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Reduced model for the description of radiation-matter interaction including atomic recoil
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We show that a model for the collective atomic recoil laser, previously introduced to include collisions with
an external buffer gas, can be reduced to a single dynamical equation for the probe amplitude. This is the result
of a clever adiabatic elimination of the atomic variables and of the assumption of a negligible effect of the
probe field onto the atomic motion. This reduced model provides a fairly accurate description of the phase
diagram of the original set of equations and allows for the investigation of more realistic regimes, where the
direct simulation of the full model would be otherwise unfeasible. As a result, we find that the onset of a
coherent field can be either described by a second- or first-order transition, the former scenario being observ-
able only below a given temperature. Moreover, the first-order transition is accompanied by an intrinsic optical
bistability region.
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I. INTRODUCTION

The interaction between atoms and the electromagn
~e.m.! radiation is a domain of physics that has attrac
attention for over a century. At the origin of the developme
of quantum mechanics, the interpretation of atomic~and mo-
lecular! spectra and the prediction of their features has b
the object of a large wealth of work~e.g., cf. Refs.@1–5#!.
The problem has been analyzed, in most cases, semicl
cally, but fully quantum mechanical treatments have be
also carried out. Within the semiclassical approach—
scope of the present work—several authors have develo
ways of treating the interaction between a quantized tw
level ~or multilevel! atom, with a formalism analogous to th
vector description of spin states@6#, and the classical~mac-
roscopic! e.m. field. This way of modeling the interaction
particularly appealing when the e.m. field is sufficien
strong to neglect its fluctuations, and whenever the ato
response to the external field is sought. The number of ph
cal effects that can be treated in this fashion is particula
large, and the complete literature cannot be cited here~a
good overview of a number of classic effects can be found
Refs. @7,8#!. Within this framework, the contribution of thi
paper is to take into account aspects that so far have b
treated independently or in a perturbative approach: the
fect of the radiation scattered by the atoms into the glo
e.m. field and its feedback on the atoms@9#, i.e., taking into
account the atomic motion due to atomic recoil~because of
the photon exchange! and collisions~between atoms!.

The rest of this introduction is dedicated to a brief revie
of known effects that are going to play a role in the syst
we choose to describe. Some of them will be arbitrarily e
cluded~e.g., Rayleigh or Raman scattering! from our discus-
sion, but they are indeed contained in the literature cited
well as in the problem that we consider and in the way
treat it.

The advent of the laser marked a revolution in the stu
1050-2947/2003/68~3!/033405~13!/$20.00 68 0334
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of light-atom interactions. Work concerning the shape
atomic emission spectra under different experimental con
tions was published very early on@10–12# and applications
to nonlinear effects arising in gas laser amplifiers were c
sidered@13,14#. In Refs.@10–12# it was also shown that, a
the lowest level of semiclassical description, the study of
response of a two-level atom to the incident radiation
quires the inclusion of saturation effects on the optical tr
sition and the influence of detuning between field and ato
Immediately, a concern arises about the strength of the i
dent radiation, which modifies the atom’s level structure,
troducing the so-called Rabi sidebands~or level splitting!
@15#: the absorption and emission spectrum of the atom h
been strongly modified by the interaction. The developm
of narrow-linewidth and sufficiently powerful tunable lase
allowed for experimentally probing, a few years later, the
somewhat surprising predictions. The experiments@16–19#
confirmed the existence of sidebands—an object of debat
the time—but also showed that the complete picture w
quite more complex.

One of the questions that presented themselves conce
the measurement of the modifications in the atomic spec
properties when subject to an intense external field. For
purpose, it was natural to introduce a second field of varia
frequency and of very weak intensity, which may be scann
across the frequency range over which the atom reacts, w
out perturbing in any significant way the atomic line shape
weakprobefield. Unfortunately, the mathematical treatme
of the problem becomes immediately intractable in clos
form, and approximations have to be introduced@20#.

The problem of two independent traveling waves~pump
and weak probe! interacting with an atomic sample was fir
investigated in the 1960s with reference to a multilev
atomic structure@11,21–23# and a detailed discussion can b
found already in Ref.@24#. A subsequent, more general, trea
ment of the interaction of an ensemble of atoms with q
siresonant counterpropagating pump and probe fields, inc
©2003 The American Physical Society05-1
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ing their spatial dependence and the transition’s Dopp
broadening, has become a standard reference@25#. There, the
interaction between pump field and atoms is calculated
actly, while the probe’s evolution is treated in a perturbat
form. Integration over the Doppler velocity distribution
included. As a result, detailed spectral features, consistin
attenuation and amplification peaks for the probe field, w
found~also function of the atomic speed!. More significantly,
in Ref. @25# it was proven that atomic motion can hardly b
neglected in the treatment of these problems.

The first consequence of motion in thermal atom
samples is to shift the individual atom’s resonance freque
by a certain amount~Doppler shift!. A thermal sample will
therefore behave with an integrated response, weighted
the various velocity population classes, of atoms seeing b
pump and probe shifted by different amounts~relative to the
atomic resonance!. The result of the Doppler integration~or
broadening! is not simply that of smoothing out the profile
but, rather, that of introducing velocity-selective effec
which give rise to spectral dips~or holes! @26–30#, hole
burning @31#, so-called ‘‘dead zones’’@32#—i.e., frequency
intervals for which the global atomic susceptibility for th
sample is nearly nonexistent—, and various other featu
that have been discussed in numerous publications~e.g.,
without @33# or with @34# Doppler broadening!. The effects
of relative directionality between pump and probe have a
been carefully investigated and have been shown to ind
different spectral signatures@35,36#. Additional features
present in the interaction between atoms and two fields
the excitation of harmonics in the combination of field’s fr
quencies~e.g., with cross-polarized fields@37#! or washout
effects of the grating in the atomic variables imposed by
periodic modulation coming from the interference betwe
fields @31,38#. The latter paper introduces a formalism th
allows for the treatment of several different kinds of pro
lems and nonlinearities, taking into account also the non
cality of the interaction and washout effects of spatial str
tures due to atomic motion.

Motion does not only influence the shape of the atom
response through Doppler shift or washout of gratings,
also gives rise to more subtle phenomena. If one consi
the momentum transfer between atoms and field, due to
exchange of photons, then the atomic velocity becomes it
a variable in the problem. One might be tempted to say
such effects become important only for cold atoms; in suc
case, resonances can be shifted or modified by the re
transfer~e.g., Refs.@39,40#!. Particular features in the reso
nances have been observed in pump-probe experiments
very cold atoms@41#, but the possibility of obtaining gain
from a two-level system, due to the change in atomic m
mentum during the interaction and in the absence of
population inversion, was predicted very early on@42#, and
was later investigated in detail~e.g., Refs.@43,44#!. How-
ever, the transfer of momentum between atoms and the
field is not restricted to cold atomic samples. Atomic bea
have been shown to display resonances@45,46# that couple
the internal atomic degrees of freedom to the external m
tion: dopplerons@47–50#. Momentum transfer, i.e., a chang
in atomic momentum, is equivalent to forces that act on
03340
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atoms. Such forces have played a crucial role in atomic co
ing with lasers@51#, but are generally present in all problem
~cf., e.g., Ref.@52#!. Indeed, their action is responsible for th
predicted appearance of coherent lasing action thro
atomic bunching ~the collective atomic recoil laser, o
CARL, Ref. @53#! or through other collective effects@54,55#.
The existing experimental evidence for CARL has been
object of debate@56,57#, but a collective behavior~perhaps
the one of Ref.@54#! may be at the origin of some anomalou
gain@58,59# which appears only for particularly strong pum
values, and not under the conditions for which usual pum
probe spectroscopy experiments are conducted~e.g., Ref.
@60#!.

In any case, precision measurements show that re
plays a role in pump-probe spectroscopy even when col
tive effects are not relevant. The originally measured spe
@16,17,19# present features that are typical of recoil and t
spectral details could not be explained until the latter w
taken into account@61,62#. This is a clear indication that the
transfer of momentum between e.m. field and atoms is
entirely negligible even when thermal~hot! atomic samples
are considered. It is therefore reasonable that recoil sho
also lead to new features such as collective behavior.

One further consequence of atomic motion, and of m
mentum transfer, is the change in velocity that the ato
undergo during the interaction. For weak coupling, it is re
sonable to expect that the modifications in the velocity d
tributions remain small and that the thermal profile dom
nates, but if the coupling is strong, substantially differe
shapes for the momentum distribution may appear@45–
47,55#. These effects are important not only for a basic u
derstanding of the medium’s internal dynamics, but ha
been used for preparing samples with particular velocity d
tributions ~e.g., Refs.@63,64#!.

Often, a buffer gas is added to the atomic vapor, eithe
change the type of broadening in a hot vapor@65#, or for
purely technical reasons—such as keeping the vapor a
from the optical windows—, or both. Either way, neglectin
collisions is often impossible, and their role has to be tak
into account. For our purposes, we will ignore collisions w
the walls of the container, and concentrate, instead, on t
body interactions exclusively~three-body collisions play a
role only at pressure values higher than those used in a t
cal pump-probe spectroscopy experiment!. Since the density
values for the atomic species interacting with the e.m. fi
are normally quite low, the only collisions that are importa
are those between anactive atom ~i.e., interacting with the
field! and one of the buffer gas. For most optical expe
ments, buffer gas species that do not affect the populatio
the upper state~e.g., alkali atoms in a noble gas atmosphe!
are the preferred choice, since they only affect the l
broadening and may allow one to perform an experim
with predominant homogenous, rather than inhomogene
broadening.

The literature on the consequences of collisions on opt
transitions is rather extensive and dates very far back~e.g.,
Refs. @2,66#!. Numerous effects have been discovere
among which are collision-assisted amplification proces
@67#, modified atomic velocity profiles resulting from the in
5-2
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REDUCED MODEL FOR THE DESCRIPTION OF . . . PHYSICAL REVIEW A 68, 033405 ~2003!
terplay between collisions and Doppler broadening@63#,
changes in the optical lines in saturation spectroscopy@68#,
and thermalization processes leading to gain enhancem
@54,55#.

The problem that we analyze centers on the off-resona
interaction of a~strong! pump and a~weak! probe beam with
a thermal sample of two-level atoms placed in a therm
bath—hence, with collisions. We consider a collinear, co
terpropagating geometry for pump and probe and study
interaction including: atomic motion, momentum transf
and collisions. The interaction, as in Refs.@53–55# is evalu-
ated at the position of the individual atom, which possess
determined velocity. This choice differs from the comm
one, which considers the interaction to be nonlocal~even in
the more general treatments, e.g., Ref.@38#!. Collisions are
introduced in a standard way used in molecular dynam
~see, e.g., Ref.@69#! and the time evolution of each ind
vidual atom is evaluated. The approach is similar to t
followed in many problems in statistical physics, and alrea
introduced in optics in Ref.@70#. The results that we presen
are a mostly analytical extension of the general treatmen
pump-probe spectroscopy which include atomic motion, m
mentum transfer, collisions, and the contribution of the sc
tered field to the global field, thereby providing a feedba
mechanism which couples the behavior of e.m. field and
oms.

As such, this paper represents an additional step in
description of pump-probe spectroscopy with counterpro
gating beams, which finds its most extensive and car
treatment in Ref.@25#. There, the absorption spectrum of
weak beam, as a function of detuning, was studied, includ
propagation effects and Doppler broadening~in variable
amount!; a very detailed interpretation of the physic
mechanisms that lead to gain was offered~nonlinear phasing
by an external field applied to the oscillators, whose eig
states and eigenfunctions are renormalized by the s
strong pump field!. In that work@25#, the atomic recoil was
not taken into account, since the description was limited
the semiclassical approximation. Hence, the shape of the
locity distribution was assumed to be fixed, thereby excl
ing both reshaping~coming from the interaction between in
dividual atoms and field! and overall shifts~due to global
radiation pressure!. The absence of collisions, in that trea
ment, prevented the authors from investigating the phy
which results from the transfer of atoms from one veloc
class to another. Finally, plane waves were assumed for
e.m. field, thereby excluding the possibility of studying e
fects related to the existence of an external time scale, s
as the crossing time for atoms which traverse the interac
volume.

In this paper, we take up the task of fulfilling some
those goals within a semiclassical approach, extended by
recent introduction of a modeling technique, which allo
for a correct description of position and momentum of t
individual atom@53#, and by the introduction of the interac
tion with an external thermal bath@54,55#. This way, we can
self-consistently account for atomic motion and modific
tions to the velocity classes, for mixing among the
~through the action of radiation pressure or dipole forces,
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also through collisions!, and also for the presence of extern
time scales~determined by the collision rate with the atom
of the thermal bath!. In spite of a microscopic approach t
the description, through suitable approximations we arrive
a state equation for the probe field’s amplitude, which p
dicts the appearance of a phase transition—a result that c
not be obtained in the traditional spectroscopic approach

Section II is devoted to the introduction of the model a
to a discussion of the corresponding physical setup. An
proximation is introduced here, which reduces the probl
to a simpler, but still very meaningful form, where analytic
expressions can be obtained for some of the physical v
ables. In Sec. III, we develop a perturbative approach t
allows for the identification of an analytical expression f
the transition point. A more general modal expansion is p
sented in Sec. IV: from it we derive a dynamical equation
the probe field valid also in the nonperturbative regime;
solution requires a numerical support, though. A compari
between the reduced model and the original full mode
performed in Sec. V, where several aspects of the nume
simulations are presented as well. Section VI is devoted
brief summary of our main results and to an outline of t
most relevant problems still deserving clarification.

II. THE MODEL

A model describing the interaction between an ensem
of two-level atoms and two counterpropagating e.m. fiel
including atomic position and velocity, and momentum tran
fer due to the photon-atom interaction, was introduced a
years ago@53#. Its mathematical form consists of 5N equa-
tions describing the single-atom degrees of freedom~real and
imaginary part of the polarizationSj , the population differ-
enceD j , the atomic positionu j , and momentumPj , nor-
malized to the wavelength and the photon’s momentum,
spectively, plus two equations for the complex amplitudeA1
of the probe field@71#!. In this model, under the approxima
tion of a weak probe, the pump intensity is considered to
constant and is thus treated as a parameter. More preci
the equations are@53#

u̇ j5Pj , ~1a!

Ṗj52Re@~A22A1eiu j !Sj* #, ~1b!

Ṡj5
i

2
~Pj12D20!Sj2rD j~A1eiu j1A2!2GSj , ~1c!

Ḋ j54rRe@~A1eiu j1A2!Sj* #2G~D j2Deq!, ~1d!

Ȧ15 iD21A11
1

N (
j 51

N

Sje
2 iu j , ~1e!

where time is rescaled torv r , G5g/rv r is the scaled
atomic decay rate~for the sake of simplicity, population in
version and polarization are assumed to decay with the s
rate,g), D205(v22v0)/(rv r) and D215(v22v1)/(rv r)
are the scaled detunings of the input field frequency rela
5-3
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JAVALOYES, LIPPI, AND POLITI PHYSICAL REVIEW A68, 033405 ~2003!
to the atomic,v0, and probe field,v1, frequencies, respec
tively, and Deq is the equilibrium population differenc
(Deq51 in all our simulations!. The parameterr is defined
as r5@(n`2v0)/(2\e0v r

2)#1/3 where ` is the dipole mo-
ment,v r52\k2/m is the recoil frequency, andn is the den-
sity of atoms.\ is Planck’s constant,k is the wave vector of
the e.m. field~since the pump and probe frequencies are v
close to each other, the modulus of the two wave vector
assumed to be the same!, m is the atomic mass, ande0 is the
dielectric constant of vacuum. The atomic momentum
been rescaled to the photon’s momentum,Pj5pj /(r\k)
while the position is normalized to~half! the optical wave-
length,u j52kzj . A typical set of parameters for a sodiu
sample with densityn51019 m23 is v r'2p3105 rad s21,
r'1.53103, G5203p3106/(rv r)'0.15; these param
eters are evaluated assuming a temperatureT'550 K. For
comparison with previous work@54,55#, where the param-
eters were chosen for ease of numerical integration, in
rest of this work we will user510, G51, D205215, and
D2151.

Subsequent to its introduction@53#, it was noted that this
model is not sufficient to describe some experiments, in p
ticular, those performed in hot vapors@58,59#; hence, an ex-
tension was proposed in Ref.@54#. There, collisions~with a
buffer gas! were included to reproduce actual experimen
situations@58,59#. As a result, the atomic motion thermalize
due to the interaction with the reservoir. This extens
brings the additional advantage of providing a relaxat
mechanism for the atoms, which allows for the appearanc
stable, long-term solutions, absent in the original model@53#.
In fact, in the original model unphysical effects, such as
permanent presence of an acceleration due to the p
recoil—whose consequence is to push the atoms away f
resonance—are removed by introducing a relaxation me
nism for the momentum, in order to simulate the action
actual mechanisms occurring in a real system~e.g., atoms
exiting the interaction volume after a certain time, wh
‘‘fresh’’ ones enter it!. Nonetheless, this is not sufficient t
give rise to true steady-state solutions, and strong temp
oscillations characterize the CARL model.

The aim of this paper is to obtain an analytical descript
of the pump-probe interaction in the nonlinear medium wh
atomic position, motion, and recoil are taken into accou
As it is extremely difficult to find a closed solution to the fu
CARL model @53#, and even more so when collisions a
introduced@54,55#, a certain number of reasonable appro
mations need to be made in order to obtain a more tract
~reduced! model. We will check,a posteriori, whether they
are reasonable by comparing the numerical solutions of
full model ~FM! and to those of the reduced model~RM!, for
which we can write analytical solutions.

Collisions play an important role in many of the pum
probe spectroscopy experiments that can be conducted
atomic vapor or in a gas. Only in the case of cold atom
samples, which are devoid of a buffer gas and where
medium is sufficiently dilute to entirely neglect the intera
tions between atoms, is the collisionless approximation va
This is the case that is best described by the original CA
model @53# if the experiment is run for a limited duration
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The opposite limit, strongly collisional regime, is the on
often used when a predominant homogeneous line broa
ing is desired. In this case, collisions occur so often that
exchange of momentum between e.m. field and atoms p
a negligible role, since the changes in atomic velocity dur
a collision ~e.g., with a buffer gas atom! are orders of mag-
nitude larger than those which occur during the interact
with a photon. This regime is fully and properly described
a homogeneous, collision-dominated, atomic susceptib
and stationary atoms~with, at most, diffusion playing some
role in describing their motion!.

The situation which we are interested in describing is
intermediate one, where collisions are present~e.g., to keep
the atoms from reaching the cell windows where they m
chemically react—the case of alkali atoms!, but where the
dominant broadening is of Doppler origin. This amounts
having in a cell a sufficiently dilute buffer gas@58,59#. Under
these conditions, the mechanical effects of light on the ato
are strongest: the atoms are subject to a strong acceler
through nonresonant scattering processes and, also, thr
radiation pressure. On the other hand, collisions rando
change the velocity of the atoms that interact with the fi
and can in a single event equilibrate thousands of momen
exchanges with the e.m. field, since the momentum that t
exchange is much larger than that of a photon. Hence,
optimal situation, as far as the investigation of themechani-
cal effects of lightin a spectroscopic problem is concerned,
that where collisions occur seldom enough to let the mom
tum transfer accumulate, but often enough to allow for s
ficient mixing—thus ensuring that an equilibrium conditio
exists~without renewing the sample!. This is exactly the re-
gime that we are interested in investigating in this paper
which can be best handled with our technique.

The specific way collisions are modeled is by generatin
random sequence of intercollision times~independently for
each atom! distributed according to a Poisson law who
average value will be denoted withtc . At each collision, the
momentum of the colliding,j th, atom is randomly reset ac
cording to the Gaussian distribution

Qeq~Pj !5
1

A2ps
expH 2

Pj
2

2sJ ,

wheres5mkBT/(r\k)2 is the rescaled temperature of th
buffer gas (kB is Boltzmann’s constant!; moreover, the phase
of the atomic polarizationSj is also reset to a value uni
formly distributed in the whole range@0,2p# @72#.

Two approximations are at the heart of the analyti
treatment that we propose in this paper. The first one is
lated to the strength of the probe beam, while the second
is based on the frequency of collisions.

The interaction between one field of arbitrary strength a
an ensemble of atoms can be treated exactly~cf., e.g., Ref.
@73#!. Instead, the addition of the probe field complicates
picture to the point that only a power expansion, which co
siders the probe intensity as being small, yields manage
results @24,25#. In the following, we adapt this idea and
while we are able to handle analytically the dynamics of
Bloch vectors for arbitrary values of the probe field amp
5-4
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REDUCED MODEL FOR THE DESCRIPTION OF . . . PHYSICAL REVIEW A 68, 033405 ~2003!
tude, we consider that the probe field’s contribution to
atomic recoil is sufficiently small to be negligible~at least in
a first approximation!. What we are neglecting is only th
amount of momentum transmitted to the atoms in the form
recoil when a probe photon is scattered into the pump be
This amounts to saying that we consider only the recoil s
fered by atoms subjected to the pump field while we neg
the contributions coming from those probe photons that
scattered into the pump field~thereby transferring an oppo
site amount of momentum onto the atoms!. The larger is the
imbalance in favor of the pump strength, the better our
proximation; this will become clearer at a later stage in
paper. Luckily, there is a further element in our model wh
extends the validity of the approximation: the occasional c
lisions mix the atomic velocity distribution, thereby resetti
the atomic momentum to a new value and strongly reduc
the artificial bias that we introduce in the atomic accelerat
by neglecting the mechanical action of the probe field.

The second approximation rests on the frequency w
which collisions occur. Numerical integrations of the F
@54,55# indicate the presence of three distinct time scale
fast one, over which the atomic variables~or Bloch vector!
evolve, an intermediate one, controlled by collisions~entirely
separate from the atomic one, in the regime that interests!,
and a slow one, which describes the time constant w
which the probe field evolves. Such a difference of tim
scales can be appreciated in Fig. 1 where we have plott
sample of the dynamics of the population inversion and
the momentum of a selected atom@see panels~a! and ~b!,
respectively#, and that of the probe field intensityA1

2 @panel
~c!#. From the evolution of the population inversion,D, one
can recognize the presence of the various fast rotations
ing in dependence of the detuning. Oscillations appea
different frequencies~three different values, in the figure!,
which are due to the apparent~i.e., Doppler-shifted! detuning
between atomic resonance and field frequency. We see
even choosing a short time between collisions@compare the
horizontal scale to the panel~b! of the figure#, the number of
oscillations is large. In addition, panel~a! shows how the
transient, necessary to the dipole to reach equilibrium w
the external field after the collision, is even much shor
than the time between collisions. Betweent'1254 andt

FIG. 1. Time dependence of the population inversionD ~a! and
of the momentumP ~b! of one of 512 atoms in a simulation pe
formed withs533. In panel~c! the probe intensityA1

2 is plotted.
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'1257 time units very fast oscillations appear, which in
cate the dipole’s transient evolution between the condition
which it is found after the collision and its relaxation
equilibrium with the driving field. The intermediate tim
scale is better seen in panel~b!, where the momentum dy
namics clearly reveals the random resetting due to the c
sions. Here, one also recognizes the effect of radiation p
sure, which accelerates the atoms towards increasin
negative velocity values~the pump field is oriented opposit
to the reference axis!. Finally, the longest time scale can b
appreciated in panel~c!, by looking at the probe intensity.

The fact that collisions are infrequent over the time sc
G21 characterizing the atomic response, implies that exc
for a transient following the collision, thefree evolution of
the Bloch vector represents quite accurately the dynamic
the atomic variables. Since, in addition, the field evolv
over time scales that are quite long compared to the ato
dynamics and to the typical thermalization time of the m
mentum which is proportional totc , we find ourselves in the
fortunate situation where we can consider the field~tempo-
rarily! constant. This allows us to handle the problem in
sort of Born-Oppenheimer approximation, where we d
scribe the atomic dynamics as being subject to a cons
field between collisions, where the atomic velocity distrib
tion is maintained close to equilibrium by the collision
themselves, and where we can integrate the atomic resp
over theshort time scales. This procedure allows us to eva
ate the field in closed form, and to feed the result back i
the atomic dynamics, thereby closing the loop analyticall

This three-time-scale approach allows us to describe
dynamics of the probe field, which is instead considered
be a parameter in the traditional spectroscopic appro
@24,25#, and to predict interesting features of the field such
the occurrence of a phase transition, and to analyze its
ture.

According to the above arguments, the probability dis
bution Q(P) of atomic momenta is assumed to be the s
tionary solution of a kind of Fokker-Planck equation witho
diffusion and with an added exponential relaxation~as in
Ref. @54#!:

]Q

]t
52

Q2Qeq

tc
2

]

]P
~FQ!, ~2!

where the force fieldF(P) is the radiation pressure

F~P![ Ṗ52
2DeqrA2

2G

G21~P/21D20!
214r2A2

2
, ~3!

obtained by inserting in Eq.~1b! the stationary solution of
the Bloch equation under the approximation of a negligib
small probe field, i.e.,

Re$Sj%52
DeqrA2G

G21~Pj /21D20!
214r2A2

2
. ~4!

For practical reasons, instead of solving the Fokker-Pla
equation, Eq.~2!, we prefer generating momenta accordi
to the Gaussian distributionQeq and modifyingP as if each
5-5
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JAVALOYES, LIPPI, AND POLITI PHYSICAL REVIEW A68, 033405 ~2003!
atom were exposed to a constant radiation pressure@i.e., we
assume a constantP in the rhs of Eq.~3! for a fixed timetc].
From Fig. 2 one can verify that the resulting numerical er
is always negligible in the various regimes we have cons
ered in this paper. There, we have indeed plotted the i
grated error

dQ5E dPuQ~P!2Q̃~P!u,

whereQ̃(P) is the distribution resulting from the above d
scribed procedure, versus the pump intensity for three dif
ent temperature values. The error is always negligible.

From this analysis of the momentum distribution we co
clude that the approximation of a shifted Gaussian velo
shape, due to radiation pressure, represents an acceptab
proximation as long as small values ofr are considered~i.e.,
very low atomic densities!, and that the interaction with only
one field is considered. The addition of a probe, even in
low-density case, significantly perturbs the velocity distrib
tion to a point that the dynamics of the external atomic
grees of freedom must be taken into account.

III. PERTURBATIVE EXPANSION

The goal of this and of the following section is to elim
nate the atomic variables under the approximation thatPj
evolves on a time scale longer than this latter variable
thus can be treated as a constant. Before entering into
technical details, let us notice that the correctness of suc
approach depends crucially on the assumption thattc is long
enough to ensure the convergence of the Bloch dynam
towards the asymptotic solution. It is obvious that no ma
how longtc is, there is always a fraction of atoms'G/tc for
which this is not true. Our approach will hold for all thos
cases where the number of atoms whose internal varia
are in a transient state is small. This does not represent a
strong restriction, since interesting effects are observed e
when the collisions are sufficiently rare. In the numeric
simulations performed in Ref.@54#, for instance, the fraction
of atoms for which our approximation breaks down is ve
small ('2%).

FIG. 2. dQ as a function of the pump field intensityA2
2 for

different temperaturess533 ~solid!, s5233 ~dashed!, and s
5433 ~dot-dashed!.
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According to the discussion of the preceding section,
assumePj to be constant and thus consider it as a param
rather than a variable. Hence, the normalized atomic posi
u becomes a linear variable of time and we redefine it
u j5u j

01Pjt. This approximation is the starting point for un
derstanding and describing the numerically observed ph
transition. Within this framework, we have the following s
of 3N12 equations:

Ṡj5~2G1 ip j !Sj2mD j@11Eei (Pj t1u j
0
1c)#,

Ḋ j52G~D j2Deq!14 mRe$@11Eei (Pj t1u j
0
1c)#Sj* %,

Ė5
1

A2
Re$C%,

ċ5D211
1

A2E
Im$C%, ~5!

where

C5
1

N (
j 51

N

Sj exp@2 i ~Pjt1u j
01c!#. ~6!

The detuningD20 has been absorbed into the definition of t
new parameterspj5Pj /21D20 and we have introduced th
rescaled amplitudeE and the phasec of the probe field
A1 (A15A2Eeic). Another useful parameter, which coin
cides with the control parameter of the phase transition
the normalized Rabi frequencym5rA2 @53# ~hence, in
physical units, the Rabi frequency isV r5r2A2v r).

In the thermodynamic limit (N→`), the sum in the defi-
nition of C transforms into an integral over the distributio
of the instantaneous phasesu j

0 . In the approximation of a
small recoil effect, the integral writes as a double integ
over the distributionQ(P) of momenta and over the~flat!
distribution of initial anglesu0 ~there is no longer the need t
use the subscriptj asu0 andP are now free parameters tha
define a specific class of atoms—i.e., we are considering
limit of the continuum!:

C5
1

2pE2`

1`E
0

2p

Sexp@2 i ~Pt1u01c!#Q~P!dPdu0 .

~7!

Numerical simulations suggest that in the stationary reg
the field’s amplitudeE is constant while its phasec increases
linearly in time. Indeed, it is easy to verify that this is
formally acceptable solution of the above set of equationsA
fortiori , in the vicinity of the phase transition, we can, in
first approximation, neglect the dynamics ofE ~critical slow-
ing down! and assume that

c~ t !5Dt, ~8!

for someD value to be determined self-consistently~without
loss of generality, we have chosen the time origin in suc
way that the field phase is 0!.

After introducing a shifted time variable,
5-6
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REDUCED MODEL FOR THE DESCRIPTION OF . . . PHYSICAL REVIEW A 68, 033405 ~2003!
t5t1
u0

v
, ~9!

wherev5P1D is the Doppler-shifted frequency~in the ro-
tating reference frame! of the field seen by the atoms of th
velocity class that we are considering, the atomic equati
become

Ṡ52aS2mD~11Eeivt!,

Ḋ52G~D2Deq!14 mRe@~11Eeivt!S* #, ~10!

where we have also introduced the complex variablea5G
2 ip.

These are the equations of a parametrically forced lin
oscillator. In view of the smallness ofE, one can formally
expandSandD as follows~cf., e.g., Ref.@25# where the case
D50 is treated!:

S~t!5 (
m50

`

s[m]E
m,

D~t!5 (
m50

`

d[m]E
m. ~11!

By inserting Eqs.~11! into Eqs.~10!, one obtains

ṡ[0]52as[0]2md[0] ,

ḋ[0]52G~d[0]2Deq!12m~s[0]1s@0#
* !, ~12!

and the recursion relation for all other orders:

ṡ[m]52as[m]2m~d[m]1d[m21]e
ivt!,

ḋ[m]52Gd[m]12m~s[m]1s@m#
* !12m@s[m21]e

2 ivt

1s@m21#
* eivt#. ~13!

For m.0, Eqs.~12! admit the stationary solution@cf. also
Eq. ~4!#

s[0]52
m

a
d[0] , ~14!

d[0]5
Dequau2

uau214m2
, ~15!

which is the well-known expression for the Bloch mod
under the action of a single field. From Eqs.~13!, one can see
that the expression for themth order contains terms rotatin
at the frequency6v multiplied by the (m21)th contribu-
tions. Accordingly, one can write
03340
s

ar

l

s[m]5 (
n50

m

s(2n2m)
[m] ei (2n2m)vt,

d[m]5 (
n50

m

d(2n2m)
[m] ei (2n2m)vt. ~16!

By inserting the preceding Fourier expansions in Eqs.~7!,
and exploiting the definitions oft and v, one immediately
recognizes that the only nonzero contributions to the integ
arise when the phase factor is strictly zero, which happ
only when 2n2m51, since we are assuming that the the
mal noise induced by the buffer gas ensures a flat distribu
of the u0 @74#. This implies that only the odd terms ma
contribute:

C5 (
oddm

`

Emc[m] , ~17!

where

c[m]5E
2`

1`

s(1)
[m]~P!Q~P!dP, ~18!

since the integral over the initial phaseu0 factors out. The
expressions for field amplitude and phase@cf. Eqs.~5!# then
take the form

Ė5
1

A2
@Re$c[1]%E1Re$c[3]%E

31•••#,

ċ5D211
1

A2
@ Im$c[1]%1Im$c[3]%E

21•••#. ~19!

We have analytically determined both the first and t
third order term: the derivation ofc[1] is reported in Appen-
dix A, while the expression forc[3] has been obtained with
MAPLE TM. Since its derivation is analogous to that ofc[1]
and given that the final expression is extremely long, we
not give its explicit form. The change in sign, from negati
to positive, of Re$c[1]% signals the onset of the change fro
a zero to a finite value for the fieldE through a Hopf bifur-
cation. The frequency of the bifurcating solution is det
mined from Im$c[1]%/A2, as shown by the phase equatio
this frequency corresponds to a value ofD5D21
1Im$c[1]%/A2. Finally, the sign of the real part of the cub
term determines the character of the bifurcation~supercritical
or subcritical!. We shall see in Sec. V that both scenarios c
arise.

IV. MODAL EXPANSION

In the preceding section, we have seen how the ato
degrees of freedom can be perturbatively eliminated w
the field amplitude is small, but the results which we ha
obtained hold only in a small neighborhood of the transiti
point. Here, we follow a different approach, which allows
to describe the problem even far from the phase transit
By assuming that the field amplitude is a slow variab
5-7
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JAVALOYES, LIPPI, AND POLITI PHYSICAL REVIEW A68, 033405 ~2003!
~which is certainly true in the vicinity of any stationary s
lution, whether stable or not!, the dynamics of the atomic
variables is described by the parametrically forced oscilla
equations, Eqs.~10!, described in Sec. III. Accordingly, we
expect the dynamics to converge towards a periodic solu
with periodT52p/v, but such a solution can possess ma
Fourier harmonic components. An effective method for d
termining the asymptotic solution consists in expanding
variables in Fourier modes with fundamental frequencyv,

S~ t !5 (
n52`

1`

S(n)e
invt,

D~ t !5 (
n52`

1`

D (n)e
invt, ~20!

where we denoteD (n)* 5D (2n) , D(t) being a real variable
By inserting Eqs.~20! into Eqs.~10!, one obtains

S(n)52m f (n)@D (n)1ED(n21)#, ~21!

~G1 inv!D (n)5GDeqdn012m@S(n)1S~2n!
* 1E~S(n11)

1S~2n11!
* !#, ~22!

where we have introduced

f (n)5
1

a1 inv
. ~23!

Using the propertyD (2n)* 5D (n) , it is readily clear that

S~2n!
* 52m f ~2n!

* @D (n)1ED(n11)#. ~24!

Inserting Eqs.~21! and ~24! into Eq. ~22!, we obtain

2~G1 inv!D (n)1GDeqdn0

52m2$@ f (n)1 f ~2n!
* 1E2~ f (n11)1 f ~12n!

* !#D (n)

1E@ f (n)1 f ~12n!
* #D (n21)

1E@ f (n11)1 f ~2n!
* #D (n11)%, ~25!

which can be written in the more compact form

h (n)D (n)1b (n21)D (n21)1b (n)D (n11)2
GDeq

2m2
dn050,

~26!

where

h (n)5
G1 inv

2m2
1 f (n)1 f ~2n!

* 1E2$ f (n11)1 f ~12n!
* %,

~27!

b (n)5E$ f ~2n!
* 1 f (n11)%. ~28!

The infinite set of linear equations, Eq.~26!, can be solved
by introducing the variable
03340
r

n
y
-
e

W(n)5
b (n)D (n11)

h (n)D (n)
. ~29!

In fact, substitution of Eq.~29! into Eq. ~26! yields, for n
Þ0, the following recursion relation

W(n21)52
a (n)

11W(n)
, ~30!

where

a (n)5
b (n21)

2

h (n)h (n21)
. ~31!

For n50, observing thatb (21)5b (0)* , one finds

D (0)5
GDeq

2m2h (0)

1

11W(0)1W~0!
*

. ~32!

Finally, the source term for the field equation,S(1) , can be
expressed as

S(1)52m f (1)@D (1)1ED(0)#

52
GDeqf (1)

2mh (0)b (0)

h (0)W(0)1b (0)E

11W(0)1W~0!
*

. ~33!

The explicit expression for the polarization requires only t
knowledge ofW(0) , which in turn needs the numerical va
ues for h0 , h1 , a1, and b0. The latter quantities are al
defined in terms of the momentum value and the other
rameters, and are therefore known.W(0) is obtained iterating
back from the higher-order components. Since the values
Wn tend rapidly to zero for increasing values ofn, it suffices
to choose a value ofn5m sufficiently large and a smal
value ofWm ~e.g.,Wm50) as an initial condition. The cal
culations are very quick and one rapidly obtains converge
towards a trajectory, independently of the choices made
m and the value ofWm .

By integrating the contributions arising from all differen
velocities, each weighted according to the proper distri
tion, we obtain the equations for the probe field amplitu
and phase:

Ė5
1

A2
Re$C~E,c,m,s!%ª2

dU

dE
, ~34!

ċ5D211
1

EA2
Im$C~E,c,m,s!%, ~35!

whereU(E), implicitly defined by the last equality in Eq
~34!, plays the role of a potential controlling the field dynam
ics.

V. NUMERICAL RESULTS

The overall response of the whole ensemble of atoms
be obtained by summing the contributions of each veloc
class. In Fig. 3 we have reported the linear responses(1)

[1] to
5-8
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REDUCED MODEL FOR THE DESCRIPTION OF . . . PHYSICAL REVIEW A 68, 033405 ~2003!
an infinitesimal fieldE for different values ofm. The zero
field (E50) state is unstable and thus can grow to a fin
value only if the average value ofs(1)

[1] is positive. The aver-
age has to be performed over the distribution of velocit
that is basically a slightly shifted Gaussian.

The largest response corresponds to the negative p
located on the negative side of the momentum distribut
~we recall that the pump field is oriented against the re
ence axis!. These peaks correspond to absorption of
probe field, since the quantity plotted is the value of t
growth rate of the field itself@cf. first equation in Eqs.~19!#.

We see how, for increasing pump powerA2
2, the absorp-

tion grows in value and moves to decreasing values of m
mentum, as is to be expected. The inset shows the chara
istic presence of the Rayleigh scattering feature~placed at
momentum values near zero!, followed, to the right, by the
positive~amplification! peak originating from the usual thre
photon gain. At fixed temperature~i.e., fixed width of the
velocity spread!, upon increasing the Rabi frequency,m, it is
possible to encounter the situation where the absorption p
~left! is located in the tails of the momentum distributio
while the gain feature is placed in a region well populated
the moving atoms. The weighted integration over the~finite!
Doppler distribution gives a measure of the global respo
for the probe. In the situation just described, the effect of
absorption peaks is negligible, while the three photon g
dominates in the frequency interval corresponding to the
tuning values induced by the atomic motion. Hence, an ov
all gain ensues~i.e., an instability of theE50 solution!. This
situation has already been carefully described in Ref.@25#,
and the detailed physical interpretation offered there ho
for our current results, even though we are including rec
~due to the pump field!, and therefore also the shift and~par-
tial! deformation of the momentum distribution itself.

The integration over the velocity profile provides analy
cal predictions for the steady-state value of the probe fi
which results from the interaction with the pumped mediu
To test their validity, these predictions should be compare
the numerical integration of the set of equations that desc
the model. In Fig. 4 we perform this check by showing t

FIG. 3. Value ofs(1)
[1] for each class of velocityP for different

amplitudes of the pump fieldA2: 0.2 ~solid!, 0.6 ~dashed!, 1
~dotted-dashed!, 1.4 ~dotted!.
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analytical results~solid line! and the numerical ones obtaine
from the FM ~solid circles! or the RM ~open squares!.

Figure 4 clearly shows that the analytical calculatio
based on the Fourier expansion~Sec. IV! provide an excel-
lent agreement with the numerical results coming from
RM ~compare solid line with open squares!. The quality of
this agreement, coupled to the fact that convergence
achieved in a few iterations, renders the approach an
tremely powerful and successful one for describing the on
of the phase transition and to follow the functional depe
dence of the probe field amplitude on the pump amplitu
even in the regime where it is not small.

On the other hand, in the figure we notice a discrepa
between the numerical results obtained from the FM and
RM. The shift in the bifurcation point, which amounts
about 20% of its absolute value, shows that the action of
probe onto the atomic momentum distribution is not entir
negligible ~cf. Sec. VI for further comments!. The feedback
that the ~extremely weak! probe introduces in the atomi
sample appears to be sufficient to anticipate the transit
probably by increasing the coherence among the atomic
larization phases. This same contribution is also respons
for an earlier saturation.

An important question to address is the dependence
this scenario on temperature. In the simulations performe
Ref. @54#, the values533 ~corresponding to a few mK! was
considered since larger values would have required too s
an integration time step to be affordable. Since our partia
analytical approach can be efficiently used at higher temp
tures, we have investigated the bifurcation diagram for lar
values ofs. The results are reported in Fig. 5, where o
remarks that the onset of a backward field, above a cer
temperature, grows out of a first-order phase transition,
it is accompanied by a hysteretic region. A pictorial rep
sentation, providing a better understanding of the dynam
of the probe field amplitudeE, is given by the effective po-
tential U(E). In Fig. 6, we indeed see that, upon increasi
the pump intensity, the system passes from a regime wh
the E50 field state is stable~cf. the solid curve!, to an in-

FIG. 4. The gainG5A1
2/A2

2 vs the pump intensityA2
2. Full

circles correspond to the numerical data for the original mod
squares correspond to the reduced model, while the solid curv
the output of after the modal expansion described in the prece
section.
5-9



ed
t

le
th
a

e
-

n
in

o

th
p
fi

d
th

field
au,
n-
ith

ant
f at-
tent

e
the
on-
ion
ob-
a-

ore
ely
ur

d,

as
r

al-

,
e

e-

JAVALOYES, LIPPI, AND POLITI PHYSICAL REVIEW A68, 033405 ~2003!
termediate one characterized by two minima~dashed line!
and, eventually to a single nonzero minimum~dotted line!.

The bistable behavior is the result of a complicat
mechanism, within the atomic sample, which gives rise
probe gain. In Fig. 7, we show an example of this comp
behavior without attempting a detailed interpretation of
observations. In this figure, one remarks that several pe
and dips develop upon increasing probe field strengthE. The
dip displayed by the solid curve~which corresponds toE
50.06) aroundP5233 is responsible for stabilizing th
overall behavior~for A252.8) that would be otherwise un
stable fors51000 ~dashed line!. However, upon further in-
creasingE to 0.32 ~dotted-dashed curve!, we see that the
huge well on the left disappears so that, in spite of ma
newly born negative dips, the response destabilizes aga
is clear that a general theory would require a description
many different details.

A compact way of summarizing the dependence on
temperature can be obtained by plotting the lower and up
bounds of the hysteretic region where the zero-field and
nite amplitude solutions coexist. The upper curve reporte
Fig. 8 always corresponds to the stability threshold of

FIG. 5. The bifurcation diagram for different temperature v
ues: from left to right the curves refer, respectively, tos533, 200,
and 500.

FIG. 6. The effective potential for three different values ofm
~40, 43, 47, corresponding to solid, dashed, and dotted curves
spectively! and for s51000. In the inset, an enlargement of th
region aroundE50 is reported to clearly indicate the bistable r
gion.
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zero-field solution, the lower one~for sc>140) is the mini-
mum amplitude guaranteeing the existence of a nonzero
solution. It is interesting to notice that beyond the plate
which exists at relatively low temperatures, the critical inte
sity required to generate a coherent field grows linearly w
the temperature.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have studied a model for the reson
interaction between electromagnetic waves and a gas o
oms in the presence of recoil, showing that to a large ex
all the atomic degrees of freedom~internal variables, posi-
tion, and momentum! can be eliminated. As a result, th
model reduces to one complex differential equation for
probe in strong analogy with the equation describing the
set of laser action when atomic polarization and populat
inversion can be adiabatically eliminated. The present pr
lem, however, is more complicated. The adiabatic elimin
tion of the internal atomic degrees of freedom, as in the m
classic laser problem, is made possible by the relativ
strong stability of the Bloch equation. Nonetheless, o

FIG. 7. Response for each class of velocityP for different am-
plitudes of the probeE ~0, 0.06, and 0.32 correspond to dashe
solid, and dotted-dashed lines, respectively! and the same pump
amplitudeA252.8.

FIG. 8. The lower and upper bounds of the hysteretic region
a function of the temperatures. The transition becomes first orde
above the critical temperaturesc'140.

re-
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REDUCED MODEL FOR THE DESCRIPTION OF . . . PHYSICAL REVIEW A 68, 033405 ~2003!
elimination technique is more complex than the standa
straightforward one, which even fails to predict the existen
of a transition point for this problem. Indeed, once one re
izes that the problem amounts to finding the asymptotic
lution of a parametrically modulated linear system, it is a
clear that an extension of the method already adopted in
@25# is the most effective tool for solving it. The major di
ficulty arises from the periodic modulation induced by t
probe field which, in turn, obliges us to find a sufficient
accurate solution for a wide range of time scales~due to the
different detunings induced by the thermal motion!.

Less justified is the elimination of position and mome
tum variables. Indeed, although our approach reproduces
transition point with a reasonable accuracy (20%),
smallness of the deviation is due to the smallness of
probe field amplitude rather than to the accuracy of the
scription of momentum dynamics. We expect that in regim
where probe and pump fields are comparable, a more
tailed model is needed. This is all the more crucial, once
recall that even the starting model was derived under
approximation of a negligibly small probe field. In the mea
time, a model has been introduced which does not suffer
same limitation, the so-called cavity model@75#. It will be
certainly interesting to extend to that context the appro
described in this paper.

From a purely dynamical point of view, in this paper w
can only claim to have reduced the number of variables fr
the initial 5N12 to 2N12. A complete reduction to two
equations~for the amplitude and phase of the field! will only
be possible after an accurate analysis of the momentum
namics. This point is currently under investigation.

A further, more general, comment concerns the struc
of the model itself, which is partly mesoscopic and par
microscopic. In fact, the presence of the loss termG indi-
cates that spontaneous emission is treated as if the popul
inversion D j and the atomic polarizationSj referred to an
ensemble of atoms. This is in contrast to the way collisio
are introduced, which requires that the labelj refers to a
single atom. One way out to a more consistent treatm
would be the introduction of a fully microscopic mode
where spontaneous emission is simulated by a stochastic
cess occurring at random times~as proposed in Ref.@70# in
the absence of recoil!. Preliminary studies indicate that on
such model reproduces basically the same macroscopic
havior, but the elimination of the microscopic variables ca
not be carried out in the same way, since their evolut
would be no longer dissipative.

A last remark concerns the observability of the pres
predictions. In Appendix B we offer an order of magnitu
estimate of the transition temperature that marks the ons
the first-order phase transition. We see that for realistic v
ues of the parameters~laser power and beam size! the tran-
sition temperature for a sodium atom is situated around
millikelvin. Current technology allows one to realize the
conditions quite readily. Our calculations are based on
presence of collisions, which thermalize the sample, and
is not very realistic for an actual experiment. Indeed, m
setups which reach such temperatures are~almost! devoid of
atomic collisions—due to the low atomic density values t
03340
d,
e
l-
-

o
ef.

-
he
e
e
-
s
e-
e
e

-
e

h

y-

re

ion

s

nt

ro-

e-
-
n

t

of
l-

e

e
is
t

t

are typically reached, and to the typical absence of a su
ciently cold buffer gas. However, the short interaction tim
used for the measurements~due to the limited amount o
time for which a trap can be switched off, or to the atom
transit time, for a collimated atomic beam! could remove the
need for this ingredient. In fact, in our calculations collisio
play the role of a reservoir which ensures the existence o
asymptotic equilibrium, when the atoms are subject to
interaction for a long time. Repeated, averaged meas
ments performed for short times over different realizatio
would probably produce results that are similar to tho
which we predict here. This last point needs, however, s
cific numerical tests, which we plan to perform in near f
ture.
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APPENDIX A

The stationary equations for the first-order~in E) terms
are of the form

s(1)
[1]52

m

a1 iv
~d(1)

[1]1d(0)!,

s(1)
[ 21]52

m

a2 iv
d(1)

[ 21] ,

~G1 iv!d(1)
[1]52m@s(1)

[1]1~s(1)
[ 21]!* #12ms~0!

* . ~A1!

By exploiting the equalityd(1)
[1]5(d(1)

[ 21])* , one can write the
last of the above equations as

FG1 iv

2m2
1

2~G1 iv!

~a1 iv!~a* 1 iv!
Gd(1)

[1]5
s~0!
*

m
2

d(0)

a1 iv
.

~A2!

Upon inserting expression~12! for the zeroth-order contribu
tions, one eventually obtains

d(1)
[1]52Deq

2am2

~ uau214m2!

3
~2G1 iv!~a* 1 iv!

~G1 iv!@~a1 iv!~a* 1 iv!14m2#
. ~A3!

Equation~A3! and the first of Eqs.~A1! yield the integrand
to be replaced in Eq.~6! in order to obtainc(1) ,
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c(1)5E
2`

1` 2m

a1 iv

Dequau2

uau214m2

3S 12
2m2~2G1 iv!~a* 1 iv!

a* ~G1 iv!@~a1 iv!~a* 1 iv!14m2#
D

3Q~P!dP. ~A4!

APPENDIX B

An estimate for the growth rate of the upper bound of
bistable region, as a function of temperature, can be obta
using the perturbative expression fors(1)

[1] , Eq. ~A1!. From it,
one can find the strong absorption peaks that determine
transition from global gain to loss~after integration over the
Doppler profile!. A straightforward analysis of the expre
sion, Eq.~A1!, reveals that the absorption peaks are loca
at the values of momentum satisfying the second-order p
nomial:

Re$~a1 iv!~a* 1 iv!14m2%

5ReH 2
3

4
P21~D202D!P1G214m21D20

2 2D2J ,

whose roots are

P1,25
2

3
~D202D!

6A4

9
~D20

2 2D2!1
4

3
~G214m21D20

2 2D2!.

~B1!

To obtain an order of magnitude for the critical tempe
ture of the upper bound of the bistable region, one can
el

er
tio
e

eir

03340
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sume that the Doppler width must be narrower than~or at
most be as large as! the rootsP1,2 . Indeed, if this is the
case, the tails of the momentum distribution are going
strongly reduce the importance of the absorption peaks in
~weighted! integral which measures the atoms’ response
the probe. This condition translates into

6As ',
2

3
~D202D!

6A4

9
~D20

2 2D2!1
4

3
~G214m21D20

2 2D2!.

At large s values, both detunings and the dissipation can
neglected, so thatm2;s as observed in Fig. 8. In such
regime, upon introducing the definitions ofm and s, one
finds the following lower bound for the critical temperatu
Tc ,

kbTc;\
V r

2

v r
, ~B2!

wherekb is the Boltzmann factor,V r the Rabi frequency of
the pump field, andv r is the recoil frequency.

In the case of sodium atoms interacting through theD2
line, v r'6.233105 rad s21, while a reasonable estimate o
the available laser power~considering a ‘‘top hat’’ distribu-
tion @76#! is Plas'1 mW for a beam of radiusw'4 mm,
which corresponds to a Rabi frequencyV r'107 rad s21. By
recalling that kB'1.38310223 J K21 and \'1.055
310234 J s, the critical temperature turns out to be

Tc'1 mK,

a value experimentally accessible.
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