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Localization in splitting of matter waves

Markku Jääskeläinen* and Stig Stenholm
Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden

~Received 20 March 2003; published 19 September 2003!

In this paper we present an analysis of how matter waves, guided as propagating modes in potential
structures, are split under adiabatic conditions. The description is formulated in terms of localized states
obtained through a unitary transformation acting on the mode functions. The mathematical framework results
in coupled propagation equations that are decoupled in the asymptotic regions as well before as after the split.
The resulting states have the advantage of describing propagation in situations, for instance matter-wave
interferometers, where local perturbations make the transverse modes of the guiding potential unsuitable as a
basis. The different regimes of validity of adiabatic propagation schemes based on localized versus delocalized
basis states are also outlined. Nontrivial dynamics for superposition states propagating through split potential
structures is investigated through numerical simulations. For superposition states the influence of longitudinal
wave-packet extension on the localization is investigated and shown to be accurately described in quantitative
terms using the adiabatic formulations presented here.
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I. INTRODUCTION

During the past few years, manipulation of confined m
ter waves has experienced a remarkable progress, both d
the development of laser cooling and trapping of neutral
oms@1,2# and progress in lithographical fabrication of nan
structures for ballistic electrons@3#. In the channeling regime
of these experiments, the dynamics will be propagation
matter waves in, possibly multiple, tightly confined wa
guides.

Several techniques have been utilized@4# for guiding neu-
tral atoms, among them magnetic confinement both ins
hollow glass tubes@5# and above current carrying wires@6#,
permanent micromagnets@7#, light force trapping@8#, with
microfabricated optics@9# and various other schemes bas
on the interaction of electromagnetic radiation with atoms
Ref. @10# the splitting of a thermal atomic cloud above cu
rent carrying wires of millimeter size was demonstrated a
in Ref. @11# a similar experiment was performed using m
crofabricated conductors. The creation of Bose-Einstein c
densates~BECs! in microfabricated structures was report
almost simultaneously by two groups@12,13# and has since
been reported by several groups@14,15#. In addition, coher-
ent transfer of a BEC into waveguide structures has b
accomplished@16,17#. In Ref. @18# the splitting and propaga
tion of a BEC in a microfabricated optical trap with interfe
ometer structures was demonstrated. This experime
progress has created an interest in the phenomenolog
localized quantum states propagating through various ty
of potential structures.

Interferometer experiments depend directly on the w
nature of quantum mechanics and in such configurations
dominated by the nonclassical properties of material p
ticles. The metrological advantage of using matter wa
comes mainly from the increased sensitivity offered by
very short de Broglie wavelengths achievable using la
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cooled atoms@19,20#. Several different setups for atom opt
cal analog of well-known interferometric devices have be
proposed and investigated in previous theoretical studies
Ref. @21,22#, waveguide interferometers based on magne
trapping and a time-dependent bias field were described.
use of time-dependent currents to change the potential
figuration was considered in Ref.@23#. The physics of an
atomic interferometer in the multimode regime was inves
gated in Ref.@24#. Other works have investigated the nonli
earities due to many-body effects in atom optics, see, e
Ref. @25# and references therein. In Ref.@26# the behavior of
a Tonks gas in an interferometer was investigated theo
cally. The splitting-recombination regions were here trea
by assuming that the physics of the splitting could be inc
porated in boundary conditions of the quantum dynamics
Ref. @27#, the influence of weak nonlinearity on the mergin
of split atomic gases was investigated and shown to caus
instability of the transfer of population in the guided mode
Recently it was suggested that optical lattices could be u
to transport atoms through split potential structures in or
to achieve entanglement of neutral atoms@28#.

Propagation of local excitation is also of interest in oth
physical systems. In communication technology, the progr
of an optical pulse through guiding structures serves as
model system for both communication and computation
plications. In femtosecond laser-induced dynamics of m
lecular processes, we have a well established area of
search, where vibrational states propagate along electr
potential surfaces.

In confinement to atomic waveguide geometries w
transverse dimensions around or below micrometer sca
the quantum nature of the atoms starts to dominate the
namics. Propagation in such potentials will take place in
form of matter waves, we are in the regime of atom opti
and the phenomena can be used to explore new feature
volving the fundamental properties of quantum dynami
Work is in progress to create the atom optical analog
standard optical components relying on waveguide str
tures. This development is partially spurred by the possib
©2003 The American Physical Society07-1
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ties to utilize matter-wave guides for quantum logic@29# us-
ing controlled collisions of neutral atoms@30#.

When the essential physical phenomena are of short
ration, they are best understood in the time domain@31#. This
is true even when the Hamiltonian contains no time dep
dence. To simulate realistic systems, one needs to con
many degrees of freedom, which makes the numerical w
difficult and in many cases well beyond the resources
even the most powerful modern computers. Due to the ex
nential growth of Hilbert space with the number of degre
of freedom, well known in quantum information theory, th
amount of data to be processed increases exponentially
the number of dimensions. Any method which reduces
number is extremely interesting and will find uses in dive
areas. The use of separated channels or modes offers su
approach, but this requires certain adiabaticity assumpt
to hold. In the lowest approximation, the center of the wa
packet may be assumed to progress along the classical m
mum of the potential valley. The transverse curvature
taken to provide a confining potential around this.

In our previous works, the limitations due to mode co
pling were examined both for single waveguides@32# and
split potentials@33#, and it was shown that the breakdown
adiabatic following of the transverse modes was connec
to the intrinsic diffraction of matter waves. The connecti
with diffraction was shown also for the transition from adi
batic propagation to free expansion in Ref.@34#. The occur-
rence of reflection of guided matter waves was investiga
both for single guides@35# and for split potentials@33#. In
both cases considerable backscattering was found to occ
the adiabatic limit and in the case of single guides also in
transition to free expansion. In this work, we consider
channeled splitting of wave packets on two-dimensio
potential-energy surfaces, the highest dimensionality co
fortably available for numerical work at present. The prop
gating state is assumed initially to be localized closely alo
a single minimal path and subsequently propagated throu
split of the guiding structure into two identical waveguide
An adiabatic basis of discrete eigenstates is used to re
the complexity of the problem by reducing the tim
dependent Schro¨dinger equation to a set of equations f
closely coupled channels. When the physical parameter
the problem allow adiabatic propagation, the discrete b
states decouple, making it possible to model the system
number of independent one-dimensional wave pack
propagating in their respective potential structures. As s
the model could apply to as well chemical reaction pathw
and optical fiber communication@36# as mesoscopic struc
tures@37#, but we essentially have in mind the recently d
veloped microstructures for confined atomic wave packe

Interferometry depends on the splitting and recombinat
of matter waves together with local manipulations of t
propagating states. It is thus important to understand
physics of matter-wave splitting in terms of localized stat
Here we describe the dynamics using a unitary transfor
tion acting on the propagating modes in order to creat
basis with suitable localization properties. The formal fram
work used here is in many respects similar to hybridizat
in molecular physics@38# which is used to create localize
03360
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electronic states. Propagation on potential surfaces with m
tiple minimal valleys also occurs in reactive scattering a
many similarities between interferometric devices a
branching in chemical reactions exist.

The question whether or not the longitudinal extent o
propagating quantum wave packet will give rise to any o
servable consequences has caused debate at times. Bo
perimental results utilizing neutrons@39# and theoretical ar-
guments @40# in favor as well as criticism pointing to
alternative interpretations@41# have appeared in the litera
ture. We consider here the influence of longitudinal localiz
tion on the physics of wave packets propagating through s
potential structures. This is in contrast to our earlier wo
@33# where the splitting was investigated solely in terms
the transverse eigenstates in order to derive adiabaticity
teria for propagating states. Here we wish to extend the a
batic propagation schemes to include situations describ
typical matter-wave interferometers. Due to the difference
the effective propagation equations, the physics around
splitting point is nontrivial also for coherent superpositio
of different propagating modes.

The structure of the paper is as follows: Section II d
scribes the system investigated and the separation of
wave function into distinct modes using transverse eig
states of the potential-energy surface. In Sec. III, we desc
a framework for adiabatic propagation in terms of localiz
modes obtained using a unitary transformation of the tra
verse eigenstates. Section IV discusses the case of prop
tion of coherent superpositions of transverse eigenstates
the influence of finite longitudinal wave-packet size. Final
Sec. V summarizes the results of the paper and discusse
consequences for interferometric experiments and sim
tions thereof.

II. ADIABATIC PROPAGATION

Matter waves in potential microstructures evolve acco
ing to the time-dependent Schro¨dinger equation. In this work
we study a two-dimensional system with stationary poten

i
]C~x,y,t !

]t
52

1

2
¹2C~x,y,t !1V~x,y!C~x,y,t !. ~1!

Units are taken to be dimensionless unless otherwise sta
for further details on the consequences of this choice s
e.g., Refs.@32,34#. In the cases of interest here, the propag
tion will be along the minimal valleys of the potential-energ
surface, which we can take to foliate into a continuum
transverse, bound one-dimensional potentials. We then
sume that the time-independent Schro¨dinger equation can be
solved in the transverse direction at each point along
minimal curve in order to obtain a set of eigenfunctions:

En~x!hn~x,y!52
1

2

]2hn~x,y!

]y2
1V~x,y!hn~x,y!. ~2!

The transverse Schro¨dinger equation~2!, which constitutes a
Sturm-Liouville system, has a complete set of eigenfunctio
$hn(x,y)%. These can be used in an ansatz together with a
7-2
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LOCALIZATION IN SPLITTING OF MATTER WAVES PHYSICAL REVIEW A 68, 033607 ~2003!
of longitudinal wave functions$wn(x,t)% yet to be deter-
mined. As these are taken to depend also on time, they
termine the time evolution, both propagation along the m
mal valley and the confined dynamics in the transve
direction. The total wave function is given by the expans

C~x,y,t !5 (
n50

`

wn~x,t !hn~x,y!. ~3!

We insert Eqs.~2! and~3! into Eq.~1!, multiply by hm(x,y),
and integrate over the transverse coordinate, which is
eliminated by the orthonormality of the basis set. We obt
the expression

i\
]wm

]t
52

1

2

]2wm

]x2
1En~x!wm1 (

n50

`

Anm~x!
]wn

]x

1Bnm~x!wn , ~4!

where we have introduced the first order~or kinetic! cou-
plings

Anm~x!52E
2`

`

hn~x,y!
]hm~x,y!

]x
dy, ~5!

and the second-order~or potential! couplings

Bnm~x!52
1

2E2`

`

hn~x,y!
]2hm~x,y!

]x2
dy. ~6!

Couplings~5! introduce velocity-dependent interactions. W
have here assumed that the coordinate line given byy50,
i.e., the origin of the transverse coordinate, does not curv
this will introduce further couplings between the differe
modes. Propagation of the longitudinal modes is governed
Eqs. ~4!, a system of coupled one-dimensional Schro¨dinger
equations; these can in principle be solved directly, bu
practice this procedure becomes cumbersome as it relie
solving the transverse problem and using the solutions
obtained to calculate the coupling coefficients~5! and~6!. In
simplified treatments of matter waves in guiding poten
structures, frequently only the ground state is included
the couplings to higher modes are neglected. Here we c
sider the propagation of wave packets guided close to
minima of a symmetric double-well~SDW! potential

VDW„y,d~x!…5 1
2 v0

2$y21d~x!222yd~x!tanh@v0yd~x!#%,
~7!

where d(x) is a parameter which determines the distan
between the two minima, here taken to depend on the lo
tudinal coordinatex. This potential allows us to determin
the ground state exactly. At constant longitudinal coordina
the transverse ground state for this potential is given b
sum of two identical Gaussians, each centered close to
minima of the two wells:
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h0„y,d~x!…5
1

A2~11e2v0d(x)2
!
S v0

p
D 1/4

3@e2(v0/2)[y1d(x)] 2
1e2(v0/2)[y2d(x)] 2

# ~8!

and the ground-state energy is constant,E0„d(x)…5 1
2 v0. In

order to investigate the behavior of wave packets in SD
potentials the distance function was chosen as

d~x!5
1

2
dmaxF11tanhS x

XD G , ~9!

where dmax is half the asymptotic distance between t
minima andX is a parameter which controls the extension
the region where the transition from a single guide to
double guide takes place. Twice the functiond(x) strictly
speaking only equals the distance between the minima
d50 and in the asymptotic limit of large separations. In F
1 the potential given by Eqs.~7! and~9! with the parameters
X510, v051, and dmax55 is shown together with the
transverse binding energies for the two lowest states. Th
two states become degenerate with respect to energy
large interwell distance functiond(x). The behavior of the
transverse eigenstates as functions of longitudinal dista
can be seen in Fig. 2, where the same parameters as in F
were used.

In Fig. 3 the magnitudes of couplings~5! and ~6! are
shown for the two lowest-energy eigenstates of the SD
potential used here. For a symmetric potential, the transv
eigenstates have definite parity. It is easily seen that tak
the derivative with respect to the longitudinal coordinate p

FIG. 1. In ~a! a contour line of the potential given by Eqs.~7!
and ~9! with the parameters given byX510, v051, dmax55 is
shown. The chosen equipotential level corresponds to dista
twice the ground-state width away from the bottom of the wells.
~b! the transverse binding energies for the first two states are sh
as functions of longitudinal distance. We see that the two transv
eigenenergies become nearly degenerate shortly beforex50, re-
sulting in a markedly increased tunneling time between the
wells. Units are dimensionless.
7-3
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serves parity of the transverse states. As a consequence
coupling matrix elementsAi j (x) andBi j (x) vanish for tran-
sitions mixing odd and even states.

In our previous work@33#, adiabatic propagation in th
SDW potential given by Eqs.~7! and ~9! was investigated.
The magnitude of the nonadiabatic excitation, measured
probability transferred from the ground state to excited sta
during propagation through the splitting region, was found
depend on a single dimensionless parameter, the Fre
number, named after the analogous quantity in classical
tics @42#. Small Fresnel numbers correspond to the far-fi
zone, where the transverse distribution is determined by
contribution from a single Fresnel zone only. For a wa
packet propagating in a splitting potential, the equiproba
ity lines traced out during the evolution will diverge an
given that the widening is not too rapid, adjustment to
new width will take place. Taking the potential to be chan
ing over distances of the order ofL, the Fresnel number fo
this situation is given as

N5
zR

L
5

1

Llv0
, ~10!

wherel denotes the de Broglie wavelength corresponding
the longitudinal motion. Adiabatic propagation of wav
packets in potential structures will take place when
changes are such that the Fresnel parameter is small.
the question is whether or not the changes occur ove
length scale comparable to or larger than the Rayle
length, which is the length a suddenly released beam requ
in order to evolve into diverging at a constant angle de
mined by its momentum distribution. The length scaleL in
the expression for the Fresnel parameter is, in classical,
tics the distance over which a beam diffracts in width

FIG. 2. Mode structure of the two lowest-energy eigenstates~a!
h0„y,d(x)… and ~b! h1„y,d(x)…. Shown is the probability density
for the two transverse modes as function of both transverse
longitudinal coordinates. The two modes are seen to split into
distinct pieces each centered in one outgoing guide. Axes ar
dimensionless units.
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about a factor ofA2. Here a suitable choice is the distan
over which the interwell distance separates to about

d~xu!5A2Dy5A2v0, ~11!

whereDy denotes the width of transverse ground state. T
is also the point, in the longitudinal direction, at which th
central barrier height equals the ground-state energy. A
result, an assembly of classical particles with the same
tribution of initial positions and momenta would here see
bifurcation in phase space. The value given by Eq.~11! alone
does not suffice to estimate the length scale and a sec
point must be pinned down using some criterion of the ty

d~xl !*Dy. ~12!

It turns out that the choice of lower end point is fairly inse
sitive to the exact details of criterion~12!, probably due to
the exponential character of the distance function. A suita
value is given by the point where distance between the w
was larger than about 1.001 times the ground-state wi
The distance for potential changes is thus taken to be

L5xu2xl , ~13!

wherexu and xl are defined above. With this choice of th
length scale, the nonadiabatic excitation probability has b
found to be a function of the Fresnel parameter only, rega
less of the values of other physical parameters@33#.

FIG. 3. Absolute values of the couplings given by Eqs.~5! and
~6! for the ground and first excited eigenstates. The relevant en
scale is set by the transverse oscillator frequencyv051, i.e., the
values are to be compared with unity. The velocity-dependent c
plingsA00(x) andA11(x) are seen to be very small for the mome
tum values needed for adiabatic propagation, whereas the coup
B00(x) and B11(x) are a few percent of the ground-state ener
Units are dimensionless.
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III. LOCALIZED PROPAGATION

In our earlier works, the investigation of adiabatic prop
gation was mainly focused around changes related to
diffractive spreading of matter-wave beams, this be
equivalent to the case of wave packets propagating in po
tial structures of changing width@32#. For a potential-energy
surface with a single minimal path, the idea of separation
the wave function is in principle unproblematic as the lon
tudinal modes propagate close to the minima.

For the case of splitting, considered here, such an
proach neglects the process of dividing the transverse s
into two separate halves by the raising of a central barrier
the incoming transverse oscillator frequency in the poten
used here coincides with the ones in the two outgoing guid
an alternative picture could be envisioned. It is possible
consider the incoming wave packet as being a superpos
of two almost identical ones each to be guided along one
the two degenerate minima. In this case there are two
proximately independent wave packets propagating in
waveguides curving in different directions away from ea
other. Nonadiabatic excitations would then be regarded
arising due to the longitudinal curvature of each guide.

For the case of symmetric potentials with split minima t
transversally localized propagating modes are the transv
energy eigenstates of the binding potential in the region
fore the splitting. When the potential minima are far apa
the localized states are known to be given by linear com
nations of pairs of energy eigenstates according to

hL/R„y,d~x!…5
1

A2
@hn„y,d~x!…6hn11„y,d~x!…#, ~14!

where the transverse quantum numbern50,2,4, . . . . An
adiabatic propagation scheme thus has to deal with the
parent conflict of continuously guiding energy eigenstat
which have definite parity and are localized in a single mi
mum, into states that are delocalized, when it is known t
wave equations have localized propagating solutions. For
case of large constant separation between the wavegu
the propagation, Eq.~4!, becomes separated into independ
equations since the couplings depend on the spatial va
tions of the transverse eigenstates. As, in addition, the en
levels become pairwise degenerate, the propagation e
tions remain invariant under unitary transformations amo
the pairs of eigenstates. Two natural choices for basis st
are transverse energy eigenstates or localized states. Th
ter will be the preferable choice whenever the individual p
tential wells are disturbed in a local fashion, for instance
an interferometric setup, as the influence from the other w
is negligible.

The condition for adiabaticity in quantum dynamics
often formulated as a requirement that the internal ti
scale, in this case the transverse oscillation time

Tosc;1/v ~15!

should be shorter than the time scale under which the Ha
tonian undergoes considerable changes, here denoted bDt.
For wave-packet dynamics in potential structures, the ex
03360
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nal time scale has to be estimated with great care or else
criterion might become a poor indicator of adiabatic evo
tion. For wave-packet dynamics in spatially changing pot
tial structures, the diffraction criterion can be used as
means to estimate the allowable changes in a lessad hoc
manner. In addition to the two time scales mentioned,
system under consideration here contains a third, the tr
verse tunneling time given by the energy split betwe
ground and first excited states,

Ttunn;1/DE, ~16!

a function of the distance between the wells and the tra
verse oscillator frequency. As the ground-state energy is c
stant in the double-well potential chosen, the tunneling ti
is always larger than the transverse oscillation time:

Tosc<Ttunn . ~17!

Depending on the relative sizes of the three time scales,
can distinguish between different regimes. First, if the ext
nal time scale is the shortest,

Dt!Tosc<Ttunn , ~18!

the dynamics will be nonadiabatic resulting in sizable ex
tation of higher transverse modes. The potential changes
cur fast enough to result in the wave packet propagating w
constant shape through changes. On times scales of the
of the oscillation time, the resulting changes start to be
ticeable when transverse oscillations induced by the nona
batic transitions become visible. If both the oscillation a
tunneling times are shorter than the external time scale,

Tosc<Ttunn!Dt, ~19!

the potential changes over length scales larger than the R
leigh length and the dynamics evolves adiabatically with
spect to the transverse eigenstates. Propagating wave pa
thus behave as if composed of a single mode, although
might be split into two partially overlapping halves. For larg
separations, the tunneling time approaches infinity rapidly
the two lowest states become degenerate in energy, an
might become larger than the external time scale:

Tosc!Dt!Ttunn . ~20!

In this case, transverse energy eigenstates will not be g
adiabatic states that are followed, but the localized sta
which to a very good approximation are single-well grou
states, propagate adiabatically and couple weakly to
neighboring well only through the overlap which decays e
ponentially with the distance between the wells. To rel
this with the adiabaticity criterion~10! from our earlier work
@32,33# we first note that the time scale for the potent
change can be estimated as

Dt'
L

kx
}Ll, ~21!
7-5
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where the lengthL, both for single guides and potential spli
tings, is related to the transverse change of the guided s
and has to be chosen as described in Sec. II. To estimat
tunneling time~16!, we use the fact that the energy diffe
ence between the first two transverse states approxima
was found to be

DE'v0exp~22v0d2!. ~22!

Using Eqs.~21! and ~22! in Eq. ~20!, we find

exp~22v0d2!!N!1, ~23!

whereN is the Fresnel parameter as defined by Eq.~10!. If
both conditions in Eq.~23! are met, then the error due t
nonadiabatic excitations will be limited by the intrinsic di
fraction of matter waves as described in Ref.@32#. As the
well separated guides may each go through very differ
evolution, it is not meaningful to talk about the transver
eigenstates of the total potential as being the adiabatic s
that are followed. Problematic situations emerge, for
stance, in the case of differing path lengths between
guides in a Mach-Zender interferometer or propagation
right angles or even backwards after a 180° bend.

In order to construct a localized propagation scheme
the two lowest transverse states, we take our modes t
linear combinations depending on the longitudinal coor
nate. In order to preserve orthonormality, we choose
states to be transformed to the new localized basis throu
unitary transformation:

FhL~x,y!

hR~x,y!
G5Fcosu 2sinu

sinu cosu GFh0„y,d~x!…

h1„y,d~x!…
G , ~24!

FIG. 4. Spatial variation of the transformation angleu(x) for the
SDW potential given by Eqs.~7! and ~9! with the same paramete
values as for Fig. 1. Shown dashed is the first derivative and
dashed the second derivative with respect to the longitudinal c
dinate. The potential parameters are the same as in Fig. 1. Axe
in dimensionless units.
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where the transformation angleu(x) is chosen in such a way
that the new basis states at all positions along the waveg
are localized in each well in the sense that the expecta
values of the transverse coordinate taken with respect to
ther state will equal the positions of the two Gaussians wh
constitute the ground state

^hL/RuyuhL/R&57d~x!, ~25!

where the signs were chosen in order to localizehL in the
left minimum, i.e., at negative transverse coordinate valu
This corresponds to the lower well in Figs. 1 and 2. Usi
Eq. ~24! in Eq. ~25! we arrive at

u~x!56
1

2
arcsinS d~x!

y01
D , ~26!

wherey01 denotes the dipole matrix element betweenh0 and
h1. The spatial variation of the transformation angleu(x)
can be seen in Fig. 4. For small values of separationdmax the
angleu will be close to zero whereas for large separation
will approachp/2 as the localized states approximately w
be given by Eq.~14!. The structure of the localized mode
can be seen in Fig. 5 for the split potential used in this wo
For the mode which equals the transverse ground state
large negative values of the longitudinal coordinate there
little change in the transverse size or other properties al
the propagation direction. For the other mode, however,
node aroundy50 seems to disappear as the transverse sh
after the splitting is close to that of a Gaussian localized

t-
r-
are

FIG. 5. Mode structure of the localized mode functions~a!
hL(x,y) and~b! hR(x,y), here shown as the respective probabil
densities. Each mode function is seen to be centered on the s
guide before the split. After the split each mode has only a sm
probability of being in one of the outgoing guides, thus being p
dominantly localized to the other. For the modehR(x,y), which
before the split is equal to the first excited state, the node seem
disappear around the splitting region. This is not true, however
the mixing of the two energy eigenstates causes each loca
mode to necessarily have a node in the outgoing distributions. A
are in dimensionless units.
7-6
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LOCALIZATION IN SPLITTING OF MATTER WAVES PHYSICAL REVIEW A 68, 033607 ~2003!
the upper minimum. This change occurs just beforex50 as
the upper half of the eigenstate is seen to grow into do
nating the mode. The total wave function is now given b

C~x,y,t !5hLwL1hRwR5h0@wL cosu1wR sinu#

1h1@2wL sinu1wR cosu#. ~27!

We thus see that writing the total wave function as a lin
combination of two localized transverse modes is equiva
with transforming the longitudinal modes according to

Fw0~x,t !

w1~x,t !G→FwL~x,t !

wR~x,t !G5F cosu sinu

2sinu cosuGFw0~x,t !

w1~x,t !G .
~28!

If we now use ansatz~28! in the time-dependent Schro¨dinger
equation and project away the dependence on the transv
coordinate, we arrive at the propagation equations for
localized modes

i
]wL~x,t !

]t
52

1

2

]2wL~x,t !

]x2
1EL~x!wL~x,t !1WwR~x,t !,

i
]wR~x,t !

]t
52

1

2

]2wR~x,t !

]x2
1ER~x!wR~x,t !1WwL~x,t !,

~29!

where the potentials and the off-diagonal coupling are gi
by

EL~x!5cos2u@E0~x!1B00~x!#1sin2u@E1~x!1B11~x!#,

ER~x!5sin2u@E0~x!1B00~x!#1cos2u@E1~x!1B11~x!#,

W~x!5sinu cosu@E0~x!1B00~x!2E1~x!2B11~x!#.
~30!

We have here neglected the spatial variation of the trans
mation angleu(x) in that its derivatives with respect to th
longitudinal coordinatex have been dropped. The domina
ing off-diagonal term is determined byW(x) in Eq. ~30! and
this can be considered to give the coupling matrix eleme
to lowest order in the spatial derivatives ofu(x). In Fig. 4
the spatial variation of the transformation angle and its fi
and second derivatives are shown. The propagation equa
for localized modes in a split potential thus have the form
a two-level system with spatially dependent energies, c
plings, and velocity-dependent interactions. For large sep
tions of the two minima, the level splitting rapidly goes
zero and all couplings can be neglected. When the dista
function d(x) is close to zero, the couplings are also neg
gible and the propagation is in the form of two independ
modes. The framework defined here thus models the split
of matter waves using basis states which are localized bo
the single-guide region and in the double-guide region. In
splitting region localized propagation necessitates coup
between the two modes. For a quantitatively more accu
treatment, the terms dependent on the derivatives of
transformation angle must also be taken into account. In
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6, snapshots of a wave packet initially in modehL(x,y)
which for large negative distances equals the ground st
are shown during propagation through a splitting regio
Without any interaction between the two modes, the wa
packet will be guided completely into the lower outgoin
guide, completely unphysical result as the ground state m
is split equally between the two degenerate wells, as can
seen from Fig. 2. At the splitting, the interaction leads to t
creation of a component in modehR(x,y), which is chan-
neled into the other guide. The dynamics for both mode
shown in Fig. 7. It is seen here that although the wave pac
is initially completely in the modehL(x,y), the interaction
aroundx50 causes a significant growth of probability in th
other modehR(x,y). For ground-state propagation, the e
pected result would be an equal split between the outgo
modes resulting in a probability transfer ofDP50.5 regard-
less of the longitudinal momentumkx . Any deviations from
this result come from numerical inaccuracies in the wa
packet propagation, failure to include enough couplings,
limited accuracy in the calculation of the coupling coef
cients~5! and ~6!.

IV. COHERENT SUPERPOSITIONS

A fundamental law of quantum mechanics is the super
sition principle, which can give rise to interesting new d
namics through the interference of quantum states. The lin
combination given by Eq.~14!, i.e., an equal superposition o
two energy eigenstates, corresponds for the case of far s
rated potential wells to a localized state. Here we wish
investigate the dynamics of superposition states with limi
spatial extent in the longitudinal direction, and take the i

FIG. 6. Snapshots of a wave packet initially in the ground-st
modeh0(x,y). Pictures~a!–~e! show the probability density for a
wave packet initially in the ground state at instants separated
equal amounts of time. As time progresses the wave packet pr
gates through the split and enters the asymptotic region beyond
split. From the final snapshot~e! it is seen that the probability is
distributed in a symmetric manner between the outgoing guid
The initial wave packet was a Gaussian of widthDx520 and mo-
mentumkx51. Units are dimensionless.
7-7
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M. JÄÄSKELÄINEN AND S. STENHOLM PHYSICAL REVIEW A68, 033607 ~2003!
tial state to be a general coherent superposition of eq
amounts of ground and first excited states,

C5
1

A2
~h01eiDuh1!, ~31!

where Du denotes the relative phase between the state
quantity that will evolve with time causing the probabili
distribution to shift in space. The states with extreme loc
ization are given by

CL/R5
1

A2
~h06h1!, ~32!

i.e., by taking the phase angle to be eitherDu50 or Du
5p. If we calculate the expectation value of the transve
coordinate we have

^y&5^CuyuC&

5K 1

A2
~h01eiuh1!uyu

1

A2
~h01e2 iDuh1!L

5y01cos~Du!, ~33!

where y01 denotes the dipole matrix element between
ground and first excited states, a quantity that approac
half the interwell distance for the case of well separated
tential minima.

For a superposition wave packet of negligible extent
the longitudinal direction, the probability to go to the left
to the right will be given by the projection of the initial sta
onto transverse states localized in either well,

FIG. 7. Probability density of the localized modes propagat
through the potential shown in Fig. 1. In~a! uwL(x,t)u2 is shown,
and in~b! uwR(x,t)u2. The wave packet was initially in the ground
state mode. In the asymptotic region before the split the w
packet is thus almost completely inwL(x,t), which is guided to the
lower well in Fig. 5. It is seen that considerable interaction betw
the localized modes takes place, and that the final distributio
symmetric as expected. Axes are in dimensionless units.
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pL/R5u^CuCL/R&u2

5U K 1

A2
~h01eiuh1!U 1

A2
~h06h1!L U2

5
1

2
@16cos~Du!#. ~34!

We thus see that the probability to go to the left or right
the split is dependent on the relative phase between the
energy eigenstates. In the center of mass frame of a quan
particle, well localized in the longitudinal direction, travelin
at constant momentum, the phase difference between the
states can be assumed to change over a small time inte
according to

du5DEdt'
DE

]x

]t

dx. ~35!

This gives us for the total phase shift during propagation

Du5E
xi

xf DE

]x

]t

dx5
C

kx
, ~36!

wherexi andxf denote initial and final positions in the lon
gitudinal direction and the proportionality constantC is in-

FIG. 8. The adiabatic splitting of a wave packet being transv
sally a coherent superposition of the lowest two eigenstates. As
state oscillates from side to side in the waveguide, with a per
given by the transverse binding potential, one would naively exp
the outgoing state to be localized in either outgoing guide given
the initial phase of the components has been appropriately tu
On the contrary it is seen that the wave packet is fractioned
smaller portions each centered in one of the guides and propag
outwards. This behavior is due to the differing arrival times f
different longitudinal sections of extended wave packets. The s
tial period of the slicing is approximately given by the distan
traveled longitudinally during one transverse oscillation. Units
dimensionless.

g

e

n
is
7-8



di
th
p

n

a
es

co
h
ri-
r-
ill
ly
In
y
tu
a

s

di

Fi
pe
th
th
o

e
ll
d
rs

its

uch
be
ugh
ing

al

dis-
i-
e
the
ce

-

a
. T
ing

ar
es

lly
s, as

rob-

re.

LOCALIZATION IN SPLITTING OF MATTER WAVES PHYSICAL REVIEW A 68, 033607 ~2003!
troduced for convenience. As the energy splitDE goes to
zero rapidly after the split, the phase shift slows down, in
cating that the oscillation time between the wells, i.e.,
tunneling time, becomes much larger than the oscillation
riod in each well. The dependence on the final positionxf in
Eq. ~36! will thus be negligible given that the propagatio
has been taken beyond the splitting.

If the initial wave packet is spread out in the longitudin
direction, different parts will reach the split at different tim
thus having different local values of the relative phaseDu,
possibly differing by large amounts. In Fig. 8 we see a
herent superposition wave packet propagating throug
split. As the longitudinal momentum is low, a spatially pe
odic slicing of the wave packet into portions entering diffe
ent outgoing guides is seen to take place. If several osc
tions occur during the split, there will be approximate
equal probability for the particle to go in either direction.
Fig. 9 the same splitting is presented as probability densit
the transverse eigenstates as functions of time and longi
nal distance. It is seen that both modes propagate forw
without noticeable disturbances. The only exception to thi
the acceleration of the first excited mode aroundx50 due to
the release of additional energy as the transverse bin
energies approach degeneracy. In Fig. 10 the splitting
shown in terms of localized modes in the same way as in
9. Here, however, in contrast to the previous figure, the
riodic slicing of the wave packet is clearly visible in bo
localized modes. The localized mode picture thus has
ability to reveal information hidden in the relative phases
superposition states.

If we want a wave packet to go into only one of th
outgoing guides and, in addition propagate adiabatica
there are several conditions that will have to be fulfille
First, the wave packet must not conduct a full transve

FIG. 9. The adiabatic splitting of a wave packet initially being
coherent superposition of the lowest two transverse eigenstates
figure shows a density plot of the probability in the propagat
eigenstates,uw0(x,t)u2 in ~a! and uw1(x,t)u2 in ~b!, as functions of
longitudinal coordinate and time. The oscillations seen in Fig. 8
absent here as no probability is transferred between the mod
this basis. Axes are in dimensionless units.
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oscillation as it propagates a distance corresponding to
longitudinal spread,

2
Dx

kx
!

2p

v0
. ~37!

Second, the wave packet should not spread out too m
during the split as this will cause the first condition to
broken. We require that the time it takes to propagate thro
the split should be much smaller than the time of spread
in the longitudinal direction,

L

kx
!Dx2. ~38!

If the atoms are kept in an optical lattice in the longitudin
direction, as suggested in Ref.@28#, requirement~37! is no
longer needed as there is no dispersion broadening the
tribution. Instead an adiabaticity condition for the longitud
nal motion of the optical lattice has to be fulfilled if th
atoms are to remain in the localized ground states of
optical lattice. Finally, the propagation should take pla
with negligible nonadiabatic excitation

1

Lv0l
!1, ~39!

wherel is the longitudinal de Broglie wavelength. Combin
ing Eqs.~37!–~39! we have

Dx

kx
!

1

v0
!

L

kx
!Dx2. ~40!

he

e
in

FIG. 10. The adiabatic splitting of a wave packet being initia
a coherent superposition of the lowest two transverse eigenstate
described in terms of the localized modes. The figure shows p
ability density vs longitudinal coordinate and time~a! for the mode
wL(x,t) and ~b! for the modewR(x,t). The coherent oscillations
during the splitting of the wave packet are clearly visible he
Units are dimensionless.
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M. JÄÄSKELÄINEN AND S. STENHOLM PHYSICAL REVIEW A68, 033607 ~2003!
If all the conditions included in Eq.~40! are fulfilled, we
expect the wave packet to exit the splitting region predo
nantly in only one of the outgoing guides. In order to es
mate the amount exiting in the left guide, we calculate
average ofpL(u) taken over the initial wave packet extend
in the longitudinal direction as

PL5E
2`

`

uw~x,0!u2pL„u~x!…dx, ~41!

where the intial probability distribution is taken to be Gau
ian,

uw~x,0!u25
1

A2pDx
expS 2

~x2x0!2

2Dx2 D , ~42!

with an initial width Dx and initial positionx0. If the initial
position is far from the splitting region and the wave pac
is sufficiently localized att50, we take

Du~x1X!'Du~x!1E
x

x1XDE

kx
dx'Du~x!1

DE

kx
X

~43!

as an approximate expression for the shift of relative an
with increasing distance from the splitting region. Using E
~34!, ~42!, and~43! in Eq. ~41!, we can calculate the fractio
of the wave packet, averaged over the initial distributio
exiting through the left guide after propagation as

PL5
1

2 F12expS 2
1

4

Dx2v0
2

kx
2 D cosS C

kx
D G , ~44!

where the constantC is determined by Eq.~36! with xi
5x0, in principle. In practice it turns out that the total pha
is not given by a simple expression of this kind probably d
to the nonuniform acceleration in the longitudinal directi
around the splitting, which was ignored in the derivation
Eq. ~44!. In the discussion above, adiabaticity was implici
assumed and the longitudinal spreading during propaga
neglected. As a result, the maximal transverse localiza
into the outgoing guides depends, apart form an oscillat
factor, on the parameter combination

Dxv0

kx
!1. ~45!

This condition is also given by Eq.~37!. This shows that
localization in either outgoing matter-wave guide for a wa
packet of finite longitudinal extent is determined by the nu
ber of transverse oscillations that are completed during p
sage through the splitting region.

This was tested by propagating wave packets initially p
pared in a coherent superposition state through a pote
splitting, varying the longitudinal momentum and observi
the fraction of the wave packet entering the left~in Fig. 8 the
lower! guide. The result is shown in Fig. 11. Open circl
show the results from wave-packet simulation and the s
line is given by Eq.~44! where the constantC was used as a
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single fitting parameter. In the derivation above, the longi
dinal momentum was taken to be constant during all of
propagation. In reality the excited-state component will
accelerated as the energy difference goes to zero after
split causing an additional phase shift neglected here.
expression given by Eq.~44! agrees well with the numerica
results over the whole range of momenta used. For low m
menta, there is a probability close to one-half of going in
the left guide due to the periodic slicing of the wave pack
as illustrated in Fig. 8. For increasing momenta, the wa
packet starts to get split asymmetrically as fewer oscillatio
take place during the splitting. The probability of going e
ther way shows an oscillatory behavior with increasing a
plitude, exactly as predicted by Eq.~44!. For the limiting
case of infinite longitudinal momentum, which is far beyo
the adiabatic approximation, the relative phase between
components of the wave packet does not change at all an
also homogenous along the wave packet. The probability
the wave packet to exit in either of the guides should th
approach a constant value. This region lies beyond the
mentum range presented in Fig. 8, and would from a co
putational point of view be very demanding to probe. W
thus see that, given suitable initial wave packets are p
pared, propagation through a potential splitting can be u
to extract information about the longitudinal structure
matter waves.

V. DISCUSSION

We have investigated the propagation of guided ma
wave in split potential structures. For well separat

FIG. 11. Probability of finding a wave packet exiting from th
left guide as a function of longitudinal momentum. For low m
menta, the wave packet is equally split between the output po
whereas for higher momenta an oscillation can be seen. The am
tude increases with increasing momenta, whereas the oscilla
frequency decreases. Open circles denote results obtained from
merical solutions of the time-dependent Schro¨dinger equation~1!
for a potential with parametersv051, L5500, andkx varying. The
longitudinal extent of the wave packet wasDx540. The parameter
C in Eq. ~44! has been fitted here.
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LOCALIZATION IN SPLITTING OF MATTER WAVES PHYSICAL REVIEW A 68, 033607 ~2003!
waveguides it is intuitively appealing to model the dynam
as being in the form of wave packets propagating along
dependent potential minima. Under these circumstances
wave packets are expected to be subjected to local adiab
ity conditions depending on how rapidly the local potenti
change. When the potential foliates into a continuum of o
dimensional potentials, it is natural to use the transve
eigenstates provided by the transverse binding potent
This becomes less intuitive when there are several dege
ate minima, as the eigenstates in this case are deloca
having equal probability of being found in each. In the
cases, although it has been shown that splitting is adequa
described using the eigenstates@33#, it seems natural to trans
form to a basis that allows for a description in terms
localized modes in the same way as is common in molec
physics using the method of hybridization to analyze bo
localization@38#. The formalism described in Sec. III inte
polates between a basis localized in a single minimum be
the split and localization in each of the outgoing guides a
the split. It should be observed that the equivalence betw
the upper~right! and lower~left! guides broken in an arbi
trary way is correct, as the sign of the transformation an
given by Eq. ~26!, which can be chosen, is arbitrary b
nevertheless gives a unique mapping between the transv
and localized states. The choice of mapping the ground s
to either the upper or lower guide does not influence
dynamics, only the representation of it. We feel that the
terion used here is a natural choice if the new modes ar
be localized in either well. The framework described in th
work should find uses in simulations of interferometric d
vices as the manipulations lead to phase shifts between s
rated parts of matter wave packets, which act as indepen
states sensitive mainly to changes in the local binding po
tial valley. This makes the transverse eigenstates unsuit
as a basis since they are unable to properly take local pe
bations into account when the guides are far separated.
viously the localized states given by Eq.~28! offer a better
choice. In this picture, the effective dynamics is forma
identical to that of two weakly coupled single waveguide
each being sensitive only to local perturbations. For th
.

,

o,
,

d

l.,
s.
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states adiabatic propagation is limited by the same condit
as those that apply to single waveguides. In the present w
we only outline the formalism and show the equivalen
with adiabatic splitting in terms of transverse eigenstates

Traditionally the conditions for validity of the adiabati
approximation are stated in terms of the time scales o
which the Hamiltonian describing the system changes. In
earlier work we found connections between adiabaticity a
the diffraction of matter waves. This made it possible to e
press these conditions in geometrical terms borrowed fr
classical optics. In Sec. III the regimes of validity of adi
batic propagation schemes based on transverse eigens
versus ones based on localized states were outlined u
heuristic arguments based on the relevant time scales. C
nections were also made to our earlier work in order to re
the different regimes to the adiabaticity conditions given
intrinsic diffraction of matter waves. It would be desirable
rather state the validity criteria in geometrical terms in
more stringent way than has been done here. It appears li
that such an approach would yield further insights into
fundamental understanding of how matter waves are spl
potential structures.

The behavior of coherent superpositions of transve
eigenstates in split potential structures is nontrivial. The r
son is that it involves the relative phase between the pro
gating states, a quantity possibly varying with spatial co
dinate. The resulting probability distribution after the split
conveniently described using the localized states instea
the transverse states which are delocalized and thus con
information in the relative phases. A superposition wa
packet of finite extent propagating through a potential s
will be divided between the outgoing guides depending on
longitudinal extent relative to the distance propagated dur
one transverse oscillation. Observation of any asymmetry
tween the outgoing guides for wave packets prepared in
perposition states can thus reveal information about the
gitudinal extent of the state, something not possible
interferometric studies as there are alternative explanat
equally valid@41#.
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@35# M. Jääskeläinen and S. Stenholm, Phys. Rev. A66, 053605

~2002!.
@36# A. W. Snyder and J. D. Love,Optical Waveguide Theory

~Chapman and Hall, London, 1983!.
@37# T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Scho¨n, and

W. Zwerger, Quantum Transport and Dissipation~Wiley-
VCH, Weinheim, 1998!.

@38# R. L. Carter,Molecular Symmetry and Group Theory~Wiley,
New York, 1998!.

@39# H. Kaiser, S.A. Werner, and E.A. George, Phys. Rev. Lett.50,
560 ~1983!.

@40# A.G. Klein, G.I. Opat, and W.A. Hamilton, Phys. Rev. Lett.50,
563 ~1983!.

@41# G. Comsa, Phys. Rev. Lett.51, 1105~1983!.
@42# A. Siegman,Lasers ~University Science Books, Sausolito

1986!.
7-12


