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Localization in splitting of matter waves
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In this paper we present an analysis of how matter waves, guided as propagating modes in potential
structures, are split under adiabatic conditions. The description is formulated in terms of localized states
obtained through a unitary transformation acting on the mode functions. The mathematical framework results
in coupled propagation equations that are decoupled in the asymptotic regions as well before as after the split.
The resulting states have the advantage of describing propagation in situations, for instance matter-wave
interferometers, where local perturbations make the transverse modes of the guiding potential unsuitable as a
basis. The different regimes of validity of adiabatic propagation schemes based on localized versus delocalized
basis states are also outlined. Nontrivial dynamics for superposition states propagating through split potential
structures is investigated through numerical simulations. For superposition states the influence of longitudinal
wave-packet extension on the localization is investigated and shown to be accurately described in quantitative
terms using the adiabatic formulations presented here.
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[. INTRODUCTION cooled atom$19,20. Several different setups for atom opti-
cal analog of well-known interferometric devices have been
During the past few years, manipulation of confined mat-proposed and investigated in previous theoretical studies. In
ter waves has experienced a remarkable progress, both dueRef. [21,22], waveguide interferometers based on magnetic
the development of laser cooling and trapping of neutral attrapping and a time-dependent bias field were described. The
oms[1,2] and progress in lithographical fabrication of nano- use of time-dependent currents to change the potential con-
structures for ballistic electrori8]. In the channeling regime figuration was considered in Ref23]. The physics of an
of these experiments, the dynamics will be propagation oktomic interferometer in the multimode regime was investi-
matter waves in, possibly multiple, tightly confined wave gated in Ref[24]. Other works have investigated the nonlin-
guides. earities due to many-body effects in atom optics, see, e.g.,
Several techniques have been utilizddifor guiding neu-  Ref.[25] and references therein. In RE26] the behavior of
tral atoms, among them magnetic confinement both insida Tonks gas in an interferometer was investigated theoreti-
hollow glass tube$5] and above current carrying wirg§], cally. The splitting-recombination regions were here treated
permanent micromagnefg], light force trapping[8], with by assuming that the physics of the splitting could be incor-
microfabricated optic§9] and various other schemes basedporated in boundary conditions of the quantum dynamics. In
on the interaction of electromagnetic radiation with atoms. InRef. [27], the influence of weak nonlinearity on the merging
Ref. [10] the splitting of a thermal atomic cloud above cur- of split atomic gases was investigated and shown to cause an
rent carrying wires of millimeter size was demonstrated andnstability of the transfer of population in the guided modes.
in Ref. [11] a similar experiment was performed using mi- Recently it was suggested that optical lattices could be used
crofabricated conductors. The creation of Bose-Einstein corto transport atoms through split potential structures in order
densategBECs in microfabricated structures was reported to achieve entanglement of neutral atof#8].
almost simultaneously by two group$2,13 and has since Propagation of local excitation is also of interest in other
been reported by several groudst,15. In addition, coher-  physical systems. In communication technology, the progress
ent transfer of a BEC into waveguide structures has beeof an optical pulse through guiding structures serves as the
accomplished16,17]. In Ref.[18] the splitting and propaga- model system for both communication and computation ap-
tion of a BEC in a microfabricated optical trap with interfer- plications. In femtosecond laser-induced dynamics of mo-
ometer structures was demonstrated. This experimentétcular processes, we have a well established area of re-
progress has created an interest in the phenomenology e&arch, where vibrational states propagate along electronic
localized quantum states propagating through various typgsotential surfaces.
of potential structures. In confinement to atomic waveguide geometries with
Interferometer experiments depend directly on the wavearansverse dimensions around or below micrometer scales,
nature of quantum mechanics and in such configurations amte quantum nature of the atoms starts to dominate the dy-
dominated by the nonclassical properties of material parnamics. Propagation in such potentials will take place in the
ticles. The metrological advantage of using matter wavegorm of matter waves, we are in the regime of atom optics,
comes mainly from the increased sensitivity offered by theand the phenomena can be used to explore new features in-
very short de Broglie wavelengths achievable using lasevolving the fundamental properties of quantum dynamics.
Work is in progress to create the atom optical analog of
standard optical components relying on waveguide struc-
*Electronic address: mrq@kth.se tures. This development is partially spurred by the possibili-
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ties to utilize matter-wave guides for quantum lof2®] us-  electronic states. Propagation on potential surfaces with mul-
ing controlled collisions of neutral aton80]. tiple minimal valleys also occurs in reactive scattering and
When the essential physical phenomena are of short dumany _sim.ilarities . between_ interf_erometric devices and
ration, they are best understood in the time donpai. This ~ branching in 'chem|cal reactions exist. o
is true even when the Hamiltonian contains no time depen- The question whether or not the longitudinal extent of a
dence. To simulate realistic systems, one needs to considBfoPagating quantum wave packet will give rise to any ob-
many degrees of freedom, which makes the numerical worRervable consequences has caused debate at times. Both ex-
difficult and in many cases well beyond the resources of€fimental results utilizing neutrori89] and theoretical ar-
even the most powerful modern computers. Due to the expddUments[40] in favor as well as criticism pointing to
nential growth of Hilbert space with the number of degreestérnative interpretationg41] have appeared in the litera-
of freedom, well known in quantum information theory, the ture. We consider here the influence of longitudinal localiza-
amount of data to be processed increases exponentially wiffP" ©n the physics of wave packets propagating through split
the number of dimensions. Any method which reduces thi otential structures. This is in contrast to our earlier work
number is extremely interesting and will find uses in diversd-33 Where the splitting was investigated solely in terms of
areas. The use of separated channels or modes offers sucthﬁ transverse eigenstates in order to _derlve adiabaticity cri-
approach, but this requires certain adiabaticity assumptior§"'@ for propagating states. Here we wish to extend the adia-
to hold. In the lowest approximation, the center of the wavedatic propagation schemes to include situations describing

packet may be assumed to progress along the classical mirfpical matter-wave int.erferomet_ers. Due to thg difference in
idhe effective propagation equations, the physics around the

mum of the potential valley. The transverse curvature is''> * - F - -
taken to provide a confining potential around this. splitting point is nontrivial also for coherent superpositions
of different propagating modes.

In our previous works, the limitations due to mode cou- : i
The structure of the paper is as follows: Section Il de-

pling were examined both for single waveguid&?] and k . P -
split potentialg33], and it was shown that the breakdown of scribes the system investigated and the separation of the

adiabatic following of the transverse modes was connectey@Ve function into distinct modes using transverse eigen-
to the intrinsic diffraction of matter waves. The connectionStates of the potential-energy surface. In Sec. lll, we describe

with diffraction was shown also for the transition from adia- & framework for adiabatic propagation in terms of localized

batic propagation to free expansion in Rg4]. The occur- modes obtained using a unitary transformation of the trans-
rence of reflection of guided matter waves was investigate€'S€ €igenstates. Section IV discusses the case of propaga-
both for single guide$35] and for split potential§33]. In tion of coherent superpositions of transverse eigenstates and
both cases considerable backscattering was found to occur fj€ influence of finite longitudinal wave-packet size. Finally,

the adiabatic limit and in the case of single guides also in the’€C: V summarizes the results of the paper and discusses the
transition to free expansion. In this work, we consider theconsequences for interferometric experiments and simula-

channeled splitting of wave packets on two-dimensionafons thereof.

potential-energy surfaces, the highest dimensionality com-

fortably available for numerical work at present. The propa- Il. ADIABATIC PROPAGATION
gating state is assumed initially to be localized closely along

2 sinale minimal path and subseauently propaaated throuah Matter waves in potential microstructures evolve accord-
Ing al p Seq Y propag oug iﬁg to the time-dependent Scldiager equation. In this work
split of the guiding structure into two identical waveguides.

An adiabatic basis of discrete eigenstates is used to redude study a two-dimensional system with stationary potential

the complexity of the problem by reducing the time- IV (X,y,1)
dependent Schdinger equation to a set of equations for i =
closely coupled channels. When the physical parameters of
the problem allow adiabatic propagation, the discrete basi

states decouple, making it possible to model the system as or further details on the consequences of this choice see
number of independent one-dimensional wave packetrs d ’

propagating in their respective potential structures. As sucfi9- Refs[32,34]. In th‘? cases of interest here, th? propaga-
the model could apply to as well chemical reaction pathway‘%'or:c will be r?lohng the mlnt|mkal \t/allfe3|/_s tOf t.h? potenU?I-energyf
and optical fiber communicatiof86] as mesoscopic struc- surtace, w 'g wg can d"?‘ €to m?e n o.al co\r}vmu::m 0
tures[37], but we essentially have in mind the recently de_transverse, ound one-dimensional potentials. We then as-
veloped microstructures for confined atomic wave packets.s’ume th_at the tlme-lndepenQent_Sc:hrrger equation can be

Interferometry depends on the splitting and recombinationso.lv.ed in the t.ransverse d|re9t|on at each point a_long the
of matter waves together with local manipulations of themlnlmal curve in order to obtain a set of eigenfunctions:
propagating states. It is thus important to understand the 5
physics of matter-wave splitting in terms of localized states. __ E I n(X.y)

, \ . ; En(X) 7n(X,y) +VXY) 7a(X,y). (2

Here we describe the dynamics using a unitary transforma- 2 gy?
tion acting on the propagating modes in order to create a
basis with suitable localization properties. The formal frame-The transverse Schdinger equatior{2), which constitutes a
work used here is in many respects similar to hybridizationSturm-Liouville system, has a complete set of eigenfunctions
in molecular physic$38] which is used to create localized {#,(x,y)}. These can be used in an ansatz together with a set

1
= VAV D VOO W (Y. (D)

nits are taken to be dimensionless unless otherwise stated;
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of longitudinal wave functiond¢,(x,t)} yet to be deter-
mined. As these are taken to depend also on time, they de | ]
termine the time evolution, both propagation along the mini-
mal valley and the confined dynamics in the transverseY of ]
direction. The total wave function is given by the expansion

\P(x,y.t>=n§0 @n(X,0) 70(X,Y). (3)

We insert Eqs(2) and(3) into Eq. (1), multiply by 7,,(X,y), 15 b) E,( |
and integrate over the transverse coordinate, which is thu:
eliminated by the orthonormality of the basis set. We obtain

the expression o E,(x)

JPm 1 pm - IPn 20 20 0 20 20
—=— - ——+EjX + Anm(X) —
Jt 2 52 n(X)@m nZO nm(X) X
4) FIG. 1. In(a) a contour line of the potential given by Ed3)
and (9) with the parameters given b=10, wy=1, dy,=5 is
) ) o shown. The chosen equipotential level corresponds to distances
where we have introduced the first order kinetic cou-  tyice the ground-state width away from the bottom of the wells. In

+Bum(X) ¢n s

plings (b) the transverse binding energies for the first two states are shown
as functions of longitudinal distance. We see that the two transverse
* INm(X,Y) eigenenergies become nearly degenerate shortly befel@, re-
Anm(X) = _f x’)n(X,Y)Tdy, 5 sulting in a markedly increased tunneling time between the two

wells. Units are dimensionless.

and the second-ordéor potential couplings

1 wo 1/4
2 nO(y!d(X)): > _)
” I m(X,Y) V2(1+e @od®H\ 7

1
Bnm(X)=— Ej 7n(X,y)—————dy. (6)
o X X[~ (@2 +d(1 4 g=(w02ly-d(X1*] (g)

Couplings(5) introduce velocity-dependent interactions. We anq the ground-state energy is constag(d(x))= 2 wo. In
have here assumed that the coordinate line gively5¥,  order to investigate the behavior of wave packets in SDW
i.e., the origin of the transverse coordinate, does not curve asptentials the distance function was chosen as

this will introduce further couplings between the different

modes. Propagation of the longitudinal modes is governed by 1 X
Egs. (4), a system of coupled one-dimensional Sclimger d(x)= Edma{1+tan"(i) ,
equations; these can in principle be solved directly, but in

practice this procedure becomes cumbersome as it relies Qphere d,,,, is half the asymptotic distance between the
solving the transverse problem and using the solutions thuginima andX is a parameter which controls the extension of
obtained to calculate the coupling coefficietBsand(6). N the region where the transition from a single guide to a
simplified treatments of matter waves in guiding potentialgoyple guide takes place. Twice the functid(x) strictly
structures, frequently only the ground state is included andpeaking only equals the distance between the minima for
the couplings to higher modes are neglected. Here we cont— g and in the asymptotic limit of large separations. In Fig.
sider the propagation of wave packets guided close to th¢ the potential given by Eq7) and(9) with the parameters

©)

minima of a symmetric double-we{EDW) potential X=10, wo=1, andd,.,=5 is shown together with the
) transverse binding energies for the two lowest states. These
Vow(Y,d(X)) =3 0g{y?+d(x)*—2yd(x)tanf wey d(x) 1}, two states become degenerate with respect to energy for

(7) large interwell distance functiod(x). The behavior of the
transverse eigenstates as functions of longitudinal distance

where d(x) is a parameter which determines the distancecan be seen in Fig. 2, where the same parameters as in Fig. 1
between the two minima, here taken to depend on the longiwere used.
tudinal coordinatex. This potential allows us to determine  In Fig. 3 the magnitudes of coupling$) and (6) are
the ground state exactly. At constant longitudinal coordinateshown for the two lowest-energy eigenstates of the SDW
the transverse ground state for this potential is given by gotential used here. For a symmetric potential, the transverse
sum of two identical Gaussians, each centered close to theigenstates have definite parity. It is easily seen that taking
minima of the two wells: the derivative with respect to the longitudinal coordinate pre-
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FIG. 2. Mode structure of the two lowest-energy eigenstétes . .
70(y.d(x)) and (b) 75(y,d(x)). Shown is the probability density f'Gt'h?’- Abs°'0‘|‘te ‘éaf'.“ets of .tth‘; C‘?“p"“tgi gven by lE@at”d
for the two transverse modes as function of both transverse an ) for the ground and first excited eigenstates. The relevant energy

longitudinal coordinates. The two modes are seen to split into twosciJlle IS sett b{) the transvgrsgthosm_lIat(_)rrhfreqtfemgytj, |.e.(,j th?
distinct pieces each centered in one outgoing guide. Axes are i alues are o be compared wi unity. The velocity-dependent cou-
dimensionless units. plings Agg(x) andA;4(x) are seen to be very small for the momen-

tum values needed for adiabatic propagation, whereas the couplings

. X) and By;(x) are a few percent of the ground-state energy.
serves parity of the transverse states. As a consequence, t‘%ﬁ)( ) 1(¥) P 9 9y

its are dimensionless.

coupling matrix elementsy;(x) andB;;(x) vanish for tran-
sitions mixing odd and even states. . . .

In our previous work[33], adiabatic propagation in the about a_factor Qf\/f. Here_a suitable choice is the distance
SDW potential given by Eqg7) and (9) was investigated. over which the interwell distance separates to about
The magnitude of the nonadiabatic excitation, measured as
probability transferred from the ground state to excited states d(x,)= JEAyz J2wo, (12)
during propagation through the splitting region, was found to
depend on a single dimensionless parameter, the Fresnel ) .
number, named after the analogous quantity in classical ogVNereAy denotes the width of transverse ground state. This
tics [42]. Small Fresnel numbers correspond to the far-fieldS &/S0 the point, in the longitudinal direction, at which the
zone, where the transverse distribution is determined by thgentral barrier height equals the ground-state energy. As a
contribution from a single Fresnel zone only. For a wave'€SUlt, @n assembly of classical particles with the same dis-
packet propagating in a splitting potential, the equiprobabil-tr_'bUt'On of_|n|t|al positions and momen_ta would here see a
ity lines traced out during the evolution will diverge and, Pifurcation in phase space. The value given by &) alone
given that the widening is not too rapid, adjustment to thed0€S not suffice to estimate the length scale and a second
new width will take place. Taking the potential to be chang-PCint must be pinned down using some criterion of the type
ing over distances of the order bf the Fresnel number for
this situation is given as d(x;)=Ay. (12

N= i ! (100  Itturns out that the choice of lower end point is fairly insen-

L Lhwg’ sitive to the exact details of criteriofi2), probably due to

the exponential character of the distance function. A suitable
where\ denotes the de Broglie wavelength corresponding tovalue is given by the point where distance between the wells
the longitudinal motion. Adiabatic propagation of wave was larger than about 1.001 times the ground-state width.
packets in potential structures will take place when theThe distance for potential changes is thus taken to be
changes are such that the Fresnel parameter is small. Thus
the question is whether or not the changes occur over a
length scale comparable to or larger than the Rayleigh
length, which is the length a suddenly released beam requires
in order to evolve into diverging at a constant angle deterwherex, andx, are defined above. With this choice of the
mined by its momentum distribution. The length schlén length scale, the nonadiabatic excitation probability has been
the expression for the Fresnel parameter is, in classical, ofeund to be a function of the Fresnel parameter only, regard-
tics the distance over which a beam diffracts in width byless of the values of other physical paramef{&d.

L=Xy=X, (13
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. LOCALIZED PROPAGATION nal time scale has to be estimated with great care or else the
criterion might become a poor indicator of adiabatic evolu-
In our earlier works, the investigation of adiabatic propa-tion. For wave-packet dynamics in spatially changing poten-
gation was mainly focused around changes related to th#éal structures, the diffraction criterion can be used as a
diffractive spreading of matter-wave beams, this beingmeans to estimate the allowable changes in a d&k$ioc
equivalent to the case of wave packets propagating in potemmanner. In addition to the two time scales mentioned, the
tial structures of changing widf82]. For a potential-energy system under consideration here contains a third, the trans-
surface with a single minimal path, the idea of separation ofrferse tunneling time given by the energy split between
the wave function is in principle unproblematic as the longi-ground and first excited states,
tudinal modes propagate close to the minima.
For the case of splitting, considered here, such an ap- Tiunn~ L/AE, (16)
proach neglects the process of dividing the transverse states
into two separate halves by the raising of a central barrier. A& function of the distance between the wells and the trans-
the incoming transverse oscillator frequency in the potentiaverse oscillator frequency. As the ground-state energy is con-
used here coincides with the ones in the two outgoing guidestant in the double-well potential chosen, the tunneling time
an alternative picture could be envisioned. It is possible tds always larger than the transverse oscillation time:
consider the incoming wave packet as being a superposition
of two almost identical ones each to be guided along one of Tosc=<Ttunn- 17
the two degenerate minima. In this case there are two ap-
proximately independent wave packets propagating in twd>epending on the relative sizes of the three time scales, we
waveguides curving in different directions away from eachcan distinguish between different regimes. First, if the exter-
other. Nonadiabatic excitations would then be regarded agal time scale is the shortest,
arising due to the longitudinal curvature of each guide.
For the case of symmetric potentials with split minima the At<Tose<Ttunns (18
transversally localized propagating modes are the transverse
energy eigenstates of the binding potential in the region bethe dynamics will be nonadiabatic resulting in sizable exci-
fore the splitting. When the potential minima are far aparttation of higher transverse modes. The potential changes oc-
the localized states are known to be given by linear combicur fast enough to result in the wave packet propagating with

nations of pairs of energy eigenstates according to constant shape through changes. On times scales of the order
of the oscillation time, the resulting changes start to be no-
1 ticeable when transverse oscillations induced by the nonadia-

7uR(Y,d(X))= \/E[nn(y,d(x))i 7n+1(,d(X)] (14 patic transitions become visible. If both the oscillation and
tunneling times are shorter than the external time scale,

where the transverse quantum numlet0,2,4.... An
adiabatic propagation scheme thus has to deal with the ap- Tosc= Trunn<At, (19
parent conflict of continuously guiding energy eigenstates,
which have definite parity and are localized in a single mini-the potential changes over length scales larger than the Ray-
mum, into states that are delocalized, when it is known thateigh length and the dynamics evolves adiabatically with re-
wave equations have localized propagating solutions. For th@P€ect to the transverse eigenstates. Propagating wave packets
case of large constant separation between the waveguiddgus behave as if composed of a single mode, although they
the propagation, Eq4), becomes separated into independentMight be split into two partially overlapping halves. For large
equations since the couplings depend on the spatial varig&eparations, the tunneling time approaches infinity rapidly, as
tions of the transverse eigenstates. As, in addition, the energ}e two lowest states become degenerate in energy, and it
levels become pairwise degenerate, the propagation equBlight become larger than the external time scale:
tions remain invariant under unitary transformations among
the pairs of eigenstates. Two natural choices for basis states Tosc<At<Tyypn. (20
are transverse energy eigenstates or localized states. The lat-
ter will be the preferable choice whenever the individual po-In this case, transverse energy eigenstates will not be good
tential wells are disturbed in a local fashion, for instance inddiabatic states that are followed, but the localized states,

an interferometric setup, as the influence from the other welfvhich to a very good approximation are single-well ground
is negligible. states, propagate adiabatically and couple weakly to the
The condition for adiabaticity in quantum dynamics is neighboring well only through the overlap which decays ex-
often formulated as a requirement that the internal timg?onentially with the distance between the wells. To relate
scale, in this case the transverse oscillation time this with the adiabaticity criteriofiL0) from our earlier work
[32,33 we first note that the time scale for the potential
Tosc~ lw (15  change can be estimated as

should be shorter than the time scale under which the Hamil- L
tonian undergoes considerable changes, here denotad. by At~ —oL), (21)
For wave-packet dynamics in potential structures, the exter- Ky
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. . . FIG. 5. Mode structure of the localized mode functi
FIG. 4. Spatial variation of the transformation ang(e) for the uetu 'z unctiofa

SDW potential given by Eq<7) and(9) with the same parameter 7(xy) and(b) 7r(x.y), here shown as the respective probability

; . . A densities. Each mode function is seen to be centered on the single
values as for Fig. 1. Shown dashed is the first derivative and dot- g

ide before th lit. After th lit h mode h I I
dashed the second derivative with respect to the longitudinal coogw e vetore e Spi Sf e Spit each moce has only a sma

. . - probability of being in one of the outgoing guides, thus being pre-
dinate. The potential parameters are the same as in Fig. 1. Axes a&%minantly localized to the other. For the mogg(x.y), which

in dimensionless units. before the split is equal to the first excited state, the node seems to

. . ) . disappear around the splitting region. This is not true, however, as
where the lengtit, both for single guides and potential split- (he mixing of the two energy eigenstates causes each localized

tings, is related to the transverse change of the guided stafgode to necessarily have a node in the outgoing distributions. Axes
and has to be chosen as described in Sec. Il. To estimate the: in dimensionless units.

tunneling time(16), we use the fact that the energy differ-

ence between the first two transverse states approximatelyhere the transformation ang#x) is chosen in such a way

was found to be that the new basis states at all positions along the waveguide
are localized in each well in the sense that the expectation

AE~ woexp —2wqd?). (22)  values of the transverse coordinate taken with respect to ei-
ther state will equal the positions of the two Gaussians which
Using Egs.(21) and(22) in Eq. (20), we find constitute the ground state
exp(—2wod?)<N<1, (23 (murlYluR) = Fd(X), (25

where the signs were chosen in order to localigzein the

left minimum, i.e., at negative transverse coordinate values.
This corresponds to the lower well in Figs. 1 and 2. Using
Eqg. (24) in Eq. (25 we arrive at

whereN is the Fresnel parameter as defined by ). If
both conditions in Eq(23) are met, then the error due to
nonadiabatic excitations will be limited by the intrinsic dif-
fraction of matter waves as described in Re&f2]. As the

well separated guides may each go through very different 1 d(x)
evolution, it is not meaningful to talk about the transverse 0(x)= tiarcsir(—), (26)
eigenstates of the total potential as being the adiabatic states 01

that are.followed. Proble_ma'glc situations emerge, for 'n'whereym denotes the dipole matrix element betw nd
stance, in the case of dlffer|ng path lengths betwegn the 1. The spatial variation of the transformation angléx)
g_wdes in a Mach-Zender interferometer or propagation a an be seen in Fig. 4. For small values of separatigg the
rlgf|1rt] E(i)rr]gtlaistgrci\rgi?rfcicgv;ljcrgﬁzigerri 1:0ati2?1n36heme fognglee will be close to zero whereas for large separations it
bropag will approach/2 as the localized states approximately will
the two lowest transverse states, we take our modes to € aiven by E (14). The structure of the localized modes
linear combinations depending on the longitudinal coordi- gb Y q'.:_ '5f h i ial din thi K
nate. In order to preserve orthonormality, we choose th gan be seen In Fig. 5 for the split potential used in this work.
' . . For the mode which equals the transverse ground state for
states to be transformed to the new localized basis thrOthlgrge negative values of the longitudinal coordinate there is
unitary transformation: . ) ; i
little change in the transverse size or other properties along
the propagation direction. For the other mode, however, the
(24) node aroungy=0 seems to disappear as the transverse shape
' after the splitting is close to that of a Gaussian localized in

7. (X,Y) cosf —sind

7]R(X1y)

nO(yid(X))
71(y,d(x))

sing cosé
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the upper minimum. This change occurs just befored as 5L o _—— ]
the upper half of the eigenstate is seen to grow into domi- of .
nating the mode. The total wave function is now given by  -5¢ ——— 1
. L d) ]

W (X,y,t)=nLeL+ 7rEr= 770l @1 COSO+ prSING] ; o .

+ n1[ — @ SinO+ pg coOSH]. (27 =i T .

5t © ]
We thus see that writing the total wave function as a lineary or < ]

combination of two localized transverse modes is equivalent ~5

with transforming the longitudinal modes according to 5L D) ]
i 1
Po(X,t) | | LX) cosf  sind || po(Xx,t) =5 i
@1(X,t) - er(X,t)| | —sind cosé|| ¢ (x,t)] s, a ' : ' .
——— —
If we now use ansat@8) in the time-dependent Schdimger ~100 50 0 50 100
equation and project away the dependence on the transvers. X
Coor(_j'nate' we arrive at the propagation equations for the FIG. 6. Snapshots of a wave packet initially in the ground-state
localized modes mode 74(Xx,y). Pictures(a)—(e) show the probability density for a

wave packet initially in the ground state at instants separated by
equal amounts of time. As time progresses the wave packet propa-
gates through the split and enters the asymptotic region beyond the
split. From the final snapshdg) it is seen that the probability is

2 distributed in a symmetric manner between the outgoing guides.
.O')(PR(X,t) 10 @R(X,t) L . . _ i
i————=— = ——— "+ Er(X) er(X,1) + We, (X,1), The initial wave packet was a Gaussian of widtk=20 and mo
ot 2 ax? mentumk,=1. Units are dimensionless.

(29)

 de(X,t) 1 PeL(x.t)
j—=—

ot 2 2 TEMeDFWer(xh),

. . . .6, snapshots of a wave packet initially in modg(x,y)
where the potentials and the off-diagonal coupling are giveRyhich for large negative distances equals the ground state,
by are shown during propagation through a splitting region.
_ ; Without any interaction between the two modes, the wave
= + + + . . . ’ .
EL(X) = oS o[ Eg(X) + Bod(X)]+ i 0L E(X) + Byy(x)], packet will be guided completely into the lower outgoing

E — SIrPOTE +B +coLH[E +B ' guide_, completely unphysical result as the ground state mode
R(X) =SIMO[Eo(X) + Boo x) ]+ COS L E1(X) + Bas(x)] is split equally between the two degenerate wells, as can be
W(X) = sin 6 cos Eo(X) + Bog(X) — E1(X) — By1(X)]. seen from Fig. 2. At the splitting, the interaction leads to the

creation of a component in modex(Xx,y), which is chan-
neled into the other guide. The dynamics for both modes is
We have here neglected the spatial variation of the transfoishown in Fig. 7. It is seen here that although the wave packet
mation angled(x) in that its derivatives with respect to the is initially completely in the modey_(X,y), the interaction
longitudinal coordinatex have been dropped. The dominat- aroundx=0 causes a significant growth of probability in the
ing off-diagonal term is determined MW(x) in Eq. (30) and  other modeng(X,y). For ground-state propagation, the ex-
this can be considered to give the coupling matrix elementpected result would be an equal split between the outgoing
to lowest order in the spatial derivatives @fx). In Fig. 4  modes resulting in a probability transfer 4P = 0.5 regard-
the spatial variation of the transformation angle and its firsiess of the longitudinal momentuky . Any deviations from
and second derivatives are shown. The propagation equatiottsis result come from numerical inaccuracies in the wave-
for localized modes in a split potential thus have the form ofpacket propagation, failure to include enough couplings, or
a two-level system with spatially dependent energies, coulimited accuracy in the calculation of the coupling coeffi-
plings, and velocity-dependent interactions. For large separaients(5) and (6).
tions of the two minima, the level splitting rapidly goes to
zero .and all qouplings can be neglecteql. When the distar)ce IV. COHERENT SUPERPOSITIONS
function d(x) is close to zero, the couplings are also negli-
gible and the propagation is in the form of two independent A fundamental law of quantum mechanics is the superpo-
modes. The framework defined here thus models the splittingition principle, which can give rise to interesting new dy-
of matter waves using basis states which are localized both inamics through the interference of quantum states. The linear
the single-guide region and in the double-guide region. In theombination given by Eq14), i.e., an equal superposition of
splitting region localized propagation necessitates couplingwo energy eigenstates, corresponds for the case of far sepa-
between the two modes. For a quantitatively more accurateted potential wells to a localized state. Here we wish to
treatment, the terms dependent on the derivatives of thmvestigate the dynamics of superposition states with limited
transformation angle must also be taken into account. In Figspatial extent in the longitudinal direction, and take the ini-
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FIG. 7. Probability density of the localized modes propagating F|G. 8. The adiabatic splitting of a wave packet being transver-
through the potential shown in Fig. 1. [@) |¢,(x,t)|? is shown, sally a coherent superposition of the lowest two eigenstates. As this
and in(b) |r(x,t)|? The wave packet was initially in the ground- state oscillates from side to side in the waveguide, with a period
state mode. In the asymptotic region before the split the wavgjiven by the transverse binding potential, one would naively expect
packet is thus almost completely én (x,t), which is guided to the  the outgoing state to be localized in either outgoing guide given that
lower well in Fig. 5. It is seen that considerable interaction betweeng initial phase of the components has been appropriately tuned.
the localized modes takes place, and that the final distribution i$yn the contrary it is seen that the wave packet is fractioned into
symmetric as expected. Axes are in dimensionless units. smaller portions each centered in one of the guides and propagating

) N outwards. This behavior is due to the differing arrival times for
tial state to be a general coherent superposition of equafifierent longitudinal sections of extended wave packets. The spa-

amounts of ground and first excited states, tial period of the slicing is approximately given by the distance
traveled longitudinally during one transverse oscillation. Units are
1 iAg dimensionless.
V=—=(not+e""n), (3D

V2

where A 6 denotes the relative phase between the states, a

guantity that will evolve with time causing the probability =|{ —=(no+e'fpy)
distribution to shift in space. The states with extreme local- N o n
ization are given by

pLrR= (V| V¥ /R)|?
2

1
E(%i 7]1)>

=%[1icos{A0)]. (39

1
‘I’L/R:E( 70+ 71), (32
We thus see that the probability to go to the left or right at
the split is dependent on the relative phase between the two
energy eigenstates. In the center of mass frame of a quantum
E‘particle, well localized in the longitudinal direction, traveling
at constant momentum, the phase difference between the two
(y)=(T|y| W) states can be assumed to change over a small time interval
according to

i.e., by taking the phase angle to be eithe#=0 or A6
=q. If we calculate the expectation value of the transvers
coordinate we have

1 . 1 :
_ i0 —iAg AE
<\/§(7lo+e 7]1)|y|\/§(7lo+e 7]1)> de:AEdtm_ﬁx dx. (35)
=Y01C0gA 6), (33 ot

where y,; denotes the dipole matrix element between thelhis gives us for the total phase shift during propagation
ground and first excited states, a quantity that approaches

half the interwell distance for the case of well separated po- Ag= foA—dez E (36)
tential minima. x; OX Ky’
For a superposition wave packet of negligible extent in ot

the longitudinal direction, the probability to go to the left or
to the right will be given by the projection of the initial state wherex; andx; denote initial and final positions in the lon-
onto transverse states localized in either well, gitudinal direction and the proportionality constaitis in-
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FIG. 9. The adiabatic splitting of a wave packet initially being @ £1_ 10, The adiabatic splitting of a wave packet being initially
coherent superposition of the lowest two transverse eigenstates. TR& onerent superposition of the lowest two transverse eigenstates, as
figure shows a density plot of the probability in the propagatingyescriped in terms of the localized modes. The figure shows prob-

eigepste.ltesl,cpo(x,t.)|2 in (a) and |l ea(x,1)]? in (b), as functions of  4pjjity density vs longitudinal coordinate and tirta for the mode
longitudinal coordinate and time. The oscillations seen in Fig. 8 are, (x.t) and (b) for the modegr(x,t). The coherent oscillations

absent here as no probability is transferred between the modes BUring the splitting of the wave packet are clearly visible here.
this basis. Axes are in dimensionless units. Units are dimensionless.

troduced for convenience. As the energy spliE goes t0  oscillation as it propagates a distance corresponding to its
zero rapidly after the split, the phase shift slows down, indi-jongitudinal spread,

cating that the oscillation time between the wells, i.e., the

tunneling time, becomes much larger than the oscillation pe- AX 2a

riod in each well. The dependence on the final posikpm 2—<—. (37)
Eqg. (36) will thus be negligible given that the propagation
has been taken beyond the splitting.

If the initial wave packet is spread out in the longitudinal Second, the wave packet should not spread out too much

L . : . : : during the split as this will cause the first condition to be
direction, different parts will reach the split at different times . S
P P broken. We require that the time it takes to propagate through

thus having different local values of the relative phasg ; : :
possibly differing by large amounts. In Fig. 8 we see a Co_f[he split should be much smaller than the time of spreading

herent superposition wave packet propagating through Q the longitudinal direction,

split. As the longitudinal momentum is low, a spatially peri-

odic slicing of the wave packet into portions entering differ- £<Ax2. (38)

ent outgoing guides is seen to take place. If several oscilla- X

tions occur during the split, there will be approximately

equal probability for the particle to go in either direction. In If the atoms are kept in an optical lattice in the longitudinal

Fig. 9 the same splitting is presented as probability density imirection, as suggested in R¢28], requirement37) is no

the transverse eigenstates as functions of time and longitudienger needed as there is no dispersion broadening the dis-

nal distance. It is seen that both modes propagate forwartibution. Instead an adiabaticity condition for the longitudi-

without noticeable disturbances. The only exception to this ixal motion of the optical lattice has to be fulfilled if the

the acceleration of the first excited mode arowsdd due to  atoms are to remain in the localized ground states of the

the release of additional energy as the transverse bindingptical lattice. Finally, the propagation should take place

energies approach degeneracy. In Fig. 10 the splitting isvith negligible nonadiabatic excitation

shown in terms of localized modes in the same way as in Fig.

9. Here, however, in contrast to the previous figure, the pe- 1

riodic slicing of the wave packet is clearly visible in both Lawoh

localized modes. The localized mode picture thus has the

zgggggszﬁgﬁasltg;?;manon hidden in the relative phases Ofyvhere)\ is the longitudinal de Broglie wavelength. Combin-
If we want a wave packet to go into only one of the ing Egs.(37)~(39) we have

outgoing guides and, in addition propagate adiabatically,

there are several conditions that will have to be fulfilled. ﬂ< i< £<Ax2 (40)

First, the wave packet must not conduct a full transverse ke o Ky '

<1, (39)
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If all the conditions included in Eq40) are fulfilled, we

expect the wave packet to exit the splitting region predomi-
nantly in only one of the outgoing guides. In order to esti- . 7% 5
mate the amount exiting in the left guide, we calculate an ~ °8f

average o (#) taken over the initial wave packet extended P, b T
in the longitudinal direction as

P.= | lex0Pp (000, (41)

where the intial probability distribution is taken to be Gauss-
ian,

1 X—X0)? W r:
le(x.0)[?= J2nn eXP( —(ZA—OZ>, (42) . . . . . :
max X 10 20 30 ) 40 50 60
with an initial width Ax and initial positionxy. If the initial X
position is far from the splitting region and the wave packet
is sufficiently localized at=0, we take

FIG. 11. Probability of finding a wave packet exiting from the
left guide as a function of longitudinal momentum. For low mo-
menta, the wave packet is equally split between the output ports,
whereas for higher momenta an oscillation can be seen. The ampli-
tude increases with increasing momenta, whereas the oscillation
frequency decreases. Open circles denote results obtained from nu-

merical solutions of the time-dependent Schinger equation(1)
as an approximate expression for the shift of relative angléor a potential with parameters,=1, L =500, andk, varying. The
with increasing distance from the splitting region. Using Egs.longitudinal extent of the wave packet wAs=40. The parameter

(34), (42), and(493) in Eqg. (41), we can calculate the fraction Cin Eqg. (44) has been fitted here.
of the wave packet, averaged over the initial distribution,

exiting through the left guide after propagation as

x+XA

AO(x+X)=~A0O(x)+ f

dx~A 6( )+AEx
x~A6O(X)+ —
X kx kX

(43

single fitting parameter. In the derivation above, the longitu-
) dinal momentum was taken to be constant during all of the
1 1 Ax%wf C propagation. In reality the excited-state component will be
Pi=5|1—exp — cos —| |, (44)
2 4 ki Ky

accelerated as the energy difference goes to zero after the
split causing an additional phase shift neglected here. The

expression given by Eq44) agrees well with the numerical
=Xy, in principle. In practice it turns out that the total phase®Sults over the whole range of momenta used. For low mo-

is not given by a simple expression of this kind probably dueMenta, there is a probability close to one-half of going into
to the nonuniform acceleration in the longitudinal directionthe eft guide due to the periodic slicing of the wave packet,
around the splitting, which was ignored in the derivation of@S illustrated in Fig. 8. For increasing momenta, the wave
Eq. (44). In the discussion above, adiabaticity was implicitly Packet starts to get split asymmetrically as fewer oscillations
assumed and the longitudinal spreading during propagatiofke place during the splitting. The probability of going ei-

neglected. As a result, the maximal transverse localizatioter way shows an oscillatory behavior with increasing am-

into the outgoing guides depends, apart form an oscillatorylitude, exactly as predicted by E¢44). For the limiting
factor, on the parameter combination

where the constan€ is determined by EQ(36) with x;

case of infinite longitudinal momentum, which is far beyond
the adiabatic approximation, the relative phase between the
components of the wave packet does not change at all and is
also homogenous along the wave packet. The probability of

AX(DO
Ky

<1. (45)

This condition is also given by Eq37). This shows that

the wave packet to exit in either of the guides should thus
approach a constant value. This region lies beyond the mo-

localization in either outgoing matter-wave guide for a wavementum range presented in Fig. 8, and would from a com-
packet of finite longitudinal extent is determined by the num-putational point of view be very demanding to probe. We
ber of transverse oscillations that are completed during paghus see that, given suitable initial wave packets are pre-
sage through the splitting region.

pared, propagation through a potential splitting can be used

This was tested by propagating wave packets initially preto extract information about the longitudinal structure of
pared in a coherent superposition state through a potenti&atter waves.

splitting, varying the longitudinal momentum and observing
the fraction of the wave packet entering the lgftFig. 8 the
lower) guide. The result is shown in Fig. 11. Open circles

V. DISCUSSION

show the results from wave-packet simulation and the solid We have investigated the propagation of guided matter
line is given by Eq(44) where the constar@ was used as a wave in split potential structures. For well separated
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waveguides it is intuitively appealing to model the dynamicsstates adiabatic propagation is limited by the same conditions
as being in the form of wave packets propagating along inas those that apply to single waveguides. In the present work
dependent potential minima. Under these circumstances, thge only outline the formalism and show the equivalence
wave packets are expected to be subjected to local adiabati@ith adiabatic splitting in terms of transverse eigenstates.

ity conditions depending on how rapidly the local potentials  Traditionally the conditions for validity of the adiabatic
Change. When the pOtential foliates into a continuum of Oneapproximation are Stated in terms of the t|me Scales over
dimensional potentials, it is natural to use the transvers@ich the Hamiltonian describing the system changes. In our
eigenstates provided by the transverse binding potentialgyjier work we found connections between adiabaticity and

having equal probability of being found in each. In these : . . L (o
cases, although it has been shown that splitting is adequateS/aSSIcal optics. In Sec. lll the regimes of validity of adia

described using the eigenstaf88§], it seems natural to trans- atic propagation schemes k_)ased on transverse _elgenstgtes
versus ones based on localized states were outlined using

aI?euristic arguments based on the relevant time scales. Con-

physics using the method of hybridization to analyze bonopecti(.)ns were aI;o made to our earl?e_r work ir_1 'order Fo relate
localization[38]. The formalism described in Sec. Il inter- € different regimes to the adiabaticity conditions given by
polates between a basis localized in a single minimum beforttrinsic diffraction of matter waves. It would be desirable to
the split and localization in each of the outgoing guides aftefather state the validity criteria in geometrical terms in a
the split. It should be observed that the equivalence betweefore stringent way than has been done here. It appears likely
the upper(right) and |ower(|eﬁ) guideg broken in an arbi- that such an approach would yleld further insights into the
trary way is correct, as the sign of the transformation angldundamental understanding of how matter waves are split in
given by Eq.(26), which can be chosen, is arbitrary but potential structures.

nevertheless gives a unique mapping between the transverse The behavior of coherent superpositions of transverse
and localized states. The choice of mapping the ground statgenstates in split potential structures is nontrivial. The rea-
to either the upper or lower guide does not influence theson is that it involves the relative phase between the propa-
dynamics, only the representation of it. We feel that the cri-gating states, a quantity possibly varying with spatial coor-
terion used here is a natural choice if the new modes are tdinate. The resulting probability distribution after the split is
be localized in either well. The framework described in thisconveniently described using the localized states instead of
work should find uses in simulations of interferometric de-the transverse states which are delocalized and thus conceal
vices as the manipulations lead to phase shifts between sepaformation in the relative phases. A superposition wave
rated parts of matter wave packets, which act as independepacket of finite extent propagating through a potential split
states sensitive mainly to changes in the local binding potenwill be divided between the outgoing guides depending on its
tial valley. This makes the transverse eigenstates unsuitablengitudinal extent relative to the distance propagated during
as a basis since they are unable to properly take local pertuone transverse oscillation. Observation of any asymmetry be-
bations into account when the guides are far separated. Obween the outgoing guides for wave packets prepared in su-
viously the localized states given by E@8) offer a better  perposition states can thus reveal information about the lon-
choice. In this picture, the effective dynamics is formally gitudinal extent of the state, something not possible in
identical to that of two weakly coupled single waveguides,interferometric studies as there are alternative explanations
each being sensitive only to local perturbations. For thesequally valid[41].
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