
PHYSICAL REVIEW A 68, 033601 ~2003!
Analytical expression for the first-order density matrix of a d-dimensional harmonically confined
Fermi gas at finite temperature

Brandon P. van Zyl
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 12 June 2003; published 5 September 2003!

We present a closed-form expression for thefinite temperaturefirst-order density matrix of an isotropic
harmonically trapped ideal Fermi gas in any dimension. This constitutes a much sought after generalization of
the recent results in the literature, where analytical expressions have been limited to quantities derived from the
diagonalfirst-order density matrix. We compare our results with the Thomas-Fermi approximation~TFA! and
demonstrate numerically that the TFA provides an excellent description of the first-order density matrix in the
large-N limit. As an interesting application, we derive a closed-form expression for the finite temperature
Hartree-Fock exchange energy of a two-dimensional~2D! parabolically confined quantum dot. We numerically
test this result against the 2D TF exchange functional, and comment on the applicability of the local-density
approximation to the exchange energy of an inhomogeneous 2D Fermi gas.

DOI: 10.1103/PhysRevA.68.033601 PACS number~s!: 03.75.Ss, 05.30.Fk
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I. INTRODUCTION

The recent technical advances made by DeMarco and
@1# in the area of trapped, ultracold Fermi gases have le
the experimental realization of what is close to being
ideal, noninteracting, many-body system of harmonica
confined fermions. Using current state-of-the art magne
optical traps, it is also now possible to ‘‘tune’’ the dimensio
ality of the gas from three dimensions~3D! to quasi-2D or
quasi-1D. Such a model system is of great interest to ph
cists, since it provides an opportunity to study the role
dimensionality, and the quantum-statistical properties o
many-body system, exactly. As a result, the past few ye
have seen a renewed interest in the theoretical descriptio
harmonically trapped ideal Fermi gases at both zero@2–9#
and finite temperatures@10,11#. The primary focus of these
studies has been on examining~analytically and numerically!
the expressions for thelocal thermodynamic properties o
the gas, e.g., the single-particle and kinetic-energy densi
These quantities are, of course, of great importance in
density-functional theory~DFT! of inhomogeneous Ferm
systems, whereby one can bypass the numerically expen
one-particle Schro¨dinger equations.

However, the more fundamental quantity, from which t
single-particle and kinetic-energy densities are both deriv
is the first-order density matrixr1(r1 ,r2) @12#. Unfortu-
nately, to date, there are relatively few examples in whic
closed analytical form forr1(r1 ,r2) can be written. One of
the earliest examples dates back more than 60 years to
simi @13#, in which the zero-temperature first-order dens
matrix of a 1D harmonic oscillator was derived. Other e
amples that we are aware of are the so-called Bardeen m
@14#, corresponding to a planar metal surface, and the w
of Bhaduri and Sprung@15# dealing with a 3D oscillator with
a smeared occupancy. More recently, Howardet al. @16#
have evaluated thezero-temperaturefirst-order density ma-
trix of the d-dimensional harmonic oscillator for an arbitra
1050-2947/2003/68~3!/033601~10!/$20.00 68 0336
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number of closed shells. Unfortunately, their form f
r1(r1 ,r2) is somewhat impractical, in that it is given i
terms of multidimensional integrals. While these integr
are numerically easy to evaluate, they are not very useful
further analytical analysis„e.g., examining the asymptoti
behavior ofr(r ) asN→` @11,9#….

One of the central theoretical reasons for pursuing
closed-form expression forr1(r1 ,r2) is that its off-diagonal
elements determine the exchange integrals of two-body
erators and hence, the nonlocal properties of the sys
From an experimental point of view, a closed-form expre
sion for r1(r1 ,r2) is desirable because, the momentum de
sity n(p) ~which is just the Fourier transform of the firs
order density matrix! is experimentally accessible b
measuring the line shape in Compton scattering. Thus, in
case of a weakly interacting harmonically confined Fer
gas, an exact knowledge ofr1(r1 ,r2) can serve as a bench
mark from which the effects of interparticle interactions m
be extracted.

The primary goal of this paper then is to present a clos
form analytical expression for the finite temperature fir
order density matrix of an isotropic, harmonically confin
ideal Fermi gas in any dimension. We organize our pape
follows. In Sec. II, we briefly review some of the basic de
nitions given in Refs.@4,11#, and then proceed to derive
closed-form expression for the finite temperature first-or
density matrix in arbitrary dimensions. Following this calc
lation, we compare our exactr1(r1 ,r2) with the Thomas-
Fermi approximation~TFA! in 2D and discuss the applica
bility of the local-density approximation~LDA ! for
describing the nonlocal properties of the 2D trapped g
Then, in Sec. IV, we apply our results to construct a clos
form expression for the finite temperature Hartree-Fock~HF!
exchange energy density of a parabolically confined
quantum dot. We numerically investigate this exchange
ergy density and comment on its applicability in the conte
of the LDA. Finally, in Sec. V, we present a summary of o
results and briefly highlight some interesting avenues for f
ther investigation.
©2003 The American Physical Society01-1
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II. FIRST-ORDER DENSITY MATRIX IN d DIMENSIONS

In keeping with our our earlier work@11,4#, we begin by
considering a system of noninteracting fermions at zero t
perature described by the time-independent Schro¨dinger
equation

Ĥf i~r !5@ T̂1V~r !#f i~r !5« if i~r !, ~1!

whereV(r ) is a one-body potential to be specified later~all
e i ’s are taken to be positive!. The ~spinless! first-order den-
sity matrix can be obtained by an inverse Laplace transfo
of the zero-temperature Bloch density matrixC0(r1 ,r2):

r1~r1 ,r2!52 (
« i,EF

f i* ~r2!f i~r1!Q~EF!

5LEF

21F 2

b
C0~r1 ,r2 ;b!G , ~2!

where

C0~r1 ,r2 ;b!5(
alli

f i* ~r2!f i~r1!exp~2b« i ! ~3!

andEF is the Fermi energy; the factor of 2 accounts for sp
We have put in the unit step functionQ(EF) in Eq. ~2! so
that the Laplace transform with respect toEF may formally
be taken to be two sided@17#. Note that in quantum-
statistical mechanics,b is usually identified with the inverse
temperature,b51/kBT. However, in our present context,b
is to be interpreted as a mathematical variable which in g
eral is taken to be complex andnot the inverse temperatur
1/kBT.

At finite temperature, the first-order density matrix is o
tained from the Bloch density matrix by using the relati
@18#

r1~r1 ,r2 ;T!5L m
21F 2

b
CT~r1 ,r2 ;b!G , ~4!

where

CT~r1 ,r2 ;b!5C0~r1 ,r2 ;b!
pbT

sin~pbT!
~5!

is the finite temperature Bloch density matrix, andm is the
chemical potential. In Eq.~4!, the Laplace transform with
respect tom is two-sided, so thatm is allowed to go negative
Specializing now to the case of an isotropic harmonic os
lator in d dimensions@19# , viz.,

V~r !5
1

2
mv2r 2, r 5Ax1

21x2
21•••1xd

2 , ~6!

we have for the zero-temperature Bloch density matrix@20#
03360
-

m

.

n-

-

l-

C0
(d)~r1 ,r2 ;b!5C0

(d)S r1
s

2
,r2

s

2
;b D

5S 1

2p D d/2 1

sinhd/2~b!
exp$2@r 2tanh~b/2!

1~s2/4!coth~b/2!#%. ~7!

In the above expression~and what follows!, all lengths and
energies have been scaled byl osc5A\/mv and\v, respec-
tively, and we have introduced the center-of-mass and r
tive coordinates:

r5 1
2 ~r11r2!, s5r12r2 . ~8!

The finite temperature density matrix can, in principle,
obtained by performing the inverse Laplace transform giv
by Eq. ~4! with Eq. ~7!. However, rather than following this
direct approach~which is a very difficult task!, we first con-
sider the following identities:

exp$2x tanh~b/2!%

5 (
n50

`

~21!nLn~2x!e2x$e2nb1e2(n11)b%,

exp$2y coth~b/2!%5 (
k50

`

Lk~2y!e2y$e2kb2e2(k11)b%.

~9!

Identifying x5r 2 andy5s2/4, and using~9! in Eq. ~7!, the
Bloch density matrix now reads

C0
(d)~x,y;b!5S 1

2p D d/2 1

sinhd/2~b!
(
k50

`

(
n50

`

3~21!nLn~2x!Lk~2y!e2(x1y)

3$~e2nb1e2(n11)b!~e2kb2e2(k11)b!%

5S 1

2p D d/2 1

sinhd/2~b!
(
k50

`

(
n50

`

3~21!nLn~2x!Lk~2y!e2(x1y)

3$e2(n1k)b2e2(n1k12)b%. ~10!

Substituting Eq.~10! into Eq.~5! and performing the inverse
Laplace transform, Eq.~4!, leads to the finite temperatur
first-order density matrixr1(r1 ,r2 ;T) in any dimension. For
the sake of clarity, we will now proceed to give an explic
calculation for the simplest case of 2D, followed by a sta
ment of the general result in arbitrary dimensions.

A. Two dimensions

We begin by noting the following important exact inver
Laplace transforms~all two sided!:
1-2
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L h
21F e2nb

sinh~b!G52(
k50

`

d„h2~2k11!2n…Q~h!, ~11!

L m
21F pT

sin~pbT!G5
1

FexpS 2
m

T D11G . ~12!

Puttingd52 in Eq.~10! and using Eqs.~4! and~5!, the finite
temperature first-order density matrix is given by
g
g

th

03360
r1
(2)~x,y;T!5S 1

p D (
k50

`

(
n50

`

~21!nLn~2x!Lk~2y!e2(x1y)

3L m
21F S e2(n1k)b2e2(n1k12)b

sinh~b! D pT

sin~pbT!G .
~13!

Applying the convolution theorem for Laplace transform
and making use of Eqs.~11! and~12!, we immediately obtain
r1
(2)~x,y;T!5S 2

p D (
k50

`

(
n50

`

~21!nLn~2x!Lk~2y!e2(x1y)(
l 50

`

3H E2`

`

dtd~t2~2l 11!2~n1k!!
1

FexpS t2m

T D11G 2E
2`

`

dtd„t2~2l 13!2~n1k!…
1

FexpS t2m

T D11G J
5S 2

p D (
k50

`

(
n50

`

~21!nLn~2x!Lk~2y!e2(x1y)(
l 50

`

3H 1

FexpS 2l 1n1k112m

T D11G 2
1

FexpS 2l 1n1k132m

T D11G J
5S 2

p D (
k50

`

(
n50

`

~21!nLn~2x!Lk~2y!e2(x1y)
1

FexpS «n1k2m

T D11G
5S 2

p D (
k50

`

(
n50

`

Fn,k
(2)~m!~21!nLn~2x!Lk~2y!e2(x1y), ~14!
lus
les.
l-

en-
where the functionFn,k
(2)(m) is defined as

Fn,k
(2)~m![

1

FexpS «n1k2m

T D11G ~15!

and «n5(n11) is the noninteracting energy spectrum~in
scaled units! of the 2D harmonic-oscillator potential. Puttin
back our original variables, we finally arrive at the followin
simple expression

r1
(2)~r1 ,r2 ;T!5S 2

p D (
k50

`

(
n50

`

Fn,k
(2)~m!

3~21!nLnS ur11r2u2

2 DLkS ur12r2u2

2 D
3expS 2Ur11r2

2 U2

2
ur12r2u2

4 D . ~16!

In terms of the center-of-mass and relative coordinates
density matrix is given by
e

r1
(2)S r1

s

2
,r2

s

2
;TD

5S 2

p D (
k50

`

(
n50

`

Fn,k
(2)~m!~21!nLn~2r 2!LkS s2

2 D
3expF2S r 21

s2

4 D G . ~17!

Therefore, the density matrix only depends on the modu
of r and s, and there is a clean separation of the variab
Notice that Eq.~16! has only two sums owing to the cance
lation of all but thel 50 term in thel sum of Eq.~14!. In
addition, it is readily seen that by settingr5r15r2, we im-
mediately obtain the finite temperature single-particle d
sity

r1
(2)~r1 ,r1![r (2)~r ;T!

5S 2

p D (
n50

`

Fn
(2)~m!~21!nLn~2r 2!e2r 2

,

~18!
1-3
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with

Fn
(2)~m![(

k50

`

Fn,k
(2)~m!5 (

k50

`
1

FexpS «n1k2m

T D11G .

~19!

Equation~18! is, of course, identical to the result obtained
Ref. @11# where only the diagonal part of the first-order de
sity matrix was investigated. Furthermore, the 2D ze
temperature density matrix can be obtained from Eq.~16! by
taking theT→0 limit, and when fillingM11 shells, reduces
to ~with all dimensional constants recovered!

r1
(2)~r1 ,r2!5

2mv

p\ (
n50

M

~21!nLnS mv

2\
ur11r2u2D

3LM2n
1 S mv

2\
ur12r2u2DexpS 2

mv

2\
~r 1

21r 2
2! D

5
2mv

p\ (
n50

M

~21!nLnS 2mv

\
r 2D

3LM2n
1 S mv

2\
s2DexpF2

mv

\ S r 21
s2

4 D G , ~20!

whereLM2n
1 (x) is an associated Laguerre polynomial@21#

@see also Eq.~34!# which has the property thatLM2n
1 (0)

5M2n11. It is straightforward to show@with the aid of
Eq. ~35!# that Eq.~20! is indeed idempotent, viz.,

N5
1

2E E r1
(2)~r1 ,r2!r1

(2)~r2 ,r1!dr1dr2 ~closed shell!.

~21!

B. Arbitrary dimensions

The derivation of the first-order density matrix in arbitra
dimensions closely parallels that of the 2D case. The
extra steps required to obtainr1

(d)(r1 ,r2 ;T) are clearly laid
out in Ref.@11#, and so here we simply state the final res

r1
(d)~r1 ,r2 ;T!52S 1

p D d/2

(
k50

`

(
n50

`

Fn,k
(d)~m!

3~21!nLnS ur11r2u2

2 DLkS ur12r2u2

2 D
3expS 2

1

2
~r 1

21r 2
2! D , ~22!

where
03360
-
-

w

t

Fn,k
(d)~m![S 1

exp@~«n
(d)1k2m!/T#11

1 (
m51

` gm
(d)

exp@~«n
(d)1k12m2m!/T#11

D
~23!

and «n
(d)5n1d/2. The expansion coefficients can be giv

in the compact form

gm
(d)5

1

m!

G~d/21m21!

G~d/221!
. ~24!

In particular, we observe thatgm
(2)50 for all m. We have

verified the correctness of Eq.~22! at T50 by checking that
it is an exact solution of the partial differential equatio
~valid in any dimension!

1

jh

]2r1~j,h!

]j]h
5

4m2v2

\2
r1~j,h!, ~25!

where following the notation of Ref.@16# we have defined
j5ur11r2u/2, h5ur12r2u/2, and

r1
(d)~j,h!52S 1

p D d/2

(
n50

M

~21!nLn~2j2!FLM2n
1 ~2h2!

1 (
m51

(M2n)/2

gm
(d)LM2n22m

1 ~2h2!Ge2(j21h2).

Equation~22! also provides us with a direct way to ca
culate the finite temperature kinetic-energy density in a
dimension, viz.,

j (d)~r ;T!52
1

2
¹s

2r1
(d)S r1

s

2
,r2

s

2
;TD

s50

. ~26!

This is an easier route compared with our previous eva
tion of j (d)(r ;T), which required an additional invers
Laplace transform of the Bloch density matrix at finite tem
perature@see Eq.~33! of Ref. @11##. It should be noted tha
when making contact with experimental studies on fu
spin-polarized trapped Fermi atoms, it is appropriate to fo
on singly filled levels, which implies that the factor of
appearing in Eq.~22! should be dropped.

We also briefly mention that an analogous expression
r1

(d)(r1 ,r2 ;T) for the harmonically trapped~spinless! Bose
gas in any dimension can also be obtained by simply rem
ing the factor of 2 in front of Eq.~22! and changing11 to
21 in the denominator of Eq.~23!. While this resulting
novel expression for the Bose gas is very different from w
is found in the literature, it can be shown to be entire
equivalent to the more commonly used form@11#
1-4
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ANALYTICAL EXPRESSION FOR THE FIRST-ORDER . . . PHYSICAL REVIEW A 68, 033601 ~2003!
r1
(d)~r1 ,r2 ;T!5(

j 51

`
ej m/T

@p~12e22 j /T!#d/2

3expS 2
ur11r2u2

4
tanh~ j /2T!

2
ur12r2u2

4
coth~ j /2T! D . ~27!

C. Second-order density matrix

In the present context of noninteracting fermions, t
~spinless! second-order density matrixr2

(d)(r1r2 ,r18r28) can
immediately be obtained from our knowledge ofr1

(d)(r1 ,r2)
~this is in the spirit of the HF approximation! @12#. An im-
portant quantity derived fromr2 is its diagonal element
which corresponds to the pair density, and is given by

r2
(d)~r1r2 ,r1r2!5 1

2 $r (d)~r1!r (d)~r2!

2 1
2 ur1

(d)~r1 ,r2!u2% ~closed shell!.

~28!

For example, in the HF approximation, the electron-elect
potential energy is given by (e51)

Vee
HF5E E r2

(d)~r1r2 ,r1r2!

ur12r2u
dr1dr2 , ~29!

so that the the first term in Eq.~28! is responsible for the
classical Coulomb repulsion and the second term yields
quantum-statistical exchange energy.

III. COMPARISON WITH THE THOMAS-FERMI
APPROXIMATION

In this section, we compare our expression for the fir
order density matrix with that of the TFA. Since the large
deviations between the exact and TF results are known t
at low temperatures~and small particle numbers, especia
in low-dimensional systems!, we will restrict our compari-
sons to zero temperature, and simply state here that the
perature dependence ofr1(r1 ,r2 ;T) is readily studied,
should it be desirable. Again, for the sake of simplicity, w
will focus explicitly on the 2D case, although the extensi
of the analysis to other dimensions is straightforward.

In the TFA, the 2D zero-temperature Bloch density mat
is given by@18#

CTF~r1 ,r2 ;b!5S 1

2pb De2bV[( r11r2)/2]e2ur12r2u2/2b.

~30!
The inverse Laplace transform given by Eq.~2! @with Eq.

~30! for the Bloch density matrix# is readily performed, and
we find for the 2D harmonically confined gas
03360
e

n

e

t-
t
be

m-

r1
TF~r1 ,r2!5

1

p
A2F S EF2VS r11r2

2 D GJ1

3SA2FEF2VS r11r2

2 D G ur12r2u D 1

ur12r2u

5
1

p
A2@EF2V~r !#J1„A2@EF2V~r !# s…

1

s
,

~31!

whereJ1(x) is a cylindrical Bessel function and it is unde
stood that the right-hand side of Eq.~31! is multiplied by the
unit step functionQ„EF2V(r )…. Note that Eq.~31! is also
an exact solution of Eq.~25!. We immediately observe tha
for EF@V(r ) ~i.e., far from the classical turning point,r cl),
Eq. ~31! becomes effectively identical to the uniform ga
result, viz.,V(r )50. Thus, asN→`, r cl→`, and the first-
order density matrix is essentially unmodified by the tra
ping potential.

Now, it is far from obvious by simply looking at the func
tional forms of Eqs.~20! and ~31! that the TF and exac
expressions are even qualitatively similar. Indeed, it is w
known that for local properties, such asr(r ), the TF and
exact densities have very different qualitative behavior, es
cially in low dimensions and small particle numbers. In p
ticular, the shell oscillations observed in the exact expr
sions are not reproduced by the~smooth! TF profiles@4#. To
address this issue, we show in Fig. 1 the exact ze
temperature density matrix~solid curves! along with Eq.~31!

FIG. 1. Comparison of the exact zero-temperature density
trix @Eq. ~20! ~solid curves!# with the TFA @Eq. ~31! ~dashed
curves!# for various particle numbers. Panels~a!–~c! correspond to
fixing the center-of-mass coordinate tor50 and panels~d!–~f! have
r53. In all cases,r1 is normalized to the central density in the tra
r(0). All units have been scaled as discussed in the text.
1-5
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BRANDON P. van ZYL PHYSICAL REVIEW A68, 033601 ~2003!
~dashed curves! for various particle numbers. Let us firs
focus on the left panels@i.e., Figs. 1~a!–1~c!# which corre-
spond to fixing the center-of-mass coordinate tor50. We
observe that for low particle numbers, there is a siza
quantitative difference between the two expressions, bu
N;O(103) the exact and TF expressions agree quite well
particular, the spatial oscillations in the exact and TFA e
pressions are in almost quantitative agreement by Fig. 1~c!.
For the right panels~which haver53), we note the same
trend, but now with the agreement between the two exp
sions noticeably improved~i.e., for the same number of pa
ticles!. Similar behavior is seen for other values ofr , clearly
illustrating that even at moderate particle numbers, the L
is a good description ofr1(r1 ,r2), as a function of the rela
tive coordinates.

In Figs. 2~a!–2~c! we also compare the exact and TFA
r1, but now with therelative coordinatefixed to s51 and
the center-of-mass coordinate allowed to vary. Note that
ing s50 yields the zero-temperature single-particle dens
which has already been investigated in Ref.@4#. While the
overall spatial behavior of the two expressions are in ag
ment, the TFA clearly does not reproduce the fine spa
oscillations in the exact expression, which are associa
with shell-filling effects. The reason for this, of course, is t
fact that the LDA fails to take into account the discrete n
ture of the energy-level structure of the trap. We will com

FIG. 2. Comparison of the exact zero-temperature density
trix @Eq. ~20! ~solid curves!# with the TFA @Eq. ~31! ~dashed
curves!# for various particle numbers. Panels~a!–~c! correspond to
fixing the relative coordinate tos51. In all cases,r1 is normalized
to the central density in the trap,r(0). Note that at the classica
turning point, the TF expression drops abruptly to zero. All un
have been scaled as discussed in the text.
03360
le
y

n
-

s-

A

-
,

e-
al
d

-

back to this point in the Sec. IV C below. Nevertheless,
M549, the agreement between the exact and TF expres
is quite good, except near the classical turning point, wh
the TF curves drop abruptly to zero.

While it is possible to show analytically the reduction
the zero-temperature particle and kinetic-energy densitie
their TF forms, e.g., limN→`r(r )exact→rTF(r ) @11,9#, we
have not yet been able to analytically establish a similar
sult for r(r1 ,r2). The demonstration of this result is an in
teresting problem in its own right.

IV. EXCHANGE ENERGY FOR A 2D QUANTUM DOT:
HARTREE-FOCK APPROXIMATION

As a simple application of our results, we now consid
the evaluation of a closed-form expression for the HF
change energy suitable for the study of 2D parabolically c
fined quantum dots. Here, our motivation for focusing
strictly two dimensions is grounded in our previous findin
for the local properties of the zero-temperature trapped
Fermi gas. Specifically, in Ref.@4#, we showed analytically
the surprising result that the 2D TF functional for the kinet
energy density~i.e., without gradient corrections!, when in-
tegrated over all space, leads to theexact quantum-
mechanical kinetic energy. Moreover, we also demonstra
numerically that if the exact single-particle density is i
serted into the 2D TF kinetic-energy functional, even t
local shell oscillations are reproduced remarkably well@22#.
Thus, the unique local and global properties of the trapp
2D system are reason enough for us to focus on two dim
sions. Nevertheless, we wish to reemphasize that exten
the following calculations to other dimensions requires no
ing more than introducing thed-dimensional measure, whic
is given by

E ddr ~••• !5
pd/2

G~d/2!
E

0

`

xd/221dx~••• !. ~32!

For orientation, we will first consider the case forT50 and
then generalize the result to finite temperatures. After p
senting our analytical expressions, we will close this sect
with some illustrative numerical results at zero temperatu

A. Zero temperature

Before proceeding with the zero-temperature calculati
let us first consider a particular class of integrals that inva
ably arise during our manipulations ofr1(r1 ,r2 ;T), irre-
spective of dimensionality and temperature, viz.,

I m,n~a,b,g!5E
0

`

xae2xLm
b ~x!Ln

g~x! dx, ~33!

where the associated Laguerre polynomials are defined

Lm
b ~x!5 (

k50

m
~21!k

k!

~m1b!!

~m2k!! ~b1k!!
xk. ~34!

a-
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Inserting Eq.~34! into Eq.~33! and integrating term by term
we are left with a double sum, which can be resummed
closed form to give@23#

I m,n~a,b,g!5
G~11a!G~n1g11!G~b2a1m!

G~m11!G~n11!G~11g!G~b2a!3F2~1

1a2b,2n,11a;11g,11a2b2m;1!,

~35!

where 3F2(a,b,c;d,e;z) is the generalized hypergeometr
function @21#. We are now ready to proceed with the calc
lation of HF exchange energy for the 2D quantum dot.

The HF exchange energy, in the terms of the variabler
ands, reads~hereby we sete51)

Eex52
1

4E E Ur1S r1
s

2
,r2

s

2D U2

s
dsdr

52
p

2E E
0

`Ur1S r1
s

2
,r2

s

2D U2

dsdr , ~36!

where, from Eq.~20!,

Ur1S r1
s

2
,r2

s

2D U2

5
4

p2 (
n50

M

(
k50

M

~21!n1kLn~2r 2!Lk~2r 2!

3e22r 2
LM2n

1 ~s2/2!LM2k
1 ~s2/2!e2s2/2.

~37!

Equation~36! can now be written as

Eex52
2

p (
n50

M

(
k50

M

~21!n1kE Ln~2r 2!Lk~2r 2!e22r 2
dr

3E
0

`

LM2n
1 ~s2/2!LM2k

1 ~s2/2!e2s2/2ds. ~38!

Going over to the variablesx5s2/2 andy52r 2 and making
use of Eq.~35!, viz.,

I m,n~21/2,1,1!5E
0

`

x21/2Lm
1 ~x!Ln

1~x!e2xdx

52~m11!~n11!
G~n13/2!

G~n12! 3

3F2S 2
1

2
,2m,

1

2
;2,2n2

1

2
;1D ,

~39!

we obtain
03360
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Eex52
A2

p (
n50

M

(
k50

M

~21!n1kE Ln~2r 2!Lk~2r 2!e22r 2
dr

3E
0

`

e2xx21/2LM2n
1 ~x!LM2k

1 ~x!dx

52A2(
n50

M

(
k50

M

~21!n1k~M2n11!~M2k11!

3
G~M2n13/2!

G~M2n12! 3F2S 2
1

2
,n2M ,

1

2
;2,k2M2

1

2
;1D

3E
0

`

Ln~y!Lk~y!e2ydy

52A2(
n50

M

~M2n11!2
G~M2n13/2!

G~M2n12! 3

3F2S 2
1

2
,n2M ,

1

2
;2,n2M2

1

2
;1D . ~40!

Equation~40! can be written in the more suggestive form

Eex5E «ex~r !dr , ~41!

whereby we identify the exchange energy density as

«ex~r !522
A2

p (
n50

M

(
k50

M

~21!n1k~M2n11!~M2k11!

3Ln~2r 2!Lk~2r 2!e22r 2
GS M2n1

3

2D
G~M2n12! 3

3F2S 2
1

2
,n2M ,

1

2
;2,k2M2

1

2
;1D . ~42!

Note that the first line in Eq.~42! is }@r(r )#2. However, the
terms in the second line of Eq.~42! ~i.e., the hypergeometric
andG functions! prevent us from writing«x(r ) as a simple
functional of @r(r )#2.

B. Finite temperature

The finite temperature exchange is readily calculated fr
Eq. ~36! by using Eq.~16! for the finite temperature first
order density matrix. The calculation is entirely analogous
the zero-temperature result, with the central difference be
that we now have to evaluate the integral@see Eq.~17!#

I m,n~21/2,0,0!5E
0

`

x21/2Lm~x!Ln~x!e2xdx

5
G~n11/2!

G~n11! 3F2S 2m,
1

2
,
1

2
;
1

2
2n,1;1D .

~43!
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Our final result for the 2D finite temperature exchange
ergy is given by

Eex~T!52
A2

p (
n50

`

(
n850

`

(
k50

`

(
k850

`

~21!n1n8

3Fn,k
(2)~m!Fn8,k8

(2)
~m!

G~k811/2!

G~k811!
3

3F2S 2k,
1

2
,
1

2
;
1

2
2k8,1;1D

3E Ln~2r 2!Ln8~2r 2!e22r 2
dr

52
1

A2
(
n50

`

(
k50

`

(
k850

`

Fn,k
(2)~m!Fn,k8

(2)
~m!

3
G~k811/2!

G~k811!
3F2S 2k,

1

2
,
1

2
;
1

2
2k8,1;1D .

~44!

The finite temperature exchange energy density is simil
given by

«ex~r ;T!52
A2

p (
n50

`

(
n850

`

(
k50

`

(
k850

`

~21!n1n8

3Fn,k
(2)~m!Fn8,k8

(2)
~m!Ln~2r 2!Ln8~2r 2!

3e22r 2 G~k811/2!

G~k811!
3F2S 2k,

1

2
,
1

2
;
1

2
2k8,1;1D .

~45!

While Eq. ~45! looks somewhat unwieldy, it turns out tha
the sums can be truncated relatively quickly, so that the t
perature dependence can be numerically studied, should
need arise.

C. Numerical results

As mentioned above, the exact zero-temperature kine
energy densityt(r ) for the trapped 2D Fermi gas agre
remarkably well with the corresponding TF expressionT
5p@r(r )#2/2 when the exactr(r ) is used as input~see Fig.
3 in Ref. @4#!. It is then of interest to examine how well th
2D TF exchange energy density compares with the ex
expression, Eq.~42!, in both the small and large-N limit.
Specifically, we will investigate the applicability of the wel
known 2D Dirac exchange energy functional@24#

Eex
TF52

4

3
A2

pE @r~r !#3/2dr5E «ex
TF~r !dr ~46!

for the inhomogeneous 2D gas when theexact density, as
given by Eq.~20! with r15r2, is used as input. To this end
we present in Figs. 3~a!–3~c! the exact~solid curves! and TF
~dashed curves! exchange energy densities for various p
03360
-

ly

-
the

c-

ct

-

ticle numbers. It is clear from this figure that while bo
expressions have similar qualitative behavior, the fine spa
oscillations~i.e., shell-filling effects! are not well reproduced
by the TFA. This result is entirely expected considering o
discussion in Sec. III in connection to Figs. 2~a!–2~c!. Spe-
cifically, in obtaining«ex

TF(r), we have integrated overs, so
that we are left only with the center-of-mass coordinater.
Therefore, even though the TFA forr1 is quite good for the
s integration, its failings become apparent upon an exam
tion of the exchange density as a function ofr; the TFA for
«ex(r ) leads to asmooth, monotonically increasing profile
because the resultingr dependence is}2@rTF(r )#3/25
2„@EF2V(r )#/p…

3/2 @see Eq.~46! above#. However, in Fig.
3, «ex

TF(r ) has been obtained by using the exact single-part
density as input, whichdoeshave the shell effects encoded
its spatial dependence. Thus, although shell oscillations
be included in the TFA of«ex

TF(r ) ~i.e., by using the exac
density!, it is important to note that for a givenr, the weight-
ing given to the Laguerre polynomials in@rexact(r )#3/2 is not
the same as the weight assigned to the Laguerre polynom
in Eq. ~42!. Consequently, the exchange energy densities
not agree as we vary the center-of-mass coordinate. We
in particular that the shell effects in the TFA are less p
nounced than the exact result, and byM549 andr *3 are
essentially washed out@see Fig. 3~c!#. It is also worth re-
counting here that byM519 ~see Fig. 3 in Ref.@4#!, the

FIG. 3. Comparison of the exact@Eq. ~42!, solid curves# and TF
@Eq. ~46!, dashed curves# 2D exchange energy densities at zer
temperature and various particle numbers. The TF exchange en
density has been generated by using theexactsingle-particle den-
sity as input@see Eq.~46!#. All units have been scaled as discuss
in the text.
1-8
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deviations between the exact and TF 2D kinetic-energy d
sities are essentially nonexistent; this is clearly not the c
for the exchange energy density. The reasons behind the
cess of the TFA for the kinetic-energy density are thoroug
discussed in Ref.@9#. Nevertheless, the numerics clearly i
dicate here that asN→`, «ex

exact(r )→«ex
TF(r ).

While the local behavior of the exact and TF exchan
energy densities are not well reproduced~as opposed to the
comparatively excellent agreement between the exact an
kinetic-energy densities!, the exchange energy itself agre
remarkably well. To illustrate this, we show in Table I th
exact and TF exchange energies for various numbers of fi
shells. The largest relative percentage error, which occur
M11510, is onlyDE/E.0.5%. Thus, whenglobal quan-
tities are considered, the LDA is an excellent approximat
for the inhomogeneous 2D exchange energy, even foN
;O(102).

V. SUMMARY AND FUTURE WORK

The main result of this paper can be summarized by
~22!, which defines thed-dimensional, finite temperatur
first-order density matrix of an ideal gas of harmonica
confined fermions. This expression should prove to be
interest in the general area of the DFT of inhomogene
Fermi systems at both zero and finite temperatures. In
paper, we have used it to illustrate that~in 2D! the LDA is an
excellent approximation for the the off-diagonal first-ord

TABLE I. Comparison of the zero-temperature exchange ene
for the exact@Eq. ~40!# and TF@Eq. ~46!# expressions for various
numbers of filled shells. The last column displays the relative p
centage error in the two quantities.

M11 Eex
exact Eex

TF DE/E ~%!

10 2171.71 2170.81 0.5
20 2914.05 2912.43 0.2
50 28703.06 28699.51 0.04
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density matrix in the large-N limit. We have also obtained a
simple, closed-form expression for the finite temperature
change energy density for a 2D parabolically confined qu
tum dot. In the spirit of our previous work@4#, we have
utilized this expression to test the validity of the LDA for th
exchange energy density. In contrast to our earlier findi
@4#, the 2D TF exchange energy functionaldoes notrepro-
duce the shell effects of the exact result very well. Nevert
less, when the TF exchange energy density is integrated
all space, we find that the resulting exchange energy is
ways within&0.5% of the exact result.

We wish to point out that the utility of our results is no
limited to the topics discussed in this paper. The simp
analytical expressions that we have provided will be ve
useful in obtaining other closed-form expressions of inter
to both theorists working in formal DFT and experimentalis
studying, e.g., ultracold trapped fermions. One example
comes to mind is the 2D weakly interacting trapped Fer
gas. In Ref.@11#, the use of a contact psuedopotential~in 2D!
led to the surprising discovery that there isno splitting be-
tween states with different angular-momentum valuesl in a
given shell atT50. This occurs in spite of the fact that th
perturbation interaction does not preserve the SU(2) sym
try of the system. Whether this result still holds true for
finite-range psuedopotential is an interesting question, wh
can be addressed using our analytical expression
r1(r1 ,r2). In addition, the close connection between trapp
Fermi-gases and the theory of nuclear structure suggests
our findings will be relavent in the area of nuclear phys
~e.g., in the Fermi gas model of the nucleus!. Finally, our
work here should also be useful in the physics of metal cl
ters, which represent an intermediate stage in the trans
from small molecules to bulk solids or liquids.
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