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Evolution of the macroscopically entangled states in optical lattices
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We consider dynamics of boson condensates in finite optical lattices under a slow external perturbation
which brings the system to the unstable equilibrium. It is shown that quantum fluctuations drive the condensate
into the maximally entangled state. We argue that the truncated Wigner approximation being a natural gener-
alization of the Gross-Pitaevskii classical equations of motion is adequate to correctly describe the time
evolution including both collapse and revival of the condensate.
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[. INTRODUCTION and periodic boundary conditionsHowever, if the interac-
tion increases and becomes larger than a critical value, this
Recent advances in experimental realization of Boseequilibrium becomes unstable and the bosons spontaneously
Einstein condensatg®ECS in optical lattices[1-3] make form a “dipole” state[9,12—14 in which most of them oc-
this field particularly interesting for theoretical analysis. Onecupy one of the two wells. Upon accounting for quantum
of the most striking features about these condensates is thkictuations in a system with a finite number of bosons, the
possibility to observe directly effects of quantum fluctuationsstate obtained is a superposition of the two dipole states so
at zero temperature. For example, as was predicted theorethat the inversion symmetry is preserved. Clearly in the case
cally [4] and shown experimentalf2], the zero- point mo- of infinite number of wells, the translational symmetry is
tion can drive the system from the superfluid to the Mottalways broken. For example, in RgL5] a similar instability
insulating state. The other direct manifestation of quantunbut for the case of a Mott insulator in a strong electric field
effects was reported in Rdf3], where it has been shown that was shown to drive the system into a dipole state.
bosons can live in the superposition of number states even in Related to this instability is a very interesting possibility
the absence of tunneling. On the other hand, in the superfluidf forming a “Schralinger cat”(macroscopic quantum inter-
regime the quantum fluctuations are suppressed and eithfgrence state[16]. If the interaction slowly increases in the
classical Gross-PitaevskiGP) or Bogoliubov’s approach is 7 state, then as we just mentioned, at certain point the sys-
often adequate for the description of both static and dynamieem becomes unstable. Classically the bosons will remain in
properties of the condensatésee, e.g., Refd5,6]). How-  this unstable state forever unless there is some noise present
ever, there is an interesting possibility, wherein the system igither dynamical or in the initial conditions. As we will show
superfluid but neither of these approaches is good. Suppoglow such a noise will drive all the bosons into one spon-
that the initially stable condensate is driven to the regime otaneously chosen well. However, apart from classical fluc-
instability. This can be achieved either by applying a certairtuations, which are always there but relatively weak in the
phase shift to the condensate with repulsive interactionsondensates, there is also a quantum zero-point motion,
[7-9] or by switching the sign of the interaction to the nega-which comes from the uncertainty relation between the num-
tive value using Feshbach resonaift®,11. The main dif-  ber of bosons and their phase, so that the state where both are
ficulty with standard approaches arises because near the idefined is simply impossible. This quantum noise will also
stability all the fluctuations including quantum exponentially cause the classical trajectories to move apart from the un-
grow and cannot be treated as a small perturbation. To bstable equilibrium. However, as we mentioned above, the
more specific, suppose that for tirtre 0 the periodic system quantum fluctuations do not break translational invariance so
of condensates in a lattice was in a superfluid ground statehe resulting state must be macroscopically entangled. Let us
i.e., the interaction was relatively weak. Then a phase imgive a simple analogy with a ball laying on the top of the
print, i.e., a certain phase difference between the adjacetiill. Without fluctuations it will remain there forever. How-
wells, was imposed. Experimentally this can be achieved byever, because of the uncertainty principle this ball will move
e.g., applying a shorfcompared to a single tunneling time down along different classical paths. The quantum effects
pulse of an external field to the system. A case of specialill be manifested only in certain phase relations between
interest will be when there is a relativephase shift between these paths but will not affect the motion itself. This analogy
neighboring well§12]. For the two wells with equal number suggests that a good way to describe these situations is to
of bosons and relatively small interaction, this state is metatake into account fluctuations yielding some probability dis-
stable[7,12] (this is also the case for even number of wellstribution of the number and the phasetat0 and evolve the
fields according to the classical equations of motion. In the
literature this approach is known as the truncated Wigner
*Present address: Department of Physics, Harvard University, 1@pproximation(TWA) [17-22. In the Appendix we will
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condensates. We show how to go beyond TWA in a separate Il. SEMICLASSICAL EVOLUTION OF THE PHASE
publication[27]. MODULATED STATE
Let us also briefly mention a few other alternatives for

generalization of the classical dynamics of the BECs existin%eg:sriV\{ﬁ)ndzctﬁzssgo'gogeﬁg g(;n%zﬁr}sze]{telg :Eg gflfaescsti;\cjglmo-
in the literature. One of them relies on the idea of incorpo-; P P ’

rating the interaction between the superfluid component Oﬁigffgtm anJiE[)he ;dﬂ(iatrfnngsesIisnet%lélvei:zg:i\tlz th(?tteﬂ;;_das'
the condensate and excited bosons into GP equdi&®)24]. P P :

This approach was successfully applied to the description of n2
the condensate evaporation after a sudden change in the scat-yU ;;=2n2(1+x1— ng cosfy) + )\2n2< R né) =0,
tering length. Recently, there has been developed a different 2

class of methods based on the exact stochastic reformulation (4)

of the time evolution of interacting bosofis8,25,26. These . .
. o SN .. where the “coordinate’ represents the number difference
ideas look very promising, however, near the classical 'nStabetween the left and the right sitesjis the relative phase:;

bility, the convergence might be an issue. o vl L o
Throughout this paper we will explicitly consider a one- ne=n(t=0) and #,=06(t=0) are the initial conditions. In
ep_artlcular, ifng=0 and #y= 7 then

dimensional array of coupled condensates. However, the r

sults are quite general and should not depend on the dimen- \2n
sionality. o . Uesr=2n2%(1—N\)+ ) (5)
The standard Bose-Hubbard Hamiltonian we are going to 2

employ reads —_ .
Clearly the equilibrium withn=0 becomes unstable i

U >7\C= 1.
H=2, —J(afaj a8+ §afraj(a;raj -1). (1) In a more general case of multiple wells a similar analysis
! can be done. Because there are now many degrees of free-
dom, a simple representation of the motion using the effec-

Herea; is the canonical Bose annihilation operator on sites;ye potential becomes impossible. Instead let us return to the
of the optical lattice(wells) labeled by an integej; J is the  Gp version of Eq(3)

tunneling amplitude between neighboring lattice sites,
>0 is the repulsive interaction energy between bosons in the dy, )

same well. Another important parameter in the problem is iop =~ Wt i) FNOYT Y], (6)
the mean number of bosons per lattice $iteln this paper

we will consider .the case of Ia_rgﬁe, since It corresponas to where ¢ (t) is the semiclassical field corresponding to the
the nearly classical limit. A dimensionless measure of the J

strength of interactions between the bosons is the couplinixrzigt;:f neZSIliL::(iatl)(/)fdt:s e?]geg?]t?{g;' glirsrly?hftr;r;%&r]'
[12] '

lated state is a stationary solution for any interaction:

\ UJ_N @ Y1) =(~1)le®0, @
The unimportant global phage(t) is given by

Hereafter, except otherwise specified, we getl andJ

=1 so that all the energies are given in the unitsand

time has units ofi/J. As we noted in Ref[12], A~1 cor-

responds to the crossover from weakly to strongly interacting

superfluid and\~N? corresponds to the quantum phasesSimilarly to the two-well case, this state becomes unstable

transition to the Mott insulating phase. We will be interestedywhen the interaction exceeds a certain critical valng2):

only in the superfluid regime and assume thatN?. Note

@(t)=—2t—ft)\(7')d7. (8
0

that Hamiltonian(1) clearly has a time-reversal invariance. m
Besides, the equations of motion Ae=2 szm, 9
i%: ~[H.a] &) whereM is the number of the lattice sites in the array. The

dt origin of the instability becomes intuitively clear if we use a
dynamical symmetry mentioned abovei— —\, ;—

are invariant under the transformatidr> —t, \——X\, and (- 1)) z/;j* . So a strong repulsive interaction for thestate is
a;—(—1)'a;. So in the absence of energy relaxation, whichequivalent to a strong attractive interaction for the symmetric
would break the time-reversal symmetry,7a phase shift state. The instability for the attractive interaction is naturally
between neighboring sites is equivalent to the change of thexpected/10,11]. To get more quantitative results we con-
sign of the interaction from repulsive to attractive. This sider a time evolution of fluctuations around thestate:
equivalence is very useful for qualitative understanding of o

the resulting instabilities. P () =(=1DIe®O[L1+ &) +in (D], (10)

033609-2



EVOLUTION OF THE MACROSCOPICALLY ENTANGLED.. .. PHYSICAL REVIEW A68, 033609 (2003

with &; and 7; being small real deviations from the exaet 27, 12
solution found above. Substituting E@.0) into Eg. (6) and 4— —
linearizing the resulting equations we obtain 2 sirf (q/2) sir? (q/2)
N)==%
$q(N) 5 g
d¢;
ot Mt Nj—1— 27, (11

( 2\ ) 1/2
4_ -
sinz(q/2)

d’71 _
§J+l+§] 1™ 2§J+2)\( )‘f (12) -
/2
In the Fourier space this system is equivalent to a set of l+( 1- )
decoupled second-order differential equations o 2 sirt (q/2)
n
12
1-|11—-
d?&, q q ( )
2% q1eaifa 2 2 sirt (q/2)
e 163|rf"2§q+8)\(t)5|n22§q (13 B
1+( - )
and 2 sm2 (9/2)
—In : (18
1 a 1_( e )
2 si /2
g (19 ST (@/2)
4 sm2

Assuming that\ ;<2 sirfg/2 we see that in the limik— o
the imaginary part of the phasg, goes to

In the case of adiabatically changing interaction we can write

Im ¢pg() = t%wsinzg. (19

t) = &gqe' eV 15
£a()=oq (A9 So if § is large enough then the instability cannot develop in

time and the phase remains essentially real. In the opposite
and neglect by the second derivativedsf. Here &y is the limit the fluctuations become large and we have to study the
initial amplitude of fluctuations. Substituting E¢L5) into ~ Nonlinear regime of GP equations. More specifically the re-

Eqg. (12) we get lation
|€ogle™ ) =1 (20
deg . nzq i .
ar 4 si (16) defines the boundary between the regimes of small and large
fluctuations. Using the estimate &}, (see the following
section for the details
For simplicity we assume that the interaction increases in ¢ 1 21)
time as %4 N’
N we derive that the instability for a given momentum mode
At)= I 0&, (17 will evolve into the nonlinear regime given that
277 Sirfq/2
: L . - S0 (22)
where§ is the parameter of adiabaticity ang is the initial InN

interaction, which we assume to be small. This type ()

dependence, in fact, corresponds to the tunneling exponeffhis tells us that in order to get to the regime of strong
tially decreasing in tim@J(t) =Jye ™ %] with t—t/J(t). Itis  fluctuations, the interaction should indeed change slowly in
straightforward to solve Eq16) analytically and the resultis time (at least near the onset of instabi)ignd so justifies the
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adiabatic limit we used. The lowest-energy mode correbreaks down, however, depends on the details of the particu-
sponds to the momentup=27/M so the lower boundary lar procesgsee Sec. Il B.

for 6 becomes The whole idea of the TWA is that the expectation value
of any given operatof) at timet is equal to the correspond-
20w ing classical observabl@(t) evaluated according to stan-
51:m3'nzm- (23 dard GP equations and averaged over an ensemble of initial

conditions distributed according to the Wigner transform of
the initial density matriXsee Appendix for the details of the

h .
and the upper boundary is derivation:

2= 1NN’ (24) Q)= f dy dibo P(o, %) Qe (W(t), g* (1),1),

(25
If §<&; then all the modes have enough time to get into the ) i
nonlinear regime and, as we will show below, then classi\Wherep is defined as
cally all the bosons will go into a single well. On the con-
trary, if 6>6, then the fluctuations around GP state will p('/foM//S):f dnh d770< l//o—%
remain small. In the intermediate regime< 6< d, some of
the momentum modes will exhibit small fluctuations and
some will become strongly enhanced.

Po

7o
+ J—
l/IO 2 >
X e~ Ivol? = (1) nol*(112) (7 o= m095) (26

In the equation aboviel,* 770/2) denote coherent states. We

1. QUANTUM FLUCTUATIONS use the following measure:
A. Truncated Wigner approximation d Reyq dIm i
* I I
In this section we will examine the role of quantum fluc- dypo dy _H T ' (27)

: ; . : i
tuations. Before doing actual calculations, let us give some

qualitative discussion. As we already mentioned we are inwith the product taken over continuous or discrete spatial
terested in the regime, wheleis large and interactions are indices, which we suppressed in Eg®5) and (26) to
relatively weak\<N? so that the system is far from the shorten the notations. The interpretationpiffiyo, %) as a
Mott insulating transition and the quantum fluctuations areprobability is not very precise because the Wigner transform
intrinsically small. This means that normally it is possible todoes not have to be positive. To get the function
use the GP approach or at most the Bogoliubov extensior@cl((p, #* 1) we need to rewrite the quantum operadrin
However, this is not the case for our problem. Indeed, neahe fully symmetrized form and substitute field operatars
the classical instability the starting point of unstable equilib-gngat by their classical counterparts and * . In particu-
rium for the Bogoliubov expansion of the uniform conden- |ar, the relation betweef), and a more familiar version of
sate becomes bad. The other way to describe this is to nolge classical counterpart of the normal-ordered oper@tor

that the BOgO”UbOV equations are nOthing but the quantize@sua”y appearing in the functiona| integra's is
version of the linearized equatiofl) and(12), which can

predict the onset of the instability but fail to describe the Qo(, ™ )=(Q* + p* 12— 1/2)), (28
nonlinear regime. On the other hand, we can anticipate that
the quantum fluctuations will remain weak until we cross thewhere the average is taken ovey with the weight
instability point. After that they will force the system to exp(—|7%2).
evolve into the superposition of unstable classical trajectories Let us now give general comments on the validity of Eq.
and become unimportant again, when those trajectories will25). If the Hamiltonian is noninteracting, then this expres-
be relatively far from each other. sion is exact. So TWA includes the Bogoliubov approxima-
These ideas, known as a truncated Wigner approximatiotion and goes beyond. To recover the latter we just need to
[17], have been recently applied to the description of BECdinearize the classical GP equations of motion while evaluat-
[18—27. The usual method of deriving this scheme is basedng ¢(t). This statement is not surprising since the noninter-
on the cubic Fokker-Planck equations of motion for the den-acting evolution is always identical to classi¢al,29,30Q. If
sity matrix written in the Wigner representation. In the Ap- there are nonlinear interactions then, in general, there will be
pendix we will show how the TWA naturally arises from the corrections to the equations of motion themselves. We con-
path-integral formulation of the dynamics and emphasize thsider them in Ref{27]. Let us only note here that for the two
key difference between the present derivation and that of theoupled condensates we showed in R&P] (see also Sec.
conventional Keldysh technigu@8]. Moreover, in Ref[27] Il B) that the time where GP breaks down in the worst pos-
we will show that within this derivation, it is straightforward sible scenario with the least classical initial state having
to go beyond TWA perturbatively including quantum effectscompletely undefined phase is equaltfe=N/A=J/U. We
on the classical trajectories themselves. We will also arguexpect that the scaling witN is generic[33] and therefore
there that the TWA gives the exact short-time asymptoticaEq. (25) should be valid at least for the times shorter than
behavior of the evolution oény system. The time when it In the following section we will see that if there are no sud-
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den perturbations, so that a small fraction of quantum levels 6
is populated, then the time scale of the validity of TWA
becomes much longer. 4

B. Two coupled condensates: Comparison
with the exact solution

s
The main purpose of this section is to test the truncated g/_ 01
Wigner approximation on a simple example of two coupled = ]
condensates, where it is straightforward to obtain the exact 21
solution. The two-well version of Hamiltoniafl) reads

U(t ]
H(t)=—Jal 7¢Pa,+ %alaa(azaa— 1), (29 5
0.0 05 1.0 15 2.0 25
where «,8=L,R denote the right or the left well, respec- |‘I’o+|

tively, 7¢#, a=x,y,z are the Pauli matrices. As usually we o o -
imply an implicit summation over repeated indices. Because F!G- 1. Distribution of the GP initial conditions Vg | for the
of the total number conservation, EQ9) is equivalent to a symmetric state with eight noninteracting bosons per well.

more familiar version of the spin Hamiltonian .
can be also represented as a superposition of products of the

~ U(t two coherent states with equal or shifted dyphases,
H(t)=—Jal rtPa,+ %)(alr;"'ﬁaﬁ)z. (30)

de A .
_ 1/44—N —2i6N i 6 i0+imo
A convenient choice of the observable is |0)=(4mN)""e Jﬁe [VNe“) [ Ne IR
33
Q=i(aTT“'Ba )2=i-(aTT“ﬁa )2-+E (31) >

N2\ 8aTz Ap) =2 (8aTz 8p)" T whereo=0,1 for the symmetric or antisymmetric state, re-

) spectively. The integral over the global phagensures the
where semicolons denote the normal order. The opefator paricle number conservation. Before proceeding with further
is nothing but the scaled variance of the relative numbebna)ysis let us look into a simpler example of just a product
distribution. Let us consider several examples of the evoluys the two coherent states. where the global phase symmetry

tion: (i) the initial state is symmetric and the interaction in- is broken andé takes some particular value. Then after
creases with time(ii) the initial state is antisymmetric and straightforward calculation one can show that

the interaction increases with time, afiid) the initial state is
the Fock state and the interaction does not change in time.
Situation(ii) is directly relevant to the macroscopic quantum P(o,¥5)=4 ex;{ —22 |hoa— VNE™2|.  (34)
superpositior(“cat” ) state dynamics we consider in this pa- a
per, but we also look to the other possibilities to check the ) ] L )
validity of this approach in a more general case. We see that in this case the probability distributionygfis
The classical functiof)(#,4* ,t) can be either found JuSt & Gaussian centered near the classical value with the
from the normal-ordered form of the operaforaccording to ~ relative variance of fluctuations of the order of/N. This is
Eqg. (28) or by direct symmetrization of the latter. In our completely reasonable and we indeed recover GP picture
particular case it reads having a single initial state in the limN—-c«. Now let us
look closer to the wave functio(83). After a simple calcu-
2 2 1 lation the final expression for the probabilityreads
Qai(* )= (5P i)+ NN 8N2
. P(wo, ) =46 o+ lo-FL (2o, [2), (39)
— (% aB 2
(Var2"Vp) 8N*" 32 where o= iyg. = or in the symmetric state, and we
i ] i - ) should interchange,, and y,_ for the 7 state,L,y(X) is
The final step is to find the probability functign(i,45)  the Laguerre’s polynomial. This expression is a Gaussian in
according to Eq(26). This will depend on the det_ai_ls_; of the terms of |_|, however, it has a nonlocal behavior as a
;tate|(_)>, therefqre we have to study different initial con- f;nction of| /0. |. Moreover,p(iq, %) is not positively de-
figurations explicitly. fined. This leads to interesting consequences. For example,
while the average dfio. |?, computed with help of Eq:35)
gives the expected classical result, the variancgygf |? is
Suppose that dt=0 the interaction was negligible. Then negative In Fig. 1 we plot the normalized function
the products of symmetric and antisymmetric wave functiong .| p(|+|) for the situation with 8 bosons per well. The
give the ground and the most excited stationary states. Thegxtra factor of| 4,..| comes from the integral measure

1. Symmetric or antisymmetric initial state
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N=8 ance given by distributiof35) is negative, so at least this is
0.07 not very straightforward to do.
] Now let us assume that the interaction increases with time
according to

tanh( ot
A(t):—in_r(&), (37

where §<1 is the adiabatic parameter. This dependence is
somewhat different from what we used in the preceding sec-
tion. But the resulting instability is still there, and besides the
main purpose of this section is to test our approximation
scheme rather than to do some particular calculations. The
resulting graphs for both symmetric and antisymmetric initial
0 1 2 3 4 5 6 states are plotted in Figs. 2 and 3. Note that even for the
Interaction A eight particles per well the agreement between the exact and
the TWA solutions is remarkable. For 32 particles there is a
FIG. 2. Dependence of the number variance on the interactiogma|| discrepancy for the intermediate valeApparently
changing with time according to E(87) for initial symmetric state  {he semiclassical curve does not capture the small oscilla-
and 8 bosons per well. Das_hed and solid lines show semiclassicﬁlOnS very well. But note that both in the limit of large and
and exact solutions, respectively. small § the oscillations disappear and the agreement be-
comes perfect.
Notice that the steady state for the initial antisymmetric
conditions is exactly the maximally entangled Salinger
cat state, where all the bosons occupy either left or right
well:

Number Variance

| 1o lpvo. Dl =1 (39

For convenience we rescaled the fielgs— Ny so that the
classical expectation value 6f .| is 2. In the limitN— o .
we again recover the classical resiitir the rescaled fields _ -

YoLr=1 0Or || =2, |o_| =0, butin a peculiar way. The |qff>_\/E(lLLL"'>+|RRR"'>)' 38
contributions from| ¢, |<2 will cancel each other because

of fast oscillations of the probabilitp, and only the small The ultimate reason for this is that, as we mentioned above,
interval around| . |=2 will give the contribution to the the = shifted state is in the classical equilibrium for any
final result. We might think, that if the observable is ainteractions\, however this equilibrium becomes unstable
smooth function of the initial parameters, then the details ofor A >\.. So any fluctuation will cause a classical trajec-
the distributionp( iy, ) are not important and we can sub- tory to end up either in the left or in the right well and the
stitute it by some Gaussian function with appropriate mearmuantum zero-point motion gives us these fluctuations. On
and variance. However, as we pointed out before the varithe other hand, quantum mechanically we do not break the

(a) N=8 o0) N=32
1.0- ] FV.YAVAA A
o8] 8002 K[
® 0.8 ® ]
< e
o @ 0.6- /—\
= 0.6 =
© © | y 1. =
> = 3=0.2
— — 04_ 0.8
g 04 2
E E 0.4
= 3 0.2
prd 0.24 prd .
o.cu 2 4 6
0.0 ¥ T v T v T v T T T T 0.0 Y T v T Y T v T v T v T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Interaction A Interaction A

FIG. 3. Same as in Fig. 2 but for the initial antisymmetric state. The gré&phand (b) correspond to 8 and 32 bosons per well,
respectively . The inset on the grafih) shows the slowest evolution.
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left-right symmetry because it is the property of the full N=16
Hamiltonian. The only way to reconcile these two results is 0.5
to have the final configuration in the coherent superposition .y —— Exact _ o
of the left and the right states. This statement can be also did mene  THURCEtS WigNBrApEmRimEsh
verified numerically. 8 ------- GP with random phases only
C
- o 0.34
2. Initial number state & \ ”/:\ A z::__'; -2 Ao
Here we revisit our results derived earl{d2] assuming E N
the two condensates are initially uncoupled and their wave & 0-21
function is just a product of the two numbéfock states. €
Then att=0 the tunneling is suddenly turned on and the 2 0.1
number variance starts to experience some oscillatory behav-
ior [12]. Repeating the same analysis as in the preceding
section we find 0.0 — 71—
0 2 4 6 8 10
Time
o (oo (2
([a};(t)rf’ﬁaﬁ(t)]z)zf f f dn_ dng d6 prum(ny) FIG. 4. Time dependence of the number variance for the initial
0J0 Jo number state and 16 bosons per well. The interaction strength is
x pnum(nR)[lllz(t)T?'Bl,bﬁ(t)]z, |);1 tr:]Le. ll:lr(])li '([)r;z'jjh.ere and elsewhere in this paper time is measured

(39
IV. NUMERICAL RESULTS FOR MULTIPLE WELLS

wheren, g=|# r(t=0)|%, @ is the initial phase difference Having established a general framework and checked its
betweeny and ¢z. So in the Fock state the phases in thevalidity let us move on to the main subject of the paper. First,
two wells are indeed uncorrelated as we argued in R&.  following the analysis given in Sec. I, we will study the
However, the number of bosons is distributed according taemporal behavior of bosons in a periodic array of wells
Prum(n) given below and not fixed at=N as we might which were initially in thew state. Then we will consider a
naively think. In Eq.(39) we ignored an additive 1K cor-  case of a harmonic trapping potential.

rection[see Eq.(32)]. The probability of having the initial

occupationn in either well is[30] A. Periodic array

o The straightforward generalization of E@®3) for the =
Pnum(n)=2€"“"Ly(4n), (40  state in a periodic chain d¥l coupled condensates with
bosons per wellwe assuméV to be evepis

where as beforé y(Xx) stands for Laguerre’s polynomial of M
the orde_rN. T_he functiqnpnum is very sim_ilar to its counter- |0)y=(4mN M)1/4e—NM/2f ﬁe—iaNMH |\/Nei orimiy.

part defined in Eq(35) in the sense that it also has an oscil- 2w j=1 !

latory behavior forn<N and exponentially decays far (41
>N. In Ref.[12] we showed that the simple GP pictui¢

gives a multiplicative error of (+ 1/N) in the number vari- Wwhere|.--); stands for the coherent state in thiéa well.
ance even in the noninteracting limit afid) it is valid for a This is an eigenstate of the noninteracting Hamiltonian and
finite period of time shorter than some characteristic scal@part from the global phasé, which conserves the total
determined by interactiong:<t.~J/U=N/\. For longer —number of bosons, it is just a product of coherent states with
times the GP result starts to deviate strongly from the exactlternating phases. Ignoring the integral odemresults in a
solution due to recurrence occurring in a quantum systenﬁaussian probability distribution of the initial stdmmpare
We might guess that the agreement between the semiclassisdith Eq. (34)]

and the quantum results can be improved upon including

guantum fluctuations at initial time according to E¢0). M o

This is indeed the case fort,, i.e., the discrepancy in the p(go, 5)=2"T] exd —2|yo;— N2, (42
prefactor completely disappears. However, as we can see =

from Fig. 4, these fluctuations do not affect the titpétself

so that the correct result can be recovered only if we als
include quantum scattering, or in other words deviations of

the trajectories from the classical ones. Finally, we would p(iho, ) =2M ex;{—ZMZ | okl
like to note that the initial number state is the worst possible k

(\)Nhile the correct result for Eq41) reads

Lam(4M|g0/2),

from the classical point of view, because the phase is com- (43
pletely undefined there. So we expect that, in genegal, .
gives the lower boundary of the applicability of TWA. where ¢, stands for the discrete Fourier transformdaf; ,
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FIG. 6. Number variance and phase correlation as a function of

FIG. 5. Number variance as a function of the |nteract_|on for thetime divided by the period of interactiofm & 1/6) for ten wells and
case of ten wells with eight bosons per well. The solid and the

. R . eight bosons per well. The interaction changes with time according
df;hed l'nef‘. colrrt—:_ﬁ?ond to the distributions gl(;/(:n byl[-Zt&.qnd to Eq.(48). For smallers the phase restoration is almost complete,
(42), respectively. The upper curves correspond to a Slower Increasg;qp, proves the coherence of the dynamics.
of the interaction with time.

1

WM

|Fy=—=(|111..)+[222.. )+ ...[MMM ...)).
(47)

Clearly asM —c the difference between Eqet2) and(43)  The whole procedure of driving the system into the maxi-
should vanish. Next let us define the operadr which  q)ly entangled state described here is conceptually very

,\ 1 .
Yok=731 ; oje . (44)

would be a good measure of the instability: similar to that recently suggested in R¢81], where the
tunneling was assumed to decrease by the spatial drag of the
0= 1 2 (ala;—N)2 (45) double-well condensate through a beam splitter. The impor-
N’M(M—1) ] 1= ' tant difference, however, is that here we are not limited by a

double-well system and can consider larger arrays, so that
This is just a normalized sum of number variances over th@ur entangled cat occupies more than two macroscopic
different wells. We have chosen the prefactor so {fa}  states.
<1, with 1 corresponding to the state with all the bosons There is an important issue, which was completely ob-
located in any single well. It is easy to verify that the clas-scured in the preceding analysis. Indeed, studying the num-
sical counterpart of) is ber variance alone, it is impossible to distinguish the cat state
from the collapsed condensate. While the collapse is often

1 . 2 very well reproduced using GP equations, it is much harder
Qa9 = M(M—1) > |\ wr g —N- > to describe the recovery within this framework. To examine
! this issue let us consider the interaction, which is periodic in
1 time
TANZM 1) (46)
4N’(M —1) A(t)=N\g SIr?(7ét), (48

It is reasonable to expect that as the number of wells inwhere the parametet as in Eq.(37) determines the adiaba-
creases the global phase becomes less and less important ajasty of the process. If5 is small then we expect complete
therefore Eq(42) becomes more and more accurate. restoration of the initial state after one period of oscillation
Next, we consider several specific examples. First let ug=1/5. With decreasing period we gradually lose adiabatic
take the interaction to be monotonically increasing in timelimit and the evolution of the system is no longer expected to
according to Eq(37). In Fig. 5 we plot the resulting evolu- be periodic. Figure 6 summarizes this discussion and the
tion of the state for the case of ten wells with 8 bosons pegraphs are in perfect agreement with our expectations. The
well. The solid and the dashed lines correspond to the prolphase correlation in this figure is defined in a usual way as
ability distributions given by Eqg43) and(42), respectively.
Clearly there is no significant difference between them. Note

t
that the upper curves corresponding to smadler.e., to the T 2NM EI: (ajajiq)+cc.

adiabatic limit, saturate @~1, which shows thaall the

bosons appear in a single well, i.e., the resulting steady statnd the “—" sign is inserted for the sake of convenience
|F) is because we start from the state.
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So far we considered examples where the initial state was 0.35
a noninteractingr-phase-shifted condensate and then the in- {1 — =03
teraction was slowly ramped u@r equivalently tunneling I A=0.5
was ramped down This rather hypothetical situation is cer- 2 1 —==-=d
tainly suitable for the theoretical analysis, but hardly appli- & 9251 ——- A=2
cable to any real experimental realization, where the interac- g ]
tions between the bosons is always present. So the initial = 020 /”\\
wave function is not a simple product of coherent states but & B 15' H
a more complicated object. One way to proceed with this 'g o i
issue is to write down an approximate wave function, which 3 4, | il §
can be obtained using either Bogoliubov's Hamiltonian < | ir
(valid for A<N?) or variational methods, and then find its 0.054 it
Wigner transform according to E@26). This would be a ] .....,l"l//
tractable but lengthy calculation. Instead, we can do a simple oot~ - - O @
trick, demonstrating the advantage of the present approach. 0 5 10 15 20
Namely, we can start from a noninteracting ground state, Time

then adiabatically increaseto the desired value, and finally

apply thew phase shift following the subsequent evolution.  FIG. 7. Number variance as a function of time for ten wells and
In this scheme there is no need to do any additional analytié bosons per well. The interaction remains constant in time in this
calculations, both “fake” and the real dynamics are de-example but at=0 a suddenr phase shift is applied to the system.
scribed within the same scheme. Moreover, the computa-

tional time does not increase much because of the extra fake Jwtz

evolution towards the true ground state. Indeed, the classical Vi=—j2 (49)
motion is stable before the phase shift is applied so that 4
GP equations can be efficiently integrated. To be more spe-
cific, assume that we start from the interacting condensat
with N =constf), then att=0 suddenly apply ar phase
shift and follow the subsequent appearance of the cal
Clearly if \>\. [see Eq.(9)] the system becomes unstable
and the quantum fluctuations force it into the entangled state. |0)= ( E a ajT
Without any calculations, it is obvious that the final state will ]

not be maximally entangled as described in Fig. 5 because of . :
the energy conservation. Indeed, the state with all the bo:sorthereWac> denotes a vacuum state with no particlbig,.
occupying one well costs a huge interaction energy whichS the total number of bosons in the system, and
cannot be compensated unless there is an external pumping \/—
resulting in the time dependence of the Hamiltonian. From 2
the same considerations it is obvious that the maximum pos-
sible entanglement within this scheme can be achieved at

some intermediate values af Thus if A <A, there is N0 is the ground-state wave function of a single boson in the

state. On the other hand, for the lang@ny significant num-  an be also written as

ber fluctuations will cost a strong increase in the interaction
energy, which cannot be compensated by a limited decrease de .
in the hopping energy. We plot the resulting number variance O) = f Zel onatngt = Niod| Nygpars ) o VNgor@2)e s - - -
as a function of time for the periodic array of ten wells in (52)
Fig. 7. The critical value of the interaction for this case is
\¢=2 sirf(m/10)~0.19. Clearly for\ getting closer to\,  where as usuala), stands for the coherent state,
the oscillations become slower and the steady state is:|a;|?. If the number of populated wells is not small, then
achieved later. We would like to point out that this type of we can ignore the global phase and use an approximate ex-
dynamics corresponds to a sudden perturbation discussed jession
Sec. Il B 2. Therefore, we expect a finite ergodic time for a
full guantum solution so that there is no true steady state for
the finite number of bosons. So to achieve a stable stationary |O>%1;[ Nm“m'
entangled state it is preferable to drive the system adiabati-
cally towards the instability, i.e., apply @ phase shift at As in the previous discussion we assume that at initial time
smallest possibla and then slowly ramp up the interaction. the phases in the adjacent wells were uniformly shifted by
_ some phase. However, we will not consider only the case
B. Harmonic trap with ¢=, because ther phase shift in the nonuniform
The effect of a harmonic trap can be mimicked by addingpotential does not give a stationary solution, although it still
a gquadratic potential term to the Hamiltonian of systém preserves the inversion symmetry. Also the number variance

ere w, is the trapping frequency.
As before let us assume that initially the interactions were
tsuppressed and the system was in the ground state:

Ntot
|[Vac), (50)

aj~ o (0{14)i? (51)

( ’7T(1)t) 1/4

(53
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FIG. 8. Center-of-mass position and the condensate width as a function of time for the interaction and trapping frequency increasing in
time according to Eq(56) with §=0.01, wf(0)=0.03, and the total number of bosoNg,= 100.

is no longer a convenient measure of the instability becauspredictions of self-trapping at large phase gradi¢id{s We
the distribution is not uniform even in the initial state. In- would like to point out that the trapping is real in our case
stead, let us introduce two other quantities: coordinate of thbecause of the rapidly increasing interaction equivalently

center of mass and the condensate width: vanishing tunneling
There is, however, a major difference between the results
1 1 for a periodic array and a h ic t In the classical
_ 1 . _ [/t 2 o\ g2 p y and a harmonic trap. In the classica
X= N < ; 18, al>’ w \/N < 2 174 a,> X limit, the 7 state is an eigenstate in a periodic array for any

(54)  strength of the interaction, therefore the motion is completely
_ _ o _ driven by the quantum-mechanical fluctuations, while in a
The semiclassical operators can be trivially obtained fronharmonic trap ther state is classically unstabiehat is why

Eq. (54). For example, we plot our observables versus interaction for the periodic
1 array and vs time for the parabolic tjaffhe classical insta-
Xo=— Z j(,/,}k gi—12)). (55) bility ma_lkes quantum effects unimportant _|f the number of
N\ 45 bosons is large. To further elucidate this point let us compare

. i the results for a single Gross-Pitaevskii trajectory, i.e., a
Let us assume that both the interaction and the trap fresimple classical limit, with the TWA result. The two depen-
quency increase In time: dences are shown in Fig. 9 and they are clearly very alike.

tanhst -~ th(O) This proves that the resulting instability has a simple classi-

N1t = o W=7 —5 (56)
124
We definex according to Eq(2) with N= N, ao|? being
the number of bosons in a central well. Note that with £ 10 g
#0 there are two degrees of freedori:J and w,/J. If we ©
want to reflect the experimentally relevant case of vanishing <
tunneling rather than increasing interaction we have to keep @ B
the ratio \/w? constant. Extra multiplier “tania” in the & =1
interaction term is taken only for convenience purposes and QC, 6
it does not qualitatively change any of the results. =
The two graphs in Fig. 8 show the condensate width and o 4|
the center-of-mass position vs time for different initial phase O
imprints. Note that if the phase shift is equakto there is no
center-of-mass oscillation because of the inversion symme- c 0 " 20 40 e | 80

try. However, the width oscillations are very large and pro- Ti

nounced in this case. They also die very fast away from the ime

w phase shift, however the steady-state condensate width FiG. 9. Condensate width as a function of time for the same
depends onp rather smoothly. It is also interesting to note conditions as in Fig(8). The dashed line is the simple Gross-

that the center-of-mass oscillations decay faster for largepitaevskii result and the solid line is the improved calculation ac-
angles. This is in the direct agreement with the previousording to Eq.(25).

033609-10



EVOLUTION OF THE MACROSCOPICALLY ENTANGLED. .. PHYSICAL REVIEW A68, 033609 (2003

1.0 dom external potential with a usual correlatof(t)Y(t"))
5 =D =Y,8(t—t’) and consider the case of two wells for simplic-
8 o8- 0 ity. Then the relative phase flow due to fluctuations will be
& R 56~NY,yy/t. On the other hand, the minimum time required
EJ 0.6 to get to the cat state {see Sec. )it~ 5~ 1~In N. Requiring
o) that the total phase accumulated during the evolution is less
O 041 than one, we get the upper bound for the noise which does
& 02 not destroy the coherencery~ 1/N+in N. This result is en-
_‘c“ ' couraging, because instead of exponential we get a much
o 5.5 weaker scaling of the noise with the number of particles.
' Clearly, in the multiwell case there will be an extra scaling
02 with the number of wells and of course no cat state is pos-
e sible in the thermodynamic limit. However, the scaling will
0.0 0.2 0.4 0.6 0.8 1.0 be again weak and tractable. Another possibility to observe

Time/Period macroscopic cat states experimentally is to use a modulated
. ] ~_hopping between the sites in a large array effectively split-
FIG. 10. Phase coherence as a function of time for the perlodlcﬁng the condensate into pairs of sites, so the effects of the
interaction (48) with §=0.004. The total number of bosom§,, classical noise become weaker.
=100, the trap frequency;=0.03, and the initial phase shif The other two constraints used in our analysis that the
= Clearly the dynamics is completely irreversible as opposed tchumber of bosons is large and the condensate is one dimen-
Fig. 6. sional are also not essential. We used the large number of
bosons rather to satisfy the formalism than to explain the
cal nature and does not give a cat state, rather the condens@iect. The instability is there even in the fully quantum-
simply has large amplitude breathing modes. Such an ouinechanical treatment of the problem and the resulting maxi-
come should not be very surprising. In order to get to theng|ly entangled state is clearly independentNofThe only
macroscopical entanglement one has to prepare a classicatlying is that the evolution of macroscopically entangled
equilibrium but unstable state, which can be driven away Viastates with a large number of atoms is more interesting from
quantum fluctuations. This can be achieved by a simplgne experimental prospect. Concerning higher dimensions we
phase shift only in a uniform periodic lattice. _ would like to point out that, although we did not perform
We can also check the reversibility of the evolution for actual calculations, it is extremely unlikely that any of the
the periodic in time interactio48). And clearly (see Fig.  results will qualitatively change. The instability will clearly
10), the dynamics is completely irreversible. This result isgyrvive in any dimensions and the state can be imple-

also not surprising given that the initial state is not stationanynented, at least theoretically, in square lattices of arbitrary
even without interactions, so the phase shift looks as a dimensionality.

sudden perturbation applied &0 and even if the interac-  |n conclusion, we showed that it is possible to create mac-
tions change with time slowly the system is not in the adiatoscopically entangled Schiimger cat states in bosonic sys-
batic regime. tems in optical lattices with finite number of sites. We justi-

fied and used truncated Wigner approximation generalizing a

simple GP approach by the exact treatment of quantum fluc-

tuations at initial time of the evolution. Using a solvable
In the previous sections we adopted a truncated Wignefodel of two coupled condensates we found a very good

approximation allowing us to treat dynamical evolution of agreement of TWA with the exact results. At the end we

classical instabilities due to quantum fluctuations. We comfpresented some numerical simulations for the multiple-well

pletely ignored the classical noise, which may come fromcondensates and argued that it is possible to create a cat state

various sources, e.g., fluctuations of the laser intensity owith more than two possible outcomes.

wavelength, fluctuations of the magnetic field creating the

trap, collisions with external atoms, triple interactions lead-

ing to the loss of the atoms from the condensate, etc. All ACKNOWLEDGMENTS

these sources are generally quite weak, otherwise no beauti- 1o 5 thor would like to acknowledge helpful discussions
ful experiments would ever be possible. On the other hanquth E. Altman. |. Carusotto. A. Clerk. S. Girvin. M
cat states are very fragile to any kind of classical noise. Fokasevic.:h S Sa{chaev K Sen’gup;ta and’ A .Tuchma’m 'I.'his

example, in a double well in equilibrium, the noise requiredresearch was supported by NSF Grant No. DMR 0098226
to destroy the coherence exponentially scales with the mass ' '

(or equivalently the number of particlesso that heavy ob-

jects are always localized in one of the classical minima. APPENDIX: MICROSCOPIC DERIVATION
Howeve_r, this is not the case in our situation. Inde_ed, the  oF THE TRUNCATED WIGNER APPROXIMATION
system is far from the equilibrium and the cat state is not a

ground state. Let us crudely estimate the limits set on the Letus assume that at the initial time of evolutiza0 the
noise. Assume that the classical fluctuations result in a rarsystem is described by a density matpix

V. DISCUSSION
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7o o
po=2 POOIX(xI. (A1) (Q(t)>~J Dn(T)Dw(7)<¢o—7po Yo+ 7>
X
, , L no* 7(t)
where|x) represents some basis state &{g) is the prob- XU PO+ —— ()~ ——
ability to occupy it(for the coherent basiP(y) coincides
with the GlaubeP function commonly used in quantum op- 5 @ |10l 2= (114) 70|* ~ (112 (1) 2 o(112) (mg; o~ mo W)

tics [17]). If the initial state is pure, the sum contains only
single term. According to the standard quantum-mechanical t N N
formulas, the expectation value of an arbitrary normal- X ex OdT 7 (1)L, P 7]

ordered operatof) at timet is given by
. f ' A(7)
exp i . TN

X[g* (1) p(t) + (1) p* (1)]| (7) |2

- 77(7)‘6*[110!‘//*17]

Q

. (A4

t

Q(t) =TI’{ poTk» ex;{i fOH( 7)dr

t

xex;{—if H()dT } (A2)

0 where L[ ¢, * , 7] stands for the classicdlGP) differential
operator acting on the fielg(t):

where Ty, is the time-ordering operator along the Keldysh

contour going from 0 td and then returning back to 0 so . o 9 . * 2

that the operators corresponding to a later time are placed Lily.y ’T]=F_'(¢j+l+¢kl)+”‘(ﬂ oy iy

closer toQ), H is the Hamiltonian of the system, e.g., Eij) (A5)

in our case. In the same way one can define correlation func-

tions of products of operators. The conventional trick to deaNote thatC as well as the fieldgr and » have spatial indices

with expressions such #82) is to rewrite them in the path- which we suppressed in E¢A4) to simplify notations, the

integral form using the coherent-state representaf®®].  products such ag* L in Eq. (A4) stand for the sum ovegr

The only difference with a more usual equilibrium case isEjn]* Lj. A closer look to Eq.(A4) shows that there are

that there are two exponents containifg So it is conve- linear, quadratic, and cubic terms in the quantum figldhe

nient to introduce two fields; anda,, propagating forward latter appearing only due to interactions. It is intuitively clear

and backward in tim¢28]. Then instead of E/A2) we can  that in the classical limity(7) should be small in some

write sense. Thus, if we ignore completely all nonlinear terms in

7, then the functional integral over the quantum field be-

comes a trivial product o functions enforcing GP equa-

Q)= f Da;Day(apo|polaso) tions on the classical fielgd. The next approximation will be
to leave quadratic corrections but ignore cubic. From Eg.
X @~ @fodfot afgar HiH(afg ar)AT, (A4) it is clear that the quadratic corrections affect only the
initial and the final times of the evolution, that is why it was
xe‘a?oanQ(a?Q apg.t) important for us to start from a discrete version of the path
integral and be careful about the boundaries. The integral
X e210% Qe 3502 Q+ Apgaho- 1~ 1 H(apgang-1AT, | . over 7(t) transforms the operatd® into (), according to
Eq. (28). It is a simple exercise to check that, is obtained
X e—aﬁoabO, (A3) by first symmetrizing) and then substituting the operatars

anda' by thec numbersy and ¢*. For example, if

where A7=t/Q and Q—«, Q(af ,a,,t) is the normal- Q=a'a=1(a'a+aa’)—1 (AB)
ordered operataf with the fieldsa'(t) anda(t) substituted ? '

by complex numberaf (t) anda,(t). The expression above then

is intentionally written in a discrete form to take care of the

boundary effects. In the classical limit the evolution is deter- Qo ={* + p* 12— 3l2) = y* y— 3, (A7)
ministic, so thatas.(7)=ap (7). On the other hand, be-

cause of quantum fluctuations the two trajectories may bevhereas it follows from Eq(A4), the average over is
different. Therefore, instead of the forward and backwardaken with the weight exp(|7|%2).

fields it is natural to introduce their classicak)(and quan- The second quadratic contribution originates from the
tum (7) combinations[28]: a;= ¢+ 5/2, a,=¢— /2. So field 5, corresponding to the initial time of evolution. Be-
that in the classical limity should correspond to the solution cause of the coupling t@y in Eq. (A4), these fluctuations
of the GP equations ang should be simply equal to zero. introduce a probability distribution for the classical initial
Now we can take a continuum limit in EqA3) sending conditions given by Eq(26). If we ignore the corrections to
A7—0: the classical equations of motion coming from the third

033609-12



EVOLUTION OF THE MACROSCOPICALLY ENTANGLED.. .. PHYSICAL REVIEW A68, 033609 (2003

power of the quantum fieldy, then the time dependence of tional units# ~* appears as the prefactor in the action justi-
the observablé€) will be given by Eq.(25). fying the saddle-point or classical approximation. In the
Let us now give general comments on validity of Eqs.same way, the number of bosons per diteappears as a
(25 and (26). If the Hamiltonian is noninteracting, then prefactor in the exponent of EqA4) after rescalingy
these expressions are exact. If there are nonlinear interac- /Ny and »— N#. So in general any expansion in pow-
tions, then, in general, there will be corrections to the actiorers of % is in fact the expansion in powers bt
involving terms proportional to all odd powers agf 7° in Let us finally spend a few words discussing the difference
our casdsee Eq(A4)] or higher in general. Those terms will between the present derivation and that of the conventional
affect the time evolution, which will not be described by the Keldysh technique. The key point in our discussion is that
GP equations any longer. In R¢27] we show that the cor- we ascribed the time dependence to the operftatself,
rections to the GP dynamics arise in the form of the quantumvhile leaving the density-matrix time independent. This al-
scattering events, which are equivalent to the nonlinear relowed us to completely separate initial quantum fluctuations,
sponse to the infinitesimal perturbation of the figldalong  which entered in the form of the Wigner distribution of the
its classical path. We only note here that these corrections aigitial conditions for classical trajectories E@6), from the
always of the formf(t)/N? with f(t) being some time- quantum dynamical effectsvhich we consider in Ref27]).
dependent function satisfyinf(t)—0 att—0, and 1IN is  On the other hand, in the Keldysh technique the density ma-
our semiclassical parameter. So the TWA given by EBS)  trix acquires time dependence and the initial density matrix
and(26) always gives the exact short-time asymptotical be-is absorbed into the quantum propaga@]. While it is still
havior of the evolution. As we discuss in Sec. Il B, the time possible to derive GP equations in the saddle-point approxi-
when TWA breaks down depends on the details of a particumation, integrating out quantum fields in the lowest order
lar process and becomes longer under slow perturbationgjves a complicated self-interacting classical act{@8],
where only a limited number of quantum levels are excitedwhich is hardly possible to deal with except perturbatively or
Another point we would like to make is that though the using stochastic methods. This should not be surprising since
expansion in powers of W is clearly around the classical any diagrammatic technique uses a noninteracting Gaussian
solution, there is n@& present anywhere. This should not be limit as a starting point. Therefore, to get just a classical GP
surprising since here and quite often in the atomic physicslynamics in the Keldysh technique, it is necessary to sum all
the Planck’s constant either completely absorbed into enediagrams with classical verticegghree classical fields and
gies, which are measured in hertz, or into time. In convenone quantum[28], which looks virtually impossible.
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