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Pair dynamics in the formation of molecules in a Bose-Einstein condensate
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We revisit the mean-field treatment of photoassociation and Feshbach resonances in a Bose-Einstein con-
densate previously used by various authors. Generalizing the Cherny and Shanenko dprg@dRev. B2,
1646 (2000] where the finite size of the potentials is explicitly introduced, we develop a two-channel model
for a mixed atomic-molecular condensate. Besides the individual dynamics of the condensed and noncon-
densed atoms, the model also takes into account their pair dynamics by means of pair wave functions. We show
that the resulting set of coupled equations can be reduced to the usual coupled Gross-Pégeatkins when
the time scale of the pair dynamics is short compared to that of the individual dynamics. Such time scales are
discussed in the case of typical photoassociation experiments with cw lasers. We show that the individual
dynamics plays a minor role, demonstrating the validity of the rates predicted by the usual models describing
photoassociation in a nondegenerate gas.
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I. INTRODUCTION photoassociating with a chirped pulse.
In a condensate, most theoretical treatments at present
The possibility of transforming an atomic condensate intorely upon coupled Gross-Pitaevskiquations, where the dy-
a molecular condensate is presently a major chall¢hgé]. namics in the atomic and the molecular condensates as well
Several routes are considered to couple a condensate of fras the coupling between them are described by mean-field
atoms with a condensate of molecules which are all in theffective potentials[3,8,18. Details of the potentials are
same vibrational state of a molecular electronic potential. Aomitted owing to a5 function approximatiorfcontact poten-
Feshbach resonance in the electronic ground state can lial). The knowledge of the molecular potential curves and
swept by a time-dependent magnetic field, and recent exper@lipole transition moments is necessary only to determine
ments[5,6] have observed oscillations in the number of at-scattering lengths, binding energies and to accurately com-
oms in the condensate. Alternatively, the photoassociatiopute the coupling parameter between atomic and molecular
process, which can be considered as an optically induceghases. The success of such calculations relies on the very
Feshbach resonance, creates a molecular condensate in shrort time scale of the microscopic dynamics compared to
excited electronic state. In the latter case, a stabilization prathe condensate dynamics.
cess must be introduced to avoid destruction of this conden- The validity of the(one-body mean-field approximation
sate by spontaneous emission as was observed reféhly  has been recently questioned by several authors, particularly
two-pulse STIRAP(stimulated Raman adiabatic passage in the case of a time-dependent coupling term, and models
scheme has been theoretically discusg®dl(q in view of  using Hartree-Fock-Bogoliubov equations of motion have
transferring the population to bound levels in the groundoeen proposefdl9]. However, such calculations rely on the
electronic state. function approximation for the potentials and coupling
In a nondegenerate gas, ultracold molecules are formetérms. The ultraviolet divergence caused by this approxima-
through combination of a photoassociation step with a stabition is solved by a renormalization procedure, as discussed in
lization step using spontaneous emissjdi—13. In both  detail by Kokkelmanset al. [20]. Recently, Cherny and
cases the efficiency is controlled by the dipole transition moShanenkd 21,22 have shown that in the description of the
ments, which depend markedly upon details of the electronidynamics of an atomic condensate, issues associated with the
potential curves: the search for efficient mechanisms reliesontact potentials can be avoided by considering the exact
upon accurate spectroscopic dgt#,15 and it was shown potential and pair wave functions having the correct nodal
that whereas photoassociation is efficient at large internustructure at short interatomic distance.
clear distances, the stabilization process is governed by the The aim of the present work is to revisit the problem of
probability of finding the two atoms at intermediate distancesoupled atomic and molecular condensates in the framework
[15,16. Making ultracold molecules thus involves an inter- of a Cherny treatment. For the sake of clarity, we shall con-
play between long-range and short-range dynamics. Up teider only a two-channel model for Feshbach resonance or
now, most experiments have used cw lasers. The use @hotoassociation. The paper is organized as follows. We first
chirped pulses, i.e., laser pulses with a time-dependent frgsresent a three-field model describing a two-channel cou-
quency, could increase the formation rafé¥]. From the pling in a Bose system. We then derive one-body and two-
theoretical point of view, sweeping a time-dependent magbody mean-field equations, and show how the pair wave
netic field through a Feshbach resonance is equivalent tfunctions can be eliminated and lead to effective one-body
mean-field equations, without using contact potentials. In the
last section, we interpret the one-color photoassociation of a
*Electronic address: pascal.naidon@lac.u-psud.fr BEC in terms of one-body and two-body modes. Definitions
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of the pair wave functions in an inhomogeneous system are B. Dynamics of a two-atom system

given in the Appendix. One can easily derive the usual dynamics of a two-atom

system from the many-body Hamiltonian. For instance, con-

Il THREE-FIELD MODEL sider the two-body state
A. Many-body Hamiltonian |Q>_f J dixdly| da(x t)lﬁ;(x)lﬁ;(}’)
We consider three kinds of atoms in the atomic-molecular Y| FalY: \/5

system: the ground-state atonas colliding in the lower

channel and the atontisandc of the bound pairs in the upper t t
channel. As described in Fig. 1, the free atomsnteract +Ou (%Y, D) p(X) de(y) |10),
through the potentidl ,,(r), while the molecules vibrate in

the potentialUp(r). In the case of photoassociation, the whered, and®,, are the two components of the two-body
latter potential corresponds to an excited electronic state Qf;ave function for the lower and upper channels. As we will
Ehe VP0|GCU|9; For each species, we define a quantum fiel¢onsider continuum states in the lower channel and bound
Ya, Uy, and ;. states in the upper channd, stands for “atomic” andM

This description of the system is a phenomenologicafor “molecular.” This state evolves according to the Schro
starting point. It would be rigorous if the statasb, andc dinger equatiorih(d|Q>/dt)=I:||Q>. Using the canonical
corresponded to well-defined atomic internal states, which i% - : 5 ot _ 3

. - tat lat (X)), = 6;; 0°(X— d

true only at large interatomic distances. Indeed, when two ommua |on_rea |on§[¢,(x) v ()1= 8 i (x=y) z?n.
atoms come close to each other, their internal states chang#i(X),#;(y)1=0, one finds a set of equations describing a
because their electronic clouds overlap. This means that, féf€neral two-channel coupling:

instanc"e, the ket Y244 (x) {b;(y)|0)e|is related toeltheT “mo- dd, B2(V2+V2)
lecular” ket 1N2(|x,y)+|y,x)) ®| $EL), where| 4l is the it =| = V) V()
molecular electronic ket depending on the distapcey|.
Bearing in mind this phenomenological aspect, we can
write the many-body Hamiltonian of the system in terms of FUaaX—Y) +2E, | Pp+ H (X Y) Py, (2
a, Py, and¢c:
2/pv2 2
. . thZ . i d(I)M _ f (VX+Vy)
A= S [ @ oo - o+ V0o +E 00 e T T Tem YOV
i=a,b,c 2m
+f fdgxdgy%(xwl(y)u xy) 1A 0 +Upe(X—Y) + Ep+Eg | By + Hin(X,y) .
Z oo 2
()
+ f f d3xd3y fpg(x) t}l(y)ch(X—y) de(Y) Pp(X) Usually, one can separate the motion of the center of mass
R=(x+y)/2 and only the relative coordinate=x—y is con-
R R :ﬂ (y)zAﬁ (X) sidered:
+ j f d*xd3y P00 Py Hind(X,y)——=—— ,
V2 doN [ VP e o
THe., ) gt | T T TYaal)+ 2B, | @AY
+FHE (N Dpy(r,t), (4
wherem is the mass of the atoms at,, E,,, E; are the
internal energies of isolated atortsee Fig. 1 V is the po- Cddy(r,t) h2v?2
tential trapping the atoms)a, (Up) is the interaction po- ' gi |7 Tm TN+ Ep T Ee | Pu(rit)
tential between atoms of the lowearppep channel, andH;;
is the matrix element coupling the two channgigich can FHin(r)®a(r,t). 5)

be time dependentNo specific approximation is made re-
garding these potentials, so that the Hamiltonian is built on
microscopic grounds. In this respect, our approach is very
close to that of Ref[23], the major difference being that we  In the more general case of a many-body state, the full
consider the two channels explicitly. Note that there are nglynamics is given by the equations of motion for the field
terms involving the potential®),, U,e, Upy, €tc.: since  Operators in the Heisenberg picture. These equations are ob-
the atoms andc are bound, we neglect their collisions with tained from the Heisenberg equatiortg(dO/dt)=[O,H],

other atoms. Moreover, three-body potentials, as well asising the canonical commutation relations. In the case of
spontaneous emissidin the case of photoassociatipmre  photoassociation with a continuous laser, we may actually
not taken into account in this Hamiltonian. rotate the field operators and use the rotating field approxi-

C. Dynamics of a many-atom system
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FIG. 1. Schematic representations of two coupled chanria@lsCoupling with a photoassociation laser of frequengf2s: the
asymptotic separation between the dressed potentials is given by a defunifg+E.—2E,—% w. (b) Feshbach resonance: a magnetic
field is adjusted to couple the two channels by hyperfine interaction. The potentials are separated asymptotically by aAdetning
+E.—2E,.

mation in order to remove the oscillatory time dependence obinding energyEy,,ng- The relative motion of the bound

Hint [24]. In either case, we find atoms is then described by the stationary wave funcgign
. 5 satisfying
dga(x) [ A2V}
" T T m TV By
(_ +ch(r))‘PM(r):_Ebound‘PM(r)- 8

+ f A3y Uaa(X=Y) $L(Y) a(y) | Pa(X)

- - - Here the zero of energy is set #,+E.. To achieve
3 T * c
+ \/Ef d%y Ya(Y)Hini (X Y) 60 Pe(y), population of this single level, one must remain in the per-
©6) yrbative regime, where the typical intensity of the coupling

Hi.: remains smaller than the energy splittings between the
molecular levels. This condition has been discussed in detalil
by Vatasescwet al.[24], in the case of photoassociation in a
trap of cold alkali-metal atoms, considering various cw laser
intensities and detunings and comparing the Rabi period to
- 3 the classical vibrational period of the molecular level.
+ + —-y)+
V) + Upex=y) + 74 Jiho(X) dre(y) When ¢, is indeed the only bound level affecting the
() Bay) coupling, we can approximate the operatgf(x) .(y)
+Hint(XyY)a—ay, (7) by its projection gyl (x+Y)/2]em(x—Yy) onto this bound
\/E level, where the “time-dependent coefficient’iApM(R)
=[d% o} (r) [ R+ (r/2)]¢[R—(r/2)] defines a molecu-
where underlining has been used as a notational convenient field. The description of the system can then be reduced
for symmetrizing certain quantities; for instan@¥x,y) ac- o two fieldsy, and ¢, , satisfying
tually meanss[A(x,y) + A(y,x)]. In Eq. (7), we introduced
the “detuning” A between the two asymptotic curvésee

h2(Ve+V5)
- V()

" dirp(0) Prely)
! .

Fig. 1) and we neglected many-body terms corresponding to diha(X) 52y2
collisions or coupling with atoms external to the pair consid-  j; 27 _| _ X+ V(X)
ered. Keeping these terms would be inconsistent with the dt 2m

fact that we neglected other potentials suchJag, U,..
+ [y Uaabe B day) |10
D. Coupling with a single bound state

Usually, the interaction is tuned to couple the atoms in the + \/Ef d3y W* (x,y) ¢ (y) dm(x+y)/2,
ground-state channel to a single stationary bound state in the
upper channel: a rovibrational level of the potentig|. with 9
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5 22 This method can be rigorously justified by considering the
dify(X) heV5 - : e
f FTa +2V(X) + 48| g (X) effect of two-body correlationg21,28. An intuitive way of
t m taking these correlations into account is to use pair wave
r r functions. Just as most atoms are individually described by
+f d3r Wl x+ E’X_§> the same macroscopic wave functigy(x), most pairs of
atoms are described by the same macroscopic pair wave
R r r function ®4(X,y), which turns out to be simply the anoma-
a| X5 | Y| X—5 lous average 1/2(#.(X)#a(y)) [see Eq.(A18) in the Ap-

, (10 pendix. At large distances, the atoms are decorrelated, and
V2 the pair wave function is just a product of two macroscopic

-bod functiong ir,(x) ~({ y :
whereW(x,y) = Hin(X,y) o1 (X—Y) is the interaction kernel ggeweom};ywvi;/ifebl;;i |;)n§ f/a\(/)%)‘ll’ﬁ(?((g))zl’o((;ﬂ)i:z(zg lff)"(\yv)lgh
and 286=hA—Eynq iS the energy detuning between the iMx_y| = Poo(X,y)=1. The functionpg, may be seen as a

two levels (see Fig. 1, considering the dressed picture for reduced pair wave function describing the correlations at

photoassociation. short distancegsee Fig. 3. To some approximationgsee
assumptiongH1) and (H2) in the Appendiy} justified by the
Ill. EFFECTIVE MEAN-FIELD THEORY low density and large extent of the condensatg, simply
satisfies the scattering equation for two atoms in free space.
Written with the center of mass and relative coordind®es
Let us first consider a purely atomic systéus ignoring  andr, this equation reads
the terms involving any fieldj, or ). The equation of

A. Purely atomic system

motion (6) now simply reads d R,r,t #? #?
© Py i QRO [ AT C A a0 e Rir ).
47 (%) 2y2 dt 4m 'R m " RS
. a _|_ X (13
in T om +V(X)

At equilibrium, it becomes a stationary stag€) satisfying

h? h?
EQD(E)(RJ):( - mvg— EVE+ Uaa(r)) eB(R,r).
(14

+ f A3y UaaX=Y) L(Y) taly) | #a(X).
(12)

In the condensed phase, one usually assumes a nonzero
expectation Va|ue\[f0(x)z<lz-a(x)> for the field operator When the condensate pairs are in their ground state

J.(x), corresponding to a macroscopically occupied state(Wh,iCh is pre;umably the case when the condensatfa i§ not
(see the Appendix What is sometimes referred to as “naive excited, ¢qq is therefore the lowest energy state satisfying

. . . . . i (E) = i i i
mean field” consists in replacing the field operators by theirMr|-=¢ (I?d)r)l_lj .e., the stationary scattering state at
averages directly in the equation of moti¢hl), thus ne- Z€r0 energyy"." This state can be expressed formally by

glecting the quantum fluctuatiors = ¢r,— ¥ . This leads to

a nonlinear Schidinger equation with a coupling constant of eO(r)=1— f d®R'd%’ U (r')G(R,r,R",r")

the form fd3x U,,(x). This coupling constant is well de- -

fined for weak-coupling interactiongfor instance, inter-

atomic potentials satisfying the Born approximati§d®x =1—f d3r’ Uga(rHa(r,r’), (15

Uaa(X)~4mah?/m, where a is the swave scattering

length. It is not the case however for the interactions con- ) , ) ) )

sidered here. The interatomic potential exhibits a strong rewhere G is Green's function of the operator (£/4m)Vg

pulsive hard core which leads to a divergent coupling con— (A%/m)V{+U,,(r) andg denotes Green's function of the

stant. operator — (A2/m)V2+U,,(r). It is known from collision
The usual remedy is to replace the real interaction by amheory[29] that this state is related to tewave scattering

effective one[25], generally a contact potentidl,(r) lengtha:

=(4mah?/m)s3(r) (which does satisfy the Born approxi-

mation having the same scattering lenggh The resulting

equation, known as the Gross-Pitaevskguation[26,27), f d3r U,a(r)e@(r)=

forms an “effective mean-field” theory, in which only the

large-scale effects of the interaction are retained:

4rhila

9. (16)

1The zero energy is a consequence of the assum(iidnthat the

202 9 y qu u

-, dWo(x) _| _ RV 4mah 2 condensate wave function is uniform over the scalepfind has

i% = +V(X)+ | Wo(X)|?]|Wo(X). ) . T .

dt 2m m therefore no momentum. In reality, the typical energies involved in
(12 current traps ¢ nK) lie in the threshold law regime.
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When taking the expectation value of the equation gy (x) h2v2
of motion (11), one finds the term((y) ¢ra(y) #a(X)), i — =~ 2m +V(X))\I’0(X)
which can be approximated by ¢(y) ) ¥a(y) #a(X))
=|¥o(y) |2 o(X) eoo(X,Y) When neglecting the collisions of n 2] o3 (U Y— W (V) D (X
noncondensed atoms with condensed atopas€1) [21]. V2 dy —@(—WZ P (Y Poixy)
If we assume again that the averaged fidlglis nearly uni-
form on the scale ofpyg, the interaction term becomes at +H* (X,y)\Pg(y)q)M(X,y)), (21)
equilibrium: —nE=ss
3 — V)o@ (x— 2 dd (X, h2(V2+V?2
U Ay UaaX=y) P (x=y) || o (X)[“Fo(X) i mxy) [ AT(V5 y)+V(X)+V(y)+UbC(x—y)
dt 2m
4mh?a )
= |Wo(x)[* W o(X), (17)
m +AA | Py(X,Y) + Hind(X,Y) Poo(Xy). (22

where we used Eq(16). Thus we retrieve the mean-field
term in the Gross-Pitavskequation(12): it is in fact regu-  The dynamics of¥;, @y, andd; is given in the Appen-
larized by the stationary two-body correlations described bylix. Note that Eqs(A34) and (22) giving the evolution of
(@, ® o, andd,, are analogous to Eq&2) and(3). They describe
indeed the coupled dynamics for the pairs of condensed at-
B. Atomic and molecular system oms, giving rise to Rabi oscillations on a time scale

We now apply these ideas to the atomic-molecular sys-
tem, with the aim of deriving an effective mean-field theory. h
A first approach[4,18,30 would be to start from the two- Tpaifszg__'
field description(9),(10) and replace the potentials by effec- nt
tive (or renormalizel interactions:U ,,(r)=g46%(r) with g
=47h%a/m andW(r)=ws3(r), with

(23

To simplify these general equations, we make use of the
reduced pair wave functiongyg and ¢g; defined by Egs.
(Al11) and(A12), with the assumptions (§l and (H). Fur-
w= \/§<¢M|Hint|¢(o)>5\/§f a3 @ (N Hind(r) e O(r). thermore, we resort to a perturbative approach and assume
(18 that the atoms are coupled to a single stationary bound state
om , satisfying Eq.(8). In this case®,(x,y) reduces to its
Replacing the quantum fields by their averages,) projection W [ (X+Y)/2]eu(X—Yy) onto ¢y . The “time-
=T, and (y)="\, we obtain a set of coupled Gross- dependent coefficient¥, is the center-of-mass wave func-
Pitaevski equations which has been extensively studiedion for the molecules in this bound state.

[4,8,18,30-32 These assumptions lead to a closed set of equations:
d¥o(x) [ A%V ) dw r2v2
—_| — . 0
dt - 2m +V(X)+g|q}o(X)| \IIO(X) Iﬁ_dt = ——2m +V+goo|qf0|2+2 290i|‘I’i|2)\P0
1#0
+W*‘I’3(X)"PM(X), (19) +g/-’l\cA\I,M\I,6c , (24)
AW (x h2v2 1
i )=(— 4 2V(X) + 18| W y(x) + 5 WEE(X). _dv, h2v2 )
dt 4m 2 ih—=| — +V+2g ||‘P | \I,iv (25)
(20) dt 2m 0 0
Let us now follow the approach of Ref21]. We now dw,, /2y2 1
consider the following one-body and two-body fields:the if T =( ~am +2V+haS| Ty + EgM\P?), (26)
atomic condensate modg,, (ii) the atomic noncondensed
modes V;, (iii) the molecular condensed mod®, , i
=(¢pibc) (we will neglect noncondensed molecular moges i deooRr) [ A°VE A%V U] eofR)
(iv) the pair wave functiorb, for two condensed atoms, dt B 4m m | —aal/]PoolT
and(v) the pair wave functiob; for a condensed atom and .
a noncondensed atom in the motfe (we will neglect the +V2H (R ow(r)
pairs of noncondensed atoms Wy (R)
We first take the expectation value of Ed6) and (7), % M , (27)
expressing the atomic correlations by means of pair wave v R+ r v | R— r
functions: 0 2)°° 2
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dQDO'(Rar) szVzR ﬁ2V2 ’ ’ ropt
Idt =| — am — mr-l—Uaa(I’) (,DOi(R,r), ()DOO(er):@(O)(r)_ d3R d3r G(R s ler)
28
29 XV2HR (R 1) om(r')
where the one-body modes are coupled to the two-body X \P,'V'(R ) .
modes through the coupling factors: W R+ r ‘l’o( R/ r_)
2 2
~O(r —fd?’r’ rr
Goo0)= [ &y Uns-yoooxy), (29 e 9trn
Yw(R)
X 2HE (1 r' ,
V2HE (1) em( PR
90i(X)=J dy UaaX=Y) @0i(X,Y), (30)

eai(R,1)=¢(r).

We can then eliminatey, and ¢ in Eqgs.(24), (25), and
gu(R)= \/Ef d% o (NHi(R.Ne(R,F), (31)  (26), and using propertie€l5),(16) of @, we find:

7 WWo_ i 2+v+ W2+ D 2|w 2] |w
\/— | dt - 2m g | 0| < | il 0
gu(X)= 2f d% el (X=YIHin(X.y). (32
. . . FWABE,, (34)
Note that the noncondensed modesas well as the pairs L dY h2v? 2
X : S | p Iﬁd—: —2—+V+2g|qfo| \I’i, (35)
¢oi involving a noncondensed atom are not directly affected t m
by the molecular condensate. Thus, our equations cannot
present any “rogue photodissociatior30,33, enabling dwy, h2v? 1,
molecules to dissociate towards noncondensed modes. The I dt 7 am +2V+Hi 5+ Eserr \I'MJFEW\I' '
rogue photodissociation may be found either in the fluctua- (36)

tions of the molecular field or in the paigs; involving two

noncondensed atoms, which we have both neglected. Howyhere Ese|f:f[|<<Pw||Him|¢(E)>|2/Ep(E)dE] is the self-
ever, rogue photodissociation has been treated thus far witlenergy of the molecules: it is an energy shift caused by the
out the molecular fluctuations, and using the anomalous avinteraction with the open channgf,34—-34. We may in-
erage(a,a_,) to describe noncondensed pairs. In our ownclude this energy shift in the detuningy Note that Eq(35)
approach, this average is rather related to the condensed paifsconservative, so that the noncondensed modes may be
at short distancefsee Eq.(A18)]. We plan to clarify this omitted if they are |r_1|t|ally negllglble. Finally, we retrieve
point in a future work. In the rest of this paper, we will he coupled Gross-Pitaevsléquationg(19),(20).

assume that we are in situations where the rogue photodis- ON€ ¢an see in Eq$34) and (36) that the typical time
sociation does not play an important role. Tcong for the Rabi oscillations betweeh, andW¥, is given

In order to decouple the one-body dynamics from thebY 7i/(wyp), wherep is the typical density of the system
two-body dynamics, the pair wave functions must be quasisihile the interactiorw has been defined in E¢L8). Condi-
tationary and follow adiabatically the one-body wave func-tion (33) is thus equivalent to
tions. In other words, the characteristic time of evolution for

the pairsT s [see Eq(23)] must be very short compared V2p( ol 0@)<1. (37)
with the characteristic time of evolution.,,q for the con-
densates: Note that this condition does not depend on the intensity

of the couplingH;,;, but keep in mind that it has been de-
rived in a perturbative way. More generally, mean-field equa-
<1 (33) tions such as Eq€$34) and(36) should be valid as long as
Teond the time scaleT ,,;,s, associated with the two-body dynam-
ics, is short compared with the time scdlg,,,q of the one-
body dynamics. In other cases, one might need to use the
In that case, we can solve Eq®7) and (28) formally = more general equatiori21) and(22) and treat the two-body
using Green’s functions introduced in E35): dynamics explicitly.

Tpairs
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TABLE |. Some typical time scales for the photoassociation of a condensate.

IntenSity Ebound (Cm_ l) Tpairs (S) Tcond (S) Tspont (5) \/Z< ‘Pm| ‘P(O)>

2Na[7] 100 Wicnt 49 8.4x1071°  1.1x10°® 8.4x10°° 7.4x10°4
1 kwicn? 49 261071  35x1077
1 kw/cn? 4 2.6<1071°  35x10°7 4.5x1073
%Rb[8] ~10"1 48x10°8%  1.4x10°8 ~3.104
C. Comparison with other models Epouna~4 cm ' and an outer turning point located at

These genera| equations can be Compared with the mode1‘585 a.u.), would increase the Franck-Condon factor by less
developed by Holland and co-workessal.[19] and Kchler ~ than one order of magnitude. Similar conclusions on the rela-
et al. [23]. In the Hartree-Fock-Bogoliubov model of Hol- tive time scales can be drawn for a Rb condensate, in the
land and co-workers, anomalous and normal correlatioffonditions described in Reff8]. We then expect that in most
functions are used to go beyond the coupled Gross-Pitaevskiealistic cases the conditiomis<Tcong Will indeed be
equations: when these correlation functions are negligibleverified.
their model also leads to the coupled Gross-Pitagiia- There is another time scale, however, since the molecular
tions. We therefore believe that the anomalous correlation i§tate is not stable and decays by spontaneous emission. We
in fact related at large distances to the fluctuations around thean treat this spontaneous emission phenomenologically
Stationary perturbed pair wave functidmoo_ It is not true, within the framework of our equations by addlng a loss term
however, at short distances, since their model is built with—i%(¥/2)¥y in the equation of the molecular fie(@6). To
contact interactions. This is why a renormalization procedur@implify, we will consider a homogeneous systew0).
is needed to recover the physics from short distances. For sufficiently high intensitiesH;,>%y, i.e., Tpairs

In the model of Kdiler et al,, the system is described by a <Tgp,,, and the pairs have the time to oscillate between the
single nonlinear non-Markovian Sclifioger equation which two channels before spontaneous emission takes place.
is not obviously related to the coupled Gross-PitagvskiEliminating the pair dynamics, we are left with a set of
equations. However, the cumulant approach at the basis @bupled Gross-Pitaevskequations:
their model should be mathematically very close to our pair
wave function approach. The main differences are that we
factorize the correlations and consider the two channels ex- if
plicitly: what they noteW (x) W (y) + ®(x,y) is a condensed
pair wave function with two implicit components corre-
sponding to the pair wave functionBy, and ®,. As our _dwy, _ 1
model has an explicit connection to the coupled Gross- 'hT:h(é_'V/Z)‘PM”LEW\I’g' (39
Pitaevski equations, we believe it is also the case for the
model of Kdnler. Our model therefore clarifies the relation 0.2
between the existing models and gives a simple image ir
terms of one-body and two-body wave functions.

WO 2 *Ap*
T:g|\lfo| \P0+W \PO‘PMY (38)

F,(r)
IV. APPLICATION TO PHOTOASSOCIATION IN A BEC MM\ /\ 38,,+3P,,

0.1 | WUV :
AT’

toassociation, conditiof37) is usually achieved in the cur- /\

rent experiments where the condensate is always diluteg

A\

0

enough p~10°m~3), and the Franck-Condon factor V\/ 3S,, + 38,
{emle@) is sufficiently low (~10 **m®?). We give in X'z *

Condition (37) shows that the one-body mean-field ap-
proach holds for sufficiently low densities, contrary to what
has been suggested in RE3]. Actually, in the case of pho-

rgy (in hartree)

Table | typical values. We first have considered the photoas: o

sociation experiment in a Na condensate reported in[Rgf. F,(r)

where the leveb =135 of Ng 0, (3S+3P,,) (correspond- ~0.4 . . s

iNg t0 Epoung~49 cm 1) is populated for various laser in- 0 20 40 60 80

tensities. The computed radial wave functions are repre- Interatomic distance r (in Bohr radii

sented in Fig. 2: although the Franck-Condon factor is FiG. 2. Representation of the radial wave functions in the pho-
favorable for photoassociation, we find for a density of 4toassociation experiment of R¢F]. The function in the open chan-
X107 m~2 aratio Tpairs/ Teong<10 3. Itis not easy to in-  nel and the bound wave function were computed using, respec-
crease the transition moment by three orders of magnitudeively, the Numerov-Cooley methofi38] and the Fourier grid
Photoassociating towards molecular levels closer to the disnethod[39]. Note that in the text the total wave functiopgy(r)
sociation limit, for instancev =163 (corresponding to =For)/ 4zt and ey (r)=Fy(r)/ 4=t are considered.
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Spontaneous emission is then usually faster than the dynamhere
ics of the condensate# ¢>w+/p), so that we can eliminate

the molecular field adiabatically: I @0ol (1) =Uaa(r) eodr) —Hin (N em(r)
W X[{@m|Hind eo) /7 (6—i7/2)].
Vy=—s=-V3. (40) L . : :
2h(6—ivyl2) The situation is the following: the formation of excited mol-

. . . _ecules creates a hole at short distances in the pair distribution
We obtain a simple rate equation for the condensate density,,, through the imaginary part of. This hole is refilled

| ol with waves coming from larger distances, while the whole
) condensate is being depleted. Although this picture is quite

d[Wwol* K[ |* (47  different from the higher-intensity regime, we believe it leads
dt o essentially to the same rate of depletion, as we do not expect

to see a new behavior emerging from lower intensities.
with a rateK =K/1+ (248/y)? and an on-resonance rate

9 V. CONCLUSION

411
%<¢M|Hint|ﬁp(0)>

=; (42) We have generalized the pair wave function approach,

introduced by Cherny for an atomic condensate, to a nonho-

This is exactly the rate one can derive from a perturbativanogeneous Bose system with two coupled channels, such as
treatment of the two-atom equatio@® and(5) [34], assum- & mixed atomic-molecular condensate. The treatment of pair
ing the presence of the condensate has only two effects: veprrelations is performed using the physical potentials both
low collision energies in the open channel and no need t the atomic and the molecular channel. We have shown that
symmetrized , since condensed atoms are in the same statdhe pair wave functions regularize the mean-field terms in the
This last effect reduces the rate by a factor of 2 relative to £9uations without requirement of any renormalization proce-
noncondensed ga80,37, and was accounted for in our dure. This has enabled us to derive the coupled Gross-
model through the proper symmetrization of the pair wavePitaevski equations on firm grounds and to assess their
functions[compare Eqs(A11) and (A12)]. Thus, a cautious 'ange of valld!ty by comparing characteristic times associ-
many-body treatment of the photoassociation in a BEC ever@téd to the pair dynamics and to the condensate dynamics.
tually yields the same prediction as two-atom theories. This We have shown that in the case of photoassociation with a
indicates that the physics of the problem lies essentially iffW laser, at intensities allowing a perturbative model, the
the pairs of atoms. This result has been confirmed by th&ross-Pitaevski description is usually verified and even
photoassociation experiment in a condensate of sodium atéads to the rates predicted simply from the photoassociation
oms reported by McKenziet al. [7]. The laser intensities Probability of two colliding atoms. Nevertheless, we believe
used in this experimertfrom ~0.1 to 1 kW cni2) are those that the two-body mean-field equations might be necessary
which we have considered here, Whefg,s<Tspon: (S€€ in other situations with a nontrivial time dependence, such as
Table ). They found that the condensate is indeed |Oca||yphotoassomat|on with chirped Iase_r pulses. Previous works
depleted according to E¢41), with a rateK, proportional to 19,2340 have already shown the importance of long-range
the intensity, such thaiK,/d1=3.5x10 s 1w~ 1cn?. correlations for Feshbach resonance induced by a time-
This is in agreement with the theoretical rate given by Eqdependent magnetic field. Future work will clarify the pos-
(42). Our own calculation, using numerical computations ofsible influence of short-range correlations in these time-
stationary wave functiong,, and ¢ [see Fig. 2, leads to dependent situations.
dKy/d1=3.3x10 s tW 1cn?, in agreement with the
calculation given in Ref[7]. ACKNOWLEDGMENTS

For smaller intensitiesH;, <%y, and the spontaneous  The authors would like to thank E. Tiesinga, M. Mackie,

emission is the fastest phenomenon: the formed molecules Kokkelmans, R. Kosloff, and P. Pellegrini for helpful dis-
decay almost instantly, so that we can eliminate them adiasssions.

batically. Settingd¥,,/dt=0 in Eq. (26) yields

Ko

APPENDIX: MODES AND PAIRWAVE FUNCTIONS
_ (omlHintd @00 P2

M= 2h(5—iy/2) (43) In this appendix, we generalize the ideas of Chdi2i
to a nonhomogeneous Bose gas. To simplify the notations,
So that we are left with the field operatoky, will be noted.
. d¥, 1. Definition of the pai functi
i% m Z(J d3rJ[q000](r))|\I’0|2q’o, (44) eriniton o € palr wave tunctions

In second quantization, the one-body and two-body den-

d 52 sity matrices of the system are defined by
iz 200 T oo S
1= (D=~ 1 Vo) + I ool (1), (45) PGV =B OB, (A1)
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1 . - N -
p2(xy.y' X)= (T 0B () Py ) i(X)).  (A2) P

y
As Hermitian matrices, they can be diagonalized in an \
orthonormal basis:

/]
]
[J

/]

&y,
0,
&

&,

y

N

_-—
-

I

-
L75

77

7

Lo

2o
<5
S

=
N 2

J ] l.'
aobed
LR

'..

<<
JAY
{
. '.'

p1<x,y>=2 g (X gi(y), (A3)

p2(XY,Y X ) =2 Mg (X Y) (X' y).  (Ad)

v

This means that there arg atoms in the one-body mode FIG. 3. Schematic representation of the macroscopic wave func-
(or wave function ¢; , and there aren, pairs of atoms in the tion for condensate pairs in a one-dimensional systér(x,y)
two-body mode(or pair wave function ¢, . All these wave = 1Y2¥o(x)¥o(Y) @odx.y). The reduced pair wave functiopoo
functions are normalized to unity, but we can alternatively9ives the correlation at short distanee-y| created by the scatter-
define the function®; = ;% and® ,=Jm, ¢, , which are "d ©f the two atoms.
normalized to the number of atoms or pairs of atoms. Note
that in a state where the total number of atoms, iwe have These correlationgh; are expected to vanish for inter-
=;nj=n and=,m,=n(n—1)/2. This may be seen as a con- atomic distances larger than, say, the rangef the interac-
sequence of the relations: tion. The pair wave functions are thus asymptotically decor-

related; this follows from the principle of correlation
e Aty A weakening 21]. If the interaction supports bound states, one
f (' (X) (X)) =n, (A5)  might also expect bound-pair wave functiogis, vanishing
entirely for interatomic distances larger thian
R R . R R As the functionsg]; will scale like the functionsy; and
f Ay )Py d(y) (X)) = (n= D) (T (X) (X)) ¢, it can be useful to express the correlations with dimen-

(AB) sionless functions, which we refer to as “reduced pair wave
functions™
We can use the one-body modgs to expand the field

operator:js(x) =;a;1;(x). Using Egs.(Al) and (A3), we &ii (X,Y) = i (X) di(Y) @i (X,Y), (A11)
find the relation(a/a;)=n;5;; .

When there is no interaction between the atoms, the atoms ) ;(Y) + () i (y)
are decorrelated and the pair wave functieghsare simply bij(X,y)

\/— ®ij (%Y, (A12)
symmetrized products of one-body wave functions: 2
i (X,Y) =i (X) ¢i(y), (A7) with ¢j;(x,y)—1 when|x—y|>rq.
LX) (Y)+ () i(ly) 2. Pair wave functions in a condensate with (0l) symmetry
¢ij(xay): : ; \/E J : (|<J) (A8) breaking

When condensation occurs, most of the atoms are in the
same quantum state, s&y. This meansy>>;n;. Accord-
ingly, most of the pairs are in the same quantum staig

¢;; is the wave function for two atoms in the same mafle
and ¢;; is the wave function for two atoms in the modgs

and ¢;. From counting arguments, we hawve;=n;(n; corresponding to pairs of condensed atoms. A way of treating
—1)/2 pairs in the mode; andm;;=n;n; pairs in the mode  this situation, related to the Bogoliubov ansatz, is to assume

¢ij . One can check that this pair distribution does indeech breaking of the ) symmetry[41]: the system is then in
satisfy relation(A6).

a coherent statf)) satisfyingag| Q)= a|Q). From the re-
In the presence of interactions, one might expect extray; AtA N\ — ; _ AN_( (i
) e ) ion {(a;/a;)=n;5;;, we obtain a¢g=+ny and (a;)=0 (i
terms needed to describe the correlations at short interatomig (aa;) =n;9; 0 0 (@) =0 (

dist 4 I Fig. 0), so that the field operator has a nonzero expectation
islancesx—y| tsee Fig- value ()=W,. The deviations from the meap=¥,— i
) _ _ / are the quantum fluctuations. This implies that the number of
$i Y)Y+ i (xY), (A9) atoms now fluctuates and relatioA6) derived for a fixed-
number state is no more valid. However, this prescription is
bii(Xy)o i) (V) + (0 %i(y) + (%) very useful to derive expressions for the one-body and two-
A 2 A body modes in terms of the quantum fluctuations. Indeed, if

(A10)  we expand the two-body density matrix in termséof
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(808" (y) By B(x ) =(8T(x) 8T (y) ) By ) B(x"))
+(BT(x)0(x))(O(y) B(y"))
+(OT(x) B(y"))(O(y) B(x")).

1
2%y, X) = S{W5 )W (V) Wo(y' ) Wo(x')

+WE)VE(V(OY) (X))  (AL3)

() B(y))* Wo(y ) Wo(x') (A20)
+WE)W (X )0 (y) B(y")) This yields
+WE () Wo(y )BT (V) B(X))  (AL4) Wo(x)Wo(y) aa

i e ‘I’oo(X.Y):%ﬂ#OE#O %wi(ij(y),
FWE ()W) BT (0 B(y")) : (A21)
+WE (V) Poly )07 8(x"))

X e Dy(xy)= ‘I’O(X)\I’i(Y)““I’i(X)\I’o(Y), (A22)
+WE)(O'(y) By") B(X)) 2
FUEEBY)B(X))  (A15) WL (0W(y)

o D (xy)=——=, (A23)
+Wo(y (B () BT(y) B(X')) V2
+Wo(x")(BT(x) 8 (y) B(y")) O O

2 A Dy ()= \P.(x)\lf,(y)wmx)\lf.(y), (824
+(0'x)0%(y) 0y B(X"))}.  (A16) V2
We see that it can be factorized as follows: ®,(x,y)=0. (A25)
Pz(X:y,Y',X'):iESj <Di’](x,y)<l>ij(X’,y’) As expected in this case, only the condensed pairs are

correlated through the anomalous correlati(f?(x)b(y))
=i ,0j40(&a;)%i(X) ¥;(y). This means the condensed at-
+Z O (x,y)P,(x",y"), (AL7) oms interact only with each other, while the noncondensed
v atoms are treated as an ideal gas. However, this is an ap-
proximation, since all the atoms feel the interaction. As we
shall see, we actually need the correlations in order to regu-
larize mean-field terms appearing in the equations of motion

where

_@OHY) _Wo(x)Wo(y)

DX, for the one and two-body modes.
<é.é.> 3. Evolution of one-body modes
+ > %tm(x) #i(y),  (Al8) The evolution of the condensate mode is simply obtained
17070 V2 by taking the average of the equation of motion for field
operator (6). Doing this, we encounter the average
Di(X,y) = Fo()Wi(y) + Wi Wo(y) (T (X) #(y) #(2)), which can be expanded and then factor-
o \/5 ized in terms of pair wave functions:
5 (alaay) (IO YY) PH(2)) =W 5 ) B(Y) 8(2)) + W o(Y)(6(X) B(2))
+ ——= () (y) (A19) SO e a
i#0k20 \[patay +Wo(2)(6T(0) 8(y)) +(67() 8(y) B(2))
(A26)

are, respectively, the pair wave function for two condensed

atoms, and the pair wave function for a condensed atom

and a noncondensed atom in the mo#le. There is no =\/§z T (X)DPyi(y,2). (A27)
simple expression for either the pair wave functidn; !
of two noncondensed atoms or the bound-pair wave We also have to express the  average
functions ®,, since these are contained in the term ~ . N - i P o 9
(6T(x)67(y)6(y")B(x")). If we assume that there is no in- {#a(y)Hind(X,Y) ¥1,(X) the(y)) which can be simplified to

teraction between the noncondensed atomisch is the case Vo (Y)Hin (X,y) Pu(x,y) if we assume that the atoms of the
in the usual Hartree-Fock-Bogoliubov approgctve may  upper channel are paired in a purely coherent fiejg. The
use Wick’s theorem to expand this term: equation of motion for the condensed mode is then
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#2v?2
=| - X+V(x))‘1’o(x)+ ﬁf dsy(Ei ‘Ifi*(y)Uaa(x—x)%(x,y)+‘1’3(y)H*m(x,y)<I>M(x,y)>-

2m
(A28)

d¥o(x)
dt

We can then derive the evolution of the one-body density matrix for the noncondensed peil(omsz(z:/ﬁ(x) f/f(y))
—WE(X)¥o(y)=Zi.0¥] (X)¥i(y). Using Eqs(6), (A17), (21), and neglecting the pair wave functiods; for two noncon-
densed atoms, we get

_dpi(x,y) 2y2
'ﬁ—pldt = :<¢ﬁ< X)if W)> V5 (x)it dO() {xw}*:(‘ 5+ VI >)pl<xy>+2fdaziu Ay=2)
Ve ()P (x)
X| ®'E(x,2) Do 2y) + >, (O— +DYi(X, 2))<Do.(zy))+2f d3z ®'5((x,2H} (Y, 2)Pu(ZY)
1#0 \/E
Xyl (A29)

In the expression above, the correlation tedn'{x,z) vanish for|y—x|>r,. So whenx andy are separated by macro-
scopic distances, we have

#2v2 W (2)WF(x)
- Zmy+v<y>>p1<x,y>+2 f &’z Uaaly=2) 2, °Td>0i<z,y>—{XHy}*, (A30)

dpi(x,y)
h at

which can be written as

.(y)

ﬁ2V2
2 W (x )h (— +V(y)>‘lf(y)+fj A%z Uaa(y=2)VE(2)Dpi(2y) | — {x y}*.

(A31)

P~ WH(X)
1#0

It is clear from this expression that the evolution of thecondensed atom or with any noncondensed atoms, and it can
noncondensed mod¥; is given by also associate with another condensed atom to form a mol-
- ecule. Similarly, every noncondensed atom evolving in the
hoVy Ry N trap can collide with any condensed atéwe neglected the
T 2m (%) | Wi(x) collisions with other noncondensed atonisote that, within
the approximation of a purely coherent molecular field, the

3 _ * A noncondensed modes are not directly affected by the forma-
+ ﬁf d°y Uaa(x=y)Wo () Poi(y,X) tion of molecules.

(A32)

dWi(x)
dt

as long as its wavelength is greater thign The interpreta- 4. Bvolution of the two-body modes

tion of Egs.(A28) and(A32) is straightforward. Every con- The equation of motion for the pair wave function of con-
densed atom evolving in the trap can collide with anotherdensed atoms follows from EqA18) and(6):

dd g NN o
at ')_E PR g (¥) + x>y} (A33)
2(V2
- 2m +V<X>+V<V>+M Doglx,Y) + HE(xY) P (x.y)
f d°2(Uaa(z=Y) 02(2,2,X,Y) + p1(ZX)Hi (¥, 2) Py (Y, 2) + {X=y}), (A34)

with o5(z,2,x,y) = 1\2(41(2) #(2) #(x) (y) ). Using Eq.(A28), one can then deduce the equation of motion for the reduced
pair wave functionpgg:
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dego(X,Y) 2 h?
ﬁ$= —ﬁ(V§+V§)+Uaa(x—y)—E(VIn\I’O(x)~VX+VIn\lfo(y)-Vy)—Ff 4%z (Uaa(z=Y)F(X,y,2)
+G(X,Y,2) V2Hini(X,2) D (X, 2) +{x=>Y}) [ @0o(X,Y) + V2HE (X )M (A35)
’y! int\/y [\ ANAY] Yy ®o Y int Y \PO(X)\PO(y),
|
with (A27). Differentiating this expression and using assumptions
(H,) and (H,), we find for the reduced pair wave function
Poi -
(WY@ y) (B2 y))
F(xy,2)= — - =
() P(y)) (¥(y))  degi(x.y) h?
ih—g = —ﬁ(vi‘FVi)‘FUaa(X—Y))QDOi(X,y)-
and (A37)
R ~ R Within our approximations, a pair involving a noncondensed
W uy) (Y'(2) atom is not directly affected by the coupling between the
G(xy,2)= ) B (F00) channels. This may indicate that one actually needs the quan-

tum fluctuations of the molecular field for these modes.

These many-body terms are caused by the interaction with éJnder e;ssurr]nption éﬁ d we an .simplify the EqsiA28)
other atoms external to the pair considered. At sufficiently2nd (A32) for the one-body modes:
low densities, we can make the following two basic assump-

tions about the reduced pair wave function. dw 52y 2

(H1) Its extent~ro is much smaller than the typical jz—°— — —— V4o W2+ D 290i|\pi|2)q/0
length scale of the condensate. dt 2m 70

(H2) It is not much influenced by remaining many-body LGy, (A38)

terms such ag and G. The many-body effects on the pair
dynamics are thus only caused by the mean fields
through relationgAl11) and (A12).

2v2
Within these assumptions, EGA35) reduces to iﬁ%=<— 2:] +V+ 290i|‘1'o|2)‘1’i' (A39)
deodxy) [ e
gt = " am (Vi V) + Uaadx=y) | eod.Y)
+BHE () o)) (A36) GoolX) = f A’y UgaX=Y)pooxy),  (A40)
MO () Wo(y) |

The pair wave functionb; for a condensed atom and a
noncondensed atom in the modeé is given by gOi(X):f A3y U .(x—Y) 001 (X,Y), (A41)
N2 d%2 W(2)(J"(2) #(X) #(y)), following from Eq. -

(=12 f By H () Pu(xy).  (Ad2)

These factors are proportional to scattering amplitudes.
Note that the amplitudes are two times larger for pairs of
condensed and noncondensed atoms; this comes from the
\ ; \ g fact that the atoms are in different states, so that symmetri-
(a) \ (b) K zation (A10) induces a factor of 2 relative to a pair of con-
densed atoms. As a consequence, the effective potentials felt
FIG. 4. Schematic representation of the effective potentials fel0y the condensed atoms and the noncondensed atoms are
by (a) the condensed atom#;) the noncondensed atonf®r the different. Figure 4 giVES a schematic representation of these
first noncondensed modesin the case of a positive scattering potentials at zero temperature equilibrium, whegg=go;
length. =g=4mh?a/m, with a positive scattering length
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