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Theory of a compound large-angle atom beam splitter
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A theory of an atom beam splitter is developed involving the interaction of standing-wave field pulses with
A-type atoms. The beam splitter consiststwb interaction zones, both treated in the Raman-Nath approxi-
mation. There is an initial, off-resonant fieldr fields that prepares the initial atomic state, followed by
interaction with a pair of standing-wave field pulses. Using this configuration one is able to create a large-angle
beam splitter with a significant suppression of unwanted momentum components. The roles of relaxation and
a frequency chirp are investigated, as are initial conditions for which both ground states/ofstifeeme are
prepared by the first field. It is shown that the scheme is rather robust against fluctuations of system parameters.
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[. INTRODUCTION described in Ref[6]. Large-angle beam splitters can also be
produced using strong standing-wave figld§ bichromatic
Atom interferometerg1] often rely on the manipulation fields[8], or magneto-optical potential9)].

of the translational motion of atoms by coherent laser radia- Broadly speaking, atom beam splitters can operate in ei-
tion. The underlying physical mechanism responsible for theher the Bragg or the Raman-Nath regime. In the Bragg re-
deflection of atoms by fields is the momentum exchange begime the interaction time is much longer than the inverse
tween the atoms and the fields. In each act of absorption aecoil frequency associated with absorption or emission,
emission the atom acquires or loses a quantum of momentumhile in the Raman-Nath regime the interaction time is much
fk, wherek is the radiation field wave vector. Atom inter- less than the inverse recoil frequency. The discussion in this
ferometers require, as a rule, that the atomic wave packet igaper is restricted to the Raman-Nath regime. Atoms are co-
split and then recombined, in analogy with optical interfer-herently scattered by an intense standing-wave light field,
ometers. In reality, owing to the internal structure of atomsyesulting in Kapitza-Dirac scatterindlO]. For off-resonant
the picture of interference for atomic wave packets is mordields, Kapitza-Dirac scattering can result in a comb of mo-
complex than for the light waves. In particular, it is possiblementum components separated by intervals/df 2long the
to construct interferometers that rely on interference betweestanding-wave direction that results from absorpiistimu-
atomic internal stateginternal state atom interferomejry lated emission processes between the counterpropagating
rather than on interference between center-of-mass mometraveling waves forming the standing-wave field.
tum stategmatter-wave interferometyyIn this paper we do Kapitza-Dirac scattering creates a multiple-peaked dif-
not focus on atom interferometper se but instead look at fraction pattern, symmetrically distributed about the initial
the momentum distribution produced in a matter-wave beamralue of momentum. The distance between the two largest
splitter. One of the major challenges in atom interferometrypeaks in the distribution is approximately equal to twice the
is the generation of sufficiently large momentum splitting. product of the Rabi frequency and the time of interaction. By
Owing to the relatively large values of atomic masses, theamping up the product of field intensity and interaction time
splitting angle is very small for one-photon exchange procesgbut respecting the Raman-Nath condifiaane can create
between the radiation field and an atom. Several schemes fpeak splittings as large as %k with readily available laser
achieving large-angle atom beam splitters have been prsources. The problem with Kapitza-Dirac scattering is that
posed. For instance, in ReR], a series of counterpropagat- the amplitudes of the peaks intermediate between the ex-
ing laser pulses was used to increase the separation betwegame peaks are non-negligible; in other words, a standing-
atoms in different magnetic substates that were prepared wwave field does not act as an extremely clean beam splitter. If
different arms of an atom interferometer. A related methodpne could reduce or eliminate these intermediate peaks, the
robust with respect to the values of field strengths requiredresulting pattern would more closely resemble that of an
involves the adiabatic transfer of population between magideal beam splitter. Beam splitters based on bichromatic
netic ground state sublevels using counterpropagating laséelds and magneto-optical potentials achieve this suppres-
pulseq 3]. Adiabatic transfer was also proposed as a methodion with varying degrees of succd&s9].
for obtaining large-angle beam splitting in a scheme involv- In this paper we present and analyze another method for
ing three-level atoms driven by a standing-wave andsuppressing the intermediate peaks. Our beam splitter con-
traveling-wave field in a STIRAP geomet®] and then sub- sists of two stages, both of which are based on resonant
jected to an additional standing-wave fi¢h]. A method for  Kapitza-Dirac diffraction. As such, our beam splitter can be
suppressing low-order diffraction using detuned fields wasiewed as acompound Kapitza-Dirac beam splitter. In a
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the 3-level manifold. This simplified decay scheme allows
for analytical solutions using an amplitude basis. We often
are interested in the limiting case where decay during the
interaction is negligible. Nevertheless, if there is some re-
sidual population in the excited state after the interaction it
would decay back to levels 1 and 3 and degrade the momen-
tum distribution of those states. In our model, we allow for
decay during and following the interaction, but neglect the
repopulation of levels 1 and 3.

FIG. 1. Atom-field geometry: standing-wave field pulses  The time-dependent equations for the probability ampli-
Qp(z,t) and QS(Z,t) drive COUpled atomic transitions in A tudescl, CZ! andcs, in the rotating wave approximation

scheme involving statd), [2), and|3). Relaxation from stati2)is  and in a frame rotating at the optical frequency, are given by
out of theA system.

C, 0 Qp(z1) 0 Ci
certain sense it is the three-level counterpart of the two-level  J .
scheme analyzed in RdfL1]. Our scheme has the additional s Co|=| Qp(zt) A=iye Oz |1 C2|, ()
advantage that the same laser standing-wave pulses can be Cs 0 O(z,t) 0 Cy

used for both stages of the beam splitter. The combined ac-
tion of both stages results in a dramatic reduction in thewhere Q(z,t)=—d,E;(zt)/24(j=p,s) are the Rabi fre-
amplitudes of the intermediate peaks, producing a muclyuencies associated with the optical transitiahsare dipole
cleaner large-angle beam splitter. The role played by spontanoment matrix elementg;;(z,t) are the electric-field ampli-
neous decay and chirping of the applied field frequencies isudes of the laser pulsesjs an atomic center-of-mass coor-
also explored. dinate, andy, is the relaxation rate. The atom-field detun-

The paper is organized as follows. In Sec. Il, the atom-ings A ;= w,— wy; and Ag=w,— w3 are taken to be equal,
field configuration, consisting of three-level atoms iMa Ap=As=A (exact two-photon resonanceThe frequencies
configuration interacting with standing-wave field laser(; are taken as real, since we will be concerned mainly with
pulses, is presented. Equations are derived for the atomigases wher&;(z,t)~sin2 or cosk).
momentum state amplitudes that are solved analytically for a |n the Raman-Nath approximation, the atoms are effec-
specific choice of pulse shapes and time-dependent detuflvely frozen in the transverse direction during their interac-
ings. In Sec. lll we give a brief general analysis of the mo-tion with the fields and the motion of the atoms parallel to
mentum distribution associated with each internal atomic enthe field propagation vectors can be neglected. In this limit,
ergy level and then make the detailed analytical andgq. (1) can be solved as if the atoms were stationary with
numerical study of the distribution, assuming the atoms reregard to their transverse motion. On the other hand, the
side initially in only one of the ground-state levels. Sectionlongitudinal motion is treated classically. The calculation is
IV explores the possibility of using two initially populated carried out in a frame moving at the longitudinal atomic
atomic levels to create the desired narrow distributions. Inselocity; in this frame, atoms experience a pulse having du-
Sec. V we summarize the results. ration T.

We will assume the same time envelope for both laser

pulses,
Il. MODEL AND ANALYTICAL SOLUTION

A collimated, monoenergetic atomic beam passes through Qp(z,H)=Qp(D) (1), Qs(z,1)=Q4(2)f(1), 2
two closely spaced field interaction zones. The atomic beam
is oriented perpendicular to the fields’ propagation vectorswith
The first atom-field interaction produces an initial transverse
momentum distribution for the atoms; for example, if the f(t)=secht/T). 3)
first field is an off-resonant standing-wave field, it will pro-
duce the Kapitza-Dirac momentum distribution associatedoreover, to allow for analytical solutiorj42], we take the
with scattering by a standing-wave field. Following this ini- detuning as
tial interaction, the atoms are subjected to a second atom-
field interaction that modifies the momentum distribution A(t)=otanht/T)+ Ay, (4)
created by the first field). The goal is to choose the fields in

such a manner that, following the second interaction, thgyhereq can be viewed as a chirp rate. Then, in full analogy
momentum distribution is dominated by two, well-separatedyith Ref.[12], we arrive at the following expressions for the

momentum peaks. In this section, we consider the secondyer-level atomic state amplitudes after interaction with the
interaction, assuming that the initial state has been prepareg,ger pulsest(— +):

The atom level scheme is th'e or Raman scheme shown in

Fig. 1. A field E, drives the 1-2 transition and a field; C.(z +)=[B sir?0+ co2d1C.(z —
drives the 2-3 transition. States 1 and 3 are assumed to be (2 ) =I 1C1(2,~=)
metastable, while state 2 decays at rageto levelsoutside +(B—1)sinfcosfCs(z,—), (5a
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Cs(z,+%)=(B—1)sinf cosdC,(z,—») sin6=Q(2)!/ Q;(Z)Jrﬂg(z)’
+[B cog0+sinf9]Cs(z,— ).  (5b)

Here cost=0(2)/\Q5(2)+Q5(2), (6)

1 1
r E+y+i(5—,8))1“ §+7+i(5+,8)
B=—72 1 : (™
L|5+y+io- Vai(z)— 32)1“ Stytiot Va?(z)— 32)
|
I'(x) is the gamma function, standing-wave field. As a result the atoms are prepared in an
initial state having amplitudes
a(2)=\052)+ Qi) T (8)
Cy(z,—©)=0, Cs(z,—»)=0, (11
is a dimensionless pulse area, and
1 1 1 Cl(Z,—OO)ZeiU cosZkzZZ ime(U)GZimkz,
5=§AT, ﬂ=§0'T, ’}’ZE')’OT, (9) m

. . . . whereU is the pulse area of the preparatory field andU
are dimensionless central detuning, chirp rate, and decay P a Bessel fungtion of orden. Th(l_oser;re theyinitial vgﬁje)s to

rameters, respectively. . . .
Since we are interested in the form of momentum distri-be used in Eqd5). We consider two special cases that allow

; . : . for relatively simple solutions. Although we use the formal
?ggolg thggiu?ii :nstg:%cgon, we expand the functige) and solutions developed in the preceding section, it should be
: noted that Eq(1) can be solved directly for these special
o cases.
Cj(Z,"’OO): _2 Cj’n(oo)eZinkZ,
n=-e A. sin-cos or cos-sin case

with When the standing-wave fields are spatially shifted by
/2 relative to one another and have the same amplitudes

1 (2n _ [13],
Cj’n(OO)ZEfO Cj(Z,-i-OO)e*Z'nkZd(kZ), (10

O,(2)=Qgsinkz,  Q(2)=Q4c08Kz, (12

wherej=1,3. The coefficienC;, gives the probability am- o hase=QT=const, andB is z independent. In addition,
plitude for the atom simultaneously to have momentum

2nfik and be in internal statg¢ In writing these Fourier
series, it is assumed that tlieitial -state amplitude<C;(z,
—=) can be decomposed into a Fourier series of the for
Ci(z,—»)=32;_ ,Cjn(—>)e?™ in which only even
powers of kz) appear.

The final-state momentum components depend on thE
spatial dependence of the fields and the initial values of the
state amplitudes in a complicated manner. While numerical B(a,B,7)—1
calculations are certainly possible, it is interesting first to C;(00)= ———"—"[Cyp_1(—%)—Cynr1(—)].
consider special cases for which analytical solutions can be 4 ’ '
obtained. The manner in which one can construct a beam (14)
splitter based on these techniques is illustrated by thes
simple examples.

sinfd=sinkz, cos#=coskz. (13
"Since singcosg=sinkzcoskz=(1/4i)(e'%*—e~12?) it fol-

lows from Egs.(5b) and (10) that the momentum state am-
litudes for the initially empty ground-state level 3 are given

Eurther substitution o) (—»)=i"J,(U) from Eq. (11)

yields
Ill. ATOMS INITIALLY IN STATE 1 e (o) —B(a,ﬁ,7)+1in[J U3 (U]
In this section, it is assumed that the atoms are optically 3" "/~ 4 n+i n-1vEd
pumped into level 1 and then subjected to an off-resonant (15
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20 0 FIG. 3. Momentum distribution, generated by a far-off-resonant

standing wave, which is used as the initial condition for a subse-
FIG. 2. ParameteB as a function of field intensity=QOT and  quent interaction with standing-wave laser pulses. The value
relaxation ratey when(),(z) =) coskz Q4(z)=Q sinkz (or vice =20 is chosen for illustrative purposes and is in an intermediate
versa. range of experimentally accessible values.

Since we are interested in large momentum transfer, weg (Fig. 2. As y increases from zero, the oscillation ampli-
chooseU>1. Then for intermediate momentum states withtude as a function o& decreases monotonically; for values

|m|<U one may estimate the Bessel functions[b¥] v=~1 one finds thaB no longer oscillates as a function of
In the low intensity range (€ a<1/2) and for all intensities
3. (U)~ /icos( U_ mm I) 1 for which —1<B=<0, the population transfer decreases
m wU 2 4)’ with an increasing spontaneous emission rate. For all other

field intensities, however, the transfer increases with increas-
implying that, for such states],,,(U)=—J,_1(U) with
high accuracy. Sincd,,,(U)~—J,_1(U) for these inter-
mediate momentum states, it follows from Ef5) that these
intermediate state amplitudes are almost completely sup-
pressed. The final-state-3 momentum distribution, shown in |Csn(°°)|2
Fig. 4(a) below, clearly exhibits this suppression. As a result, '
we achieved the desired goal. Moreover, the beam splitter
acts in the manifold of a single levélevel 3 and can be
used in a matter-wave atom interferometer. The final-state  0.02
Fourier components for state 1 vary &sl,,q1(U) 0
—Jy-1(U)] and there is no suppression of intermediate
peaks. In a given experiment, one may need to remove atoms
left in state 1 from the beam by some selective excitation
process.

An important advantage of this scheme is that it is rela-
tively insensitive to parameters such as field intensity, detun-
ing and relaxation rates. What is necessary is to have equal
Rabi frequencies on the coupled transitions2 spatial
phase shift between the standing-wave fields, and optical 3
pumping to a single initial state. We will see that it is pos- |C1,n(°°)|

(2)

0.04

|

1
sible to reduce the sensitivity of the results to the spatial “ ‘li
phase shift. ' . o 0.04 ‘\ iy

According to Eq.(15), population transfer is optimal if “, t\" ‘\\ il t,‘;‘ 10
B=—1. In order to examine what values are possibleBpr 0.02 ) { W ,"‘!\%‘, |
let us takeB=0 (no chirp, y=0 (no relaxation. From Eg. 0 gt t“']W" Il
. et dl
Wil
B(a,0,0)=cog ma). (17) o ‘\\Ml?.‘;“%j“‘g!,‘.‘w 25

The transfer efficiency is an oscillatory function of field
strength, regching a maximum f0|'7_'apU|Se- FIG. 4. Final momentum distribution for the initially populated
To examine the role of relaxation, we take the c#se (a) and initially empty(b) atomic internal energy levels far=1,

= 6=0 (exact resonangeand plotB as a function ofe and  g=6=0, andQ,(z) = coskz, Q4(z) = sinkz
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FIG. 6. ParameteB as a function of field intensity and chirp
2 parameteiB for y=0. Other parameters are the same as in Fig. 4.
|C1,n(w)| \ “!" I‘\‘
i
0.06 ) ‘,"g‘ ‘,,“%"Mf’ji" ~0. Rega]:rdless of thedother s?]/lstem hpararr;]gtersa th:H pzcl)pula-
i tion transfer corresponds rou to that achieved wi
0.02 ."“,Qii"gi‘;(;i.d.‘i;mi\,»16‘;! .'!"‘ il '
sttt 75
o |2 IR i Al e
v \\Cﬁi‘%“““&%‘“‘\"\{‘\?‘ﬁ\I‘zg"\"m%}! 5 B. cos-cos and sin-sin case
wl\l‘.\\%ﬂﬂ“‘ﬂ\l"“‘\y‘)nili“’\“‘g}f,'/ Y In this limit, when the standing-wave fields are in phase, it
0 6 L ‘w,“,‘g\,};’;"/’ 25 follows from Eq. (6) that 6 is not z dependent, while the
n 40 “*W',j intensity parametew is a trigonometric function of. Since
. a appears in the arguments of thefunctions, this field
FIG. 5. Same as Fig. 4, except=2. geometry leads to a full Fourier spectrum and a rather com-

plicated spectrum for the final-state population of state 3.
ing y. In these regions of intensities, the completely coherenThere is a qualitatively different behavior of the various dif-
excitation would drive the atoms back to the initial state;fraction orders ony than that of the sin-cos case. In Fig. 7
spontaneous emission disturbs the coherent evolution and imve present results analogous to those of Fi@) %or the
creases the population of state 3. Of course, when sin-sin case. As one sees, the damping in the central part of
>1,a,8,6 (this region is not illustrated in Fig.)2spontane- the momentum distribution is much more rapid than in the
ous decay severely limits the population trangtae initial- ~ wings. This behavior provides an additional opportunity for
state amplitude decays as expf’/y)] and one findsB  suppressing intermediate momentum states, which are gener-
—1, C4(z,%0)—0, C4(z,2)—C4(z,—). In these, as well ated owing to nonexact/2 shifts of the fields.
as in all the other simulations, the initial-state amplitudes are To illustrate the dependence of the results on the relative
given by Eq.(11); the initial-state populations are shown in phase shifts of the fields, we show in Fig. 8 another plot
Fig. 3. analogous to Fig. ®), but for fields with phase shiftd ¢

The momentum distribution for each energy level as aaveraged over the range/2— w/15<Ae=<m/2+ w/15. A
function of v is shown in Figs. 4 and 5. Figure &€ 1)
represents the case when coherent transfer into level 3 de-
creases for increasing (corresponding tor-pulse excita-
tion). Figure 5 @=2) represents the contrary case when the
increase ofy increases the coherent transfer into level 3 |C3n(oo)|2

(corresponding to #-pulse excitation Figures 4b) and ' o ‘\5"":«"«‘.""«4.
5(b) illustrate the fact that there is no population transfer in 903 “.\‘;{k\‘:“;\s’;‘g‘»ﬁ,ﬁg};&fﬁa}ffgfg‘;‘;,. i
the limit of very largey. 0.02 \\\!{\“\‘l“@““}’;ﬁ{}{ﬁfﬁj&f?{é&ﬁ%@@f‘i 10
We now examine the role of a chirg#0, wheny=§ 0.01 \\““{‘\,‘I"‘\i‘g‘"?{fﬁ%ﬁ%ﬁ%ﬁ%}ﬁ?}%ﬁi}%
=0. At t=0, the field is swept into resonance. Since Eq. Y | V‘;ﬁ\“:\«!&;ﬁ:’%&gfg;ﬁﬁ‘.}t{ﬁﬂﬁ[{1{%@‘;2'3' 5
(15) remains valid we need only consider the parameter | N\\\l\%{?’% é%'??.".‘%ﬁ‘\gt“i?'lﬂl"lﬁlw}‘ Vs
o o gl
cos m/a?— B?) 0 '\‘i‘H‘l‘.““ 25
B(a’B’O):W. (18 n 40 “’é’z’iﬁ%}’f
FIG. 7. Results analogous to those in Figa)5but for (,(z)

This function is plotted in Fig. 6. Forrf>1, one hasB = sinkz, Q4(2) =Q sinkz
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comparison with the ideal results of Fig@p allows one to

conclude that the operation of the phase-shifted beam splitter
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FIG. 10. Momentum distribution in levéB) in case when both

levels were populated and prepared by means of far-off-resonant
standing waves, shifted in space By2. U=V=20

the first term of which coincides with Eq14). We take an
initial condition of the form

does not rely on the phase shift between the fields being

precisely equal tar/2. For completeness, we note that the

momentum distribution is asymmetric in genefsge Fig. 9,
drawn for a phase shifo=/4); only for phase shiftsp

=0 and ¢=7/2 is the momentum distribution symmetric.

The asymmetry increases with increasing

IV. ARBITRARY INITIAL STATE

Cs(z,— )=

Cl(Z,—00)= %eiu cos 2(22% % ime(U)QZime,
(20)

_eiV cos(2<z+(l>):i 2 ime(V)eim(ZkHtD),

V2 V2

Up to now the discussion was limited to an initial condi- herev is the strength of the field driving the 2-3 transition
tion for which only level 1 is populated. In this section We 5nq @ is the relative phase of fields and V. With this
examine the case where both lower-energy levels are POPYhoice, one finds
lated, prepared using off-resonant standing-wave fields. In

the case ofr/2-shifted pulsegsee formulag12) and (13)]
we arrive at

B—-1
Can(>)= T[Cl,nfl( —0)=Cypra(— )]

B+1 B-1
— Can(=®)+——
X[Cap+1(=2)+Cqn_1(—)], 19

|C; ()

=

-s,::
=]

=
=

“\

e
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P R,
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FIG. 9. Results analogous to those in Figa)Sfor a relative
spatial phasep= /4. An asymmetry is present at=0 that in-
creases with increasing.

—-B+1
V2C3n(0) = ——i"Jp;1(U) +3,-1(U)]

B+1, . B-1
+ Tineln¢Jn(V)+Tin+l

eI (V) —e I (V)]
(21)

If one choosesb = 7/2, then suppression of intermediate
momentum states occurs for both the first and third terms in
this expression. The second term, which exhibits no such
suppression, can be canceled only# 0 andB=—1. This
possibility is illustrated in Fig. 10. The intermediate states
can be canceled also fdFr=0 by means of a special selec-
tion of parameters, but these results are not presented since
they are of limited experimental use.

V. SUMMARY

In summary, we have shown that the interaction of a
three-level atom with a pair of standing-wave laser pulses
can lead to a large-angle atom beam splitter in a single in-
ternal atomic state. To produce a high quality beam splitter, it
is necessary to prepare the initial state using one or more
off-resonant standing-wave pulses. In this sense, the beam
splitter geometry represents a type of compound lens, with
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two atom-field interaction zones. Generalization to additionabeam splitters. In contrast to magneto-optical or bichromatic
interaction zones is possible. The role of relaxation has beefield beam splitters which require specific values of the op-
investigated by means of a scheme in which the relaxatiotical Rabi frequencies for most efficient operation, our beam
takes place from the excited state to states outside the thresgplitter is fairly insensitive to the precise value of the Rabi
level system and the effects of frequency chirping have beefrequency. More generally, it can be viewed as a type of
considered. Relaxation can enhance or inhibit the transfer djuilding block for more complex atom beam splitters.
population from initial to final state, depending on the field
strength. Our proposed scheme possesses the principal ad-
vantages of beam splitters based on magneto-optical poten-
tials or bichromatic fields, in that it leads to significant sup-  This work was funded by Grant No. 0888 of Armenian
pression of intermediate momentum components. Th&esearch Funds. The work of P.R.B. was supported by the
momentum state distributions of our beam splitter are similat).S. Army Research Office under Grant No. DAAD19-00-1-
to those achieved with magneto-optical or bichromatic field0412 and the National Science Foundation under Grant No.
beam splitters, and clearly superior to that of standing-wav&®HY-0098016 and a FOCUS Center grant.
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