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Evolution of the macroscopically entangled states in optical lattices

Anatoli Polkovnikov*
Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120, USA

~Received 30 March 2003; published 19 September 2003!

We consider dynamics of boson condensates in finite optical lattices under a slow external perturbation
which brings the system to the unstable equilibrium. It is shown that quantum fluctuations drive the condensate
into the maximally entangled state. We argue that the truncated Wigner approximation being a natural gener-
alization of the Gross-Pitaevskii classical equations of motion is adequate to correctly describe the time
evolution including both collapse and revival of the condensate.
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I. INTRODUCTION

Recent advances in experimental realization of Bo
Einstein condensates~BECs! in optical lattices@1–3# make
this field particularly interesting for theoretical analysis. O
of the most striking features about these condensates is
possibility to observe directly effects of quantum fluctuatio
at zero temperature. For example, as was predicted theo
cally @4# and shown experimentally@2#, the zero- point mo-
tion can drive the system from the superfluid to the M
insulating state. The other direct manifestation of quant
effects was reported in Ref.@3#, where it has been shown tha
bosons can live in the superposition of number states eve
the absence of tunneling. On the other hand, in the super
regime the quantum fluctuations are suppressed and e
classical Gross-Pitaevskii~GP! or Bogoliubov’s approach is
often adequate for the description of both static and dyna
properties of the condensates~see, e.g., Refs.@5,6#!. How-
ever, there is an interesting possibility, wherein the system
superfluid but neither of these approaches is good. Sup
that the initially stable condensate is driven to the regime
instability. This can be achieved either by applying a cert
phase shift to the condensate with repulsive interacti
@7–9# or by switching the sign of the interaction to the neg
tive value using Feshbach resonance@10,11#. The main dif-
ficulty with standard approaches arises because near th
stability all the fluctuations including quantum exponentia
grow and cannot be treated as a small perturbation. To
more specific, suppose that for timet<0 the periodic system
of condensates in a lattice was in a superfluid ground st
i.e., the interaction was relatively weak. Then a phase
print, i.e., a certain phase difference between the adja
wells, was imposed. Experimentally this can be achieved
e.g., applying a short~compared to a single tunneling time!
pulse of an external field to the system. A case of spe
interest will be when there is a relativep phase shift between
neighboring wells@12#. For the two wells with equal numbe
of bosons and relatively small interaction, this state is me
stable@7,12# ~this is also the case for even number of we
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and periodic boundary conditions!. However, if the interac-
tion increases and becomes larger than a critical value,
equilibrium becomes unstable and the bosons spontaneo
form a ‘‘dipole’’ state @9,12–14# in which most of them oc-
cupy one of the two wells. Upon accounting for quantu
fluctuations in a system with a finite number of bosons,
state obtained is a superposition of the two dipole states
that the inversion symmetry is preserved. Clearly in the c
of infinite number of wells, the translational symmetry
always broken. For example, in Ref.@15# a similar instability
but for the case of a Mott insulator in a strong electric fie
was shown to drive the system into a dipole state.

Related to this instability is a very interesting possibili
of forming a ‘‘Schrödinger cat’’~macroscopic quantum inter
ference! state@16#. If the interaction slowly increases in th
p state, then as we just mentioned, at certain point the
tem becomes unstable. Classically the bosons will remai
this unstable state forever unless there is some noise pre
either dynamical or in the initial conditions. As we will sho
below such a noise will drive all the bosons into one spo
taneously chosen well. However, apart from classical fl
tuations, which are always there but relatively weak in t
condensates, there is also a quantum zero-point mo
which comes from the uncertainty relation between the nu
ber of bosons and their phase, so that the state where bot
defined is simply impossible. This quantum noise will al
cause the classical trajectories to move apart from the
stable equilibrium. However, as we mentioned above,
quantum fluctuations do not break translational invariance
the resulting state must be macroscopically entangled. Le
give a simple analogy with a ball laying on the top of th
hill. Without fluctuations it will remain there forever. How
ever, because of the uncertainty principle this ball will mo
down along different classical paths. The quantum effe
will be manifested only in certain phase relations betwe
these paths but will not affect the motion itself. This analo
suggests that a good way to describe these situations
take into account fluctuations yielding some probability d
tribution of the number and the phase att50 and evolve the
fields according to the classical equations of motion. In
literature this approach is known as the truncated Wig
approximation~TWA! @17–22#. In the Appendix we will
show that TWA naturally arises in the path-integral deriv
tion of the evolution equations. In Sec. III we will numer
cally test the results on the exactly solvable model of t
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ANATOLI POLKOVNIKOV PHYSICAL REVIEW A 68, 033609 ~2003!
condensates. We show how to go beyond TWA in a sepa
publication@27#.

Let us also briefly mention a few other alternatives
generalization of the classical dynamics of the BECs exis
in the literature. One of them relies on the idea of incorp
rating the interaction between the superfluid componen
the condensate and excited bosons into GP equations@23,24#.
This approach was successfully applied to the descriptio
the condensate evaporation after a sudden change in the
tering length. Recently, there has been developed a diffe
class of methods based on the exact stochastic reformula
of the time evolution of interacting bosons@18,25,26#. These
ideas look very promising, however, near the classical in
bility, the convergence might be an issue.

Throughout this paper we will explicitly consider a on
dimensional array of coupled condensates. However, the
sults are quite general and should not depend on the dim
sionality.

The standard Bose-Hubbard Hamiltonian we are going
employ reads

H5(
j

2J~aj
†aj 111aj 11

† aj !1
U

2
aj

†aj~aj
†aj21!. ~1!

Hereaj is the canonical Bose annihilation operator on si
of the optical lattice~wells! labeled by an integerj, J is the
tunneling amplitude between neighboring lattice sites,U
.0 is the repulsive interaction energy between bosons in
same well. Another important parameter in the problem
the mean number of bosons per lattice siteN. In this paper
we will consider the case of largeN, since it corresponds to
the nearly classical limit. A dimensionless measure of
strength of interactions between the bosons is the coup
@12#

l[
UN

J
. ~2!

Hereafter, except otherwise specified, we set\51 and J
51 so that all the energies are given in the units ofJ and
time has units of\/J. As we noted in Ref.@12#, l;1 cor-
responds to the crossover from weakly to strongly interac
superfluid andl;N2 corresponds to the quantum pha
transition to the Mott insulating phase. We will be interest
only in the superfluid regime and assume thatl!N2. Note
that Hamiltonian~1! clearly has a time-reversal invarianc
Besides, the equations of motion

i
daj

dt
52@H,ai # ~3!

are invariant under the transformation:t→2t, l→2l, and
aj→(21) jaj . So in the absence of energy relaxation, wh
would break the time-reversal symmetry, ap phase shift
between neighboring sites is equivalent to the change of
sign of the interaction from repulsive to attractive. Th
equivalence is very useful for qualitative understanding
the resulting instabilities.
03360
te

r
g
-
f

of
cat-
nt
on

a-

e-
n-

o

s

e
s

e
g

g

d

e

f

II. SEMICLASSICAL EVOLUTION OF THE PHASE
MODULATED STATE

As we discussed in detail in Ref.@12#, in the classical
description of the two coupled condensates, the effective
tion of the number difference is equivalent to that of a cla
sical particle with a unit mass in the effective potential:

Ue f f52n2~11lA12n0
2 cosu0!1l2n2S n2

2
2n0

2D50,

~4!

where the ‘‘coordinate’’n represents the number differenc
between the left and the right sites,u is the relative phase
n0[n(t50) andu0[u(t50) are the initial conditions. In
particular, ifn050 andu05p then

Ue f f52n2~12l!1
l2n4

2
. ~5!

Clearly the equilibrium withn50 becomes unstable ifl
.lc51.

In a more general case of multiple wells a similar analy
can be done. Because there are now many degrees of
dom, a simple representation of the motion using the eff
tive potential becomes impossible. Instead let us return to
GP version of Eq.~3!,

i
dc j

dt
52~c j 111c j 21!1l~ t !c j* c j

2 , ~6!

wherec j (t) is the semiclassical field corresponding to t
expectation value of the operatoraj (t). Here we let the in-
teractionl explicitly depend on time. Clearly thep modu-
lated state is a stationary solution for any interaction:

c j~ t !5~21! jeiQ(t). ~7!

The unimportant global phaseQ(t) is given by

Q~ t !522t2E
0

t

l~t!dt. ~8!

Similarly to the two-well case, this state becomes unsta
when the interaction exceeds a certain critical value@7,12#:

lc52 sin2
p

M
, ~9!

whereM is the number of the lattice sites in the array. T
origin of the instability becomes intuitively clear if we use
dynamical symmetry mentioned above:l→2l, c j→
(21) jc j* . So a strong repulsive interaction for thep state is
equivalent to a strong attractive interaction for the symme
state. The instability for the attractive interaction is natura
expected@10,11#. To get more quantitative results we co
sider a time evolution of fluctuations around thep state:

c j~ t !5~21! jeiQ(t)@11j j~ t !1 ih j~ t !#, ~10!
9-2
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EVOLUTION OF THE MACROSCOPICALLY ENTANGLED . . . PHYSICAL REVIEW A68, 033609 ~2003!
with j j andh j being small real deviations from the exactp
solution found above. Substituting Eq.~10! into Eq. ~6! and
linearizing the resulting equations we obtain

dj j

dt
5h j 111h j 2122h j , ~11!

2
dh j

dt
5j j 111j j 2122j j12l~ t !j j . ~12!

In the Fourier space this system is equivalent to a se
decoupled second-order differential equations

d2jq

dt2
5216 sin4

q

2
jq18l~ t !sin2

q

2
jq ~13!

and

hq52
1

4 sin2
q

2

djq

dt
. ~14!

In the case of adiabatically changing interaction we can w

jq~ t !5j0qeifq(t) ~15!

and neglect by the second derivative offq . Herej0q is the
initial amplitude of fluctuations. Substituting Eq.~15! into
Eq. ~12! we get

dfq

dt
564 sin2

q

2A12
l~ t !

2 sin2
q

2

. ~16!

For simplicity we assume that the interaction increases
time as

l~ t !5
l0

12dt
, ~17!

whered is the parameter of adiabaticity andl0 is the initial
interaction, which we assume to be small. This type ofl(t)
dependence, in fact, corresponds to the tunneling expo
tially decreasing in time@J(t)5J0e2dt# with t→t/J(t). It is
straightforward to solve Eq.~16! analytically and the result is
03360
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fq~l!56
2 sin2 ~q/2!

d F S 42
2l0

sin2 ~q/2!
D 1/2

l0

2

S 42
2l

sin2 ~q/2!
D 1/2

l

1 ln

11S 12
l

2 sin2 ~q/2!
D 1/2

12S 12
l

2 sin2 ~q/2!
D 1/2

2 ln

11S 12
l0

2 sin2 ~q/2!
D 1/2

12S 12
l0

2 sin2 ~q/2!
D 1/2 G . ~18!

Assuming thatl0,2 sin2q/2 we see that in the limitl→`
the imaginary part of the phasefq goes to

Im fq~`!56
2p

d
sin2

q

2
. ~19!

So if d is large enough then the instability cannot develop
time and the phase remains essentially real. In the oppo
limit the fluctuations become large and we have to study
nonlinear regime of GP equations. More specifically the
lation

uj0queIm fq(`)51 ~20!

defines the boundary between the regimes of small and l
fluctuations. Using the estimate ofj0 q ~see the following
section for the details!,

j0 q;
1

AN
, ~21!

we derive that the instability for a given momentum mo
will evolve into the nonlinear regime given that

d<
2p sin2q/2

ln N
. ~22!

This tells us that in order to get to the regime of stro
fluctuations, the interaction should indeed change slowly
time ~at least near the onset of instability! and so justifies the
9-3
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ANATOLI POLKOVNIKOV PHYSICAL REVIEW A 68, 033609 ~2003!
adiabatic limit we used. The lowest-energy mode cor
sponds to the momentumq52p/M so the lower boundary
for d becomes

d15
2p

ln N
sin2

p

M
, ~23!

and the upper boundary is

d25
2p

ln N
. ~24!

If d,d1 then all the modes have enough time to get into
nonlinear regime and, as we will show below, then clas
cally all the bosons will go into a single well. On the co
trary, if d.d2 then the fluctuations around GP state w
remain small. In the intermediate regimed1,d,d2 some of
the momentum modes will exhibit small fluctuations a
some will become strongly enhanced.

III. QUANTUM FLUCTUATIONS

A. Truncated Wigner approximation

In this section we will examine the role of quantum flu
tuations. Before doing actual calculations, let us give so
qualitative discussion. As we already mentioned we are
terested in the regime, whereN is large and interactions ar
relatively weakl!N2 so that the system is far from th
Mott insulating transition and the quantum fluctuations
intrinsically small. This means that normally it is possible
use the GP approach or at most the Bogoliubov extens
However, this is not the case for our problem. Indeed, n
the classical instability the starting point of unstable equil
rium for the Bogoliubov expansion of the uniform conde
sate becomes bad. The other way to describe this is to
that the Bogoliubov equations are nothing but the quanti
version of the linearized equations~11! and ~12!, which can
predict the onset of the instability but fail to describe t
nonlinear regime. On the other hand, we can anticipate
the quantum fluctuations will remain weak until we cross
instability point. After that they will force the system t
evolve into the superposition of unstable classical trajecto
and become unimportant again, when those trajectories
be relatively far from each other.

These ideas, known as a truncated Wigner approxima
@17#, have been recently applied to the description of BE
@18–22#. The usual method of deriving this scheme is bas
on the cubic Fokker-Planck equations of motion for the d
sity matrix written in the Wigner representation. In the A
pendix we will show how the TWA naturally arises from th
path-integral formulation of the dynamics and emphasize
key difference between the present derivation and that of
conventional Keldysh technique@28#. Moreover, in Ref.@27#
we will show that within this derivation, it is straightforwar
to go beyond TWA perturbatively including quantum effec
on the classical trajectories themselves. We will also ar
there that the TWA gives the exact short-time asymptot
behavior of the evolution ofany system. The time when i
03360
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breaks down, however, depends on the details of the par
lar process~see Sec. III B!.

The whole idea of the TWA is that the expectation val
of any given operatorV at timet is equal to the correspond
ing classical observableVcl(t) evaluated according to stan
dard GP equations and averaged over an ensemble of in
conditions distributed according to the Wigner transform
the initial density matrix~see Appendix for the details of th
derivation!:

V~ t !5E dc0* dc0 p~c0 ,c0* !Vcl„c~ t !,c* ~ t !,t…,

~25!

wherep is defined as

p~c0 ,c0* !5E dh0* dh0K c02
h0

2 Ur0Uc01
h0

2 L
3e2uc0u22(1/4)uh0u2e(1/2)(h0* c02h0c0* ). ~26!

In the equation aboveuc06h0/2& denote coherent states. W
use the following measure:

dc0 dc0* [)
j

d Rec0 jd Im c0 j

p
, ~27!

with the product taken over continuous or discrete spa
indices, which we suppressed in Eqs.~25! and ~26! to
shorten the notations. The interpretation ofp(c0 ,c0* ) as a
probability is not very precise because the Wigner transfo
does not have to be positive. To get the functi
Vcl(c,c* ,t) we need to rewrite the quantum operatorV in
the fully symmetrized form and substitute field operatorsa
anda† by their classical counterpartsc andc* . In particu-
lar, the relation betweenVcl and a more familiar version o
the classical counterpart of the normal-ordered operatoV
usually appearing in the functional integrals is

Vcl~c,c* !5^V~c* 1h* /2,c2h/2!&, ~28!

where the average is taken overh with the weight
exp(2uhu2/2).

Let us now give general comments on the validity of E
~25!. If the Hamiltonian is noninteracting, then this expre
sion is exact. So TWA includes the Bogoliubov approxim
tion and goes beyond. To recover the latter we just nee
linearize the classical GP equations of motion while evalu
ing c(t). This statement is not surprising since the nonint
acting evolution is always identical to classical@21,29,30#. If
there are nonlinear interactions then, in general, there wil
corrections to the equations of motion themselves. We c
sider them in Ref.@27#. Let us only note here that for the tw
coupled condensates we showed in Ref.@12# ~see also Sec
III B ! that the time where GP breaks down in the worst p
sible scenario with the least classical initial state hav
completely undefined phase is equal totc'N/l5J/U. We
expect that the scaling withN is generic@33# and therefore
Eq. ~25! should be valid at least for the times shorter thantc .
In the following section we will see that if there are no su
9-4
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EVOLUTION OF THE MACROSCOPICALLY ENTANGLED . . . PHYSICAL REVIEW A68, 033609 ~2003!
den perturbations, so that a small fraction of quantum lev
is populated, then the time scale of the validity of TW
becomes much longer.

B. Two coupled condensates: Comparison
with the exact solution

The main purpose of this section is to test the trunca
Wigner approximation on a simple example of two coup
condensates, where it is straightforward to obtain the ex
solution. The two-well version of Hamiltonian~1! reads

H~ t !52Jaa
†tx

abab1
U~ t !

2
aa

†aa~aa
†aa21!, ~29!

where a,b5L,R denote the right or the left well, respec
tively, ta

ab , a5x,y,z are the Pauli matrices. As usually w
imply an implicit summation over repeated indices. Beca
of the total number conservation, Eq.~29! is equivalent to a
more familiar version of the spin Hamiltonian

H̃~ t !52Jaa
†tx

abab1
U~ t !

4
~aa

†tz
a,bab!2. ~30!

A convenient choice of the observable is

V5
1

N2 ~aa
†tz

abab!25
1

N2 :~aa
†tz

abab!2:1
2

N
, ~31!

where semicolons denote the normal order. The operatoV
is nothing but the scaled variance of the relative num
distribution. Let us consider several examples of the evo
tion: ~i! the initial state is symmetric and the interaction i
creases with time,~ii ! the initial state is antisymmetric an
the interaction increases with time, and~iii ! the initial state is
the Fock state and the interaction does not change in t
Situation~ii ! is directly relevant to the macroscopic quantu
superposition~‘‘cat’’ ! state dynamics we consider in this p
per, but we also look to the other possibilities to check
validity of this approach in a more general case.

The classical functionVcl(c,c* ,t) can be either found
from the normal-ordered form of the operatorV according to
Eq. ~28! or by direct symmetrization of the latter. In ou
particular case it reads

Vcl~c* ,c!5~ca* tz
abcb!21

2

N
2

2

N
2

1

8N2

5~ca* tz
abcb!22

1

8N2 . ~32!

The final step is to find the probability functionp(c0 ,c0* )
according to Eq.~26!. This will depend on the details of th
state uO&, therefore we have to study different initial con
figurations explicitly.

1. Symmetric or antisymmetric initial state

Suppose that att50 the interaction was negligible. The
the products of symmetric and antisymmetric wave functio
give the ground and the most excited stationary states. T
03360
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can be also represented as a superposition of products o
two coherent states with equal or shifted byp phases,

u0&5~4pN!1/4e2NE du

2p
e22iuNuANeiu&LuANeiu1 ips&R ,

~33!

wheres50,1 for the symmetric or antisymmetric state, r
spectively. The integral over the global phaseu ensures the
particle number conservation. Before proceeding with furt
analysis let us look into a simpler example of just a prod
of the two coherent states, where the global phase symm
is broken andu takes some particular value. Then aft
straightforward calculation one can show that

p~c0 ,c0* !54 expF22(
a

uc0a2ANeipsu2G . ~34!

We see that in this case the probability distribution ofc0 is
just a Gaussian centered near the classical value with
relative variance of fluctuations of the order of 1/AN. This is
completely reasonable and we indeed recover GP pic
having a single initial state in the limitN→`. Now let us
look closer to the wave function~33!. After a simple calcu-
lation the final expression for the probabilityp reads

p~c0 ,c0* !54e2uc01u22uc02u2L2N~2uc01u2!, ~35!

where c065c0L6c0R in the symmetric state, and w
should interchangec01 andc02 for the p state,L2N(x) is
the Laguerre’s polynomial. This expression is a Gaussian
terms of uc02u, however, it has a nonlocal behavior as
function of uc01u. Moreover,p(c0 ,c0* ) is not positively de-
fined. This leads to interesting consequences. For exam
while the average ofuc01u2, computed with help of Eq.~35!
gives the expected classical result, the variance ofuc01u2 is
negative. In Fig. 1 we plot the normalized function
uc01u p(uc01u) for the situation with 8 bosons per well. Th
extra factor ofuc01u comes from the integral measure

FIG. 1. Distribution of the GP initial conditions vsuc01u for the
symmetric state with eight noninteracting bosons per well.
9-5
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E
0

`

uc01up~ uc01u!duc01u51. ~36!

For convenience we rescaled the fieldsc0→ANc so that the
classical expectation value ofuc01u is 2. In the limitN→`
we again recover the classical result~for the rescaled fields!
c0L,R51 or uc01u52, uc02u50, but in a peculiar way. The
contributions fromuc01u,2 will cancel each other becaus
of fast oscillations of the probabilityp, and only the small
interval arounduc01u52 will give the contribution to the
final result. We might think, that if the observable is
smooth function of the initial parameters, then the details
the distributionp(c0 ,c0* ) are not important and we can su
stitute it by some Gaussian function with appropriate me
and variance. However, as we pointed out before the v

FIG. 2. Dependence of the number variance on the interac
changing with time according to Eq.~37! for initial symmetric state
and 8 bosons per well. Dashed and solid lines show semiclas
and exact solutions, respectively.
03360
f
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ance given by distribution~35! is negative, so at least this i
not very straightforward to do.

Now let us assume that the interaction increases with t
according to

l~ t !5
tanh~dt !

12dt
, ~37!

whered!1 is the adiabatic parameter. This dependence
somewhat different from what we used in the preceding s
tion. But the resulting instability is still there, and besides t
main purpose of this section is to test our approximat
scheme rather than to do some particular calculations.
resulting graphs for both symmetric and antisymmetric init
states are plotted in Figs. 2 and 3. Note that even for
eight particles per well the agreement between the exact
the TWA solutions is remarkable. For 32 particles there i
small discrepancy for the intermediate valued. Apparently
the semiclassical curve does not capture the small osc
tions very well. But note that both in the limit of large an
small d the oscillations disappear and the agreement
comes perfect.

Notice that the steady state for the initial antisymmet
conditions is exactly the maximally entangled Schro¨dinger
cat state, where all the bosons occupy either left or ri
well:

uC f&5
1

A2
~ uLLL . . . &1uRRR. . . &). ~38!

The ultimate reason for this is that, as we mentioned abo
the p shifted state is in the classical equilibrium for an
interactionsl, however this equilibrium becomes unstab
for l.lc . So any fluctuation will cause a classical traje
tory to end up either in the left or in the right well and th
quantum zero-point motion gives us these fluctuations.
the other hand, quantum mechanically we do not break

n

al
ll,
FIG. 3. Same as in Fig. 2 but for the initial antisymmetric state. The graphs~a! and ~b! correspond to 8 and 32 bosons per we
respectively . The inset on the graph~b! shows the slowest evolution.
9-6
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EVOLUTION OF THE MACROSCOPICALLY ENTANGLED . . . PHYSICAL REVIEW A68, 033609 ~2003!
left-right symmetry because it is the property of the f
Hamiltonian. The only way to reconcile these two results
to have the final configuration in the coherent superposi
of the left and the right states. This statement can be
verified numerically.

2. Initial number state

Here we revisit our results derived earlier@12# assuming
the two condensates are initially uncoupled and their w
function is just a product of the two number~Fock! states.
Then at t50 the tunneling is suddenly turned on and t
number variance starts to experience some oscillatory be
ior @12#. Repeating the same analysis as in the preced
section we find

^@aa
†~ t !tz

a,bab~ t !#2&5E
0

`E
0

`E
0

2p

dnL dnR du pnum~nL!

3pnum~nR!@ca* ~ t !tz
a,bcb~ t !#2,

~39!

wherenL,R5ucL,R(t50)u2, u is the initial phase difference
betweencL andcR . So in the Fock state the phases in t
two wells are indeed uncorrelated as we argued in Ref.@12#.
However, the number of bosons is distributed according
pnum(n) given below and not fixed atn5N as we might
naively think. In Eq.~39! we ignored an additive 1/8N2 cor-
rection @see Eq.~32!#. The probability of having the initial
occupationn in either well is@30#

pnum~n!52e22nLN~4n!, ~40!

where as beforeLN(x) stands for Laguerre’s polynomial o
the orderN. The functionpnum is very similar to its counter-
part defined in Eq.~35! in the sense that it also has an osc
latory behavior forn,N and exponentially decays forn
.N. In Ref. @12# we showed that the simple GP picture~i!
gives a multiplicative error of (111/N) in the number vari-
ance even in the noninteracting limit and~ii ! it is valid for a
finite period of time shorter than some characteristic sc
determined by interactions:t,tc'J/U5N/l. For longer
times the GP result starts to deviate strongly from the ex
solution due to recurrence occurring in a quantum syst
We might guess that the agreement between the semiclas
and the quantum results can be improved upon includ
quantum fluctuations at initial time according to Eq.~40!.
This is indeed the case fort,tc , i.e., the discrepancy in th
prefactor completely disappears. However, as we can
from Fig. 4, these fluctuations do not affect the timetc itself
so that the correct result can be recovered only if we a
include quantum scattering, or in other words deviations
the trajectories from the classical ones. Finally, we wo
like to note that the initial number state is the worst possi
from the classical point of view, because the phase is c
pletely undefined there. So we expect that, in generaltc
gives the lower boundary of the applicability of TWA.
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IV. NUMERICAL RESULTS FOR MULTIPLE WELLS

Having established a general framework and checked
validity let us move on to the main subject of the paper. Fi
following the analysis given in Sec. II, we will study th
temporal behavior of bosons in a periodic array of we
which were initially in thep state. Then we will consider a
case of a harmonic trapping potential.

A. Periodic array

The straightforward generalization of Eq.~33! for the p
state in a periodic chain ofM coupled condensates withN
bosons per well~we assumeM to be even! is

u0&5~4pNM!1/4e2NM/2E du

2p
e2 iuNM)

j 51

M

uANeiu1 ip j& j ,

~41!

where u•••& j stands for the coherent state in thej th well.
This is an eigenstate of the noninteracting Hamiltonian a
apart from the global phaseu, which conserves the tota
number of bosons, it is just a product of coherent states w
alternating phases. Ignoring the integral overu, results in a
Gaussian probability distribution of the initial state@compare
with Eq. ~34!#

p~c0 ,c0* !52M)
j 51

M

exp@22uc0 j2ANeip j u2#, ~42!

while the correct result for Eq.~41! reads

p~c0 ,c0* !52M expF22M(
k

uĉ0ku2GLNM~4M uĉ00u2!,

~43!

whereĉ0k stands for the discrete Fourier transform ofc0 j ,

FIG. 4. Time dependence of the number variance for the ini
number state and 16 bosons per well. The interaction streng
l51. Note that here and elsewhere in this paper time is meas
in the units of\/J.
9-7
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ANATOLI POLKOVNIKOV PHYSICAL REVIEW A 68, 033609 ~2003!
ĉ0k5
1

M (
j

c0 je
2 ik j . ~44!

Clearly asM→` the difference between Eqs.~42! and~43!
should vanish. Next let us define the operatorV, which
would be a good measure of the instability:

V5
1

N2M ~M21! (
j

~aj
†aj2N!2. ~45!

This is just a normalized sum of number variances over
different wells. We have chosen the prefactor so that^V&
<1, with 1 corresponding to the state with all the boso
located in any single well. It is easy to verify that the cla
sical counterpart ofV is

Vcl~c,c* !5
1

N2M ~M21! (
j

S c j* c j2N2
1

2D 2

2
1

4N2~M21!
. ~46!

It is reasonable to expect that as the number of wells
creases the global phase becomes less and less importan
therefore Eq.~42! becomes more and more accurate.

Next, we consider several specific examples. First let
take the interaction to be monotonically increasing in tim
according to Eq.~37!. In Fig. 5 we plot the resulting evolu
tion of the state for the case of ten wells with 8 bosons
well. The solid and the dashed lines correspond to the p
ability distributions given by Eqs.~43! and~42!, respectively.
Clearly there is no significant difference between them. N
that the upper curves corresponding to smallerd, i.e., to the
adiabatic limit, saturate atV'1, which shows thatall the
bosons appear in a single well, i.e., the resulting steady s
uF& is

FIG. 5. Number variance as a function of the interaction for
case of ten wells with eight bosons per well. The solid and
dashed lines correspond to the distributions given by Eqs.~43! and
~42!, respectively. The upper curves correspond to a slower incr
of the interaction with time.
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uF&5
1

AM
~ u111 . . .&1u222 . . .&1 . . . uMMM . . . &).

~47!

The whole procedure of driving the system into the ma
mally entangled state described here is conceptually v
similar to that recently suggested in Ref.@31#, where the
tunneling was assumed to decrease by the spatial drag o
double-well condensate through a beam splitter. The imp
tant difference, however, is that here we are not limited b
double-well system and can consider larger arrays, so
our entangled cat occupies more than two macrosco
states.

There is an important issue, which was completely o
scured in the preceding analysis. Indeed, studying the n
ber variance alone, it is impossible to distinguish the cat s
from the collapsed condensate. While the collapse is o
very well reproduced using GP equations, it is much har
to describe the recovery within this framework. To exami
this issue let us consider the interaction, which is periodic
time

l~ t !5l0 sin2~pdt !, ~48!

where the parameterd as in Eq.~37! determines the adiaba
ticity of the process. Ifd is small then we expect complet
restoration of the initial state after one period of oscillati
T51/d. With decreasing period we gradually lose adiaba
limit and the evolution of the system is no longer expected
be periodic. Figure 6 summarizes this discussion and
graphs are in perfect agreement with our expectations.
phase correlation in this figure is defined in a usual way

2
1

2NM (
j

^aj
†aj 11&1c.c.

and the ‘‘2 ’’ sign is inserted for the sake of convenienc
because we start from thep state.

e
e

se

FIG. 6. Number variance and phase correlation as a functio
time divided by the period of interaction (T51/d) for ten wells and
eight bosons per well. The interaction changes with time accord
to Eq. ~48!. For smallerd the phase restoration is almost comple
which proves the coherence of the dynamics.
9-8
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EVOLUTION OF THE MACROSCOPICALLY ENTANGLED . . . PHYSICAL REVIEW A68, 033609 ~2003!
So far we considered examples where the initial state
a noninteractingp-phase-shifted condensate and then the
teraction was slowly ramped up~or equivalently tunneling
was ramped down!. This rather hypothetical situation is ce
tainly suitable for the theoretical analysis, but hardly app
cable to any real experimental realization, where the inte
tions between the bosons is always present. So the in
wave function is not a simple product of coherent states
a more complicated object. One way to proceed with t
issue is to write down an approximate wave function, wh
can be obtained using either Bogoliubov’s Hamiltoni
~valid for l!N2) or variational methods, and then find i
Wigner transform according to Eq.~26!. This would be a
tractable but lengthy calculation. Instead, we can do a sim
trick, demonstrating the advantage of the present appro
Namely, we can start from a noninteracting ground sta
then adiabatically increasel to the desired value, and finall
apply thep phase shift following the subsequent evolutio
In this scheme there is no need to do any additional ana
calculations, both ‘‘fake’’ and the real dynamics are d
scribed within the same scheme. Moreover, the comp
tional time does not increase much because of the extra
evolution towards the true ground state. Indeed, the class
motion is stable before thep phase shift is applied so tha
GP equations can be efficiently integrated. To be more s
cific, assume that we start from the interacting condens
with l5const(t), then at t50 suddenly apply ap phase
shift and follow the subsequent appearance of the
Clearly if l.lc @see Eq.~9!# the system becomes unstab
and the quantum fluctuations force it into the entangled st
Without any calculations, it is obvious that the final state w
not be maximally entangled as described in Fig. 5 becaus
the energy conservation. Indeed, the state with all the bos
occupying one well costs a huge interaction energy wh
cannot be compensated unless there is an external pum
resulting in the time dependence of the Hamiltonian. Fr
the same considerations it is obvious that the maximum p
sible entanglement within this scheme can be achieve
some intermediate values ofl. Thus if l,lc , there is no
instability to begin with and so no entanglement in the fin
state. On the other hand, for the largel any significant num-
ber fluctuations will cost a strong increase in the interact
energy, which cannot be compensated by a limited decre
in the hopping energy. We plot the resulting number varia
as a function of time for the periodic array of ten wells
Fig. 7. The critical value of the interaction for this case
lc52 sin2(p/10)'0.19. Clearly forl getting closer tolc
the oscillations become slower and the steady state
achieved later. We would like to point out that this type
dynamics corresponds to a sudden perturbation discuss
Sec. III B 2. Therefore, we expect a finite ergodic time fo
full quantum solution so that there is no true steady state
the finite number of bosons. So to achieve a stable statio
entangled state it is preferable to drive the system adiab
cally towards the instability, i.e., apply ap phase shift at
smallest possiblel and then slowly ramp up the interactio

B. Harmonic trap

The effect of a harmonic trap can be mimicked by add
a quadratic potential term to the Hamiltonian of system~1!
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Vj5
Jv t

2

4
j 2. ~49!

Herev t is the trapping frequency.
As before let us assume that initially the interactions w

suppressed and the system was in the ground state:

uO&5S (
j

a jaj
†D Ntot

uVac&, ~50!

whereuVac& denotes a vacuum state with no particles,Ntot
is the total number of bosons in the system, and

a j'
A2

~pv t!
1/4

e2(v t
2/4) j 2

~51!

is the ground-state wave function of a single boson in
harmonic trap in the coordinate representation. The stateuO&
can be also written as

uO&5E du

2p
eiu(n11n21•••2Ntot)uANtota1&cuANtota2&c , . . . ,

~52!

where as usualua&c stands for the coherent state,nj
5ua j u2. If the number of populated wells is not small, the
we can ignore the global phase and use an approximate
pression

uO&')
j

uANtota j&c . ~53!

As in the previous discussion we assume that at initial ti
the phases in the adjacent wells were uniformly shifted
some phasef. However, we will not consider only the cas
with f5p, because thep phase shift in the nonuniform
potential does not give a stationary solution, although it s
preserves the inversion symmetry. Also the number varia

FIG. 7. Number variance as a function of time for ten wells a
8 bosons per well. The interaction remains constant in time in
example but att50 a suddenp phase shift is applied to the system
9-9
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FIG. 8. Center-of-mass position and the condensate width as a function of time for the interaction and trapping frequency incr
time according to Eq.~56! with d50.01, v t

2(0)50.03, and the total number of bosonsNtot5100.
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is no longer a convenient measure of the instability beca
the distribution is not uniform even in the initial state. I
stead, let us introduce two other quantities: coordinate of
center of mass and the condensate width:

X5
1

N K (
j

ja j
†aj L , W5A1

N K (
j

j 2aj
†aj L 2X2.

~54!

The semiclassical operators can be trivially obtained fr
Eq. ~54!. For example,

Xcl5
1

N K (
j

j ~c j* c j21/2!L . ~55!

Let us assume that both the interaction and the trap
quency increase in time:

l~ t !5
tanhdt

12dt
, v t

2~ t !5
v t

2~0!

12dt
. ~56!

We definel according to Eq.~2! with N5Ntotua0u2 being
the number of bosons in a central well. Note that withv t
Þ0 there are two degrees of freedom:l/J andv t /J. If we
want to reflect the experimentally relevant case of vanish
tunneling rather than increasing interaction we have to k
the ratio l/v t

2 constant. Extra multiplier ‘‘tanhdt’’ in the
interaction term is taken only for convenience purposes
it does not qualitatively change any of the results.

The two graphs in Fig. 8 show the condensate width a
the center-of-mass position vs time for different initial pha
imprints. Note that if the phase shift is equal top, there is no
center-of-mass oscillation because of the inversion sym
try. However, the width oscillations are very large and p
nounced in this case. They also die very fast away from
p phase shift, however the steady-state condensate w
depends onf rather smoothly. It is also interesting to no
that the center-of-mass oscillations decay faster for lar
angles. This is in the direct agreement with the previo
03360
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predictions of self-trapping at large phase gradients@7#. We
would like to point out that the trapping is real in our ca
because of the rapidly increasing interaction~or equivalently
vanishing tunneling!.

There is, however, a major difference between the res
for a periodic array and a harmonic trap. In the classi
limit, the p state is an eigenstate in a periodic array for a
strength of the interaction, therefore the motion is complet
driven by the quantum-mechanical fluctuations, while in
harmonic trap thep state is classically unstable~that is why
we plot our observables versus interaction for the perio
array and vs time for the parabolic trap!. The classical insta-
bility makes quantum effects unimportant if the number
bosons is large. To further elucidate this point let us comp
the results for a single Gross-Pitaevskii trajectory, i.e.
simple classical limit, with the TWA result. The two depe
dences are shown in Fig. 9 and they are clearly very al
This proves that the resulting instability has a simple clas

FIG. 9. Condensate width as a function of time for the sa
conditions as in Fig.~8!. The dashed line is the simple Gros
Pitaevskii result and the solid line is the improved calculation
cording to Eq.~25!.
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EVOLUTION OF THE MACROSCOPICALLY ENTANGLED . . . PHYSICAL REVIEW A68, 033609 ~2003!
cal nature and does not give a cat state, rather the conde
simply has large amplitude breathing modes. Such an
come should not be very surprising. In order to get to
macroscopical entanglement one has to prepare a class
equilibrium but unstable state, which can be driven away
quantum fluctuations. This can be achieved by a sim
phase shift only in a uniform periodic lattice.

We can also check the reversibility of the evolution f
the periodic in time interaction~48!. And clearly ~see Fig.
10!, the dynamics is completely irreversible. This result
also not surprising given that the initial state is not station
even without interactions, so thep phase shift looks as a
sudden perturbation applied att50 and even if the interac
tions change with time slowly the system is not in the ad
batic regime.

V. DISCUSSION

In the previous sections we adopted a truncated Wig
approximation allowing us to treat dynamical evolution
classical instabilities due to quantum fluctuations. We co
pletely ignored the classical noise, which may come fr
various sources, e.g., fluctuations of the laser intensity
wavelength, fluctuations of the magnetic field creating
trap, collisions with external atoms, triple interactions lea
ing to the loss of the atoms from the condensate, etc.
these sources are generally quite weak, otherwise no be
ful experiments would ever be possible. On the other ha
cat states are very fragile to any kind of classical noise.
example, in a double well in equilibrium, the noise requir
to destroy the coherence exponentially scales with the m
~or equivalently the number of particles!, so that heavy ob-
jects are always localized in one of the classical minim
However, this is not the case in our situation. Indeed,
system is far from the equilibrium and the cat state is no
ground state. Let us crudely estimate the limits set on
noise. Assume that the classical fluctuations result in a

FIG. 10. Phase coherence as a function of time for the perio
interaction~48! with d50.004. The total number of bosonsNtot

5100, the trap frequencyv t
250.03, and the initial phase shiftf

5p. Clearly the dynamics is completely irreversible as oppose
Fig. 6.
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dom external potential with a usual correlator^Y(t)Y(t8)&
5Y0d(t2t8) and consider the case of two wells for simpli
ity. Then the relative phase flow due to fluctuations will
du;NY0At. On the other hand, the minimum time require
to get to the cat state is~see Sec. II! t;d21; ln N. Requiring
that the total phase accumulated during the evolution is
than one, we get the upper bound for the noise which d
not destroy the coherence :Y0;1/NAln N. This result is en-
couraging, because instead of exponential we get a m
weaker scaling of the noise with the number of particl
Clearly, in the multiwell case there will be an extra scali
with the number of wells and of course no cat state is p
sible in the thermodynamic limit. However, the scaling w
be again weak and tractable. Another possibility to obse
macroscopic cat states experimentally is to use a modul
hopping between the sites in a large array effectively sp
ting the condensate into pairs of sites, so the effects of
classical noise become weaker.

The other two constraints used in our analysis that
number of bosons is large and the condensate is one dim
sional are also not essential. We used the large numbe
bosons rather to satisfy the formalism than to explain
effect. The instability is there even in the fully quantum
mechanical treatment of the problem and the resulting m
mally entangled state is clearly independent ofN. The only
thing is that the evolution of macroscopically entangl
states with a large number of atoms is more interesting fr
the experimental prospect. Concerning higher dimensions
would like to point out that, although we did not perfor
actual calculations, it is extremely unlikely that any of th
results will qualitatively change. The instability will clearl
survive in any dimensions and thep state can be imple-
mented, at least theoretically, in square lattices of arbitr
dimensionality.

In conclusion, we showed that it is possible to create m
roscopically entangled Schro¨dinger cat states in bosonic sy
tems in optical lattices with finite number of sites. We jus
fied and used truncated Wigner approximation generalizin
simple GP approach by the exact treatment of quantum fl
tuations at initial time of the evolution. Using a solvab
model of two coupled condensates we found a very go
agreement of TWA with the exact results. At the end w
presented some numerical simulations for the multiple-w
condensates and argued that it is possible to create a cat
with more than two possible outcomes.
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APPENDIX: MICROSCOPIC DERIVATION
OF THE TRUNCATED WIGNER APPROXIMATION

Let us assume that at the initial time of evolutiont50 the
system is described by a density matrixr0,
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r05(
x

P~x!ux&^xu, ~A1!

whereux& represents some basis state andP(x) is the prob-
ability to occupy it „for the coherent basisP(x) coincides
with the GlauberP function commonly used in quantum op
tics @17#…. If the initial state is pure, the sum contains on
single term. According to the standard quantum-mechan
formulas, the expectation value of an arbitrary norm
ordered operatorV at time t is given by

V~ t !5TrH r0TKt expF i E
0

t

H~t!dtGV
3expF2 i E

0

t

H~t!dtG J , ~A2!

whereTKt is the time-ordering operator along the Keldy
contour going from 0 tot and then returning back to 0 s
that the operators corresponding to a later time are pla
closer toV, H is the Hamiltonian of the system, e.g., Eq.~1!
in our case. In the same way one can define correlation fu
tions of products of operators. The conventional trick to d
with expressions such as~A2! is to rewrite them in the path
integral form using the coherent-state representation@32#.
The only difference with a more usual equilibrium case
that there are two exponents containingH. So it is conve-
nient to introduce two fieldsaf andab propagating forward
and backward in time@28#. Then instead of Eq.~A2! we can
write

V~ t !5E DafDab^ab0ur0uaf 0&

3e2af 0* af 01af 0* af 11 iH(af 0* ,af 1)Dt
•••

3e2af Q* af QV~af Q* ,abQ ,t !

3eaf Q* abQe2abQ* abQ1abQ* abQ212 iH(abQ* abQ21)Dt
•••

3e2ab0* ab0, ~A3!

where Dt5t/Q and Q→`, V(af* ,ab ,t) is the normal-
ordered operatorV with the fieldsa†(t) anda(t) substituted
by complex numbersaf* (t) andab(t). The expression abov
is intentionally written in a discrete form to take care of t
boundary effects. In the classical limit the evolution is det
ministic, so thataf cl(t)5abcl(t). On the other hand, be
cause of quantum fluctuations the two trajectories may
different. Therefore, instead of the forward and backw
fields it is natural to introduce their classical (c) and quan-
tum (h) combinations@28#: af5c1h/2, ab5c2h/2. So
that in the classical limitc should correspond to the solutio
of the GP equations andh should be simply equal to zero
Now we can take a continuum limit in Eq.~A3! sending
Dt→0:
03360
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^V~ t !&'E Dh~t!Dc~t!K c02
h0

2 Ur0Uc01
h0

2 L
3VS c~ t !* 1

h~ t !*

2
,c~ t !2

h~ t !

2 D
3e2uc0u22(1/4)uh0u22(1/2)uh(t)u2e(1/2)(h0* c02h0c0* )

3expF E
0

t

dt h* ~t!L@c,c* ,t#

2h~t!L* @c,c* ,t#GexpF i E
0

t

dt
l~t!

4N

3@c* ~t!h~ t !1c~t!h* ~t!#uh~t!u2G , ~A4!

whereL@c,c* ,t# stands for the classical~GP! differential
operator acting on the fieldc(t):

Lj@c,c* ,t#[
dc j

dt
2 i ~c j 111c j 21!1 il~t!c j* c j

2 .

~A5!

Note thatL as well as the fieldsc andh have spatial indices
which we suppressed in Eq.~A4! to simplify notations, the
products such ash* L in Eq. ~A4! stand for the sum overj:
( jh j* L j . A closer look to Eq.~A4! shows that there are
linear, quadratic, and cubic terms in the quantum fieldh, the
latter appearing only due to interactions. It is intuitively cle
that in the classical limith(t) should be small in some
sense. Thus, if we ignore completely all nonlinear terms
h, then the functional integral over the quantum field b
comes a trivial product ofd functions enforcing GP equa
tions on the classical fieldc. The next approximation will be
to leave quadratic corrections but ignore cubic. From E
~A4! it is clear that the quadratic corrections affect only t
initial and the final times of the evolution, that is why it wa
important for us to start from a discrete version of the p
integral and be careful about the boundaries. The inte
over h(t) transforms the operatorV into Vcl according to
Eq. ~28!. It is a simple exercise to check thatVcl is obtained
by first symmetrizingV and then substituting the operatorsa
anda† by thec numbersc andc* . For example, if

V5a†a5 1
2 ~a†a1aa†!2 1

2 , ~A6!

then

Vcl5^c* 1h* /2,c2h/2&5c* c2 1
2 , ~A7!

whereas it follows from Eq.~A4!, the average overh is
taken with the weight exp(2uhu2/2).

The second quadratic contribution originates from t
field h0 corresponding to the initial time of evolution. Be
cause of the coupling toc0 in Eq. ~A4!, these fluctuations
introduce a probability distribution for the classical initi
conditions given by Eq.~26!. If we ignore the corrections to
the classical equations of motion coming from the th
9-12
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power of the quantum fieldh, then the time dependence o
the observableV will be given by Eq.~25!.

Let us now give general comments on validity of Eq
~25! and ~26!. If the Hamiltonian is noninteracting, the
these expressions are exact. If there are nonlinear inte
tions, then, in general, there will be corrections to the act
involving terms proportional to all odd powers ofh: h3 in
our case@see Eq.~A4!# or higher in general. Those terms wi
affect the time evolution, which will not be described by t
GP equations any longer. In Ref.@27# we show that the cor-
rections to the GP dynamics arise in the form of the quan
scattering events, which are equivalent to the nonlinear
sponse to the infinitesimal perturbation of the fieldc along
its classical path. We only note here that these corrections
always of the form f (t)/N2 with f (t) being some time-
dependent function satisfyingf (t)→0 at t→0, and 1/N is
our semiclassical parameter. So the TWA given by Eqs.~25!
and ~26! always gives the exact short-time asymptotical b
havior of the evolution. As we discuss in Sec. III B, the tim
when TWA breaks down depends on the details of a part
lar process and becomes longer under slow perturbati
where only a limited number of quantum levels are excit

Another point we would like to make is that though th
expansion in powers of 1/N is clearly around the classica
solution, there is no\ present anywhere. This should not b
surprising since here and quite often in the atomic phys
the Planck’s constant either completely absorbed into e
gies, which are measured in hertz, or into time. In conv
A

e

s,

p,

hy

03360
.

c-
n

m
e-

re

-

-
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s
r-
-

tional units\21 appears as the prefactor in the action jus
fying the saddle-point or classical approximation. In t
same way, the number of bosons per siteN appears as a
prefactor in the exponent of Eq.~A4! after rescalingc
→ANc andh→ANh. So in general any expansion in pow
ers ofh is in fact the expansion in powers of\.

Let us finally spend a few words discussing the differen
between the present derivation and that of the conventio
Keldysh technique. The key point in our discussion is th
we ascribed the time dependence to the operatorV itself,
while leaving the density-matrix time independent. This
lowed us to completely separate initial quantum fluctuatio
which entered in the form of the Wigner distribution of th
initial conditions for classical trajectories Eq.~26!, from the
quantum dynamical effects~which we consider in Ref.@27#!.
On the other hand, in the Keldysh technique the density m
trix acquires time dependence and the initial density ma
is absorbed into the quantum propagator@28#. While it is still
possible to derive GP equations in the saddle-point appr
mation, integrating out quantum fields in the lowest ord
gives a complicated self-interacting classical action@28#,
which is hardly possible to deal with except perturbatively
using stochastic methods. This should not be surprising s
any diagrammatic technique uses a noninteracting Gaus
limit as a starting point. Therefore, to get just a classical
dynamics in the Keldysh technique, it is necessary to sum
diagrams with classical vertices~three classical fields and
one quantum! @28#, which looks virtually impossible.
.
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