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Natural orbitals and Bose-Einstein condensates in traps: A diffusion Monte Carlo analysis
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We investigate the properties of hard-core bosons in harmonic traps over a wide range of densities. Bose-
Einstein condensation is formulated using the one-body density n{@BoM) which is equally valid at low
and high densities. The OBDM is calculated using diffusion Monte Carlo methods and it is diagonalized to
obtain the “natural” single-particle orbitals and their occupation, including the condensate fraction. At low
boson densityna®< 10, wheren=N/V anda is the hard-core diameter, the condensate is localized at the
center of the trap. Amia® increases, the condensate moves to the edges of the trap. At high density, it is
localized at the edges of the trap. Aa®<10 *, the Gross-Pitaevskii theory of the condensate describes the
whole system within 1%. Aha®~10 3, corrections are 3% to the Grass-Pitaevskii energy but 30% to the
Bogoliubov prediction of the condensate depletionnaf=10 2, mean-field theory fails. Aha®=0.1, the
bosons behave more like a liqufiHe droplet than a trapped boson gas.
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. INTRODUCTION andna®~10 ®, wherea is the swave scattering length of

o _ _ the atom$ almost all of the theoretical activity has focused
Bose-Elnst.eln cond'ensayo(rBEC)_ has be_en a t0p'<_3 of _on the weakly interacting gas limit and the Gross-Pitaevskii
fundamental interest since it was first predicted by Elnstelr*(Gp) equation[15]. The GP equation provides an excellent
in 1924[1]. He showed that as a consequence of Bose Stgnean.field description of the condensate at low density. This
tistics [2] a macroscopic fractiolo/N of the atoms in an 5 5 yajid description of the whole Bose gas in the dilute

ideal Bose gas can condense into_a_ Sif‘g'_e quantum StatI‘?mit, na®<1, where most of the atoms are in the conden-
London(3,4] postulated that superfluidity in liquitiHe was sate. However, it is inaccurate for strongly interacting sys-

a consequence of a transition to BEC. But ligdide is a . . -
. . - ._tems in which the condensate fraction is significantly de-
strongly interacting, dense Bose liquid and the connection : : . .
leted by quantum fluctuations. Since the experiments in

between BEC in an ideal gas and superfluidity was not at al . .
clear [5]. Similarly, the many-body correlation effects in- 995, only a handful of studies have attempted to consider

duced by the interboson interaction significantly reduce thd® Properties of BEC beyond the dilute regime and the GP
condensate fraction even at zero temperaf6ré. Modern ~ description of the condensaf@é6-37. Most of this rela-
direct measurementig] of BEC in liquid “He find only tively small body of work rely on modified forms of the GP
7.25% of the liquid in the condensate Bt 0 K. equation which incorporate higher terms in the Bogoliubov
The theoretical framework for treating an interacting Boseexpansion that include effects of atoms outside the conden-
gas was initiated in 1947 by Bogoliub$9]. He developed a sate within a local-density approximation. Unfortunately, the
perturbation expansion valid for low density and weak inter-condensate fraction and distribution in the trap calculated by
action,na®<1 (wheren is the number densiti¥/V andais  such methods become inaccurate as the density becomes
the hard-core diameter of the bosprend small depletion of greater thama®=10"3 [25].
the condensate,N—Ng)/N<1. About a decade later, On- It has recently become possible to study Bose systems
sager and Penrogd0] and Lavdin [11] formulated a defi-  with tunable interaction§38—43 for which densities of up
nition of BEC in terms of the eigenvalues and eigenvectorgo na®*~1 are obtainable. Specificallf>Rb at densities in
(natural orbitaly of the one-body density matri¢OBDM). the rangena®~10 3—10"! has been investigated. BEC in
An orbital with macroscopic occupation arising from diago- metastable helium isotopg44—46 with na®~10"* and in
nalization of the OBDM is defined as the “condensate waveatomic hydrogen[47] with na®~10°, are also higher-
function” or order parameter. This formulation allows direct density Bose gases. This makes the study of BEC and the
access to condensate properties at arbitrary density and doese of interactions in trapped Bose gases over a wide range
not require a large condensate fraction. The work in thisof densities of direct interest to experiment.
paper is based on the OBDM formulation of BEC which is  The chief purpose of this work is to go beyond the dilute
rigorously valid for a strongly interacting systers]. limit, to test the limits of the GP equation and related mean-
In 1995, experiments in weakly interacting dilute vaporsfield approximations and to explore the zero-temperature
of the alkali-metal atom$’Rb, 2®Na, and’Li in magnetic  properties of trapped hard-core bosonsa$ increases from
traps provided direct evidence of a clear transition from athe dilute limit to the dense regime corresponding to liquid
thermally distributed cloud to macroscopic occupation of a*He, and beyond. The range of densities investigated here is
single quantum statel2—14. This long awaited direct real- displayed in Fig. 1. We increase the density by increasing
ization of BEC spawned a dramatic renewal of interest inboth N and the hard-core diameterup to the valuena®
Bose systems and BEC. Since the densities in these exper0.21 which describes liquidHe at saturated vapor pres-
ments were low(typical number densities were ¥@m 3  sure (SVP) when the “He atoms are represented by hard
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tems such as liquid and solitHe [6,7]. Recently, Giorgini
Meta-stable 85R et al. have evaluated the energy and condensate fraction of
helium Fesh the uniform Bose gas over a wide density range; 10
<na®<10 3[25]. Griteret al.[20] have evaluated the criti-
-5 -4 -3 cal temperaturd@ . for BEC in a Bose gas using path-integral
10 10 | Monte Carlo (PIMC) methods. They findT, is increased
na3 above the ideal Bose gas value by interaction in the dilute
range. This increase is observed in dilute concentrations of
FIG. 1. Range of system densities considered in this work ex-*He in Wcor[52]. At liquid-*He densitiesT is decreased
pressed in terms afa®=Na®/V, the ratio of the volume occupied by interaction[53,54.
by N hard-core particles with diametarto the total volume of the Krauth[16] first applied QMC(quantum Monte Carloto
systemV. BEC in a trap using PIMC methods. For 10 000 hard-sphere
bosons in a spherical trap with a ratio of hard-core diameter
spheres of diametea=2.203 A[48]. The ground-state en- to trap lengtha/a,,=4.3x 10 3(na3~10"%), he found that
ergy E, the total density distribution, and the OBDM are condensate was concentrated at the center of the trap while
evaluated using diffusion Monte Carl®@MC) methods. the uncondensed atoms were spread over a wide range and
Specifically, we compare the ground-state energy of thevell described by a classical Bose gas. Holzmann and Krauth
whole trapped gas calculated using DMEg ¢, with the  [22] made a direct comparison of PIMC and Hartree-Fock
usual energy of the condensate calculated using the GP equgalculations for a dilute gas of hard spheres in a trap with
tion, Egp. As density increase€pyc and Egp begin to  a/a,,=4.3x 10 3. For temperatures nedt,, they foundN,
differ. For example, atna®=10"3, we find Epyc was greater in PIMC. The increase My with exact repre-
—Egp)/Ecp=3%. Modified GP equations provide a mean- sentation of the interaction effects is consistent with the cor-
field description of the atoms above the condensate. The deesponding increase ifi, with interaction in the uniform
pendence oEpy c— Egp 0N the number of trapped bosoNs  Bose gas.
and on the scattering lengthfollows the predictions of the Recently, QMC methods have been successfully applied
modified GP equation remarkably well up to high densitiesto the study of highly inhomogeneous Bose systems. Astra-
na®~5x10"2. This suggests that the differendgy,yc  kharchiket al. used DMC to study BEC and superfluidity in
—Eymc (Where VMC densities variational Monte Carlcen  a Bose gas with disorder at zero temperaf@H. They find
be attributed to the atoms above the condensate. Howevean intriguing decoupling of the superfluid and condensate
the energy is not as sensitive to approximations as somfactions for strong disorder. Studies of superflfiide with a
other properties. free surface[27,33 found the local condensate fraction
We compare the condensate fraction obtained using thpeaks (,~0.95% [33]) in the dilute region just inside the
rigorous OBDM-DMC method with predictions of the Bogo- liquid-vacuum interface. Blumg36] and Astrakharchik and
liubov theory. The two agree within 1% fora®<10 *. At Giorgini [37] have examined the transition from the three-
higher densities, the Bogoliubov theory significantly under-dimensional to the quasi-one-dimensional regime for bosons
estimates the depletion of the condensate, by 25%adt in highly elongated cigar-shaped traps. They confirm that the
~2x10 2. We evaluate the condensate density distributiorBose gas undergoes “fermionization” in the quasi-1D
in the trap. At low density, the condensate is localized at theegime.
center of the trap as usually found5]. At higher density In Sec. Il, we describe the theoretical framework and
(na®~10"?), the condensate is spaced over several tragomputational methods used. Section Ill contains the present
lengths and the condensate and total density have similaesults. In Sec. IV, the chief results are reviewed and
distributions. Also, at higher densitieag®=2x102?), os-  discussed.
cillations in the total density distribution appear which are
not found in mean-field theories. There are no corresponding Il. METHODS
oscillations in the condensate density distribution. At high
density 1a®=0.10), the condensate is localized at the edges We consideN bosons of mase confined in an external
of the trap(larger/a) where the total boson density is low. trapping potentiaV,,(r) and interacting via a two-body po-
At high density, the trapped bosons resemble ligthte  tential Vi, (r1,r,). The Hamiltonian for this system is
droplets[49-51].
We also compare the present DMC results with our earlier N o p2 N
variational Monte Carlo valugs0]. We find that the VMC H=2> ﬁviz"'vext(ri) + 2 Vi(ri ). (D)
and DMC energies agree well at all densities and that the ' =
ground-state energy is not very sensitive to the trial varia-
tional wave function. However, the OBDM and the conden-"€"®
sate fraction is very sensitive to the trial wave function at

1 2 .2
higher densities. An accurate initial trial function is needed Vext(r)=zMwhor*, )
to get reliable condensate fractions even in the DMC formu-
lation. where wﬁo is the characteristic trap frequency. Interactions

Monte Carlo methods are usually applied to dense sysare modeled by a hard-sphere potential
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v () w, r<a @ V(RH)—=V(RHV(R). (8)
int(l)=

0, r>a While use of a guiding function is necessary for the efficient
application of the DMC method, it can introduce a bias into
the calculation of observables which do not commute with
the Hamiltonian unless corrective measures are taken—such

as the application of “forward walking{48,56.

Introducing lengths in units of the characteristic trap
lengthay,,= (/mwpe) Y% r—r/ay,, and energies in units of
oy as in Ref[15], the many-body Hamiltonian is

N We evaluate the expectation val(¥|O|¥) of an opera-
H:Ei 5(_V‘2+r‘2)+i2<,- Vin(Iri—13]). (4)  tor O, using QMC. In integral form the expectation value is
(\P|O|‘If)=f dR¥Y*(R)O(R)¥(R). 9
A. Diffusion Monte Carlo implementation

Diffusion Monte Carlo is a method for flndlng the exact To evaluate this expression using QMC, Eg) is recast as
properties of the quantum-mechanical ground state of a

many-body system to within arbitrary precision—see, for ex- ,| O(R)¥(R)
ample, Ref[55]. The starting point for this method is the <‘I’|O|‘I’>:J dR|V(R)| VYR
time-dependent Schdinger equation in imaginary time:

(10

The result of a QMC calculation is a set of configurations

2
_ h—V2+V(R)—ET V(R,t)= _ﬁw_ 5) {Ry,....Ry} sampled from|W|?. Using these configura-
2m at tions we may estimaté¥|O| V) as
The time-dependent component ¥f(R,t), Q;(t), is Q;(t) 1 M O(R)¥(R;)
=exd —(E,—Ept4]. E7 is an adjustable target energy. In the (P]O|¥)~ — > —— (11
t—oo limit, the steady-state solution of E¢p) is the ground M= PR
state®y(R). . .
The term diffusion Monte Carlo comes from the resem—ThIS estimate becomes exactMs- .
blance of Eq.5) to the classic diffusion equation
B. The OBDM and natural orbitals
DV2p(R,t) = 5P(R’t). 6) A goal in this work is to describe BEC in systems with

at interactions. To do this we require a definition of the conden-
sate single-particle state. Following Onsager and Penrose,
This equation can be simulated by a Monte Carlo randomand Lowdin [10,11], we take OBDM as the fundamental
walk in configuration space. Treating thdV(R) quantity for an interacting system and define the natural
—E{]¥(R,t) component of Eq(5) alone results in a rate single-particle orbital¥NO) in terms of the OBDM. The

equation of the form OBDM s [57]

ap(R,1) p(r',n)=(¥T(r"),¥(n)), (12)

v(R)p(RY)=————. (7)

where ¥ (r) is the field operator that annihilates a single
This component represents a branching process in which thgarticle at the point in the system. To define the NO, we
growth or decay of a population is proportional to its density.introduce a set of single-particle states having wave func-
In the present implementation the diffusion and branchingions ¢;(r) and expandif(r) in terms of these states and the

processes are combined to simulate E5).and obtain the operatorsé» which annihilate a particle frorfi)
zero-temperature ground state of the time-independent '

Schralinger equation. R )

A simple application of Eq(5) above results in a branch- V=2 ¢i(na;. (13
ing rate which is proportional to the potential eneg{R) !
—E+. This means that large fluctuations in the potential o “ ) )
V(R) will cause correspondingly large fluctuations in the R€quiring that thea; satisfy the usual commutation
population of walkers. Dramatic fluctuations in the number([a] ,a;]=&;) and number relations(4 a;)=N;s;), we
of walkers can result in large inefficiencies when treatinghave
realistic many-body systems. The solution to this problem
was first presented by Kalat al.[48]. In this method, a trial L o _ . ,
function is introduced tayuide the metropolis walk to re- pr.r )_% j (1 )¢‘(r)N‘5‘J_; é7 (N i(r)N; -
gions of higher probability and lower potential energy result- (14)
ing in lower fluctuations in the population of walkers. The
wave function in Eq(5) is replaced by a product of the true This may be taken as the defining relation of the N§Xr).
ground stateV (R,t) and a guiding functionV{(R): Specifically, we have from Eq14),
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Replacing the continuous matri(r,r’) with the dis-
J drdr’ & (N)p(r,r') ¢;(r')=N;g;, (19 creet matriXiep|(i€,j€)je] is a potential source of system-
atic error. To avoid this problem, we evaluated each system
so that the NO may be obtained by diagonalizing the OBDM With decreasing values of the grid spaciaguch thateg. ;
The eigenvectors are the NO and the eigenvalues are thie€q/2. The largest value of for which no significant
occupationN; of the orbitals. In principle any orbital which change in the calculated orbitals and occupation numbers
satisfiesN;>1 may be considered a macroscopically occu-0ccurred betweer, and 5., was then used to determine
pied pseudoparticle state—i.e., the equivalent of a Bosethe condensate properties for that system. _ _
Einstein condensate. A Bose system with more than one A second potential source of error arises in treating
macroscopically occupied state would represent a fragei(r.r’) (which is an infinite matrixas a finite matrix. Since
mented condensaf&]. In the systems studied in this work, the trapped systems are spatially finite, the probability of
only a single condensate orbital was found to have macrofinding a particle beyond the average radRisf the cloud
scopic occupation. The condensate is therefore the orbit&loes to zero very quickly. For the same reaspyfr,r’)
ha\/ing the h|ghest occupation’ denoted by(r), and the ~0 when either>R orr’>R. Itis therefore, safe to treat
condensate fraction is,= Ny /N. pi(r,r’) as a finite matrix. As a brute force test of this asser-
Relations(14) and (15) involve the vector andr’ and tion, we evaluated several systems with increasingly large
cannot be solved directly as matrix equations. To obtain macutoff values. We found no significant change in condensate
trix equations, we restrict ourselves to spherical traps an@roperties calculated from a OBDM wherer’<R and
seek equations for the radial component of the NO as in Ref.,/'<2R.
[50]. In this approach, the OBDM is expanded in Legendre The statistical error associated with a given orbital and its

PolynomialsP,(f,- ) and evaluated using the QMC ground occupation are obtained as follows. When the initial OBDM,
e O i Iculated the variance associated with each matrix
state¥, as p-, IS ca

element inp® is obtained. The originap® is assumed to
represent a randomly sampled event from a Gaussian error
p,(rl,r1)=f dQqdry- - dryWE(re---ry) distribution surrounding the true OBDM. Based on this as-
sertion, a set oM new OBDM’s,{p*- - - pM}, are then gen-
XPI(Fl.Fi)\IIO(rJ'_. R (16) erated by allowing each matrix element to randomly vary

according to its statistical error. Each of the new OB},
C. QMC evaluation of py(r,r’) are dlagon_allzed to olztam their corresponding elgen_values
n! and eigenvectors¢!. An average occupationp;

In QMC we evaluate Eq16) in a form similar to Eq(10) —UMSMRY. and orbital, = SM39, are then obtained
q [ ’ I q 1 .

giving ¢ | .
The variance of these averages is then used as an estimate of
, 1 (ri+el2 ~ ~ the statistical error of the orbitals and occupation numbers
prnrp= gz an, [ a0,0Rw (R of 0.
4me ri—el2

Ill. RESULTS

y Pi(r1 1DV (r;,R)

V(ry,R) ’ @

A. DMC energy

5 Figure 2 shows the energy per particle calculated by dif-
whereR=(r,, ... y) and e is the width of the grid ele- fusion Monte CarloEpyc, by variational Monte Carldus-
ments upon whicky,(r,,r1) is being evaluated. Because the ing the simple trial function of Ref50]), Eyyco, and using
systems we are evaluating are spherically symmetric, the dihe Gross-Pitaevskii equatiofsgp, of trapped hard-core
rection ofr’ is arbitrary. We may take advantage of this factbosons as a function of maximum densitg®, in the trap.
to reduce the statistical uncertainty in estimates¢f,r’) In the dilute regimena®<10 %, Epyc, Evmco, andEgp
by evaluating Eq(17) for several different directions af’ are nearly indistinguishable. The difference in energy at
and taking the average result. In addition, since we are deaita®>=5x10""° is, for example, 104 wp,, which is within
ing with identical bosons, the OBDM does not depend on théhe error bars of the QMC calculations. At higher densities,
particle being evaluated sp(ry,r;)=p(r;,r{). This al- the DMC energy lies above the GP result by 3%nat
lows us to take the averagﬁl,(rlyri): 1/N2ipl(ri 'ri’)_ = 1073. EVMCO agrees well with the DMC results with a
difference of only 0.3% aha®=10 3.

Figure 3 shows the percent difference betwegpy,c and
EGP’ 5E/EGP:(EDMC_EGP)/EGP fOI’ N:128 hard'

Using the method described above, the OBDM is evalusphere bosons in a spherically symmetric harmonic trap at
ated on a grid of values af=ie andr’=je, wherei andj higher densitiesna®. Here, and throughout this paper, GP
are integers in the range<ti,j <Q (whereQ is a maximum  energies are calculated using a self-interaction term propor-
cutoff). We may then construct the discreet matrixtional to (N—1)a/a,,. GP results usingNa/ay, signifi-
[iep(i€,je)je], which is readily diagonalized by standard cantly overestimate the energy for small The difference
matrix diagonalization methods. between DMC and GP energies is well described by

D. Diagonalization and error estimation
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FIG. 2. Diffusion Monte CarlcEpy ¢, variational Monte Carlo _ _ .
Evmco, and Gross-PitaevskiEgp, energies for trapped hard- sca'itltfri'ndn Ilgr?ptergdﬁnniﬁeafa_(i [r)lMtCh EG_P)( ho/n:nthe)rf}ztlofoI tll\]e
sphere bosons as a function of maximum densiy in the trap. g 'eng = trap 1engthano= @ho) 10
Density is varied by changing scattering lengah 4.3x 103 =128 bosons in a spherically symmetric harmonic trap. The dashed
y y ging 9 ' line showsSE/Egpe (alap)®®.

<ala,,<0.14, wherea,, is the trap length. At higher densities
Eowc clearly lies ab3°V£G,PS' 3% atna®=10°. Evuc andEpuc  energy which takes into account particles above the conden-
differ by 0.3% atna®=10"". sate, denoted the modified Gross-PitaeveWliGP) equation
energy[15].
SEIEgpx(na®)?®. This dependence holds even up to trap Figure 5 shows the dependence &&=Epyc—Egp ON
densities ofna®~0.32, well above the density of liquid he- the number of particledl in the trap. In this plot, the ratio of
lium (na®~0.21). At this densityEgp andEpyc differ by  the scattering length to the characteristic length of the trap is
as much as 80%. alan,=8(arp/an,) =0.034 64. The resulting range of densi-
In Fig. 4, the dependence @fE/Egp on the scattering ties at the center of the trap lie betweea®~8x 10> for
lengtha for N=128 bosons in a spherically symmetric har- N=16 andna®~6x 104 for N=1024. The DMC energy is
monic trap is shown. The figure shows good agreement with=2% higher than the GP energy whiir- 1024. The dashed
SEx(alan,)®®. This is precisely the power-law relation pre- line is a least squares fit ofE to a function of the form

dicted by the first-order correction to the Gross-Pitaevskiiq(N)=gqo+q;N%°. The relationsE(N)=N%® is again con-
sistent with the result obtained from the modified Gross-

Pitaevskii equation.

1 I 1 I
100% = 0.15
L @ . 1 1 1 1 1
N =128 el
-3 /’e’
107° < afap, < 2.5 @/,»’ ] a/ap, = 0.035
. 10%r @ . 01f BN T .
5 o 1
S - 3 &
& o 2 | 2
= o =
1% o . 8 0.05F -
,/’,/ 'l@;,
@
)
01% ol R T Lol Zl 0 g T
104 10°3 1072 107! , , , , ,
na’® 0 200 400 600 300 1000
N

FIG. 3. Percent difference between diffusion Monte Cé&g,c
and Gross-Pitaevskitgp energies for hard-core bosons in a spheri-  FIG. 5. Dependence ofE=Epyc—Egp 0n the number of par-
cally symmetric harmonic trap as a function of maximum densityticlesN in units off w;,,, Where the ratio of the scattering length to
na® in the trap. The percent difference between DMC and GP enthe characteristic length of the trapasa,,=0.034 64. The dashed

ergies is well described byE/Egp> (na®)?® (dashed ling line is SExN35,
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FIG. 6. SE=(Epuc—Egp) as a function oiN*>(a/a,)®" for
fixed number of particled\ =128 (filled circles, and fixed scatter-
ing length,a/a,,,=8ag, (open circleg along with the MGP pre-
diction (heavy-dashed line Values of the maximum trap density
na® for the fixedN case are shown on the top axis.

FIG. 7. Difference between DMC and VMCO energi&s,(;co
—Epmc) compared with the variance of the VMCO calculation,
o(Evymco), as a function of the ratio of the hard-sphere diameter to
the trap lengtha/a,,, .

The MGP expression for the ground-state energy provide$ e maximum density of the trapped bosons for this “criti-
the first correction to the GP energy arising from contribu-cal” value of a/a,,=0.3 is na®~3x 1072, This indicates
tions of the noncondensate. If this correction is relevanthat for systems witina®< 10~ the VMCO trial function not
across the entire range of systems considered, combining tifly provides a valid upper bound on the energy but a valid
results for the dependence 6E on N and a/a;,, as pre- lower bound as well.

sented in Figs. 4 and 5 should provide a single coefficient
such that C. Spatial distribution of trapped bosons

The spatial distribution of trapped bosons is a property
which is accessible to experimental observation. The first
observations of BEC used the difference between a classical
Boltzmann distribution and a condensate distribution as evi-
dence for the existence of BHC2-14. Spatial resolution in

ost observations to date is, however, not very Hitgylpi-
cally only O(10™ 1) times the size of the condensate it}elf
e[12,42]. In this section, we compare the present QMC results

for the density of the many-body ground stam€r), with
predictions of mean-field theory for the spatial distribution of

respectively, they do not share a common coefficéenthis the_ (;Iondensattmo(_r). V\(/jh”el tth's co;nlohanson :js not talways
suggests that at higher densities corrections to the condensé;t%'c y correct, since depletion ot the condensate means

energy have a more complicated dependencil anda than r)#ny(r), what is actually observed in experiments is the
Eq. (18) “total” density which includes condensate and nonconden-

sate atoms alike. The condensate distribution and “total”

density have been treated as identical in the analysis of ex-

perimental result§40]. For this reason, we will compare
To investigate the range of validity of the VMCO trial n(r) and mean-field results famy(r) as if they are indeed

function we evaluated the variance of the Hamiltonian. If themeasurements of the same physical quantity.

trial function is an exact representation of an eigenstate of

the Hamiltonian the variance is zero. Figure 7 provides a 1. The “width” of a trapped cloud of bosons

comparison of the difference between DMC and VMCO re-  Tpe radius of the condensate as predicted by the Gross-
sults for the energy per bosonEvco—Epmc), and the  pitgevskii equation in the Thomas-Fermi limitN&>1,
variance of the energy per bosan(E\ o), as a function alan,<1) is[15]

of the ratio of the hard-sphere diameter to the trap length

alan, . Results are foN=128 hard-core bosons in a spheri-

cally symmetric trap. Up to a value af a;,,~0.3, the DMC Rre=an,
and VMCO energies agree to within the varianceEQf, o -

SE=¢N®S(alay,) 8o (18

MGP predictst=5(15)*%(64\2)~0.28. In Fig. 6, the fixed
a and fixedN results are shown together along with the MGP
prediction for the first-order contribution to the ground-state
energy of atoms depleted from the condensate. The figu
demonstrates that for systems witta><5x 104, MGP
provides a good description of the DMC corrections to th
GP energy. At higher densities, while the fixa@nd fixedN
results are separately well described ly(,,)®® and N®®,

B. Range of validity of VMCO results

15N —

a ) 1/5 (19)
anho
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FIG. 8. QMC values of the widtR of the ground-state density
of hard-core bosons in a harmonic trap ¥a{ay,.)*°, whereN is
the number of particles amalis the hard-core diameter. Diamonds
show the dependence whéhis fixed (N=128) anda is varied,
4.33x10 %<ala,,<1.11. Circles show the dependence wles
fixed [a/an,=8(arp/@ny)=~0.0359 and N is varied, 3%N
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densityna®. Frame(a) shows the radial density profile for
alap,=8(arp/an,) =0.034 64. The maximum density of the
trapped bosons in this system occurs at the center of the trap
with na®~2.25x 10" . This corresponds to a typical density
observed in experiments in metastable*Hd4,45. Frame

(b) shows results fora/a,,=32(arp/an,) =0.13856 and
maximum densityna®~6x 103, which is comparable with
densities found in®Rb experiments. In framéc), a/ay,
=64(arp/an,) =0.27712. Here, local correlations in the
density distribution near the center of the trap are readily
apparent. Finally, framéd) shows the density profile for
alan,=256(arp/an,) =1.1084. In this system, the hard-
spheres appear to have solidified in the center of the trap.
The n(r)a® for this system is only qualitatively correct as
mixed estimator bias caused by the guiding function used is
a factor here.

3. Comparison of DMC rfr) and Thomas-Fermi rg(r)

In the so-called “Thomas-Fermi(TF) approximate form
of the Gross-Pitaevskii equation, the interaction tegm
«Na in the GP equation is assumed to dominate the
“kinetic-energy” or gradient term resulting in an analytically
solvable form of the GP equation. The TF approximation is

<1024. The short-dashed and long-dashed lines are linear arféikPected to be valid wheNa is large,Na>1, the interac-

spline fits to the fixedx and fixedN data, respectively.

We have defined the radius of the ground stRt§,c by
setting a cutoff value of the QMC number densit{r) so
thatn(RQMC)=10*5. Figure 8 shows QMC results for the
dependence of the widtR/ a,,, of the ground-state density of
N hard-core bosons on the produbtd/a;,,)*'®. In the figure,

diamonds show the dependence when the number of par-

ticles is fixed,N=128, and the hard-core diameteis var-
ied, 4.3 10 3<al/a;,<1.11. The dashed line is a spline fit

tion density is low,na><1, and the ratio of the scattering
length to the characteristic harmonic trap length is small,
alan,<1.

Figure 10 shows a comparison of the total density distri-
bution calculated using DMQ)puc(r), to the density pre-
dicted by the Thomas-Fermi approximation

ne(r)=[(15Na)?°—x?]/87Na. (20)

The top frame(a) shows the density profile foN=1024

to the fixedN=128 data to guide the eye. Circles show thebosons witha/ay,,=8agr,=0.034 64. Here, the TF and DMC

dependence when the hard-core diameter is fixa@y,,
=0.035, and\ is varied, 32<N=1024. The dashed line is a
linear least-squares fit to the fixeddata with slope~0.52.
In the region ¥ (Na/a,,)°<1.75, both fixeda and fixed-
N results have a linear dependence &a(ay,.)*° with the

results agree quite well. However, the TF result slightly over-
estimates the density near the center of the trap and fails to
reproduce the low-density tail which occurs near the edge of
the trapped cloud. Framg) showsn(r) for N=128 and
ala,,=64ag,=0.277 12. Note that the producha/a,,,

same slope. In the region where the dependence ofthe only variable responsible for determining the shape of

(Na/an,)*® holds, the maximum density of the trapped
bosons is range in the 16<na®<5x10 3. For small val-
ues of (Na/ay,), the (Na/a,,)”® dependence is not ex-

the TF and GP density profiless the same in both frames.
Clearly, in the bottom frame, the TF approximation dramati-
cally overestimates the density at the center of the trap and

pected to hold since even a single-particle noninteractinginderestimates the width of the condensate.

system has a finite width. The width of the many-body

ground state is no longer linearly dependent afa(,,)*" for
values of Na/a,,)Y>>1.75. In this regime, the maximum
trap density isna®>=5x10"2 anda/a;,=0.1. The present
DMC results indicate that foa/a;,=0.1, the width of the
many-body ground state depends @, as Rx(a/ayg)?>
rather than &/ay,,)®. Linear dependence di'® continues
to hold up to the highest number of particles considemgd (
=1024).

2. The total density profile

Figure 9 shows the DMC density profiles for 128 hard-
sphere trapped bosons for four values of the maximum trap

D. Condensate fraction

Figure 11 shows the condensate fractignas a function
of the densityna® for N=128 trapped hard-sphere bosons.
Then is the maximum number density which is at the center
of the trap in the density range shown. The density was var-
ied by changing the value @f/a;,,. The corresponding val-
ues ofa/a;,, are shown on the top axis. Circles are the mean-

field-Bogoliubov(MFB) result for a uniform dilute Bose gas

integrated over the GP density in the Thomas-Fermi limit
[58] obtained by solving

no=1-0.3798Nya/ay,) ¥ /N. (21)
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(c) | T | | (d) | T | =128 and values of a/ay,
s . =0.03464, 0.13856, 0.27712,
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9 \\ ] \ and(d), respectively.
AN ! L A
5 £ s 2 ‘{’N} ‘h.% .
- =2
3 5, < f A"
St 4 = |} \

r/ano r/ano

The up- and down-facing triangles are the DMC andthe DMC and VMC density distributions. As will be shown
VMCO results, respectively, obtained from diagonalizing thein the following section, the dilute region at the “edge” of
OBDM. For na®<10™4, all three values ofn, agree to the trapped cloud can support a condensate even when the
within 1%. At higher densities, the MFB result consistently condensate fraction in the dense center of the trap goes to
overestimates the condensate fraction. MFB overestimatezero.
the condensate fraction because it ignores local pair correla- The density corresponding to liquid helium at S\irag
tions which act to deplete the condensate. In contrast the0.21) is indicated on the plot. At this density, VMC gives a
DMC value of the condensate is consistently lower than eicondensate fraction ofi,;=~25% while DMC estimates a
ther the VMCO or MFB estimates. We believe that the DMC condensate fraction ofi;~18%. In bulk liquid *He, the
result forng is lower than either VMC and MFB because it is condensate fraction i3y~ 7.25% [8]. This difference is ex-
able to treat local pair correlations more accurately. Pair corplained by the fact that the dilute region near the surface of
relations allow the total energy to decrease at the expense te trapped cloud allows for a larger fraction of particles to
long-range order. Since DMC is able to sample the exacbccupy the condensate orbital than in an uniform system at
ground state, the mixed estimate foy obtained from DMC  “He densities.
is more accurate than VMC or MFB. Table | summarizes the present DMC and VMC results

Figure 12 shows\, over a wider density range. Hereis  for the condensate fraction over a wide density range.
again the maximum number density in the trap. At high den-
sities the maximum density in the trap is not always at the
center of the trap. As in the dilute regime presented in Fig.
11, MFB consistently overestimates the condensate fraction In Fig. 13 we compare the total density distributio¢r)
for most densities. Ana®~0.28, however, the MFB esti- to the condensate distributiomy(r)=no|#o(r)|?, for N
mate ofn, goes to zero while both VMC and DMC still =128 hard-sphere bosons in a harmonic trap calculated us-
show a condensate fraction Bf~10%. The MFB estimate ing diffusion Monte Carlo. In the top framea/ay,
goes to zero because the TF density profile used to calculate64(arp/an,) giving a maximum density in the trap of
the MFB value ofn, does not have a broad low-density na®~2.4x 102 and total condensate fraction n§~70%.
region near the surface of the trapped cloud of atoms as dm this system, the spatial distribution of the condensate fol-

E. Spatially dependent depletion of the condensate
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""""" ~ npmc(r) —— FIG. 11. Condensate fraction, as a function of the densitya®
\\ nrp(r) -—-- for N=128 trapped hard-sphere bosons. Heie the nhumber den-
3F . S sity at the center of the trap aradis the scattering length. Circles
‘\ are from the mean-field BogoliubaWFB) expression fong in a
o it oo \\ uniform dilute Bose gas integrated over the TF density. The up- and
~ w A eenne, ‘\ down-facing triangles are the DMC and VMC results, respectively.
E 2 e, N 7] Dashed lines are spline fits to guide the eye.
o ‘... ‘\‘ . . . .
- "-2\,. no(r)/n(r) rises in the dilute region near the surface and
v, remains close to one all the way to the surface of the cloud.
1r e, . This may be contrasted with predictions fog(r)/n(r) for
\"-, self-bound superfluidHe at a free surface in which surface
(b) N e, correlations significantly deplete the condensate at the liquid-
0 L I LN e vacuum interfac¢27,33.
0 1 2 3 4

/ IV. DISCUSSION
T/0he
. S The main objectives of this work are to explore the role of
FIG. 10. Comparison of total density distribution calculated us-interactions in determining the zero-temperature properties
ing diffusion Monte Carlonpyuc(r), for hard-sphere bosons in a

harmonic trap to the density predicted by the Thomas-Fermi ap- a/ano

proximation(20). Top frame(a) is for N=1024 bosons with a ratio 004 02 03 07 1 3 5 1
of scattering length to trap length afa,,=8ag,=0.034 64. Den- T T T T T I
sity is expressed in terms of(r)a®x10*. Frame(b) is for N L0 &_'"—"“'*"’"“‘»aﬁi_ 7
=128 bosons witta/ay,,= 64ag,=0.277 12. Density is expressed TR

in terms ofn(r)a®x 107 0.8

lows the shape of the total density distribution except at
smallr. It is worth noting that while the total density exhibits 0.6
local correlations in the dense region near the center of theg DMC :-A-:
trap, the condensate distribution is relatively flat in this re-

gion. In the bottom frame of the figureal/a, 04r VMGo v
=256(@gp/an,) =1.1084 resulting in a maximum density of MFB e
na®~0.325 and a condensate fractionrgf~10%. This is 0.2

the same system shown in frart@ of Fig. 9. As discussed
above, the DMC results at this density are biased by the
VMC guiding function used. Nevertheless, we believe the — 0.0 e
results to be qualitatively correct. Here, strong pair correla- 108 10~ 10~ 103 102 10!
tions have completely depleted the condensate in the cente 3

of the trap but the relatively dilute region near the edge of
the trap is still able to support a condensate. We find that for FIG. 12. Condensate fractian, over a wide density range. The
trapped hard-sphere bosons, the local condensate fractidegend is the same as Fig. 11.
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TABLE I. Condensate fraction as obtained from mean-field-of the trapped Bose gas over a wide range of densities and to
Bogoliubov(MFB) , VMC, and DMC methods.

3

determine the limits of the mean-field description of the con-
densate properties. To this end, we have employed QMC

na alap, MFB VMC DMC methods and the OBDM formulation of BEC. We find the

13%10°© 1 0.998 0.99) 0.999) O_BDM descrlptlo_n of a mar_1y-body Bose system combined
4.6x10°5 4 0.992 0.992) 0.992) with QMC techniques provides a coherent method for the

' 4 ' ' ' study of the ground-state properties and Bose-Einstein con-
2.5x10 8 0.983 0.97®) 0.977) L ; .
2 Bx 10-2 16 0.959 0.9401) 0.942) densation in traps from the dilute to the very dense regime.
2'4>< 10-2 64 0.785 0'74 0'7 5 By comparing our QMC results with mean-field theory we

' , : 7467) 702) determine key limits of the mean-field description.
1.1x10 128 0.506 0.47%) 0.35)
3.2x10°t 256 N/A 0.16Q0) 0.1(0)

3MIFB predicts a negative condensate fraction for this system.
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A. The ground-state energy

We find that in the dilute limitna®<10 4, where the
condensate depletion is smai;=99%, the GP description
of the condensate provides a good description of the full
many-body ground state. Once the density has reached,
na®~10 3, ~6% of the atoms lie outside of the condensate
and the condensate energy obtained from GP theory lies 3%
below the QMC energy. Fara®=10 3, the GP energy does
not describe the energy of the bosons in the trap accurately.
The present QMC corrections to the GP ene@y=Epyc
—Egp, are proportional tdN*® whenN is allowed to vary
with fixed a and are proportional toa{a;,)®® when a is
allowed to vary with fixedN. This dependence oN anda
holds for all densities studied (16<na®<0.5) and is con-
sistent with the expected corrections to the GP energy arising
from the depletion of condensat#8). Thus, the GP descrip-
tion of the condensate energy appears to be valid even in the
highly interacting regime. However, the dependenceSif
on the productN®%(a/a,,)®®, as predicted by MGR18),
holds up to densitiesa®~5x10"* only. As interaction is
increased the effects of the noncondensate play an increas-
ingly significant roll in determining the properties of the total
ground state and a more complicated functional dependence
of SE(N,a) than the simple produdN®(a/ay.)®® is re-
quired at higher densities.

B. Deviations from the mean-field description

Figure 14 contains striped bands indicating regions in
ala;,, where QMC results diverge from mean-field / Bogo-
liubov predictions. Since the degree of depletion of the con-
densate arising from interboson interaction plays a signifi-
cant role in determining beyond-mean-field effects, QMC

values for the number of atoms outside the condendate,
for a system with a total dil=128 bosons are shown along
with the regions. The first sign of divergen@ occurs at a
density of na’~3x10% and a value of al/ay,
~8(aRrp/any) ~0.035. At this density, QMC and MFR1)
results for the condensate fractiamy=Ng/N, begin to di-
verge (see Fig. 11 Below this value ofa/a,,, QMC and

FIG. 13. Comparison of total density distributiorir) to con- TR 30 <3
densate distribution,ng(r)=|¢(r)|?, for N=128 hard-sphere MFB values ofn, agree to within 1%. Ana’~10"", MFB

bosons in a harmonic trap calculated using diffusion Monte CarloUnderestimates thegdeplet'on of the condensate by 30%. At
Circles are the total density while triangles represent the conderPigher densitiesna®~10", MFB predicts a condensate
sate. Dashed lines are spline fits to guide the eye. In the top framé&action 40% higher than QMC.

the maximum density in the trap isa®~2.4x 102 and the total The second point of interest in Fig. 14 markgl occurs
condensate fraction i8,~70%. In the bottom framepa®~2.4  in the region ofna®~2.5x 10 % anda/a,,~0.12. Near this

X 1072 andny=~10%. value ofa/a;,,, QMC results for the size of the many-body
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na® very tight trapping potential whera/a,,,= 1, GP predicts a
10->  10% 103 102 10-1 condensate distribution 20% smaller than the width of the
T T ground state obtained from QMC.
- Band (c) in Fig. 14 indicates the region in which local
correlations in the density profile of the many-body ground
. state begin to appear. These local correlations signal a clear
departure from mean-field properties. This effect occurs for
1 systems with trap densities @fa®=2.5x10 2 and a/ay,
~64(arp/an,) ~0.28. At this level of interaction the con-
. densate fraction as obtained from DMQnig~70%. We find
that at this density the condensate density is smoothly vary-
- ing throughout the trap with little or no local-density fluctua-
tions(see top frame of Fig. 23Evidence that the condensate
. distribution does not explicitly follow the total density dis-
tribution is another demonstration that a local-density ap-
n=E proximation description of the condensate breaks down at
L this density.
a/ho The band markedd) in Fig. 14 approximates the region
o _in which the condensate begins to shift from the center of the
FIG. 14. Ql\fc determination of the number of bosons outS|detrap to the surface. Heraa®~0.2 anda/a;,~0.8. The con-
the condensatey, for N=128 hard-sphere bosons in a spherically gensate fraction is,~20%. At this level of interaction and
syr;wmetric harmonic trap va/ahp. Thg correspor_ldin_g densit_ies beyond, mean-field approximations and the Bogoliubov ap-
na” are shown across the top axis. Striped bands indicate regions i yimation both fail to appropriately describe the properties
alan, V.Vhere the QMC resu'FS .for BEC properties d'.verge from o o trapped BEC. We speculate that at this density, the in-
mean-field / BO.QOHch.’V predictions) QMC and B.OQOI'UbOV ¢ creased depletion in the center of the trap could effectively
sults forn, begin to diverge(b) QMC and mean-field results for pin vortex states.

the size of the condensate diverde) Local correlations in the - B . . . . .
de) The final point of interest in Fig. 14 occurs in the region

density profile of the many-body ground state begin to apgdar. - 3
The condensate begins to shift from the center of the {@prhe marked by the bande). For systems witma®=0.3 and

condensate exists only in the dilute region near the surface of thé/@ho=256@grn/ano)~1.1, the condensate exists only in
trapped cloud. the dilute region near the surface of the trapped cloud. Strong

pair correlations have completely depleted the condensate in
i ) the center of the trap but the relatively dilute region near the
ground-state and mean-field results for the size of condensa@%ge of the trap is still able to support a condensate. Figure

(19) begin to differ. For values ad/a,,=0.12, the Wi?/tsh of 13 presents DMC results which demonstrate this phenomena.
the many-body ground state is proportional kte{a;,,) = as

predicted by mean-field theory. At higher values/d;,,
>0.12), we find that the size of the condensate is better
described by a scaling o(a,)?®. The scaling is shown in Stimulating discussions with J. Boronat and S. A. Chin as
Fig. 8 and discussed in Sec. Il C 1. Thus, for systems withwell as comments on the original manuscript from D. Blume
na>=10"3, GP theory in the TF limit underestimates the are gratefully acknowledged. Partial support from National
growth of the size of the ground state witlia,, signifi- ~ Science FoundatiofGrant No. DMR-0115668is gratefully
cantly. In the extreme range of very large scattering length oacknowledged.
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