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Natural orbitals and Bose-Einstein condensates in traps: A diffusion Monte Carlo analysis

J. L. DuBois and H. R. Glyde
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

~Received 21 March 2003; published 10 September 2003!

We investigate the properties of hard-core bosons in harmonic traps over a wide range of densities. Bose-
Einstein condensation is formulated using the one-body density matrix~OBDM! which is equally valid at low
and high densities. The OBDM is calculated using diffusion Monte Carlo methods and it is diagonalized to
obtain the ‘‘natural’’ single-particle orbitals and their occupation, including the condensate fraction. At low
boson density,na3,1025, wheren5N/V anda is the hard-core diameter, the condensate is localized at the
center of the trap. Asna3 increases, the condensate moves to the edges of the trap. At high density, it is
localized at the edges of the trap. Atna3<1024, the Gross-Pitaevskii theory of the condensate describes the
whole system within 1%. Atna3'1023, corrections are 3% to the Grass-Pitaevskii energy but 30% to the
Bogoliubov prediction of the condensate depletion. Atna3*1022, mean-field theory fails. Atna3*0.1, the
bosons behave more like a liquid4He droplet than a trapped boson gas.

DOI: 10.1103/PhysRevA.68.033602 PACS number~s!: 03.75.Hh, 03.75.Gg, 03.75.Nt
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I. INTRODUCTION

Bose-Einstein condensation~BEC! has been a topic o
fundamental interest since it was first predicted by Einst
in 1924 @1#. He showed that as a consequence of Bose
tistics @2# a macroscopic fractionN0 /N of the atoms in an
ideal Bose gas can condense into a single quantum s
London@3,4# postulated that superfluidity in liquid4He was
a consequence of a transition to BEC. But liquid4He is a
strongly interacting, dense Bose liquid and the connec
between BEC in an ideal gas and superfluidity was not a
clear @5#. Similarly, the many-body correlation effects in
duced by the interboson interaction significantly reduce
condensate fraction even at zero temperature@6,7#. Modern
direct measurements@8# of BEC in liquid 4He find only
7.25% of the liquid in the condensate atT50 K.

The theoretical framework for treating an interacting Bo
gas was initiated in 1947 by Bogoliubov@9#. He developed a
perturbation expansion valid for low density and weak int
action,na3!1 ~wheren is the number densityN/V anda is
the hard-core diameter of the bosons!, and small depletion of
the condensate, (N2N0)/N!1. About a decade later, On
sager and Penrose@10# and Löwdin @11# formulated a defi-
nition of BEC in terms of the eigenvalues and eigenvect
~natural orbitals! of the one-body density matrix~OBDM!.
An orbital with macroscopic occupation arising from diag
nalization of the OBDM is defined as the ‘‘condensate wa
function’’ or order parameter. This formulation allows dire
access to condensate properties at arbitrary density and
not require a large condensate fraction. The work in t
paper is based on the OBDM formulation of BEC which
rigorously valid for a strongly interacting system@5#.

In 1995, experiments in weakly interacting dilute vapo
of the alkali-metal atoms87Rb, 23Na, and 7Li in magnetic
traps provided direct evidence of a clear transition from
thermally distributed cloud to macroscopic occupation o
single quantum state@12–14#. This long awaited direct real
ization of BEC spawned a dramatic renewal of interest
Bose systems and BEC. Since the densities in these ex
ments were low~typical number densities were 1012 cm23
1050-2947/2003/68~3!/033602~12!/$20.00 68 0336
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and na3'1026, wherea is the s-wave scattering length o
the atoms!, almost all of the theoretical activity has focuse
on the weakly interacting gas limit and the Gross-Pitaevs
~GP! equation@15#. The GP equation provides an excelle
mean-field description of the condensate at low density. T
is a valid description of the whole Bose gas in the dilu
limit, na3!1, where most of the atoms are in the conde
sate. However, it is inaccurate for strongly interacting s
tems in which the condensate fraction is significantly d
pleted by quantum fluctuations. Since the experiments
1995, only a handful of studies have attempted to cons
the properties of BEC beyond the dilute regime and the
description of the condensate@16–37#. Most of this rela-
tively small body of work rely on modified forms of the G
equation which incorporate higher terms in the Bogoliub
expansion that include effects of atoms outside the cond
sate within a local-density approximation. Unfortunately, t
condensate fraction and distribution in the trap calculated
such methods become inaccurate as the density beco
greater thanna3*1023 @25#.

It has recently become possible to study Bose syste
with tunable interactions@38–43# for which densities of up
to na3'1 are obtainable. Specifically,85Rb at densities in
the rangena3'102321021 has been investigated. BEC i
metastable helium isotopes@44–46# with na3'1024 and in
atomic hydrogen@47# with na3'1025, are also higher-
density Bose gases. This makes the study of BEC and
role of interactions in trapped Bose gases over a wide ra
of densities of direct interest to experiment.

The chief purpose of this work is to go beyond the dilu
limit, to test the limits of the GP equation and related mea
field approximations and to explore the zero-temperat
properties of trapped hard-core bosons asna3 increases from
the dilute limit to the dense regime corresponding to liqu
4He, and beyond. The range of densities investigated he
displayed in Fig. 1. We increase the density by increas
both N and the hard-core diametera up to the valuena3

.0.21 which describes liquid4He at saturated vapor pres
sure ~SVP! when the 4He atoms are represented by ha
©2003 The American Physical Society02-1
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J. L DuBOIS AND H. R. GLYDE PHYSICAL REVIEW A68, 033602 ~2003!
spheres of diametera52.203 Å @48#. The ground-state en
ergy E, the total density distribution, and the OBDM a
evaluated using diffusion Monte Carlo~DMC! methods.

Specifically, we compare the ground-state energy of
whole trapped gas calculated using DMC,EDMC , with the
usual energy of the condensate calculated using the GP e
tion, EGP . As density increases,EDMC and EGP begin to
differ. For example, at na351023, we find (EDMC
2EGP)/EGP53%. Modified GP equations provide a mea
field description of the atoms above the condensate. The
pendence ofEDMC2EGP on the number of trapped bosonsN
and on the scattering lengtha follows the predictions of the
modified GP equation remarkably well up to high densiti
na3'531022. This suggests that the differenceEDMC
2EVMC ~where VMC densities variational Monte Carlo! can
be attributed to the atoms above the condensate. Howe
the energy is not as sensitive to approximations as s
other properties.

We compare the condensate fraction obtained using
rigorous OBDM-DMC method with predictions of the Bogo
liubov theory. The two agree within 1% forna3&1024. At
higher densities, the Bogoliubov theory significantly und
estimates the depletion of the condensate, by 25% atna3

'231022. We evaluate the condensate density distribut
in the trap. At low density, the condensate is localized at
center of the trap as usually found@15#. At higher density
(na3'1022), the condensate is spaced over several t
lengths and the condensate and total density have sim
distributions. Also, at higher densities (na3*231022), os-
cillations in the total density distribution appear which a
not found in mean-field theories. There are no correspond
oscillations in the condensate density distribution. At hi
density (na3*0.10), the condensate is localized at the ed
of the trap~large r /a) where the total boson density is low
At high density, the trapped bosons resemble liquid-4He
droplets@49–51#.

We also compare the present DMC results with our ear
variational Monte Carlo values@50#. We find that the VMC
and DMC energies agree well at all densities and that
ground-state energy is not very sensitive to the trial va
tional wave function. However, the OBDM and the conde
sate fraction is very sensitive to the trial wave function
higher densities. An accurate initial trial function is need
to get reliable condensate fractions even in the DMC form
lation.

Monte Carlo methods are usually applied to dense s

FIG. 1. Range of system densities considered in this work
pressed in terms ofna3[Na3/V, the ratio of the volume occupied
by N hard-core particles with diametera to the total volume of the
systemV.
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tems such as liquid and solid4He @6,7#. Recently, Giorgini
et al. have evaluated the energy and condensate fractio
the uniform Bose gas over a wide density range, 1026

<na3<1023 @25#. Grüter et al. @20# have evaluated the criti
cal temperatureTc for BEC in a Bose gas using path-integr
Monte Carlo ~PIMC! methods. They findTc is increased
above the ideal Bose gas value by interaction in the dil
range. This increase is observed in dilute concentration
4He in Vycor @52#. At liquid- 4He densities,Tc is decreased
by interaction@53,54#.

Krauth @16# first applied QMC~quantum Monte Carlo! to
BEC in a trap using PIMC methods. For 10 000 hard-sph
bosons in a spherical trap with a ratio of hard-core diame
to trap length,a/aho54.331023(na3'1024), he found that
condensate was concentrated at the center of the trap w
the uncondensed atoms were spread over a wide range
well described by a classical Bose gas. Holzmann and Kra
@22# made a direct comparison of PIMC and Hartree-Fo
calculations for a dilute gas of hard spheres in a trap w
a/aho54.331023. For temperatures nearTc , they foundN0
was greater in PIMC. The increase inN0 with exact repre-
sentation of the interaction effects is consistent with the c
responding increase inTc with interaction in the uniform
Bose gas.

Recently, QMC methods have been successfully app
to the study of highly inhomogeneous Bose systems. As
kharchiket al. used DMC to study BEC and superfluidity i
a Bose gas with disorder at zero temperature@31#. They find
an intriguing decoupling of the superfluid and condens
fractions for strong disorder. Studies of superfluid4He with a
free surface@27,33# found the local condensate fractio
peaks (n0'0.95% @33#! in the dilute region just inside the
liquid-vacuum interface. Blume@36# and Astrakharchik and
Giorgini @37# have examined the transition from the thre
dimensional to the quasi-one-dimensional regime for bos
in highly elongated cigar-shaped traps. They confirm that
Bose gas undergoes ‘‘fermionization’’ in the quasi-1
regime.

In Sec. II, we describe the theoretical framework a
computational methods used. Section III contains the pre
results. In Sec. IV, the chief results are reviewed a
discussed.

II. METHODS

We considerN bosons of massm confined in an externa
trapping potentialVext(r ) and interacting via a two-body po
tential Vint(r1 ,r2). The Hamiltonian for this system is

H5(
i

N S 2\2

2m
¹ i

21Vext~r i ! D1(
i , j

N

Vint~r i ,r j !. ~1!

Here,

Vext~r !5 1
2 mvho

2 r 2, ~2!

wherevho
2 is the characteristic trap frequency. Interactio

are modeled by a hard-sphere potential

-
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NATURAL ORBITALS AND BOSE-EINSTEIN CONDENSATES . . . PHYSICAL REVIEW A 68, 033602 ~2003!
Vint~r !5H `, r<a

0, r .a.
~3!

Introducing lengths in units of the characteristic tr
lengthaho5(\/mvho)

1/2, r→r /aho , and energies in units o
\vho as in Ref.@15#, the many-body Hamiltonian is

H5(
i

N
1

2
~2¹ i

21r i
2!1(

i , j
Vint~ ur i2r j u!. ~4!

A. Diffusion Monte Carlo implementation

Diffusion Monte Carlo is a method for finding the exa
properties of the quantum-mechanical ground state o
many-body system to within arbitrary precision—see, for e
ample, Ref.@55#. The starting point for this method is th
time-dependent Schro¨dinger equation in imaginary time:

F2
\2

2m
¹21V~R!2ETGC~R,t !52\

]C~R,t !

]t
. ~5!

The time-dependent component ofC(R,t), Qi(t), is Qi(t)
5exp@2(Ei2ET)t/\#. ET is an adjustable target energy. In th
t→` limit, the steady-state solution of Eq.~5! is the ground
stateF0(R).

The term diffusion Monte Carlo comes from the rese
blance of Eq.~5! to the classic diffusion equation

D¹2r~R,t !5
]r~R,t !

]t
. ~6!

This equation can be simulated by a Monte Carlo rand
walk in configuration space. Treating the@V(R)
2ET#C(R,t) component of Eq.~5! alone results in a rate
equation of the form

v~R!r~R,t !52
]r~R,t !

]t
. ~7!

This component represents a branching process in which
growth or decay of a population is proportional to its dens
In the present implementation the diffusion and branch
processes are combined to simulate Eq.~5! and obtain the
zero-temperature ground state of the time-independ
Schrödinger equation.

A simple application of Eq.~5! above results in a branch
ing rate which is proportional to the potential energyV(R)
2ET . This means that large fluctuations in the poten
V(R) will cause correspondingly large fluctuations in t
population of walkers. Dramatic fluctuations in the numb
of walkers can result in large inefficiencies when treat
realistic many-body systems. The solution to this probl
was first presented by Kaloset al. @48#. In this method, a trial
function is introduced toguide the metropolis walk to re-
gions of higher probability and lower potential energy resu
ing in lower fluctuations in the population of walkers. Th
wave function in Eq.~5! is replaced by a product of the tru
ground stateC(R,t) and a guiding functionCT(R):
03360
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C~R,t !→C~R,t !CT~R!. ~8!

While use of a guiding function is necessary for the efficie
application of the DMC method, it can introduce a bias in
the calculation of observables which do not commute w
the Hamiltonian unless corrective measures are taken—s
as the application of ‘‘forward walking’’@48,56#.

We evaluate the expectation value^CuOuC& of an opera-
tor O, using QMC. In integral form the expectation value

^CuOuC&5E dRC* ~R!O~R!C~R!. ~9!

To evaluate this expression using QMC, Eq.~9! is recast as

^CuOuC&5E dRuC~R!u2FO~R!C~R!

C~R! G . ~10!

The result of a QMC calculation is a set of configuratio
$R1 , . . . ,RM% sampled fromuCu2. Using these configura
tions we may estimatêCuOuC& as

^CuOuC&'
1

M (
i 51

M
O~Ri !C~Ri !

C~Ri !
. ~11!

This estimate becomes exact asM→`.

B. The OBDM and natural orbitals

A goal in this work is to describe BEC in systems wi
interactions. To do this we require a definition of the conde
sate single-particle state. Following Onsager and Penr
and Löwdin @10,11#, we take OBDM as the fundamenta
quantity for an interacting system and define the natu
single-particle orbitals~NO! in terms of the OBDM. The
OBDM is @57#

r~r 8,r !5^Ĉ†~r 8!,Ĉ~r !&, ~12!

where Ĉ(r ) is the field operator that annihilates a sing
particle at the pointr in the system. To define the NO, w
introduce a set of single-particle states having wave fu
tionsf i(r ) and expandĈ(r ) in terms of these states and th
operatorsâi which annihilate a particle fromu i &,

Ĉ5(
i

f i~r !âi . ~13!

Requiring that the âi satisfy the usual commutatio
(@ âi

† ,â j #5d i j ) and number relations (^âi
†â j&5Nid i j ), we

have

r~r ,r 8!5(
i j

f j* ~r 8!f i~r !Nid i j 5(
i j

f j* ~r !f i~r 8!Nid i j .

~14!

This may be taken as the defining relation of the NO,f i(r ).
Specifically, we have from Eq.~14!,
2-3
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J. L DuBOIS AND H. R. GLYDE PHYSICAL REVIEW A68, 033602 ~2003!
E drdr 8f i* ~r !r~r ,r 8!f j~r 8!5Nid i j , ~15!

so that the NO may be obtained by diagonalizing the OBD
The eigenvectors are the NO and the eigenvalues are
occupationNi of the orbitals. In principle any orbital which
satisfiesNi@1 may be considered a macroscopically occ
pied pseudoparticle state—i.e., the equivalent of a Bo
Einstein condensate. A Bose system with more than
macroscopically occupied state would represent a fr
mented condensate@5#. In the systems studied in this work
only a single condensate orbital was found to have ma
scopic occupation. The condensate is therefore the or
having the highest occupation, denoted byf0(r ), and the
condensate fraction isn05N0 /N.

Relations~14! and ~15! involve the vectorr and r 8 and
cannot be solved directly as matrix equations. To obtain m
trix equations, we restrict ourselves to spherical traps
seek equations for the radial component of the NO as in R
@50#. In this approach, the OBDM is expanded in Legend
PolynomialsPl( r̂1• r̂18) and evaluated using the QMC groun
stateC0 as

r l~r 1 ,r 18!5E dV1dr2•••drNC0* ~r1•••rN!

3Pl~ r̂1• r̂18!C0~r18•••rN!. ~16!

C. QMC evaluation of r l„r ,r 8…

In QMC we evaluate Eq.~16! in a form similar to Eq.~10!
giving

r l~r 1 ,r 18!'
1

4peEr 12e/2

r 11e/2

dr1E dV1dR̃uC~r1 ,R̃!u2

3F Pl~ r̂ 1• r̂ 18!C~r18 ,R̃!

C~r1 ,R̃!
G , ~17!

where R̃[(r2 , . . . ,rN) and e is the width of the grid ele-
ments upon whichr l(r 1 ,r 18) is being evaluated. Because th
systems we are evaluating are spherically symmetric, the
rection ofr 8 is arbitrary. We may take advantage of this fa
to reduce the statistical uncertainty in estimates ofr l(r ,r 8)
by evaluating Eq.~17! for several different directions ofr 8
and taking the average result. In addition, since we are d
ing with identical bosons, the OBDM does not depend on
particle being evaluated sor l(r 1 ,r 18)5r l(r i ,r i8). This al-
lows us to take the average,r l(r 1 ,r 18)51/N( ir l(r i ,r i8).

D. Diagonalization and error estimation

Using the method described above, the OBDM is eva
ated on a grid of values ofr 5 i e and r 85 j e, wherei and j
are integers in the range 0< i , j <Q ~whereQ is a maximum
cutoff!. We may then construct the discreet mat
@ i er l( i e, j e) j e#, which is readily diagonalized by standa
matrix diagonalization methods.
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Replacing the continuous matrixr l(r ,r 8) with the dis-
creet matrix@ i er l( i e, j e) j e# is a potential source of system
atic error. To avoid this problem, we evaluated each sys
with decreasing values of the grid spacinge such thateq11
5eq/2. The largest value ofe for which no significant
change in the calculated orbitals and occupation numb
occurred betweeneq and eq11 was then used to determin
the condensate properties for that system.

A second potential source of error arises in treat
r l(r ,r 8) ~which is an infinite matrix! as a finite matrix. Since
the trapped systems are spatially finite, the probability
finding a particle beyond the average radiusR of the cloud
goes to zero very quickly. For the same reason,r l(r ,r 8)
'0 when eitherr .R or r 8.R. It is therefore, safe to trea
r l(r ,r 8) as a finite matrix. As a brute force test of this ass
tion, we evaluated several systems with increasingly la
cutoff values. We found no significant change in condens
properties calculated from a OBDM wherer ,r 8<R and
r ,r 8<2R.

The statistical error associated with a given orbital and
occupation are obtained as follows. When the initial OBD
r0, is calculated the variance associated with each ma
element inr0 is obtained. The originalr0 is assumed to
represent a randomly sampled event from a Gaussian e
distribution surrounding the true OBDM. Based on this a
sertion, a set ofM new OBDM’s, $r̃1

••• r̃M%, are then gen-
erated by allowing each matrix element to randomly va
according to its statistical error. Each of the new OBDM,r̃q,
are diagonalized to obtain their corresponding eigenval
ñi

q and eigenvectorsf̃ i
q . An average occupation,n̄i

51/M(q
Mñi

q , and orbital, f̄ i5(q
Mf̃ i

q , are then obtained
The variance of these averages is then used as an estima
the statistical error of the orbitals and occupation numb
of r0.

III. RESULTS

A. DMC energy

Figure 2 shows the energy per particle calculated by
fusion Monte Carlo,EDMC , by variational Monte Carlo~us-
ing the simple trial function of Ref.@50#!, EVMC0 , and using
the Gross-Pitaevskii equation,EGP , of trapped hard-core
bosons as a function of maximum density,na3, in the trap.
In the dilute regime,na3&1024, EDMC , EVMC0 , andEGP
are nearly indistinguishable. The difference in energy
na35531025 is, for example, 1023\vho which is within
the error bars of the QMC calculations. At higher densiti
the DMC energy lies above the GP result by 3% atna3

51023. EVMC0 agrees well with the DMC results with
difference of only 0.3% atna351023.

Figure 3 shows the percent difference betweenEDMC and
EGP , dE/EGP5(EDMC2EGP)/EGP for N5128 hard-
sphere bosons in a spherically symmetric harmonic trap
higher densities,na3. Here, and throughout this paper, G
energies are calculated using a self-interaction term pro
tional to (N21)a/aho . GP results usingNa/aho signifi-
cantly overestimate the energy for smallN. The difference
between DMC and GP energies is well described
2-4
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dE/EGP}(na3)2/3. This dependence holds even up to tr
densities ofna3'0.32, well above the density of liquid he
lium (na3'0.21). At this density,EGP andEDMC differ by
as much as 80%.

In Fig. 4, the dependence ofdE/EGP on the scattering
lengtha for N5128 bosons in a spherically symmetric ha
monic trap is shown. The figure shows good agreement w
dE}(a/aho)

8/5. This is precisely the power-law relation pre
dicted by the first-order correction to the Gross-Pitaevs

FIG. 2. Diffusion Monte CarloEDMC , variational Monte Carlo
EVMC0 , and Gross-PitaevskiiEGP , energies for trapped hard
sphere bosons as a function of maximum densityna3 in the trap.
Density is varied by changing scattering lengtha, 4.331023

,a/aho,0.14, whereaho is the trap length. At higher densitie
EDMC clearly lies aboveEGP , 3% atna351023. EVMC andEDMC

differ by 0.3% atna351023.

FIG. 3. Percent difference between diffusion Monte CarloEDMC

and Gross-PitaevskiiEGP energies for hard-core bosons in a sphe
cally symmetric harmonic trap as a function of maximum dens
na3 in the trap. The percent difference between DMC and GP
ergies is well described bydE/EGP}(na3)2/3 ~dashed line!.
03360
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energy which takes into account particles above the cond
sate, denoted the modified Gross-Pitaevskii~MGP! equation
energy@15#.

Figure 5 shows the dependence ofdE5EDMC2EGP on
the number of particlesN in the trap. In this plot, the ratio o
the scattering length to the characteristic length of the tra
a/aho58(aRb /aho)50.034 64. The resulting range of dens
ties at the center of the trap lie betweenna3'831025 for
N516 andna3'631024 for N51024. The DMC energy is
'2% higher than the GP energy whenN51024. The dashed
line is a least squares fit ofdE to a function of the form
q(N)5q01q1N3/5. The relationdE(N)}N3/5 is again con-
sistent with the result obtained from the modified Gro
Pitaevskii equation.

-
y
-

FIG. 4. Dependence ofdE5(EDMC2EGP) on the ratio of the
scattering lengtha to the trap length,aho5(\/mvho)

1/2, for N
5128 bosons in a spherically symmetric harmonic trap. The das
line showsdE/EGP}(a/aho)

8/5.

FIG. 5. Dependence ofdE5EDMC2EGP on the number of par-
ticlesN in units of\vho , where the ratio of the scattering length
the characteristic length of the trap isa/aho50.034 64. The dashed
line is dE}N3/5.
2-5
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The MGP expression for the ground-state energy provi
the first correction to the GP energy arising from contrib
tions of the noncondensate. If this correction is relev
across the entire range of systems considered, combining
results for the dependence ofdE on N and a/aho as pre-
sented in Figs. 4 and 5 should provide a single coefficienj
such that

dE5jN3/5~a/aho!
8/5. ~18!

MGP predictsj55(15)3/5/(64A2)'0.28. In Fig. 6, the fixed
a and fixedN results are shown together along with the MG
prediction for the first-order contribution to the ground-sta
energy of atoms depleted from the condensate. The fig
demonstrates that for systems withna3&531024, MGP
provides a good description of the DMC corrections to
GP energy. At higher densities, while the fixeda and fixedN
results are separately well described by (a/aho)

8/5 andN3/5,
respectively, they do not share a common coefficientj. This
suggests that at higher densities corrections to the conde
energy have a more complicated dependence onN anda than
Eq. ~18!.

B. Range of validity of VMC0 results

To investigate the range of validity of the VMC0 tria
function we evaluated the variance of the Hamiltonian. If t
trial function is an exact representation of an eigenstate
the Hamiltonian the variance is zero. Figure 7 provide
comparison of the difference between DMC and VMC0
sults for the energy per boson, (EVMC02EDMC), and the
variance of the energy per boson,s(EVMC0), as a function
of the ratio of the hard-sphere diameter to the trap len
a/aho . Results are forN5128 hard-core bosons in a sphe
cally symmetric trap. Up to a value ofa/aho'0.3, the DMC
and VMC0 energies agree to within the variance ofEVMC0 .

FIG. 6. dE5(EDMC2EGP) as a function ofN3/5(a/aho)
8/5 for

fixed number of particles,N5128 ~filled circles!, and fixed scatter-
ing length,a/aho58aRb ~open circles!, along with the MGP pre-
diction ~heavy-dashed line!. Values of the maximum trap densit
na3 for the fixedN case are shown on the top axis.
03360
s
-
t

the

re

e

ate

e
of
a
-

h

The maximum density of the trapped bosons for this ‘‘cri
cal’’ value of a/aho50.3 is na3'331022. This indicates
that for systems withna3&1022 the VMC0 trial function not
only provides a valid upper bound on the energy but a va
lower bound as well.

C. Spatial distribution of trapped bosons

The spatial distribution of trapped bosons is a prope
which is accessible to experimental observation. The fi
observations of BEC used the difference between a class
Boltzmann distribution and a condensate distribution as e
dence for the existence of BEC@12–14#. Spatial resolution in
most observations to date is, however, not very high@typi-
cally only O(1021) times the size of the condensate itse#
@12,42#. In this section, we compare the present QMC resu
for the density of the many-body ground state,n(r ), with
predictions of mean-field theory for the spatial distribution
the condensate,n0(r ). While this comparison is not alway
strictly correct, since depletion of the condensate me
n(r )Þn0(r ), what is actually observed in experiments is t
‘‘total’’ density which includes condensate and nonconde
sate atoms alike. The condensate distribution and ‘‘tot
density have been treated as identical in the analysis of
perimental results@40#. For this reason, we will compar
n(r ) and mean-field results forn0(r ) as if they are indeed
measurements of the same physical quantity.

1. The ‘‘width’’ of a trapped cloud of bosons

The radius of the condensate as predicted by the Gr
Pitaevskii equation in the Thomas-Fermi limit (Na@1,
a/aho!1) is @15#

RTF5ahoS 15N
a

aho
D 1/5

. ~19!

FIG. 7. Difference between DMC and VMC0 energies (EVMC0

2EDMC) compared with the variance of the VMC0 calculatio
s(EVMC0), as a function of the ratio of the hard-sphere diamete
the trap lengtha/aho .
2-6
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We have defined the radius of the ground stateRQMC by
setting a cutoff value of the QMC number densityn(r ) so
that n(RQMC)51025. Figure 8 shows QMC results for th
dependence of the widthR/aho of the ground-state density o
N hard-core bosons on the product (Na/aho)

1/5. In the figure,
diamonds show the dependence when the number of
ticles is fixed,N5128, and the hard-core diametera is var-
ied, 4.3331023,a/aho,1.11. The dashed line is a spline
to the fixedN5128 data to guide the eye. Circles show t
dependence when the hard-core diameter is fixed,a/aho
50.035, andN is varied, 32<N<1024. The dashed line is
linear least-squares fit to the fixed-a data with slope'0.52.
In the region 1&(Na/aho)

1/5&1.75, both fixed-a and fixed-
N results have a linear dependence on (Na/aho)

1/5 with the
same slope. In the region where the dependence
(Na/aho)

1/5 holds, the maximum density of the trappe
bosons is range in the 1026&na3&531023. For small val-
ues of (Na/aho), the (Na/aho)

1/5 dependence is not ex
pected to hold since even a single-particle noninterac
system has a finite width. The width of the many-bo
ground state is no longer linearly dependent on (a/aho)

1/5 for
values of (Na/aho)

1/5.1.75. In this regime, the maximum
trap density isna3*531023 and a/aho*0.1. The presen
DMC results indicate that fora/aho*0.1, the width of the
many-body ground state depends ona/aho asR}(a/aho)

2/3

rather than (a/aho)
1/5. Linear dependence onN1/5 continues

to hold up to the highest number of particles consideredN
51024).

2. The total density profile

Figure 9 shows the DMC density profiles for 128 har
sphere trapped bosons for four values of the maximum

FIG. 8. QMC values of the widthR of the ground-state densit
of hard-core bosons in a harmonic trap vs (Na/aho)

1/5, whereN is
the number of particles anda is the hard-core diameter. Diamond
show the dependence whenN is fixed (N5128) anda is varied,
4.3331023,a/aho,1.11. Circles show the dependence whena is
fixed @a/aho58(aRb /aho)'0.035# and N is varied, 32<N
<1024. The short-dashed and long-dashed lines are linear
spline fits to the fixeda and fixedN data, respectively.
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densityna3. Frame~a! shows the radial density profile fo
a/aho58(aRb /aho)50.034 64. The maximum density of th
trapped bosons in this system occurs at the center of the
with na3'2.2531024. This corresponds to a typical densi
observed in experiments in metastable He* @44,45#. Frame
~b! shows results fora/aho532(aRb /aho)50.138 56 and
maximum densityna3'631023, which is comparable with
densities found in85Rb experiments. In frame~c!, a/aho
564(aRb /aho)50.277 12. Here, local correlations in th
density distribution near the center of the trap are read
apparent. Finally, frame~d! shows the density profile fo
a/aho5256(aRb /aho)51.108 4. In this system, the hard
spheres appear to have solidified in the center of the t
The n(r )a3 for this system is only qualitatively correct a
mixed estimator bias caused by the guiding function use
a factor here.

3. Comparison of DMC n„r … and Thomas-Fermi nTF„r …

In the so-called ‘‘Thomas-Fermi’’~TF! approximate form
of the Gross-Pitaevskii equation, the interaction termg
}Na in the GP equation is assumed to dominate
‘‘kinetic-energy’’ or gradient term resulting in an analyticall
solvable form of the GP equation. The TF approximation
expected to be valid whenNa is large,Na@1, the interac-
tion density is low,na3!1, and the ratio of the scatterin
length to the characteristic harmonic trap length is sm
a/aho!1.

Figure 10 shows a comparison of the total density dis
bution calculated using DMC,nDMC(r ), to the density pre-
dicted by the Thomas-Fermi approximation

nTF~r !5@~15Na!2/52x2#/8pNa. ~20!

The top frame~a! shows the density profile forN51024
bosons witha/aho58aRb50.034 64. Here, the TF and DMC
results agree quite well. However, the TF result slightly ov
estimates the density near the center of the trap and fai
reproduce the low-density tail which occurs near the edge
the trapped cloud. Frame~b! showsn(r ) for N5128 and
a/aho564aRb50.277 12. Note that the product,Na/aho ,
~the only variable responsible for determining the shape
the TF and GP density profiles! is the same in both frames
Clearly, in the bottom frame, the TF approximation drama
cally overestimates the density at the center of the trap
underestimates the width of the condensate.

D. Condensate fraction

Figure 11 shows the condensate fractionn0 as a function
of the densityna3 for N5128 trapped hard-sphere boson
Then is the maximum number density which is at the cen
of the trap in the density range shown. The density was v
ied by changing the value ofa/aho . The corresponding val-
ues ofa/aho are shown on the top axis. Circles are the me
field-Bogoliubov~MFB! result for a uniform dilute Bose ga
integrated over the GP density in the Thomas-Fermi lim
@58# obtained by solving

n05120.3798~N0a/aho!
6/5/N. ~21!

nd
2-7
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FIG. 9. DMC density profiles
for hard-sphere trapped bosons f
four values of the maximum trap
density na3. All plots are for N
5128 and values of a/aho

50.034 64, 0.138 56, 0.277 12
1.108 4 for frames~a!, ~b!, ~c!,
and ~d!, respectively.
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The up- and down-facing triangles are the DMC a
VMC0 results, respectively, obtained from diagonalizing t
OBDM. For na3,1024, all three values ofn0 agree to
within 1%. At higher densities, the MFB result consisten
overestimates the condensate fraction. MFB overestim
the condensate fraction because it ignores local pair corr
tions which act to deplete the condensate. In contrast
DMC value of the condensate is consistently lower than
ther the VMC0 or MFB estimates. We believe that the DM
result forn0 is lower than either VMC and MFB because it
able to treat local pair correlations more accurately. Pair c
relations allow the total energy to decrease at the expens
long-range order. Since DMC is able to sample the ex
ground state, the mixed estimate forn0 obtained from DMC
is more accurate than VMC or MFB.

Figure 12 showsn0 over a wider density range. Heren is
again the maximum number density in the trap. At high d
sities the maximum density in the trap is not always at
center of the trap. As in the dilute regime presented in F
11, MFB consistently overestimates the condensate frac
for most densities. Atna3'0.28, however, the MFB esti
mate of n0 goes to zero while both VMC and DMC sti
show a condensate fraction ofn0'10%. The MFB estimate
goes to zero because the TF density profile used to calcu
the MFB value ofn0 does not have a broad low-densi
region near the surface of the trapped cloud of atoms a
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the DMC and VMC density distributions. As will be show
in the following section, the dilute region at the ‘‘edge’’ o
the trapped cloud can support a condensate even when
condensate fraction in the dense center of the trap goe
zero.

The density corresponding to liquid helium at SVP (na3

50.21) is indicated on the plot. At this density, VMC gives
condensate fraction ofn0'25% while DMC estimates a
condensate fraction ofn0'18%. In bulk liquid 4He, the
condensate fraction isn0'7.25% @8#. This difference is ex-
plained by the fact that the dilute region near the surface
the trapped cloud allows for a larger fraction of particles
occupy the condensate orbital than in an uniform system
4He densities.

Table I summarizes the present DMC and VMC resu
for the condensate fraction over a wide density range.

E. Spatially dependent depletion of the condensate

In Fig. 13 we compare the total density distributionn(r )
to the condensate distribution,n0(r )5n0uf0(r )u2, for N
5128 hard-sphere bosons in a harmonic trap calculated
ing diffusion Monte Carlo. In the top frame,a/aho
564(aRb /aho) giving a maximum density in the trap o
na3'2.431022 and total condensate fraction ofn0'70%.
In this system, the spatial distribution of the condensate
2-8
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NATURAL ORBITALS AND BOSE-EINSTEIN CONDENSATES . . . PHYSICAL REVIEW A 68, 033602 ~2003!
lows the shape of the total density distribution except
smallr. It is worth noting that while the total density exhibi
local correlations in the dense region near the center of
trap, the condensate distribution is relatively flat in this
gion. In the bottom frame of the figure,a/aho
5256(aRb /aho)51.1084 resulting in a maximum density o
na3'0.325 and a condensate fraction ofn0'10%. This is
the same system shown in frame~d! of Fig. 9. As discussed
above, the DMC results at this density are biased by
VMC guiding function used. Nevertheless, we believe
results to be qualitatively correct. Here, strong pair corre
tions have completely depleted the condensate in the ce
of the trap but the relatively dilute region near the edge
the trap is still able to support a condensate. We find that
trapped hard-sphere bosons, the local condensate fra

FIG. 10. Comparison of total density distribution calculated
ing diffusion Monte Carlo,nDMC(r ), for hard-sphere bosons in
harmonic trap to the density predicted by the Thomas-Fermi
proximation~20!. Top frame~a! is for N51024 bosons with a ratio
of scattering length to trap length ofa/aho58aRb50.034 64. Den-
sity is expressed in terms ofn(r )a33104. Frame ~b! is for N
5128 bosons witha/aho564aRb50.277 12. Density is expresse
in terms ofn(r )a33102.
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n0(r )/n(r ) rises in the dilute region near the surface a
remains close to one all the way to the surface of the clo
This may be contrasted with predictions forn0(r )/n(r ) for
self-bound superfluid4He at a free surface in which surfac
correlations significantly deplete the condensate at the liq
vacuum interface@27,33#.

IV. DISCUSSION

The main objectives of this work are to explore the role
interactions in determining the zero-temperature proper-

p-

FIG. 11. Condensate fractionn0 as a function of the densityna3

for N5128 trapped hard-sphere bosons. Heren is the number den-
sity at the center of the trap anda is the scattering length. Circle
are from the mean-field Bogoliubov~MFB! expression forn0 in a
uniform dilute Bose gas integrated over the TF density. The up-
down-facing triangles are the DMC and VMC results, respective
Dashed lines are spline fits to guide the eye.

FIG. 12. Condensate fractionn0 over a wide density range. Th
legend is the same as Fig. 11.
2-9
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J. L DuBOIS AND H. R. GLYDE PHYSICAL REVIEW A68, 033602 ~2003!
TABLE I. Condensate fraction as obtained from mean-fie
Bogoliubov ~MFB! , VMC, and DMC methods.

na3 a/aho MFB VMC DMC

1.331026 1 0.998 0.999~9! 0.99~9!

4.631025 4 0.992 0.992~4! 0.99~2!

2.531024 8 0.983 0.977~8! 0.97~7!

2.531023 16 0.959 0.942~1! 0.94~2!

2.431022 64 0.785 0.745~7! 0.70~2!

1.131021 128 0.506 0.476~5! 0.3~5!

3.231021 256 N/A 0.160~0! 0.1~0!

aMFB predicts a negative condensate fraction for this system.

FIG. 13. Comparison of total density distributionn(r ) to con-
densate distribution,n0(r )5uf(r )u2, for N5128 hard-sphere
bosons in a harmonic trap calculated using diffusion Monte Ca
Circles are the total density while triangles represent the cond
sate. Dashed lines are spline fits to guide the eye. In the top fra
the maximum density in the trap isna3'2.431022 and the total
condensate fraction isn0'70%. In the bottom frame,na3'2.4
31022 andn0'10%.
03360
of the trapped Bose gas over a wide range of densities an
determine the limits of the mean-field description of the co
densate properties. To this end, we have employed Q
methods and the OBDM formulation of BEC. We find th
OBDM description of a many-body Bose system combin
with QMC techniques provides a coherent method for
study of the ground-state properties and Bose-Einstein c
densation in traps from the dilute to the very dense regim
By comparing our QMC results with mean-field theory w
determine key limits of the mean-field description.

A. The ground-state energy

We find that in the dilute limit,na3&1024, where the
condensate depletion is small,n0*99%, the GP description
of the condensate provides a good description of the
many-body ground state. Once the density has reac
na3'1023, '6% of the atoms lie outside of the condensa
and the condensate energy obtained from GP theory lies
below the QMC energy. Forna3*1023, the GP energy does
not describe the energy of the bosons in the trap accura
The present QMC corrections to the GP energy,dE5EDMC
2EGP , are proportional toN3/5 when N is allowed to vary
with fixed a and are proportional to (a/aho)

8/5 when a is
allowed to vary with fixedN. This dependence onN and a
holds for all densities studied (1026,na3,0.5) and is con-
sistent with the expected corrections to the GP energy ari
from the depletion of condensate~18!. Thus, the GP descrip
tion of the condensate energy appears to be valid even in
highly interacting regime. However, the dependence ofdE
on the productN3/5(a/aho)

8/5, as predicted by MGP~18!,
holds up to densitiesna3'531024 only. As interaction is
increased the effects of the noncondensate play an incr
ingly significant roll in determining the properties of the tot
ground state and a more complicated functional depende
of dE(N,a) than the simple productN3/5(a/aho)

8/5 is re-
quired at higher densities.

B. Deviations from the mean-field description

Figure 14 contains striped bands indicating regions
a/aho where QMC results diverge from mean-field / Bog
liubov predictions. Since the degree of depletion of the c
densate arising from interboson interaction plays a sign
cant role in determining beyond-mean-field effects, QM
values for the number of atoms outside the condensateÑ,
for a system with a total ofN5128 bosons are shown alon
with the regions. The first sign of divergence~a! occurs at a
density of na3'331024 and a value of a/aho
'8(aRb /aho)'0.035. At this density, QMC and MFB~21!
results for the condensate fraction,n05N0 /N, begin to di-
verge ~see Fig. 11!. Below this value ofa/aho , QMC and
MFB values ofn0 agree to within 1%. Atna3'1023, MFB
underestimates the depletion of the condensate by 30%
higher densities,na3'1021, MFB predicts a condensat
fraction 40% higher than QMC.

The second point of interest in Fig. 14 marked~b! occurs
in the region ofna3'2.531023 anda/aho'0.12. Near this
value ofa/aho , QMC results for the size of the many-bod

-

.
n-
e,
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NATURAL ORBITALS AND BOSE-EINSTEIN CONDENSATES . . . PHYSICAL REVIEW A 68, 033602 ~2003!
ground-state and mean-field results for the size of conden
~19! begin to differ. For values ofa/aho&0.12, the width of
the many-body ground state is proportional to (Na/aho)

1/5 as
predicted by mean-field theory. At higher values, (a/aho
.0.12), we find that the size of the condensate is be
described by a scaling of (a/aho)

2/3. The scaling is shown in
Fig. 8 and discussed in Sec. III C 1. Thus, for systems w
na3*1023, GP theory in the TF limit underestimates th
growth of the size of the ground state witha/aho signifi-
cantly. In the extreme range of very large scattering length

FIG. 14. QMC determination of the number of bosons outs

the condensate,Ñ, for N5128 hard-sphere bosons in a spherica
symmetric harmonic trap vsa/aho . The corresponding densitie
na3 are shown across the top axis. Striped bands indicate regio
a/aho where the QMC results for BEC properties diverge fro
mean-field / Bogoliubov predictions.~a! QMC and Bogoliubov re-
sults for n0 begin to diverge.~b! QMC and mean-field results fo
the size of the condensate diverge.~c! Local correlations in the
density profile of the many-body ground state begin to appear.~d!
The condensate begins to shift from the center of the trap.~e! The
condensate exists only in the dilute region near the surface of
trapped cloud.
K
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very tight trapping potential wherea/aho51, GP predicts a
condensate distribution 20% smaller than the width of
ground state obtained from QMC.

Band ~c! in Fig. 14 indicates the region in which loca
correlations in the density profile of the many-body grou
state begin to appear. These local correlations signal a c
departure from mean-field properties. This effect occurs
systems with trap densities ofna3*2.531022 and a/aho
'64(aRb /aho)'0.28. At this level of interaction the con
densate fraction as obtained from DMC isn0'70%. We find
that at this density the condensate density is smoothly v
ing throughout the trap with little or no local-density fluctu
tions~see top frame of Fig. 13!. Evidence that the condensa
distribution does not explicitly follow the total density dis
tribution is another demonstration that a local-density
proximation description of the condensate breaks down
this density.

The band marked~d! in Fig. 14 approximates the regio
in which the condensate begins to shift from the center of
trap to the surface. Here,na3'0.2 anda/aho'0.8. The con-
densate fraction isn0'20%. At this level of interaction and
beyond, mean-field approximations and the Bogoliubov
proximation both fail to appropriately describe the propert
of a trapped BEC. We speculate that at this density, the
creased depletion in the center of the trap could effectiv
pin vortex states.

The final point of interest in Fig. 14 occurs in the regio
marked by the band~e!. For systems withna3*0.3 and
a/aho*256(aRb /aho)'1.1, the condensate exists only
the dilute region near the surface of the trapped cloud. Str
pair correlations have completely depleted the condensa
the center of the trap but the relatively dilute region near
edge of the trap is still able to support a condensate. Fig
13 presents DMC results which demonstrate this phenom
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