM* (x2y) is the interaction kerne
and \d5\D2Ebound is the energy detuning between th
two levels ~see Fig. 1!, considering the dressed picture f
photoassociation.

III. EFFECTIVE MEAN-FIELD THEORY

A. Purely atomic system

Let us first consider a purely atomic system~thus ignoring
the terms involving any fieldĉb or ĉc). The equation of
motion ~6! now simply reads

i\
dĉa~x!

dt
5S 2

\2¹x
2

2m
1V~x!

1E d3y Uaa~x2y!ĉa
†~y!ĉa~y! D ĉa~x!.

~11!

In the condensed phase, one usually assumes a non
expectation valueC0(x)[^ĉa(x)& for the field operator
ĉa(x), corresponding to a macroscopically occupied st
~see the Appendix!. What is sometimes referred to as ‘‘naiv
mean field’’ consists in replacing the field operators by th
averages directly in the equation of motion~11!, thus ne-
glecting the quantum fluctuationsûa[ĉa2C0. This leads to
a nonlinear Schro¨dinger equation with a coupling constant
the form *d3x Uaa(x). This coupling constant is well de
fined for weak-coupling interactions~for instance, inter-
atomic potentials satisfying the Born approximation*d3x
Uaa(x)'4pa\2/m, where a is the s-wave scattering
length!. It is not the case however for the interactions co
sidered here. The interatomic potential exhibits a strong
pulsive hard core which leads to a divergent coupling c
stant.

The usual remedy is to replace the real interaction by
effective one @25#, generally a contact potentialUaa(r )
5(4pa\2/m)d3(r ) ~which does satisfy the Born approx
mation! having the same scattering lengtha. The resulting
equation, known as the Gross-Pitaevski� equation@26,27#,
forms an ‘‘effective mean-field’’ theory, in which only th
large-scale effects of the interaction are retained:

i\
dC0~x!

dt
5S 2

\2¹x
2

2m
1V~x!1

4pa\2

m
uC0~x!u2DC0~x!.

~12!
03361
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This method can be rigorously justified by considering t
effect of two-body correlations@21,28#. An intuitive way of
taking these correlations into account is to use pair w
functions. Just as most atoms are individually described
the same macroscopic wave functionC0(x), most pairs of
atoms are described by the same macroscopic pair w
function F00(x,y), which turns out to be simply the anoma
lous average 1/A2^ĉa(x)ĉa(y)& @see Eq.~A18! in the Ap-
pendix#. At large distances, the atoms are decorrelated,
the pair wave function is just a product of two macrosco
one-body wave functionŝĉa(x)ĉa(y)&'^ĉa(x)&^ĉa(y)&.
So we may writeF00(x,y)51/A2C0(y)C0(y)w00(x,y) with
limux2yu→`w00(x,y)51. The functionw00 may be seen as a
reduced pair wave function describing the correlations
short distances~see Fig. 3!. To some approximations@see
assumptions~H1! and~H2! in the Appendix# justified by the
low density and large extent of the condensate,w00 simply
satisfies the scattering equation for two atoms in free sp
Written with the center of mass and relative coordinatesR
and r , this equation reads

i\
dw00~R,r ,t !

dt
5S 2

\2

4m
¹R

22
\2

m
¹ r

21Uaa~r ! Dw00~R,r ,t !.

~13!

At equilibrium, it becomes a stationary statew (E) satisfying

Ew (E)~R,r !5S 2
\2

4m
¹R

22
\2

m
¹ r

21Uaa~r ! Dw (E)~R,r !.

~14!

When the condensate pairs are in their ground s
~which is presumably the case when the condensate is
excited!, w00 is therefore the lowest energy state satisfyi
limur u→`w (E)(R,r )51, i.e., the stationary scattering state
zero energyw (0).1 This state can be expressed formally b

w (0)~r !512E d3R8d3r 8 Uaa~r 8!G~R,r ,R8,r 8!

512E d3r 8 Uaa~r 8!g~r ,r 8!, ~15!

whereG is Green’s function of the operator2(\2/4m)¹R
2

2(\2/m)¹ r
21Uaa(r ) andg denotes Green’s function of th

operator2(\2/m)¹ r
21Uaa(r ). It is known from collision

theory @29# that this state is related to thes-wave scattering
lengtha:

E d3r Uaa~r !w (0)~r !5
4p\2a

m
[g. ~16!

1The zero energy is a consequence of the assumption~H1! that the
condensate wave function is uniform over the scale ofw, and has
therefore no momentum. In reality, the typical energies involved
current traps (;nK) lie in the threshold law regime.
2-4
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When taking the expectation value of the equat
of motion ~11!, one finds the term̂ ĉa

†(y)ĉa(y)ĉa(x)&,
which can be approximated bŷ ĉa

†(y)&^ĉa(y)ĉa(x)&
5uC0(y)u2C0(x)w00(x,y) when neglecting the collisions o
noncondensed atoms with condensed atoms (ra3!1) @21#.
If we assume again that the averaged fieldC0 is nearly uni-
form on the scale ofw00, the interaction term becomes
equilibrium:

S E d3y Uaa~x2y!w (0)~x2y! D uC0~x!u2C0~x!

5
4p\2a

m
uC0~x!u2C0~x!, ~17!

where we used Eq.~16!. Thus we retrieve the mean-fiel
term in the Gross-Pitavski� equation~12!: it is in fact regu-
larized by the stationary two-body correlations described
w (0).

B. Atomic and molecular system

We now apply these ideas to the atomic-molecular s
tem, with the aim of deriving an effective mean-field theo
A first approach@4,18,30# would be to start from the two
field description~9!,~10! and replace the potentials by effe
tive ~or renormalized! interactions:Uaa(r )5gd3(r ) with g
54p\2a/m andW(r )5wd3(r ), with

w5A2^wMuHintuw (0)&[A2E d3r wM* ~r !Hint~r !w (0)~r !.

~18!

Replacing the quantum fields by their averages^ca&
5C0 and ^cM&5CM , we obtain a set of coupled Gros
Pitaevski� equations which has been extensively stud
@4,8,18,30–32#:

i\
dC0~x!

dt
5S 2

\2¹x
2

2m
1V~x!1guC0~x!u2DC0~x!

1w* C0* ~x!CM~x!, ~19!

i\
dCM~x!

dt
5S 2

\2¹x
2

4m
12V~x!1\d DCM~x!1

1

2
wC0

2~x!.

~20!

Let us now follow the approach of Ref.@21#. We now
consider the following one-body and two-body fields:~i! the
atomic condensate modeC0, ~ii ! the atomic noncondense
modes C i , ~iii ! the molecular condensed modeFM

5^ĉbĉc& ~we will neglect noncondensed molecular mode!,
~iv! the pair wave functionF00 for two condensed atoms
and~v! the pair wave functionF0i for a condensed atom an
a noncondensed atom in the modeC i ~we will neglect the
pairs of noncondensed atoms!.

We first take the expectation value of Eqs.~6! and ~7!,
expressing the atomic correlations by means of pair w
functions:
03361
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i\
dC0~x!

dt
5S 2

\2¹x
2

2m
1V~x! DC0~x!

1A2E d3yS Uaa~x2y!(
i

C i* ~y!F0i~x,y!

1Hint* ~x,y!C0* ~y!FM~x,y! D , ~21!

i\
dFM~x,y!

dt
5S 2

\2~¹x
21¹y

2!

2m
1V~x!1V~y!1Ubc~x2y!

1\D DFM~x,y!1Hint~x,y!F00~x,y!. ~22!

The dynamics ofC i , F00, andF0i is given in the Appen-
dix. Note that Eqs.~A34! and ~22! giving the evolution of
F00 andFM are analogous to Eqs.~2! and~3!. They describe
indeed the coupled dynamics for the pairs of condensed
oms, giving rise to Rabi oscillations on a time scale

Tpairs5
\

H̄ int

. ~23!

To simplify these general equations, we make use of
reduced pair wave functionsw00 and w0i defined by Eqs.
~A11! and~A12!, with the assumptions (H1) and (H2). Fur-
thermore, we resort to a perturbative approach and ass
that the atoms are coupled to a single stationary bound s
wM , satisfying Eq.~8!. In this case,FM(x,y) reduces to its
projection CM@(x1y)/2#wM(x2y) onto wM . The ‘‘time-
dependent coefficient’’CM is the center-of-mass wave func
tion for the molecules in this bound state.

These assumptions lead to a closed set of equations:

i\
dC0

dt
5S 2

\2¹2

2m
1V1g00uC0u21(

iÞ0
2g0i uC i u2DC0

1g8M* CMC0* , ~24!

i\
dC i

dt
5S 2

\2¹2

2m
1V12g0i uC0u2DC i , ~25!

i\
dCM

dt
5S 2

\2¹2

4m
12V1\d DCM1

1

2
gMC0

2 , ~26!

i\
dw00~R,r !

dt
5S 2

\2¹R
2

4m
2

\2¹ r
2

m
1Uaa~r ! Dw00~R,r !

1A2Hint* ~R,r !wM~r !

3S CM~R!

C0S R1
r

2DC0S R2
r

2D D , ~27!
2-5
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i\
dw0i~R,r !

dt
5S 2

\2¹R
2

4m
2

\2¹ r
2

m
1Uaa~r ! Dw0i~R,r !,

~28!

where the one-body modes are coupled to the two-b
modes through the coupling factors:

g00~x!5E d3y Uaa~x2y!w00~x,y!, ~29!

g0i~x!5E d3y Uaa~x2y!w0i~x,y!, ~30!

gM~R!5A2E d3r wM* ~r !Hint~R,r !w00~R,r !, ~31!

gM8 ~x!5A2E d3y wM* ~x2y!Hint~x,y!. ~32!

Note that the noncondensed modesC i as well as the pairs
w0i involving a noncondensed atom are not directly affec
by the molecular condensate. Thus, our equations ca
present any ‘‘rogue photodissociation’’@30,33#, enabling
molecules to dissociate towards noncondensed modes.
rogue photodissociation may be found either in the fluct
tions of the molecular field or in the pairsw i j involving two
noncondensed atoms, which we have both neglected. H
ever, rogue photodissociation has been treated thus far w
out the molecular fluctuations, and using the anomalous

erage^âkâ2k& to describe noncondensed pairs. In our o
approach, this average is rather related to the condensed
at short distances@see Eq.~A18!#. We plan to clarify this
point in a future work. In the rest of this paper, we w
assume that we are in situations where the rogue photo
sociation does not play an important role.

In order to decouple the one-body dynamics from
two-body dynamics, the pair wave functions must be qua
tationary and follow adiabatically the one-body wave fun
tions. In other words, the characteristic time of evolution
the pairsTpairs @see Eq.~23!# must be very short compare
with the characteristic time of evolutionTcond for the con-
densates:

Tpairs

Tcond
!1. ~33!

In that case, we can solve Eqs.~27! and ~28! formally
using Green’s functions introduced in Eq.~15!:
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w00~R,r !5w (0)~r !2E d3R8d3r 8 G~R8,r 8,R,r !

3A2Hint* ~R8,r 8!wM~r 8!

3S CM~R8!

C0S R81
r 8
2 DC0S R82

r 8
2 D D

'w (0)~r !2E d3r 8g~r 8,r !

3A2Hint* ~r 8!wM~r 8!
CM~R!

C0
2~R!

,

w0i~R,r !5w (0)~r !.

We can then eliminatew00 andw0i in Eqs.~24!, ~25!, and
~26!, and using properties~15!,~16! of w (0), we find:

i\
dC0

dt
5S 2

\2¹2

2m
1V1gS uC0u21(

iÞ0
2uC i u2D DC0

1w* C0* CM , ~34!

i\
dC i

dt
5S 2

\2¹2

2m
1V12guC0u2DC i , ~35!

i\
dCM

dt
5S 2

\2¹2

4m
12V1\d1Esel fDCM1

1

2
wC0

2 ,

~36!

where Esel f5*@ u^wMuHintuw (E)&u2/Er(E)dE# is the self-
energy of the molecules: it is an energy shift caused by
interaction with the open channel@7,34–36#. We may in-
clude this energy shift in the detuningd. Note that Eq.~35!
is conservative, so that the noncondensed modes ma
omitted if they are initially negligible. Finally, we retriev
the coupled Gross-Pitaevski� equations~19!,~20!.

One can see in Eqs.~34! and ~36! that the typical time
Tcond for the Rabi oscillations betweenC0 andCM is given
by \/(wAr), wherer is the typical density of the system
while the interactionw has been defined in Eq.~18!. Condi-
tion ~33! is thus equivalent to

A2r^wMuw (0)&!1. ~37!

Note that this condition does not depend on the inten
of the couplingH̄ int , but keep in mind that it has been de
rived in a perturbative way. More generally, mean-field eq
tions such as Eqs.~34! and ~36! should be valid as long a
the time scaleTpairs , associated with the two-body dynam
ics, is short compared with the time scaleTcond of the one-
body dynamics. In other cases, one might need to use
more general equations~21! and~22! and treat the two-body
dynamics explicitly.
2-6
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TABLE I. Some typical time scales for the photoassociation of a condensate.

Intensity Ebound (cm21) Tpairs ~s! Tcond ~s! Tspont ~s! A2r^wmuw (0)&

23Na @7# 100 W/cm2 49 8.4310210 1.131026 8.431029 7.431024

1 kW/cm2 49 2.6310210 3.531027

1 kW/cm2 4 2.6310210 3.531027 4.531023

85Rb @8# ;10211 4.831028 1.431028 ;3.1024
d

l-
tio
s

bl

n
t

it
ur

a

k
is
a
w
e

-

ss
h
n

p-
a

-
-
ilu
r

a

-
r
i
4

d
di

ess
la-
the
t

ular
. We
ally
rm

the
ace.
of

ho-
-
ec-
C. Comparison with other models

These general equations can be compared with the mo
developed by Holland and co-workerset al. @19# and Köhler
et al. @23#. In the Hartree-Fock-Bogoliubov model of Ho
land and co-workers, anomalous and normal correla
functions are used to go beyond the coupled Gross-Pitaev�

equations: when these correlation functions are negligi
their model also leads to the coupled Gross-Pitaevski� equa-
tions. We therefore believe that the anomalous correlatio
in fact related at large distances to the fluctuations around
stationary perturbed pair wave functionF00. It is not true,
however, at short distances, since their model is built w
contact interactions. This is why a renormalization proced
is needed to recover the physics from short distances.

In the model of Ko¨hler et al., the system is described by
single nonlinear non-Markovian Schro¨dinger equation which
is not obviously related to the coupled Gross-Pitaevs�

equations. However, the cumulant approach at the bas
their model should be mathematically very close to our p
wave function approach. The main differences are that
factorize the correlations and consider the two channels
plicitly: what they noteC(x)C(y)1F(x,y) is a condensed
pair wave function with two implicit components corre
sponding to the pair wave functionsF00 and FM . As our
model has an explicit connection to the coupled Gro
Pitaevski� equations, we believe it is also the case for t
model of Köhler. Our model therefore clarifies the relatio
between the existing models and gives a simple image
terms of one-body and two-body wave functions.

IV. APPLICATION TO PHOTOASSOCIATION IN A BEC

Condition ~37! shows that the one-body mean-field a
proach holds for sufficiently low densities, contrary to wh
has been suggested in Ref.@8#. Actually, in the case of pho
toassociation, condition~37! is usually achieved in the cur
rent experiments where the condensate is always d
enough (r;1020 m23), and the Franck-Condon facto
^wMuw (0)& is sufficiently low (;10214 m3/2). We give in
Table I typical values. We first have considered the photo
sociation experiment in a Na condensate reported in Ref.@7#,
where the levelv5135 of Na2 0u

1(3S13P1/2) ~correspond-
ing to Ebound;49 cm21) is populated for various laser in
tensities. The computed radial wave functions are rep
sented in Fig. 2: although the Franck-Condon factor
favorable for photoassociation, we find for a density of
31020 m23 a ratioTpairs /Tcond,1023. It is not easy to in-
crease the transition moment by three orders of magnitu
Photoassociating towards molecular levels closer to the
sociation limit, for instancev5163 ~corresponding to
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Ebound;4 cm21 and an outer turning point located atr
;85 a.u.), would increase the Franck-Condon factor by l
than one order of magnitude. Similar conclusions on the re
tive time scales can be drawn for a Rb condensate, in
conditions described in Ref.@8#. We then expect that in mos
realistic cases the conditionTpairs!Tcond will indeed be
verified.

There is another time scale, however, since the molec
state is not stable and decays by spontaneous emission
can treat this spontaneous emission phenomenologic
within the framework of our equations by adding a loss te
2 i\(g/2)CM in the equation of the molecular field~26!. To
simplify, we will consider a homogeneous system (V50).

For sufficiently high intensities,H̄ int@\g, i.e., Tpairs
!Tspont, and the pairs have the time to oscillate between
two channels before spontaneous emission takes pl
Eliminating the pair dynamics, we are left with a set
coupled Gross-Pitaevski� equations:

i\
dC0

dt
5guC0u2C01w* C0* CM , ~38!

i\
dCM

dt
5\~d2 ig/2!CM1

1

2
wC0

2 . ~39!

FIG. 2. Representation of the radial wave functions in the p
toassociation experiment of Ref.@7#. The function in the open chan
nel and the bound wave function were computed using, resp
tively, the Numerov-Cooley method@38# and the Fourier grid
method@39#. Note that in the text the total wave functionsw00(r )
5F00(r )/A4pr andwM(r )5FM(r )/A4pr are considered.
2-7
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Spontaneous emission is then usually faster than the dyn
ics of the condensates (\g@wAr), so that we can eliminate
the molecular field adiabatically:

CM52
w

2\~d2 ig/2!
C0

2 . ~40!

We obtain a simple rate equation for the condensate den
uC0u2:

duC0u2

dt
52KuC0u4, ~41!

with a rateK5K0/11(2d/g)2 and an on-resonance rate

K05
4

g U 1

\
^wMuHintuw (0)&U2

. ~42!

This is exactly the rate one can derive from a perturba
treatment of the two-atom equations~4! and~5! @34#, assum-
ing the presence of the condensate has only two effects:
low collision energies in the open channel and no need
symmetrizeFA since condensed atoms are in the same st
This last effect reduces the rate by a factor of 2 relative t
noncondensed gas@30,37#, and was accounted for in ou
model through the proper symmetrization of the pair wa
functions@compare Eqs.~A11! and~A12!#. Thus, a cautious
many-body treatment of the photoassociation in a BEC ev
tually yields the same prediction as two-atom theories. T
indicates that the physics of the problem lies essentially
the pairs of atoms. This result has been confirmed by
photoassociation experiment in a condensate of sodium
oms reported by McKenzieet al. @7#. The laser intensities
used in this experiment~from ;0.1 to 1 kW cm22) are those
which we have considered here, whereTpairs!Tspont ~see
Table I!. They found that the condensate is indeed loca
depleted according to Eq.~41!, with a rateK0 proportional to
the intensity, such thatdK0 /dI53.5310210 s21 W21 cm2.
This is in agreement with the theoretical rate given by E
~42!. Our own calculation, using numerical computations
stationary wave functionswM andw (0) @see Fig. 2#, leads to
dK0 /dI53.3310210 s21 W21 cm2, in agreement with the
calculation given in Ref.@7#.

For smaller intensities,H̄ int!\g, and the spontaneou
emission is the fastest phenomenon: the formed molec
decay almost instantly, so that we can eliminate them a
batically. SettingdCM /dt50 in Eq. ~26! yields

CM52
^wMuHintuw00&

A2\~d2 ig/2!
C0

2 . ~43!

So that we are left with

i\
dC0

dt
5S E d3rJ@w00#~r ! D uC0u2C0 , ~44!

i\
dw00

dt
~r !52

\2

m
¹2w00~r !1J@w00#~r !, ~45!
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where

J@w00#~r !5Uaa~r !w00~r !2Hint* ~r !wM~r !

3@^wMuHintuw00&/\~d2 ig/2!#.

The situation is the following: the formation of excited mo
ecules creates a hole at short distances in the pair distribu
w00, through the imaginary part ofJ. This hole is refilled
with waves coming from larger distances, while the who
condensate is being depleted. Although this picture is q
different from the higher-intensity regime, we believe it lea
essentially to the same rate of depletion, as we do not ex
to see a new behavior emerging from lower intensities.

V. CONCLUSION

We have generalized the pair wave function approa
introduced by Cherny for an atomic condensate, to a non
mogeneous Bose system with two coupled channels, suc
a mixed atomic-molecular condensate. The treatment of
correlations is performed using the physical potentials b
in the atomic and the molecular channel. We have shown
the pair wave functions regularize the mean-field terms in
equations without requirement of any renormalization pro
dure. This has enabled us to derive the coupled Gro
Pitaevski� equations on firm grounds and to assess th
range of validity by comparing characteristic times asso
ated to the pair dynamics and to the condensate dynami

We have shown that in the case of photoassociation wi
cw laser, at intensities allowing a perturbative model,
Gross-Pitaevski� description is usually verified and eve
leads to the rates predicted simply from the photoassocia
probability of two colliding atoms. Nevertheless, we belie
that the two-body mean-field equations might be necess
in other situations with a nontrivial time dependence, such
photoassociation with chirped laser pulses. Previous wo
@19,23,40# have already shown the importance of long-ran
correlations for Feshbach resonance induced by a ti
dependent magnetic field. Future work will clarify the po
sible influence of short-range correlations in these tim
dependent situations.

ACKNOWLEDGMENTS

The authors would like to thank E. Tiesinga, M. Macki
S. Kokkelmans, R. Kosloff, and P. Pellegrini for helpful di
cussions.

APPENDIX: MODES AND PAIRWAVE FUNCTIONS

In this appendix, we generalize the ideas of Cherny@21#
to a nonhomogeneous Bose gas. To simplify the notatio
the field operatorĉa will be notedĉ.

1. Definition of the pair wave functions

In second quantization, the one-body and two-body d
sity matrices of the system are defined by

r1~x,y![^ĉ†~x!ĉ~y!&, ~A1!
2-8
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r2~x,y,y8,x8![
1

2!
^ĉ†~x!ĉ†~y!ĉ~y8!ĉ~x8!&. ~A2!

As Hermitian matrices, they can be diagonalized in
orthonormal basis:

r1~x,y!5(
i

nic i* ~x!c i~y!, ~A3!

r2~x,y,y8,x8!5(
n

mnfn* ~x,y!fn~x8,y8!. ~A4!

This means that there areni atoms in the one-body mod
~or wave function! c i , and there aremn pairs of atoms in the
two-body mode~or pair wave function! fn . All these wave
functions are normalized to unity, but we can alternativ
define the functionsC i5Anic i andFn5Amnfn , which are
normalized to the number of atoms or pairs of atoms. N
that in a state where the total number of atoms isn, we have
( ini5n and(nmn5n(n21)/2. This may be seen as a co
sequence of the relations:

E d3x^ĉ†~x!ĉ~x!&5n, ~A5!

E d3y^ĉ†~x!ĉ†~y!ĉ~y!ĉ~x8!&5~n21!^ĉ†~x!ĉ~x8!&.

~A6!

We can use the one-body modesc i to expand the field
operator:ĉ(x)5( i âic i(x). Using Eqs.~A1! and ~A3!, we
find the relation̂ âi

†â j&5nid i j .
When there is no interaction between the atoms, the at

are decorrelated and the pair wave functionsfn are simply
symmetrized products of one-body wave functions:

f i i ~x,y!5c i~x!c i~y!, ~A7!

f i j ~x,y!5
c i~x!c j~y!1c j~x!c i~y!

A2
~ i , j !. ~A8!

f i i is the wave function for two atoms in the same modec i ,
andf i j is the wave function for two atoms in the modesc i
and c j . From counting arguments, we havemii 5ni(ni
21)/2 pairs in the modef i i andmi j 5ninj pairs in the mode
f i j . One can check that this pair distribution does inde
satisfy relation~A6!.

In the presence of interactions, one might expect ex
terms needed to describe the correlations at short interato
distancesux2yu ~see Fig. 3!:

f i i ~x,y!}c i~x!c i~y!1f i i8 ~x,y!, ~A9!

f i j ~x,y!}
c i~x!c j~y!1c j~x!c i~y!

A2
1f i j8 ~x,y!.

~A10!
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These correlationsf i j8 are expected to vanish for inter
atomic distances larger than, say, the ranger 0 of the interac-
tion. The pair wave functions are thus asymptotically dec
related; this follows from the principle of correlatio
weakening@21#. If the interaction supports bound states, o
might also expect bound-pair wave functionsfn , vanishing
entirely for interatomic distances larger thanr 0.

As the functionsf i j8 will scale like the functionsc i and
c j , it can be useful to express the correlations with dime
sionless functions, which we refer to as ‘‘reduced pair wa
functions’’:

f i i ~x,y!}c i~x!c i~y!w i i ~x,y!, ~A11!

f i j ~x,y!}
c i~x!c j~y!1c j~x!c i~y!

A2
w i j ~x,y!, ~A12!

with w i j (x,y)→1 whenux2yu@r 0.

2. Pair wave functions in a condensate with U„1… symmetry
breaking

When condensation occurs, most of the atoms are in
same quantum state, sayf0. This meansn0@( ini . Accord-
ingly, most of the pairs are in the same quantum statec00,
corresponding to pairs of condensed atoms. A way of trea
this situation, related to the Bogoliubov ansatz, is to assu
a breaking of the U~1! symmetry@41#: the system is then in
a coherent stateuV& satisfyingâ0uV&5a0uV&. From the re-
lation ^âi

†â j&5nid i j , we obtain a05An0 and ^âi&50 (i
Þ0), so that the field operator has a nonzero expecta
value ^ĉ&5C0. The deviations from the meanû5C02ĉ
are the quantum fluctuations. This implies that the numbe
atoms now fluctuates and relation~A6! derived for a fixed-
number state is no more valid. However, this prescription
very useful to derive expressions for the one-body and tw
body modes in terms of the quantum fluctuations. Indeed
we expand the two-body density matrix in terms ofû:

FIG. 3. Schematic representation of the macroscopic wave fu
tion for condensate pairs in a one-dimensional system:F00(x,y)
51/A2C0(x)C0(y)w00(x,y). The reduced pair wave functionw00

gives the correlation at short distanceux2yu created by the scatter
ing of the two atoms.
2-9
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r2~x,y,y8,x8!5
1

2
$C0* ~x!C0* ~y!C0~y8!C0~x8!

1C0* ~x!C0* ~y!^û~y8!û~x8!& ~A13!

1^û~x!û~y!&* C0~y8!C0~x8!

1C0* ~x!C0~x8!^û†~y!û~y8!&

1C0* ~x!C0~y8!^û†~y!û~x8!& ~A14!

1C0* ~y!C0~x8!^û†~x!û~y8!&

1C0* ~y!C0~y8!^û†~x!û~x8!&

1C0* ~x!^û†~y!û~y8!û~x8!&

1C0* ~y!^û†~x!û~y8!û~x8!& ~A15!

1C0~y8!^û†~x!û†~y!û~x8!&

1C0~x8!^û†~x!û†~y!û~y8!&

1^û†~x!û†~y!û~y8!û~x8!&%. ~A16!

We see that it can be factorized as follows:

r2~x,y,y8,x8!5(
i< j

F i j* ~x,y!F i j ~x8,y8!

1(
n

Fn* ~x,y!Fn~x8,y8!, ~A17!

where

F00~x,y!5
^ĉ~x!ĉ~y!&

A2
5

C0~x!C0~y!

A2

1 (
iÞ0,j Þ0

^âi â j&

A2
c i~x!c j~y!, ~A18!

F0i~x,y!5
C0~x!C i~y!1C i~x!C0~y!

A2

1 (
j Þ0,kÞ0

^âi
†â j âk&

A2^âi
†âi&

c j~x!ck~y! ~A19!

are, respectively, the pair wave function for two conden
atoms, and the pair wave function for a condensed a
and a noncondensed atom in the modeC i . There is no
simple expression for either the pair wave functionF i j
of two noncondensed atoms or the bound-pair wa
functions Fn , since these are contained in the te

^û†(x) û†(y) û(y8) û(x8)&. If we assume that there is no in
teraction between the noncondensed atoms~which is the case
in the usual Hartree-Fock-Bogoliubov approach!, we may
use Wick’s theorem to expand this term:
03361
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^û†~x!û†~y!û~y8!û~x8!&5^û†~x!û†~y!&^û~y8!û~x8!&

1^û†~x!û~x8!&^û†~y!û~y8!&

1^û†~x!û~y8!&^û†~y!û~x8!&.

~A20!

This yields

F00~x,y!5
C0~x!C0~y!

A2
1 (

iÞ0,j Þ0

^âi â j&

A2
c i~x!c j~y!,

~A21!

F0i~x,y!5
C0~x!C i~y!1C i~x!C0~y!

A2
, ~A22!

F i i ~x,y!5
C i~x!C i~y!

A2
, ~A23!

F i j ~x,y!5
C i~x!C j~y!1C j~x!C i~y!

A2
, ~A24!

Fn~x,y!50. ~A25!

As expected in this case, only the condensed pairs
correlated through the anomalous correlation^û(x) û(y)&
5( iÞ0,j Þ0^âi â j&c i(x)c j (y). This means the condensed a
oms interact only with each other, while the nonconden
atoms are treated as an ideal gas. However, this is an
proximation, since all the atoms feel the interaction. As
shall see, we actually need the correlations in order to re
larize mean-field terms appearing in the equations of mo
for the one and two-body modes.

3. Evolution of one-body modes

The evolution of the condensate mode is simply obtain
by taking the average of the equation of motion for fie
operator ~6!. Doing this, we encounter the averag

^ĉ†(x)ĉ(y)ĉ(z)&, which can be expanded and then facto
ized in terms of pair wave functions:

^ĉ†~x!ĉ~y!ĉ~z!&5C0* ~x!^û~y!û~z!&1C0~y!^û†~x!û~z!&

1C0~z!^û†~x!û~y!&1^û†~x!û~y!û~z!&

~A26!

5A2 (
i

C i* ~x!F0i~y,z!. ~A27!

We also have to express the avera

^ĉa
†(y)Hint* (x,y)ĉb(x)ĉc(y)& which can be simplified to

C0* (y)Hint* (x,y)FM(x,y) if we assume that the atoms of th

upper channel are paired in a purely coherent fieldFM . The
equation of motion for the condensed mode is then
2-10



i\
dC0~x!

5S 2
\2¹x

2

1V~x! DC ~x!1A2E d3y C* ~y!U ~x2y!F ~x,y!1C* ~y!H* ~x,y!F ~x,y! .

-
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dt 2m 0 S (
i

i aa 0i 0 int M D
~A28!

We can then derive the evolution of the one-body density matrix for the noncondensed atomsr18(x,y)[^ĉ†(x)ĉ(y)&
2C0* (x)C0(y)5( iÞ0C i* (x)C i(y). Using Eqs.~6!, ~A17!, ~21!, and neglecting the pair wave functionsF i j for two noncon-
densed atoms, we get

i\
dr18~x,y!

dt
5K ĉ†~x!i\

dĉ~y!

dt L 2C0* ~x!i\
dC0~y!

dt
2$x↔y%* 5S 2

\2¹y
2

2m
1V~y! D r18~x,y!12E d3z Uaa~y2z!

3S F800* ~x,z!F00~z,y!1(
iÞ0

S C0* ~z!C i* ~x!

A2
1F0i8 ~x,z!D F0i~z,y!D 12E d3z F800* ~x,z!Hint* ~y,z!FM~z,y!

2$x↔y%* . ~A29!

In the expression above, the correlation termsF8(x,z) vanish foruy2xu@r 0. So whenx andy are separated by macro
scopic distances, we have

i\
dr18~x,y!

dt
'S 2

\2¹y
2

2m
1V~y! D r18~x,y!12E d3z Uaa~y2z! (

iÞ0

C0* ~z!C i* ~x!

A2
F0i~z,y!2$x↔y%* , ~A30!

which can be written as

(
iÞ0

C i* ~x!i\
dC i~y!

dt
2$x2y%* '(

iÞ0
C i* ~x!F S 2

\2¹y
2

2m
1V~y! DC i~y!1A2E d3z Uaa~y2z!C0* ~z!F0i~z,y!G2$x↔y%* .

~A31!
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the

he
ma-

n-
It is clear from this expression that the evolution of t
noncondensed modeC i is given by

i\
dC i~x!

dt
'S 2

\2¹x
2

2m
1V~x! DC i~x!

1A2E d3y Uaa~x2y!C0* ~y!F0i~y,x!

~A32!

as long as its wavelength is greater thanr 0. The interpreta-
tion of Eqs.~A28! and ~A32! is straightforward. Every con
densed atom evolving in the trap can collide with anot
03361
r

condensed atom or with any noncondensed atoms, and it
also associate with another condensed atom to form a m
ecule. Similarly, every noncondensed atom evolving in
trap can collide with any condensed atom~we neglected the
collisions with other noncondensed atoms!. Note that, within
the approximation of a purely coherent molecular field, t
noncondensed modes are not directly affected by the for
tion of molecules.

4. Evolution of the two-body modes

The equation of motion for the pair wave function of co
densed atoms follows from Eqs.~A18! and ~6!:
ced
i\
dF00

dt
~x,y!5

1

A2
K ĉ~x!i\

ĉ

dt
~y!L 1$x↔y% ~A33!

5S 2
\2~¹x

21¹y
2!

2m
1V~x!1V~y!1Uaa~x2y! DF00~x,y!1Hint* ~x,y!FM~x,y!

1E d3z~Uaa~z2y!s2~z,z,x,y!1r1~z,x!Hint* ~y,z!FM~y,z!1$x↔y%!, ~A34!

with s2(z,z,x,y)51/A2^ĉ†(z)ĉ(z)ĉ(x)ĉ(y)&. Using Eq.~A28!, one can then deduce the equation of motion for the redu
pair wave functionw00:
2-11
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i\
dw00~x,y!

dt
5F2

\2

2m
~¹x

21¹y
2!1Uaa~x2y!2

\2

m
~¹ ln C0~x!•¹x1¹ ln C0~y!•¹y!1E d3z ~Uaa~z2y!F~x,y,z!

1G~x,y,z!A2Hint~x,z!FM~x,z!1$x↔y%!Gw00~x,y!1A2Hint* ~x,y!
FM~x,y!

C0~x!C0~y!
, ~A35!
wi
tl
p

l

y
ir

a

ns
n

ed
he
uan-

es.
of
the

tri-
-
felt

s are
ese

fe

g

with

F~x,y,z!5
^ĉ†~z!ĉ~z!ĉ~x!ĉ~y!&

^ĉ~x!ĉ~y!&
2

^ĉ†~z!ĉ~z!ĉ~y!&

^ĉ~y!&

and

G~x,y,z!5
^ĉ†~z!ĉ~y!&

^ĉ~x!ĉ~y!&
2

^ĉ†~z!&

^ĉ~x!&
.

These many-body terms are caused by the interaction
other atoms external to the pair considered. At sufficien
low densities, we can make the following two basic assum
tions about the reduced pair wave function.

~H1! Its extent ;r 0 is much smaller than the typica
length scale of the condensate.

~H2! It is not much influenced by remaining many-bod
terms such asF and G. The many-body effects on the pa
dynamics are thus only caused by the mean fieldsC i ,
through relations~A11! and ~A12!.

Within these assumptions, Eq.~A35! reduces to

i\
dw00~x,y!

dt
5S 2

\2

2m
~¹x

21¹y
2!1Uaa~x2y! Dw00~x,y!

1A2Hint* ~x,y!
FM~x,y!

C0~x!C0~y!
. ~A36!

The pair wave functionF0i for a condensed atom and
noncondensed atom in the modei is given by
1/A2*d3z C i(z)^ĉ†(z)ĉ(x)ĉ(y)&, following from Eq.

FIG. 4. Schematic representation of the effective potentials
by ~a! the condensed atoms,~b! the noncondensed atoms~for the
first noncondensed modes!, in the case of a positive scatterin
length.
03361
th
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~A27!. Differentiating this expression and using assumptio
(H1) and (H2), we find for the reduced pair wave functio
w0i :

i\
dw0i~x,y!

dt
5S 2

\2

2m
~¹x

21¹y
2!1Uaa~x2y! Dw0i~x,y!.

~A37!

Within our approximations, a pair involving a noncondens
atom is not directly affected by the coupling between t
channels. This may indicate that one actually needs the q
tum fluctuations of the molecular field for these modes.

Under assumption (H1), we can simplify the Eqs.~A28!
and ~A32! for the one-body modes:

i\
dC0

dt
5S 2

\2¹2

2m
1V1g00uC0u21(

iÞ0
2g0i uC i u2DC0

1GMC0* , ~A38!

i\
dC i

dt
5S 2

\2¹2

2m
1V12g0i uC0u2DC i , ~A39!

with

g00~x!5E d3y Uaa~x2y!w00~x,y!, ~A40!

g0i~x!5E d3y Uaa~x2y!w0i~x,y!, ~A41!

GM~x!5A2E d3y Hint* ~x,y!FM~x,y!. ~A42!

These factors are proportional to scattering amplitud
Note that the amplitudes are two times larger for pairs
condensed and noncondensed atoms; this comes from
fact that the atoms are in different states, so that symme
zation ~A10! induces a factor of 2 relative to a pair of con
densed atoms. As a consequence, the effective potentials
by the condensed atoms and the noncondensed atom
different. Figure 4 gives a schematic representation of th
potentials at zero temperature equilibrium, whereg005g0i
5g54p\2a/m, with a positive scattering lengtha.

lt
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