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Extreme nonlinear optics of two-level systems
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~Received 24 June 2003; published 12 September 2003!

For Rabi frequencies comparable to, or even larger than, the transition frequency of a two-level system, the
regime of extreme nonlinear optics is reached. Here, we give an overview of the radiated light intensity as a
function of carrier frequency of light, transition frequency, Rabi frequency, spectrometer frequency, as well as
of the shape and duration of the exciting optical pulses. The graphical representations reveal an amazing
complexity and beauty of the nonlinear optical response. Analytical results within the ‘‘square-wave approxi-
mation’’ qualitatively reproduce many of the intricate features of the exact numerical calculations.
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I. INTRODUCTION

For many systems such as solids, molecules, or atoms
light-matter interaction can be described by a two-level s
tem to first approximation. Although the two-level system
one of the most fundamental paradigms of both quan
mechanics and nonlinear optics@1–3#, its behavior for exci-
tation with extremely intense femtosecond optical pulses
reveals surprises.

The intensity of light is best encoded in the Rabi fr
quencyVR, which is proportional to the laser electric fiel
The regime of traditional nonlinear optics, i.e.,VR/V!1
with the transition frequencyV has been studied extensivel
The regime of extreme nonlinear optics, on the other ha
whereVR/V'1 or evenVR/V@1, has attracted much les
attention. This might have to do with the fact that this regim
was considered inaccessible, unphysical, or irrelevant fo
long time. Indeed, in the famous textbook of Allen a
Eberly @1# the authors write on page 42: ‘‘ . . . Obviously it
becomes questionable whether the existence of an ato
possible in the presence of such an external field. Certa
resonant transitions could not be defined. The consequen
that we may safely take the inequality~in words Rabi fre-
quency! transition frequency! to be well-satisfied in every
situation of interest in optical resonance.’’

Recent experiments on semiconductors withV/v0'1
@4,5# andV/v0'2 @6#, wherev0 is the carrier frequency o
the exciting laser pulses, have shown that this is no lon
true. There, the regime ofVR/v0'1 was indeed reached a
laser intensities in excess of 1012 W/cm2, and a description
in terms of two-level systems has been able to reproduce
experimental results amazingly well. Thus, it is natural to a
what would happen for yet larger Rabi frequencies. A f
important publications can be found in Refs.@7–11#. How-
ever, we are not aware of any work which gives a compl
overview of the rich behavior as a function of the four i
volved frequencies: Carrier frequency of lightv0, transition
frequencyV, Rabi frequencyVR, and spectrometer fre
quencyv. It is the aim of this work to give such an ove
view. Only from the corresponding graphical representati
the amazing beauty of the nonlinear optical response
comes apparent. One of the interesting aspects is that p
can occur at the spectral position of even harmonics, e
though the two-level system has inversion symmetry. Wh
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such effects have recently been discussed on two diffe
experimental examples@4–6#, it turns out that they also oc
cur at many other points within the complete parame
space.

This paper is organized as follows: In Sec. II we brie
define the equations of motion under investigation. After p
senting a rather complete overview on the basis of ex
numerical calculations in Sec. III, we discuss the ‘‘froze
wave approximation’’ in Sec. IV and the ‘‘square-wave a
proximation’’ in Sec. V before concluding in Sec. VI.

II. DEFINITION OF THE PROBLEM

Within the dipole approximation@3#, but without employ-
ing the rotating wave approximation and without transve
or longitudinal damping@12#, the Bloch equations of a two
level system with transition frequencyV for the Bloch vec-
tor (u,v,w)T can be written in matrix form as

S u̇

v̇

ẇ
D 5S 0 1V 0

2V 0 22VR~ t !

0 12VR~ t ! 0
D S u

v

w
D . ~1!

The dots denote the derivative with respect to timet. Here
we have introduced the~instantaneous! Rabi frequency
VR(t) with

\VR~ t !5dE~ t ! ~2!

with the dipole matrix elementd and the laser electric field

E~ t !5Ẽ~ t !cos~v0t1f!. ~3!

Ẽ(t) is the electric-field envelope,v0 the carrier frequency
of light, and f the so-called carrier-envelope phase. No
that the Rabi frequency itself oscillates with the carrier f
quency of light and periodically changes sign. We shall c
the peak of the Rabi frequencyVR @rather thanVR(t)] with
\VR5dẼ0, whereẼ0 is the peak of the electric-field enve
lope. As usual,w(t) is the inversion of the two-level system
The macroscopic optical polarization entering into the Ma
well equations is given by the dipole density of two-lev
systems times the~real! componentu(t) of the Bloch vector.
©2003 The American Physical Society04-1
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The light intensity radiated by the two-level system is p
portional to the square modulus of the second temporal
rivative of the polarization, hence proportional touv2u(v)u2
in the Fourier domain, wherev is the spectrometer fre
quency. It is natural to relate all frequencies to the car
frequency of lightv0, in which case the dependence of t
radiated intensity on the three dimensionless parame
V/v0 , VR/v0, andv/v0 has to be studied. In all calcula
tions, we start from the ground state of the two-level syste
i.e., from Bloch vector (0,0,21)T.

FIG. 1. Illustration of the box-shaped optical pulsesE(t) used in
Figs. 2 and 3. The integer number of cycles in the pulse is calleN.

The gray area indicates the electric-field envelopeẼ(t).
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III. OVERVIEW USING EXACT NUMERICAL
CALCULATIONS

The simplest and cleanest situation is given when the
velope Rabi frequency is either constant or zero. Let us s
our discussion with such box-shaped optical pulses~illus-
trated in Fig. 1!, which areN530 optical cycles in duration
~for, e.g.,\v051.5 eV, this would roughly correspond to
90 fs long pulse!. To get an overview we can either fixV/v0
and depict the radiated intensity versusVR/v0 and v/v0
~Fig. 2! or, alternatively, fixVR/v0 and plot the signals ver
susV/v0 andv/v0 ~Fig. 3!.

For VR/v0!1 on the vertical axis of Fig. 2~a!, where
V/v051 ~resonant excitation!, conventional Rabi oscilla-
tions @13# occur and the well-known Mollow triplet@14# can
be seen atv/v051 on the horizontal axis. At largerVR/v0
approaching unity, carrier-wave Rabi oscillations@15,16#
take place and additional carrier-wave Mollow triplets@4#
appear around odd integersv/v0. BeyondVR/v051, the
Mollow sidebands are ‘‘repelled’’ by the central peaks of t
adjacent Mollow triplets. They oscillate around even integ
-

h

in
.

r

FIG. 2. Gray-scale images of the ra
diated intensity spectra I rad(v)
}uv2u(v)u2 ~normalized and on a
logarithmic scale! from exact numerical
solutions of the two-level system Bloc
equations~1!. The peak Rabi frequency
VR of the excitingN530 cycles long
box-shaped optical pulses, illustrated
Fig. 1, is plotted along the vertical axis
The transition frequencyV is param-
eter. ~a! V/v051 and ~b! V/v055.
v0 is the carrier frequency of the lase
pulses.
4-2
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FIG. 3. Same as Fig. 2, but versu
transition frequencyV for two fixed
values of the peak Rabi frequencyVR .
~a! VR /v051 and~b! VR /v0510.
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values ofv/v0 and finally converge towards these values
the limit VR/v0@1. On the way, they periodically cross
even integersv/v0 versusVR/v0 with a period ofp/2 for
VR/v0@1 ~whereas the first crossing occurs atVR/v0'1
@4#!. For off-resonant excitation, e.g.,V/v055 in Fig. 2~b!,
the behavior is different forVR/v0,1 andVR/v0'1, but
becomes similar to Fig. 2~a! for VR/v0@1.

The other way to look at the parameter space is to fix
Rabi frequencyVR/v0. For largeV/v0 but not too large
peak Rabi frequenciesVR/v0 in Fig. 3, well separated high
harmonics are observed, as expected from traditional non
ear optics. On the diagonal, wherev5V, very large reso-
nant enhancement effects are observed. This is also tru
the adjacent harmonics at spectrometer frequenciesv5V
62Mv0 with integerM, which altogether leads to a band
enhancement around the diagonal in Fig. 3. Especially n
that large contributions can occur at the spectral position
even harmonics, as already discussed for Fig. 2. These
tributions are especially pronounced for even integer val
of V/v0 @6#.
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For more realistic smoothed box-shaped optical pulses
overall behavior remains the same. If, e.g., the electric-fi
envelope is switched on and off by Fermi functions risi
and decaying within a few optical cycles, respectively, t
behavior of Fig. 3 is slightly smeared out and the contrib
tions at spectrometer frequenciesv5V62Mv0 decay more
rapidly for large values ofV/v0 as compared to box-shape
optical pulses.

For other pulse envelopes, the envelope Rabi frequenc
not constant within the pulse, which effectively averag
along the vertical axis of Fig. 2. This is further illustrated
Fig. 4 for the example of Gaussian pulses with an elect

field envelope given byẼ(t)5Ẽ0 exp„2(t/t0)2
…. The tem-

poral full width at half maximum~FWHM! of the intensity

profile is given bytFWHM5t02AlnA2 and translates into a
FWHM of N5tFWHM /(2p/v0) optical cycles in Fig. 4. In
Fig. 4~a!, whereN530 andf50, the anticipated averagin
can be seen clearly. As a result, the contributions at
integersv/v0 have almost disappeared in favor of even co
4-3
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FIG. 4. Same as Fig. 2~a!, i.e.,
V/v051, but for Gaussian optica
pulses withf50 and with a FWHM of
~a! N530 and~b! N53 optical cycles.
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tribution. This is exactly opposite to what one might ha
expected intuitively. ForN530 andf5p/2 ~not shown!, the
behavior is similar, apart from fine details which are hard
visible on this scale. For few-cycle optical pulses@Fig. 4~b!#
the various contributions get largely broadened spectr
and their mutual interference leads to rather ‘‘messy’’ sp
tra, which have lost all of the beautiful fine details of Fig.
It is clear that this interference also introduces a depende
on the carrier-envelope phasef as discussed in detail in
Refs.@4–6#.

One might be tempted to argue that the peaks at e
integersv/v0 in the optical spectra at largeVR/v0 arise
from the fact that the complete system, i.e., two-level sys
plus light field, no longer has inversion symmetry at lar
electric fields. This reasoning is, however, not consist
with the Bloch equations. Space inversion means that
have to replacerW→2rW. As a result, the dipole matrix ele
ment transforms asd→2d and the electric field asE(t)→
2E(t). Hence, we have\21dE(t)5VR(t)→1VR(t) and
the Bloch equations~1! remain completely unchanged und
03340
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space inversion. Thus, the solution for the Bloch vec
„u(t),v(t),w(t)…T is also unchanged. Finally, the macr
scopic optical polarization, which is given byP(t)
5n2LSdu(t) with the concentration of two-level system
n2LS, transforms according toP(t)→2P(t). Consequently,
in an expansion of the polarization in terms of powers of
electric field up to infinite order, strictly no even orders o
cur, even for arbitrarily large electric fields. Thus, we deli
erately avoid to call a peak at, e.g.,v/v052, second-
harmonic generation~SHG!. As discussed in detail in Ref
@6#, a strict definition of SHG must be based on its carr
frequency or its phase, which are 2v0 and 2f, respectively.
The peaks atv/v052 from the two-level system are no
consistent with this definition. Thus, in Ref.@6# we have
introduced the notion ofthird-harmonic generation in dis-
guise of second-harmonic generationfor this unusual contri-
bution. A similar argument obviously holds for all the oth
even integersv/v0, which must not be calledeven harmon-
ics in the framework of nonlinear optics. In most of th
literature—written before the importance of the carrie
4-4
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envelope phasef had been appreciated—these peaks
nevertheless called even harmonics.

IV. FROZEN-WAVE APPROXIMATION

For times much shorter than a cycle of light, 2p/v0, we
can employ the frozen-wave approximation, i.e., we appro
mate VR(t)5VR as constant in time. In this limit, it is
straightforward to solve the Bloch equations~1! analytically.
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This leads to the Bloch vector

S u~ t !

v~ t !

w~ t !
D 5M~ t !S u~0!

v~0!

w~0!
D , ~4!

with the (333) rotation matrix
M~ t !5S 4VR
21V2 cos~Vefft !

Veff
2

V

Veff
sin~Vefft !

2VVR

Veff
2 ~cos~Vefft !21!

2
V

Veff
sin~Vefft ! cos~Vefft ! 2

2VR

Veff
sin~Vefft !

2VVR

Veff
2 ~cos~Vefft !21!

2VR

Veff
sin~Vefft !

V214VR
2 cos~Vefft !

Veff
2

D . ~5!
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Obviously, all three components of the Bloch vector oscill
with the effective frequencyVeff , which is given by

Veff5A4VR
21V2. ~6!

Remember that this frozen-wave approximation is only j
tified for times t!2p/v0, hence relevant in the limi
Veff /v0@1. It can be viewed as the opposite of the rotati
wave approximation@1–3#. There, almost nothing is sup
posed to happen on the time scale of light, whereas her
the significant dynamics takes place within an optical cyc
For VR/V@1, we haveVeff'2VR, which means that twice
the peak Rabi frequency is the largest occurring freque
hence the highest harmonic generated is roughly given
v/v0'2VR/v0. This has previously been discussed
Ref. @8#.

Starting from the ground state, i.e., from Bloch vec
(0,0,21)T at time t50, the inversion according to Eqs.~4!
and ~5! is given by

w~ t !52
V214VR

2 cos~Vefft !

Veff
2

. ~7!

Thus, the two-level system can even perform Rabi osci
tions for far off-resonant conditions, i.e., forV/v0@1, if the
intensity is so large that it roughly corresponds to a R
frequency of VR/V51, which leads to w(t)521/5
24/5 cos(A5VRt) with maximum inversion w513/5
(⇔80% maximum occupation of the excited state!. It is
clear that, within a quantum optical description of the lig
field, this behavior could be interpreted as multiphot
carrier-wave Rabi oscillations.
e

-

all
.

y,
y

r

-

i

t

V. SQUARE-WAVE APPROXIMATION

The Bloch equations~1! describe rotations of the Bloch
vector on the Bloch sphere. Within the regime of extrem
nonlinear optics, the behavior becomes ‘‘enriched’’ by t
fact that one of the rotation frequencies, namely, 2VR(t)
itself oscillates with the carrier frequency of light and pe
odically changes sign. This oscillation is sinusoidal, yet o
might ask whether it is really so important that it is sin
soidal. Having in mind what we have said about the froze
wave approximation in Sec. IV, it is simple to extend th
result to piecewise constant electric fieldsE(t) or Rabi fre-
quenciesVR(t), respectively. This leads us to investigatin
the square-wave approximation in which we approximate
Rabi frequency for constant envelope via

VR~ t !5VR cos~v0t1f!→ 2

p
VR sgn„cos~v0t1f!…,

~8!

where the signum function is defined as sgn(x)511 for x
.0, sgn(x)521 for x,0, and sgn(x)50 for x50. The
prefactor 2/p ensures that the average Rabi frequency wit
half an optical cycle is the same for the square-wave appr
mation and the exact problem. In that half of the optic
cycle where the Rabi frequency is positive~negative!, the
Bloch vector rotates via the matrixM1 (M2), whereM6

results fromM by replacingVR→6(2/p)VR in Eqs. ~5!
and~6!. For more than half an optical cycle, the dynamics
the Bloch vector is described by

S u~ t !

v~ t !

w~ t !
D 5Mtot~ t !S u~0!

v~0!

w~0!
D , ~9!
4-5
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FIG. 5. Same as Fig. 2, but based o
the analytical solution of the two-leve
system Bloch equations within th
square-wave approximation.~a! V/v0

51 and~b! V/v055.
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where the total matrixMtot is a product of simple analytica
(333) rotation matrices: For timest after theN-cycle long
pulse we have

Mtot~ t !5M0S t2N
2p

v0
D FM2S p

v0
DM1S p

v0
D GN

, ~10!

whereM0 results fromM by replacingVR→0 in Eqs.~5!
and ~6!. Within the optical pulse, we get for timest with
VR(t).0

Mtot~ t !5M1S t2Nt

2p

v0
D FM2S p

v0
DM1S p

v0
D GNt

,

~11!

and for timest with VR(t),0,
03340
Mtot~ t !5M2F t2S Nt1
1

2D 2p

v0
GM1S p

v0
D

3FM2S p

v0
DM1S p

v0
D GNt

. ~12!

Here we have introduced the integer number of cyclesNt
completed up to timet:

Nt5 intS v0t

2p D . ~13!

The value of the integer function~also known as the ‘‘Gauss
bracket’’! int(x) is given by the largest integer<x.

We first test the square-wave approximation by depict
its solutions in Fig. 5. Parameters are identical to those of
exact numerical calculations in Fig. 2. The overall qualitat
agreement is amazing, especially for Figs. 2~a! and 5~a!.
There,V/v051 ~resonant excitation!, which is nothing but
the generalization of Rabi oscillations and Mollow triplet
4-6
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For instance, the periodically occurring constrictions of t
repelling Mollow sidebands at even integersv/v0 versus
VR/v0 with periodp/2 ~see discussion in Sec. III! are very
nicely reproduced. For off-resonant excitation (V/v055) in
Figs. 2~b! and 5~b!, the square-wave approximation is le
convincing. This aspect can be understood intuitively. F
resonant excitation (V/v051) the transition frequency reso
nantly enhances those frequency components of the sq
wave which have frequencyv0. Thus, the artificial higher
harmonics of the square wave at frequencies 3v0 , 5v0 , . . .
are relatively suppressed. Clearly, the square-wave app
mation does not properly recover the limit of linear optics,
the sense thatu(t) is not sinusoidal in that limit~as it should
be!, equivalent to higher harmonics of the carrier frequen
v0 in the Fourier domain. Thus, the lower right-hand side
Figs. 5~a! and 5~b! @which is dark in Figs. 2~a! and 2~b!# is an
obvious artifact of the square-wave approximation. This
tifact is unimportant because we are rather interested in
regime of extreme nonlinear optics.

The simplest cases of commensurability of the frequ
ciesv0 , V, andVR within the square-wave approximatio
are given by

Veff

p

v0
5M2p, ~14!

with integerM, for which we have

M1S p

v0
D5M2S p

v0
D5S 1 0 0

0 1 0

0 0 1
D . ~15!

Under these conditions, an integer number of Rabi osc
tions is completed after half an optical cycle. Inserting

Veff5A4S 2

p
VRD 2

1V2 ~16!

into Eq. ~14!, we get that commensurability occurs for sp
cific Rabi frequencies according to

VR

v0
5

p

2
AM22

1

4 S V

v0
D 2

, ~17!

with M51,2,3, . . . . For these Rabi frequencies, peaks
even integers

v

v0
5

Veff

v0
52M ~18!

are observed in the optical spectrum, apart from the
interesting peaks at odd integersv/v0, which also occur in
traditional nonlinear optics. These peaks at even integ
v/v0 form the sloped bright band in Fig. 5, whereas t
other even integersv/v0 are absent in the spectrum. Th
band is less pronounced in the exact numerical soluti
~Fig. 2!. There, in contrast to the square-wave approxim
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tion, the instantaneous Rabi frequencyVR(t) varies within
half an optical cycle~somewhat similar to a ‘‘chirped’’ opti-
cal pulse!, which also introduces peaks at other even integ
v/v0. This altogether shows that the constrictions formed
the crossing Mollow triplets in Fig. 2 can be interpreted
points of commensurability of the carrier frequency of lig
v0, the transition frequencyV, and the peak Rabi frequenc
VR. Here an integer number of Rabi oscillations is co
pleted after half an optical cycle and, thus, peaks at e
integersv/v0 occur in the optical spectrum. For, e.g.,M
51 and V/v051 in Eq. ~17!, we get VR/v05A3p/4
'1.36~Fig. 5!, which roughly agrees withVR/v0'1 in the
exact numerical calculations~Fig. 2!. For integers M
@V/v0 we getVR/v05Mp/2. This period ofp/2 is also
precisely found in the exact numerical calculations~Fig. 2!.
It is also implicitly contained in Eq.~15! of Ref. @8#, which
holds under certain approximations specified there and ar
from the zeros of the Bessel functionJ0. For large Rabi
frequencies, commensurability is easily achieved and th
‘‘even harmonics’’ become the rule rather than the excepti
despite the fact that the two-level system has inversion s
metry. In between these points of commensurability, it ta
some optical cycles to again approach the initial state. In
Fourier domain, this obviously corresponds to nearby si
bands around those even integersv/v0 ~see Figs. 2 and 5!.

VI. CONCLUSIONS

We have given a systematic overview of the nonline
optical response of the two-level system in the regime
extreme nonlinear optics as a function of carrier frequency
light v0, transition frequencyV, peak Rabi frequencyVR,
spectrometer frequencyv, and optical pulse shape and d
ration. A part of the intricate fine structures can be und
stood within the square-wave approximation. Within that a
proximation, exact analytical results are derived.

It remains to be seen which of the described aspects
be observed in actual experiments in future. Let us rec
however, that the regime ofVR/v051 has recently been
subject of several experimental studies in solids, for wh
the two-level system has provided an adequate descrip
indeed. It thus seems conceivable to us that an increase o
Rabi frequency towardsVR/v052 or more is possible. It is
more than likely that interesting deviations from the tw
level system response will be found in any specific syst
with more than just two electronic levels, especially if co
tinua of states or correlation effects are involved. Nevert
less, the simple two-level system—one of the most fun
mental paradigms of nonlinear optics—can still serve a
reference point.
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