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Analytical expression for the first-order density matrix of a d-dimensional harmonically confined
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We present a closed-form expression for flréte temperaturdirst-order density matrix of an isotropic
harmonically trapped ideal Fermi gas in any dimension. This constitutes a much sought after generalization of
the recent results in the literature, where analytical expressions have been limited to quantities derived from the
diagonalfirst-order density matrix. We compare our results with the Thomas-Fermi approxinf@fén and
demonstrate numerically that the TFA provides an excellent description of the first-order density matrix in the
largeN limit. As an interesting application, we derive a closed-form expression for the finite temperature
Hartree-Fock exchange energy of a two-dimensig®B) parabolically confined quantum dot. We numerically
test this result against the 2D TF exchange functional, and comment on the applicability of the local-density
approximation to the exchange energy of an inhomogeneous 2D Fermi gas.
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[. INTRODUCTION number of closed shells. Unfortunately, their form for
p1(ri,r,) is somewhat impractical, in that it is given in
The recent technical advances made by DeMarco and Jiigrms of multidimensional integrals. While these integrals
[1] in the area of trapped, ultracold Fermi gases have led t§re numerically easy to evaluate, they are not very useful for
the experimental realization of what is close to being arfurther analytical analysige.g., examining the asymptotic

ideal, noninteracting, many-body system of harmonicallybeh"’“/Ior ofp(r) asN—c [11'9]).' :
confined fermions. Using current state-of-the art magneto- One of the central theoretical reasons for pursuing a

. L . o N : . closed-form expression fqi,(r4,r,) is that its off-diagonal
optical traps, it is also now possible to "tune” the dimension- g ments determine the exchange integrals of two-body op-
ality of the gas from three dimensiofi8D) to quasi-2D or  grai0rs and hence, the nonlocal properties of the system.
quasi-1D. Such a model system is of great interest to phySiErom an experimental point of view, a closed-form expres-
cists, since it provides an opportunity to study the role ofsjon for p,(r;,r,) is desirable because, the momentum den-
dimensionality, and the quantum-statistical properties of aity n(p) (which is just the Fourier transform of the first-
many-body system, exactly. As a result, the past few yearerder density matrix is experimentally accessible by
have seen a renewed interest in the theoretical description ofieasuring the line shape in Compton scattering. Thus, in the
harmonically trapped ideal Fermi gases at both Zére9) case of a weakly interacting harmonically confined Fermi
and finite temperatureg0,11). The primary focus of these 9@s, an exact knowledge pi(r,,r,) can serve as a bench-
studies has been on examinifanalytically and numerically mark from which the effects of interparticle interactions may
the expressions for thiocal thermodynamic properties of be extracted.

. . o .. The primary goal of this paper then is to present a closed-
the gas, e.g., '.[he single-particle and klnetlc_-energy den.s't'e?Orm analytical expression for the finite temperature first-

) . s ) Brder density matrix of an isotropic, harmonically confined
density-functional theoryDFT) of inhomogeneous Fermi jqeal Fermi gas in any dimension. We organize our paper as

systems, whereby one can bypass the numerically expensi¥gllows. In Sec. II, we briefly review some of the basic defi-
one-particle Schidinger equations. nitions given in Refs[4,11], and then proceed to derive a
However, the more fundamental quantity, from which theclosed-form expression for the finite temperature first-order
single-particle and kinetic-energy densities are both derivediensity matrix in arbitrary dimensions. Following this calcu-
is the first-order density matrip(ry,ro) [12]. Unfortu-  lation, we compare our exagi;(r,,r,) with the Thomas-
nately, to date, there are relatively few examples in which @&ermi approximationTFA) in 2D and discuss the applica-
closed analytical form fop4(rq,r,) can be written. One of bility of the local-density approximation(LDA) for
the earliest examples dates back more than 60 years to Hdescribing the nonlocal properties of the 2D trapped gas.
simi [13], in which the zero-temperature first-order density Then, in Sec. IV, we apply our results to construct a closed-
matrix of a 1D harmonic oscillator was derived. Other ex-form expression for the finite temperature Hartree-Fdtk)
amples that we are aware of are the so-called Bardeen modekchange energy density of a parabolically confined 2D
[14], corresponding to a planar metal surface, and the workjuantum dot. We numerically investigate this exchange en-
of Bhaduri and Sprunfi5] dealing with a 3D oscillator with  ergy density and comment on its applicability in the context
a smeared occupancy. More recently, Howatdal. [16]  of the LDA. Finally, in Sec. V, we present a summary of our
have evaluated theero-temperaturdirst-order density ma- results and briefly highlight some interesting avenues for fur-
trix of the d-dimensional harmonic oscillator for an arbitrary ther investigation.
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Il. FIRST-ORDER DENSITY MATRIX IN d DIMENSIONS @ @ s s )
Cy/(ri,ro;B)=Cy’| r+=,r—=;
In keeping with our our earlier workl1,4], we begin by 0°(f1.r2:8)=Co 2 2 A
considering a system of noninteracting fermions at zero tem- a2
perature described by the time-independent Stihger (1 1 expl — [r2tanh B12)
equation 2m)  sintf3(B)
+(s?/4)coth B/2)]}. (7

Hei(r)=[T+V(r)]i(r)=si¢;(r), (1)

In the above expressiofand what follows, all lengths and

whereV(r) is a one-body potential to be specified latall .

\ > . ! energies have been scaledlRy.= VA/mw and# w, respec-
&S are tgken to be posltl\)eThe (sp|nles$ first-order den- tively, and we have introduced the center-of-mass and rela-
sity matrix can be obtained by an inverse Laplace transfornj.

of the zero-temperature Bloch density mat@y(rq,r,): tive coordinates:
r=3(ry+ry), s=ri—r,. (8)
par, 1) =2 2 & (r2)¢i(r)O(Ee) - . . o
& <Ef The finite temperature density matrix can, in principle, be
obtained by performing the inverse Laplace transform given
Co(rlJzi,B)}, (2 by Eq. (4) with Eq. (7). However, rather than following this
direct approactiwhich is a very difficult task we first con-
sider the following identities:

2
B

-1
=L
Er

where

exp{—x tanh B8/2)}

ColrirziB)=2 ¢ (rDdilrexe —pe) (3 IS (206K 61418y
n=0 " ,

andEg is the Fermi energy; the factor of 2 accounts for spin.
We have put in the unit step functidd(Eg) in Eq. (2) so -
that the Laplace transform with respectEa may formally exp{—ycotf{,@/Z)}=k20 Li(2y)e Y{e " —e (k1A
be taken to be two sided17]. Note that in quantum- 9)
statistical mechanics is usually identified with the inverse
temperature=1/kgT. However, in our present contexs, Identifying x=r2 andy=s2/4, and using9) in Eq. (7), the
is to be interpreted as a mathematical variable which in gengjoch density matrix now reads '
eral is taken to be complex amobt the inverse temperature
1KkgT.

At finite temperature, the first-order density matrix is ob- ng)(x,y;,B):

D

1 )d/Z 1 *

tained from the Bloch density matrix by using the relation 27| sintf?(B) k=0 n=0
18
1 X(—1)"Ln(2x)L(2y)e” V)
2 “nBp o= (n+1)By(a=kB_ o= (k+1)B
P1(V1.|’2;T):£;1 _CT(rlyl’z;ﬁ)}* (4) X{(e”M e ) (e € }
'B 1 dr2 1 * *
where B E) sintf’?(B) kZO ngo
=BT X (=1)"Ln(2x)L(2y)e” V)
CT(rl,fz;ﬁ):Co(rl,rziﬁ)W (5) X {e~ (MR _g-(ntk+2)p (10)

is the finite temperature Bloch density matrix, aads the  Substituting Eq(10) into Eq.(5) and performing the inverse

chemical potential. In Eq(4), the Laplace transform with Laplace transform, Eqi4), leads to the finite temperature

respect tqu is two-sided, so that is allowed to go negative. first-order density matriy,(r,,r,;T) in any dimension. For

Specializing now to the case of an isotropic harmonic oscilthe sake of clarity, we will now proceed to give an explicit

lator ind dimensiond19] , viz., calculation for the simplest case of 2D, followed by a state-
ment of the general result in arbitrary dimensions.

1
_ 2.2 _ 22 2
V(r)= S Mo, I= VXXt +Xy, (6) A. Two dimensions

We begin by noting the following important exact inverse
we have for the zero-temperature Bloch density md2iX Laplace transformsall two sided:
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] e -
7 sinmﬁ)}zzgo o(n—(2k+1)=n)O(7), (11
o }_ - (12)
" LsimAT) exp(—$ +1

Puttingd=2 in Eqg.(10) and using Eqsi4) and(5), the finite
temperature first-order density matrix is given by

]

2\ < »
PPy )= ;)2 > (1) "La(20)Ly(2y)e NS
k=0 n=0 =0

PHYSICAL REVIEW A 68, 033601 (2003

0
(x.y:T) W)kZO 2 (= 1)"La(20)L(2y)e” Y
. e—(n+k)B_e—(n+k+2),B aT

<L ( sinh(B) ) sin(rrBT)}'

(13

Applying the convolution theorem for Laplace transforms
and making use of Eq$11) and(12), we immediately obtain

g 1 - 1
X f d7'5(7'—(2|+1)—(n+k))T—j dr8(r— (21 +3)— (n+k)) —
exp( - +1 exp( - )+1
)2 2 (—1)"Ln(2x)Ly(2y)e” I 2,
k= = I=0
1 1
x r{2I+n+k+1—,u) }_ p(2I+n+k+3—ﬂ) }
exp————| + exg ————| +1
T T
§ i —1)"La(2x)Ly(2y)e” !
o = n k entk—pu
exp ————|+1
T
2\s § r@) n ~(x+y)
=212 3 FRm (- D20 2y)e Y, (14
[
where the functiorF2)() is defined as s s
’ PP r+ - r—=;
2" 2

1
entk—pu
-

F@(w)= (15)

+1

o

and e,=(n+1) is the noninteracting energy spectrym
scaled unitsof the 2D harmonic-oscillator potential. Putting
back our original variables, we finally arrive at the following
simple expression

2 oo ee]
p%”(rl,rz;n:(;)i 2, F(u)
k=0 n=0

[ry+ryl? ri—rol?
X(_l)nl—n 2 Lk 2
ritry® [ri—rof?
XeXF{ > ‘ 4 . (16)

In terms of the center-of-mass and relative coordinates the

density matrix is given by

= 2)§§F(2 —1)"L 22L(SZ)
=\ 7] & 2 ()( )n(f)kg

o

Therefore, the density matrix only depends on the modulus
of r ands, and there is a clean separation of the variables.
Notice that Eq(16) has only two sums owing to the cancel-
lation of all but thel =0 term in thel sum of Eq.(14). In
addition, it is readily seen that by setting=r,=r,, we im-
mediately obtain the finite temperature single-particle den-
sity

r24+ —

7 (17

pP(ry,r)=p®(r;T)

)

(3) > F@(u)(—1)"Ly(2r)e ",
T)n=0

(18
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with

Fi)= .
nk ex (e @ +k—p)/T]+1
oo o 1 w
FE‘Z)('LL)EkZO F%?&(M):go entk—p ' + 2 Sg)
em{——?——-+1 m=1 exq (e +k+2m—pu)/T]+1
(19 (23

Equation(18) is, of course, identical to the result obtained in @nd e{”’=n+d/2. The expansion coefficients can be given
Ref. [11] where only the diagonal part of the first-order den-in the compact form

sity matrix was investigated. Furthermore, the 2D zero-

temperature density matrix can be obtained from (#6) by @_ L r'd/2+m-1)

taking theT— 0 limit, and when fillingM + 1 shells, reduces mTml [(di2—1) (24)

to (with all dimensional constants recovejed

In particular, we observe thagﬁf)=0 for all m. We have

ome M Mo verified the correctness of ER2) at T=0 by checking that
Pg_Z)(rler):_h > (—1)”Ln<%|r1+r2|2) it is an exact solution of the partial differential equation
T n=0 (valid in any dimension

XL} m|r —1,/?|ex —m(r2+rz) 2 292
M-n| 57 IF17 T2 2 1Tz 1 #piém)  4mie

s 1 1 25

M 577 (95(977 h2 pl(f 77) ( )

2Mw 2Mw
= 2~
™ =0 f where following the notation of Ref16] we have defined
WLl (Mo _ Mo 2+32 (20) E=[ritrol/2, p=[ry—ryl/2, and
M-n| 5 s~ |ex 5 r il .
p(ld)(f.n)=2(;) 2 (= D)"(2€9)| Liy—nl(277)
where L,},l,n(x) is an associated Laguerre polynomijall] 2

[see also Eq(34)] which has the property thatj,_(0) £ S (@) 1 22
=M-n+1. It is straightforward to shojwith the aid of = 9m Lt —n-2m(27°)
Eq. (35] that Eq.(20) is indeed idempotent, viz.,

e (&7

Equation(22) also provides us with a direct way to cal-
1 culate the finite temperature kinetic-energy density in any
N= EJ f p2(ry,r2)p{?(r,,r)drdr, (closed shell dimension, viz.,

(21)

1 S S
é%ﬂﬂZ--V%@b+—m—ﬂT) . (26)
2's 27 27,

B. Arbitrary dimensions

The derivation of the first-order density matrix in arbitrary This is an easier route compared with our previous evalua-
dimensions closely parallels that of the 2D case. The fewion of &@(r;T), which required an additional inverse
extra steps required to obtaj{® (r,,r,;T) are clearly laid Laplace transform of the Bloch density matrix at finite tem-
out in Ref.[11], and so here we simply state the final resultperature[see Eq.33) of Ref.[11]]. It should be noted that

P when making contact with experimental studies on fully
1 spin-polarized trapped Fermi atoms, it is appropriate to focus
P(ld)(rl’rZQT)zz(;> kzo zfo Fik(w) on singly filled levels, which implies that the factor of 2
appearing in Eq(22) should be dropped.
o lrptrgl? Iri—r,l? We also briefly mention that an analogous expression for
X(=Dn| — S — p{(rq,r,;T) for the harmonically trappeéspinlesy Bose
gas in any dimension can also be obtained by simply remov-
ing the factor of 2 in front of Eq(22) and changingt+1 to
—1 in the denominator of Eq(23). While this resulting
novel expression for the Bose gas is very different from what
is found in the literature, it can be shown to be entirely
where equivalent to the more commonly used foffid]

><e><p<—;r§+r§)), (22
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Oy, — 0 oo @ =0 @ =9
pr(ful2iT =1 [m(1—e 2Ty 06 F\ w~N=110
0.4 |
[ri+ryl? . 0.2 |
xex;{ T tanh(j/2T) o~ 0.0 |\ A
N -02 S
Iro=ra® } 1.0
—Tcotk(jIZT)). (27 | 0g NP M =19 (e) M =19
& 06 H wN=420 N = 420
N 04 ¢
C. Second-order density matrix > g.(z) : I
In the present context of noninteracting fermions, the t -0.2
(spinles$ second-order density matrigs® (r,r,,rirs) can < 10
immediately be obtained from our knowledge;rif’)(rl,rz) L g (O M=49
(this is in the spirit of the HF approximatipfi12]. An im- 0.6 N = 2550
portant quantity derived fronp, is its diagonal element, g‘; i
which corresponds to the pair density, and is given by 0:0 t
-0.2 . .

p(zd)(rlrz,rlrz)z%{p(d)(rl)p(d)(rz)
—1pP(ry,r)2  (closed shell s
(28) FIG. 1. Comparison of the exact zero-temperature density ma-
trix [Eq. (20) (solid curveg] with the TFA [Eq. (31) (dashed
ﬁ:urves)] for various particle numbers. Pané®—(c) correspond to
fixing the center-of-mass coordinaterte 0 and panel¢d)—(f) have

r=3. In all casesp, is normalized to the central density in the trap,
p(0). All units have been scaled as discussed in the text.

(29)
1 r{+r

so that the the first term in E28) is responsible for the it r, 1
\/Z[EF‘V(—z ”'”‘”'>—|rl—r2|

classical Coulomb repulsion and the second term yields the X
guantum-statistical exchange energy.
lJZ[E V(r)]3:(J2[Eg—V(1)] )1
=— —V(r -V(r)] s)=-,
[Il. COMPARISON WITH THE THOMAS-FERMI ™ - ! F S
APPROXIMATION (32)

For example, in the HF approximation, the electron-electro
potential energy is given byeE 1)

(d)
Ve py (Taf2, rer)d rLdr,,
[ry—r

In this section, we compare our expression for the first-
order density matrix with that of the TFA. Since the largestwhereJ;(X) is a cylindrical Bessel function and it is under-
deviations between the exact and TF results are known to bgood that the right-hand side of E&1) is multiplied by the
at low temperaturesand small particle numbers, especially unit step function® (Er—V(r)). Note that Eq.(31) is also
in low-dimensional systemswe will restrict our compari- an exact solution of Eq25). We immediately observe that
sons to zero temperature, and simply state here that the terfer Ez>V(r) (i.e., far from the classical turning point,),
perature dependence qf,(r,,r,;T) is readily studied, EQ. (31) becomes effectively identical to the uniform gas
should it be desirable. Again, for the sake of simplicity, weresult, viz.,V(r)=0. Thus, alN—, r,—, and the first-
will focus explicitly on the 2D case, although the extensionorder density matrix is essentially unmodified by the trap-

of the analysis to other dimensions is straightforward. ping potential.
In the TFA, the 2D zero-temperature Bloch density matrix ~ Now, it is far from obvious by simply looking at the func-
is given by[18] tional forms of Eqgs.(20) and (31) that the TF and exact

expressions are even qualitatively similar. Indeed, it is well
known that forlocal properties, such ag(r), the TF and

e BVI(ri+1)R21g= 111?128, exact _densitie_s havg very different qual_itative behavior, espe-
cially in low dimensions and small particle numbers. In par-

(30) ticular, the shell oscillations observed in the exact expres-
The inverse Laplace transform given by E2) [with Eq.  sions are not reproduced by tt@mooth TF profiles[4]. To
(30) for the Bloch density matrikis readily performed, and address this issue, we show in Fig. 1 the exact zero-
we find for the 2D harmonically confined gas temperature density matrigolid curve$ along with Eq.(31)

Cre(ry,r2:B8)= 278

033601-5
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0.2 back to this point in the Sec. IV C below. Nevertheless, by
M =49, the agreement between the exact and TF expression
is quite good, except near the classical turning point, where
0.0 the TF curves drop abruptly to zero.
While it is possible to show analytically the reduction of
the zero-temperature particle and kinetic-energy densities to
~ oz their TF forms, e.g., liM_..p(r)®®% pre(r) [11,9], we
N 0.1 have not yet been able to analytically establish a similar re-
} sult for p(r4,r,). The demonstration of this result is an in-
|& teresting problem in its own right.
N 0.0
} IV. EXCHANGE ENERGY FOR A 2D QUANTUM DOT:
+ HARTREE-FOCK APPROXIMATION
é: -0.1 As a simple application of our results, we now consider
Q 005 the evaluation of a closed-form expression for the HF ex-
change energy suitable for the study of 2D parabolically con-
fined quantum dots. Here, our motivation for focusing on
0.0 strictly two dimensions is grounded in our previous findings
for the local properties of the zero-temperature trapped 2D
Fermi gas. Specifically, in Ref4], we showed analytically
—0.05 R the surprising result that the 2D TF functional for the kinetic-

energy densityi.e., without gradient correctionswhen in-

tegrated over all space, leads to thlexact quantum-

T mechanical kinetic energy. Moreover, we also demonstrated

numerically that if the exact single-particle density is in-

3erted into the 2D TF kinetic-energy functional, even the

local shell oscillations are reproduced remarkably WeH].

Thus, the unique local and global properties of the trapped

2D system are reason enough for us to focus on two dimen-

sions. Nevertheless, we wish to reemphasize that extending

the following calculations to other dimensions requires noth-

ing more than introducing thaé-dimensional measure, which

(dashed curvesfor various particle numbers. Let us first is given by

focus on the left panelg.e., Figs. 1a)-1(c)] which corre-

spond to fixing the center-of-mass coordinater to0. We 792 e

observe that for low particle numbers, there is a sizable J dor ()= F(d/2)f

guantitative difference between the two expressions, but by

N~ O(10%) the exact and TF expressions agree quite well. In

particular, the spatial oscillations in the exact and TFA ex-For orientation, we will first consider the case fb+=0 and

pressions are in almost quantitative agreement by Rig). 1 then generalize the result to finite temperatures. After pre-

For the right panelgwhich haver=3), we note the same Senting our analytical expressions, we will close this section

trend, but now with the agreement between the two expregvith some illustrative numerical results at zero temperature.

sions noticeably improved.e., for the same number of par-

ticles). Similar behavior is seen for other valuesrofclearly A. Zero temperature

illustrating that even at moderate particle numbers, the LDA ) ) )

is a good description gf(ry,r»), as a function of the rela- Befo_re procgedmg W|th the zero-temperature calcu_latlor_L

tive coordinates. let us first consider a particular class of integrals that invari-
In Figs. 2a)—2(c) we also compare the exact and TFA of @bly arise during our manipulations @(ry,ry;T), irre-

p1, but now with therelative coordinatefixed tos=1 and  SPective of dimensionality and temperature, viz.,

the center-of-mass coordinate allowed to vary. Note that fix- -

ing s=0 yields the zero-temperature single-particle density, Im’n(a/,ﬁ,*y)=f x*e XLA(x)LY(x) dx, (33

which has already been investigated in Rdfl. While the 0

overall spatial behavior of the two expressions are in agree-

ment, the TFA clearly does not reproduce the fine spatialvhere the associated Laguerre polynomials are defined by

oscillations in the exact expression, which are associated

with shell-filling effects. The reason for this, of course, is the m

fact that the LDA fails to take into account the discrete na- LA (x) = > (

ture of the energy-level structure of the trap. We will come k=0

0o 2 4 6 &8 10 12

FIG. 2. Comparison of the exact zero-temperature density m
trix [Eqg. (20) (solid curvey] with the TFA [Eq. (31) (dashed
curves] for various particle numbers. Pané&—(c) correspond to
fixing the relative coordinate ts=1. In all casesp, is hormalized
to the central density in the trap(0). Notethat at the classical
turning point, the TF expression drops abruptly to zero. All units
have been scaled as discussed in the text.

X427 x(- - - ). (32
0

-1k (m+p)!
Kl (M=K (B+K)! . (34
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Inserting Eq(34) into Eq.(33) and integrating term by term,
we are left with a double sum, which can be resummed inEg=— —

closed form to givg 23]

I(1+a)(n+y+1)T(B—a+m)
I'(m+)T(n+ I (1+yI(B—a)® Fa(1

+a—p,

mn(a B, 7’)_

-n,1+a;1+y,1+ a— B—m;1),
(39

where 5F,(a,b,c;d,e;z) is the generalized hypergeometric
function[21]. We are now ready to proceed with the calcu-

lation of HF exchange energy for the 2D quantum dot.

The HF exchange energy, in the terms of the variables

ands, reads(hereby we see=1)
s S
1|22
- —f f dsdr
4 S

_wffoc s\|?
=72, 272

where, from Eq(20),

2

pal T+ dsdr,  (36)

2

P1

4 M M
> =;n§=) 2 (- riLy2r?)

+S S
r —I'E

k( 32/2) e s212
(37)

xe 2L (s¥2)LY

Equation(36) can now be written as

M M
= Z ZO(—l)Wf L.(2r2)L,(2r2)e 2"dr

2
T
J LY (s¥2)LY _ (s?/2)e s"2ds. (39)

Going over to the variables=s?/2 andy=2r? and making
use of Eq.(35), viz.,

lmn(—1/2,1,)= jo x Y2 L (x)LE(x)e*dx

e 1y g, 032
=2(m+1)(n )WS

o e

X 2 _Ei_miil i_n_ia ’

(39

we obtain

PHYSICAL REVIEW A 68, 033601 (2003

M M
2
- nE:)O IZO (—1)“”] L. (2r2)L (2r2)e 2“dr
xfo e x VALY, (X)L (x)dx

M M
fz ZO (=)™ M-n+1)(M—k+1)

F(M—n+3/2)F( LS SO O
“TM—nr2) oF2| T2 M2k Mg

< "Lty vy
0

T'(M—n+3/2)
=22 (M= )P o

1
~>.n—M,

XF, > (40

2 l

! 2n—M 1'1

=,2,N E, .

Equation(40) can be written in the more suggestive form
Eex= f eer)dr, (41

whereby we identify the exchange energy density as

\/_ M M
Eadl)=— 2 2 "KM —n+1)(M—k+1)
3
F(M_n+§
2 2y a—2r2
XLn(2r9)L(2r9)e F(M=n+2)°
1 1 1
XF2 —E,H—M,E;Z,k—M—E;l . (42)

Note that the first line in Eq42) is =[ p(r)]?. However, the
terms in the second line of EG42) (i.e., the hypergeometric
andI functiong prevent us from writinge,(r) as a simple
functional of[ p(r)]2.

B. Finite temperature

The finite temperature exchange is readily calculated from

Eq. (36) by using Eq.(16) for the finite temperature first-

order density matrix. The calculation is entirely analogous to
the zero-temperature result, with the central difference being

that we now have to evaluate the intedrsg¢e Eq.(17)]

I mn(—1/2,0,0= jo X Y2 (X)L (x)e *dx

_Tn+12) 111
S Tnen e Mz MY

(43
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Our final result for the 2D finite temperature exchange en- 0
ergy is given by , (a)
\/E 0 oo oe} 0 ) _
Eed T)=—— 2 2 2 2 (—1)n*n -4 7 M=29
T =0 /=0 k=0’ =0
-6
I'(k'+1/2)
XFE@()FP () —————
n,k(ﬂ) n’ k (u T(k'+1) 3
F k 11 k',1;1
— ot ! . —~~
X 2 l 2 I 2 i 2 It ] é/
8
w
xf L.(2r2)L, (2r2)e 2"dr
- 23S S FAWFW -8 [ ()
V2 7150 K50 =, ' e M =49
><l“(k’+1/2) ( ) 111 O 11 -36 |
(k' +1) 82 '2°2°2 " -50
(44) —64
—78 1 1 1
The finite temperature exchange energy density is similarly 0 2 4 6 8
given by

T

3

eofr:T)=— _2 E 2 E E (— 1)n+n’ FIG. 3. Comparison of the exaldtq. (42), solid curvgg;and TF
T n=0 p/_g k=0 ' _g [Eq. (46), dashed curvgs2D exchange energy densities at zero-
temperature and various particle numbers. The TF exchange energy
X FEIZ,;Z(,LL)FE,Z/)YK,(M)Ln(ZFZ)Ln'(ZI'Z) density has been generated by using éRactsingle-particle den-
sity as inpufsee Eq(46)]. All units have been scaled as discussed

o2 I'k'+1/2) in the text.

F k il k',1;1
T a4y 32l TR TR, .
I'(k'+1) 222 ticle numbers. It is clear from this figure that while both

(45) expressions have similar qualitative behavior, the fine spatial
) _ ) oscillations(i.e., shell-filling effectg are not well reproduced
While Eq. (45) looks somewhat unwieldy, it turns out that py the TFA. This result is entirely expected considering our
the sums can be truncated relatively quickly, so that the temdiscussion in Sec. Il in connection to FiggaR-2(c). Spe-

perature dependence can be numerically studied, should ”&‘?ﬁcally, in obtainingslf(r), we have integrated ovesy so

need arise. that we are left only with the center-of-mass coordinate
Therefore, even though the TFA fpy is quite good for the
C. Numerical results s integration, its failings become apparent upon an examina-
As mentioned above, the exact zero-temperature kineticion of the exchange density as a functionrpthe TFA for
energy densityr(r) for the trapped 2D Fermi gas agrees ed!) leads to asmooth monotonically increasing profile
remarkably well with the corresponding TF expressibn because the resulting dependence isx—[p™(r)]%*=
— [ p(r)]%/2 when the exach(r) is used as inputsee Fig. — ((EF—V(r)1/m)¥? [see Eq(46) abovd. However, in Fig.
3 in Ref.[4]). It is then of interest to examine how well the 3.&4(r) has been obtained by using the exact single-particle
2D TF exchange energy density compares with the exadiensity as input, whicdoeshave the shell effects encoded in

expression, Eq(42), in both the small and largi- limit. its spatial dependence. Thus, although shell oscillations can
Specifically, we will investigate the applicability of the well- be included in the TFA ofe;'f(r) (i.e., by using the exact
known 2D Dirac exchange energy functiona#] density, it is important to note that for a givem the weight-

ing given to the Laguerre polynomials ip®2°{r)]%?is not

4 /2 the same as the weight assigned to the Laguerre polynomials

EEXF: - 5\[;[ [p(r)]glzdr:f ngF(r)dr (46) in Eq. (42). Consequently, the exchange energy densities do

not agree as we vary the center-of-mass coordinate. We note

for the inhomogeneous 2D gas when tleactdensity, as in particular that the shell effects in the TFA are less pro-

given by Eq.(20) with ry=r,, is used as input. To this end, nounced than the exact result, and My=49 andr=3 are
we present in Figs.(8)—3(c) the exactsolid curvegand TF  essentially washed olsee Fig. &)]. It is also worth re-
(dashed curvgsexchange energy densities for various par-counting here that byvi =19 (see Fig. 3 in Ref[4]), the
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TABLE I. Comparison of the zero-temperature exchange energylensity matrix in the larg& limit. We have also obtained a
for the exac{Eq. (40)] and TF[Eq. (46)] expressions for various simple, closed-form expression for the finite temperature ex-
numbers of filled shells. The last column displays the relative perchange energy density for a 2D parabolically confined quan-
centage error in the two quantities. tum dot. In the spirit of our previous worfd], we have
utilized this expression to test the validity of the LDA for the

M+1 Egact =3 AE/E (%) exchange energy density. In contrast to our earlier findings
[4], the 2D TF exchange energy functiorddes notrepro-

10 -171.71 —170.81 0.5 duce the shell effects of the exact result very well. Neverthe-

20 —914.05 —912.43 0.2 less, when the TF exchange energy density is integrated over

50 —8703.06 —8699.51 0.04 all space, we find that the resulting exchange energy is al-

ways within=<0.5% of the exact result.

We wish to point out that the utility of our results is not
deviations between the exact and TF 2D kinetic-energy denlimited to the topics discussed in this paper. The simple,
sities are essentially nonexistent; this is clearly not the casanalytical expressions that we have provided will be very
for the exchange energy density. The reasons behind the suéseful in obtaining other closed-form expressions of interest
cess of the TFA for the kinetic-energy density are thoroughlyf© both theorists working in formal DFT and experimentalists

discussed in Ref9]. Nevertheless, the numerics clearly in- Studying, 9-9-'d“_|traﬁ°|dzgappegl fermions. One exan;pllze that

dicate here that as— o, £®2(r)— &7 (r). comes to mind is the weakly interacting trapped Fermi
While the local behavic?? otf zhe ee;;c)t and TF exchang as. In Ref[11], the use of a contact psuedopotential2D)
ed to the surprising discovery that therenis splitting be-

energy densities are not well reproduded opposed to the oY .
; tates with different angular-momentum valugs a
mparatively excellent agreemen ween the ex nﬁ&veens . . .
comparatively excellent agreement between the exact and given shell atfT=0. This occurs in spite of the fact that the

kinetic-energy densitigsthe exchange energy itself agrees o .
remarkably well. To illustrate this, we show in Table | the perturbation interaction does not preserve the SU(2) symme-

exact and TF exchange energies for various numbers of fille Y of the system. Whetht_ar Fh's rgsult St'." holds true for a
shells. The largest relative percentage error, which occurs jnite-range psuedopotermal IS an interesting question, which
M+1=10, is onlyAE/E=0.5%. Thus whe@lobal quan- can be addressed using our analytical expression for

tities are considered, the LDA is an excellent approximatiorﬁl(rl.'rZ)‘ In addition, the close connection between trapped
for the inhomogeneous 2D exchange energy, evenNor ermi-gases and the theory of nuclear structure suggests that

~0(109).

V. SUMMARY AND FUTURE WORK

The main result of this paper can be summarized by E
(22), which defines thed-dimensional, finite temperature
first-order density matrix of an ideal gas of harmonically
confined fermions. This expression should prove to be of

g.

our findings will be relavent in the area of nuclear physics
(e.g., in the Fermi gas model of the nuclguBinally, our
work here should also be useful in the physics of metal clus-
ters, which represent an intermediate stage in the transition
from small molecules to bulk solids or liquids.
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