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Jump phenomenon induced by potential strength variation and the influence
of exotic resonant states
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The jump phenomenon between t&anatrix poles induced by a small potential strength variation is studied
in the framework of the nonrelativistic scattering by a central potegtilr), ge C. Let R(g') denote the
Riemann surface over the complgplane, on which the pole functida=k("(g) is single valued and analytic.
By associating a she&t{ of R’ and itsk-plane imageS.; ! to a state with the quantum numbetsn(, the
jump between the statek ) and (,m), induced by the potential strength variation, is understood as the jump
between the sheet imagag() and> /(" The rules for the jumpsl ()< (I,m) as a consequence of a small
potential strength variation are deduced. The influence of the exotic resonant states on the selection rules for
the jumps is discussed. The occurrence of the local degeneracy with respeat the resonant levelsl (
—1n), (I,m), and (+1,p) for the rectangular central potential and the level stability with respect to the
potential strength variation are also discussed.
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[. INTRODUCTION phenomenon. As jump phenomena, ubiquitous in sci€le
are characterized by large dynamic responses of the system
We consider the nonrelativistic scattering of a spinlesgo small amplitude disturbances, it is justified to call “jump”
particle by a central potenti@/V(r), ge C. In a scattering the transition of the system from the staten] to the state
pr0b|em the potentia‘jv(r) represents a mean potentiaL For (| ,m) as a result of a small potential strength variation. The
example, in atomic physics it represents the mean intermdules governing the jump phenomenon are important in the
lecular potential averaged over internal states. Consequenti§tudy of the pole trajectories. In such a study the position of

the potential strengt could undergo small changes and we & Pl in thek plane is investigated as a function of the
may ask which is the effect of these changes. potential strength. By knowing the jumping rules one avoids

An adequate quantum-mechanical description of thér'he accidental jumps from one pole 'FO other pole when one
bound and resonant states is through$hwatrix poles. The calculates the pole trajectories. In this way we are sure that

function k=k()(g) which defines aSmatrix bound- and the Same pole is followed.

resonant-state pole as a function of the potential stregigth The aim of this paper is to establish the conditions for the
a multivalued function. In Ref.1] an approach to bound and system to undergo a jump from one stat@y to other state

resonant states, based on the construction of the Riemarjfy™ @S & consequence of a small potential strength varia-
surface over theg plane, on which the pole functiok tion. Let the parameteg follow a prescribed contour starting
=k()(g) is single valued and analytic, has been presented!®™ a valuege 3. The choice of the contour can induce
The Riemann SurfacR(g') has been divided into sheetd) ~ auite distinct effectsta) if g describes a closed curve aiy’

and the image¥ (! of these sheets in tHeplane have been NOt enclosing a branch point whel)) is joined to other
constructed. If the potential strengthtakes a value on a Sheet, then its image= k(g) takes ‘6";"“?5 on a continuous
given sheeE !, then the functiork=k()(g) takes only one path on the. Riemann sheet imagg"’, i.e., the potential
value on thek-plane imageE,’](') of the sheet, i.e., there is strength variation does not change the stafe)( (b) on the

only a single pole on each sheet image. In other words eacfPntrary; ifg descril:l)es a closed contour which starts from a
branch of the functiork=k(")(g) is situated on thé-plane point on the shedg) and encloses the branch point joining

image of the associated Riemann sheet. In this way the shetite sheet€ () andX () and no other branch points, then the
30 of the Riemann surfacB{) and itsk-plane images/()  variableg is transferred from the sheB{) to the sheek ().
have been associated to a given state with quantum numbef$ a consequence, the pde-k((g) is transferred from the
(I,n). This allows us to study each stater() separately and sheet images; " to the sheet imag&;. In other words
to understand the jump from the staten( to the statel(,m) the potential strength variation induces a jump from the state
as a result of a small potential strength variation. (1,n) to the state I;m).

Let us suppose that the potential strength has a small In the following a rectangular central potential
variation around a branch point of the functiark{"(qg).
This small potential strength variation can either determine a
small change of the pole functidn=k("(g), or it may in- 2mR Vir)= —g forr/R<1, geC,
duce a large variation of the functidr=k()(g) by the tran- PP (= 0 forr/R>1,
sition from one branch of the function to another branch.
Variation of the parametag can determine a transition from
a quantitative change to a qualitative change, i.e., in a jummwill be considered. We will use the dimensionless variable

()
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r/R rather than the variable For the sake of simplicity in level stability in the three adjacent wavek—(1), I, and
the following, the notatiork will be used for the dimension- (I+1) are discussed in Sec. Ill.
less variablekR.

In order to understand the jumps between the stdteg ( Il. JUMPS BETWEEN STATES WITH THE SAME |
and (,m) or, equivalently, the jumps from tHeplane image
of a sheetS, of the Riemann surfac®( to the k-plane
image of other sheet,,, the way the various sheets are
joined at the branch points has to be analyzed. The Riema
surfaces for a large range of orbital angular-momentum val-
uesl have to be studied in order to extract a rule governing

In the case of a central rectangular potential besides the
logarithmic branch poing=0, where all the shee() are
jnined, there are the following algebraic branch points of the
unctionk=k"(g):

- : oo =(k52) 7= (k") )
the jumps. In the present paper the rahg®—8 is covered. Us.s' 0s s/
In Sec. Il the jumps between the Riemann sheets of a Rie- - L
mann surfac®)’ for a givenl are studied. In Ref1] it was 0o =(kgs)?— (kg )2 1>1, 3

shown that in the case of a potential well followed by a

barrier, there were poles situated on certain Riemann sheethere KIO’; and K'O*; (s=1,2,...) are thezeros of the
images that had extraordinary properties so that they havepherical Bessel functiorjs, 1(z) andj,_(z), respectively.
been called “exotic” poles. An exotic resonant-state poIeK'S',+ andK'S‘,’ are the zeros of the spherical Hankel functions
does not become a bound- or virtual-state pole as the dep#f the first kind, i-e-’hf}r)l(z) and hl(i)l(z), respectively. In

of the potential well increases to infinity, but it remains aRef. [1] it was shown that all the branch poirggi, are of
resonant-state pole situated in the neighborhood of an attragyqer one i.e.. there are only two sheets that’;re joined at
tor in thek plane. The wave function of the exotic resonant algebraic branch poigti

st

state corresponding to an exotic resonant pole situated near . gy

the attractor is almost completely localized inside the poten- Thek-plane images qf the branch p0|rg§3, are the_com_—

tial barrier. In Ref[3] it was shown that for a potential made pl(%x zeros'of'the spherical Hapkel functions of the first l§|nd,
of a well plus a Coulomb barrier the exotic poles situated ap|tl(z)' Similarly the k-plane images Of_ the branch p0|r'1ts
certain attractors correspond to the well known quasimolecuds,s’ @re the complex zeros of the spherical Hankel functions
lar states excited in heavy-ion collisions. The properties off the first kind,h{1;(z). According to Ref[10], h{}(z) has

the quasimolecular statgsnergies, widths, deviation from M zeros situated along an half-eye shaped curve in the lower
the linear dependence of the energy Igh+1), doorway k hal_f plane, s_ymmetrically distributed Wi_th respect to the
character, and criteria for observabilityave been shown to Imaginaryk axis. Due to the symmetry with respect to the
result naturally from the general properties of the exoticMaginaryk axis for a given evein, there ard + 1 images of

resonant states. The influence of the exotic resonant-sta{ge d_brantc;]h points_ in the fc_JurtQ_ q[u.gdtragt of tlt\k;v@laﬁelfin-
poles on the rules governing the jumps is discussed jfyuding the imaginaryk aX|s,(l)|s ributed on two hall-eye
Sec. Il C. shaped curvest/2 zeros ofh;~’;(z) and 1/2+1 zeros of

Another effect produced by the potential strength variaNf*1(2). Similarly, for a given odd in the fourth quadrant of
Ige k plane, there aréimages of the branch points, distrib-

tion is the occurrence of the local degeneracy of the resonafh -

levels for the rectangular central potential with respect to thé’}%d on the two half-eye shag)ed curves:()/2 Z€ros of
orbital angular momentum. Recently, the problem of mul-Ni~1(2) and (+1)/2 zeros oh;3’,(2). The way the images
tiple pole degeneracy for a givenhas been discussed by ©f the branch points in the fourth quadrant of thplane are
several author§4—9] for various potentials. In the present denoted is illustrated in Fig.() for evenl a{“ﬂ Fig. 1b) for
paper some other kind of pole degeneracy will be studiedpdd|. There is an infinity of branch point, , for a given
namely, the degeneracy with respect to the orbital angulas’ that have the sameplane image<§,=k(g's‘§,), asstakes
momentum. In Ref[1] it was shown that three Riemann gn infinity of valuess=1,2,3 .. ..

sheets belonging to three distinct Riemann surf&?&’sl), In Ref.[1] a quantum number with a topological mean-
RY’, and R{*" are joined at some special values of theing has been introduced in order to label the Riemann sheets
potential strength. In other words three resonant levels (and theirk-plane images. Because there is a single pole on a
—1,n), (I,m), and (+1,p) are degenerate, provided that the given Riemann sheet image, the lalpebf the sheet image
potential strength takes a value from a given discrete set. Th‘E,Q(') is also used as a label for that pole and for the corre-
labelsn, m, andp of the sheets oR{ ", R{’, andR{*"?  sponding statel(n). The integem counts the roots of the
that are joined at each of these special values of the potentigble equation fog=0 [see Eq(3.17) of Ref.[1]]. The Rie-
strength, extracted by the analysis of the Riemann surfacesjann sheet analysis shows that there are two classes of reso-
are given in Sec. lll. If the potential strength varies aroundnant poles:(a) the class of usual resonant-state poles that
one of these special values, the degeneracy of the three redwave the familiar property to become bound- or virtual-state
nant states may be brought about and the cooperative contipoles when the depth of the potential well is increased and
bution in the cross section from three adjacent partial wave&) the class of exotic resonant-state poles that remain in
occurs. The occurrence of the local degeneracy with respebiound regions of the lowedc half plane, in the neighborhood

to | as an effect of the potential strength variation and theof some attractors, when the potential strength of the well is
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branch points having the images in the fourth quadrant of the
k plane and on the negative imagindnaxis have been ob-
served. Rules for the junctions between the Riemann sheets
are extracted and given in Secs. Il A and Il B. However, the
existence of the exotic resonant-state poles on the sheet im-
ages 3" with n=1,2,...]/2 for even | and n
=0,1,...,(—1)/2 for oddl induces some exceptions to the
junction rules. If for the potential strength valgéi, there

are exotic resonant-state poles B’ and 3/ with m

2 >n, theng=g's'§, is not a branch point where the sheets
3> ands () are joined. The reason for this will be explained
in Sec. 11 C. As a consequenc®{’ and= ) cannot be joined

at g'sj Modifications to the junction rules induced by the

plane for everi and for odd, respectively, is schematically repre- o ictance of the exotic resonant-state poles have to be intro-

: I,y _ I+ . l,*
sented. By® the 'mageSk(gS’S’.)_KS' of the brf’mCh pointg duced. These modifications are given in Sec. Il C.
that are the zeros of the spherical Hankel function of the first order, Taking into account theSmatrix property S (k,g)

h(Y indicated. By the attractorsk ”, which th i
=1(2), are indicated. By the attractorst;*, which are the =S¢ (—k*,g*), where * means complex conjugation, only

zeros of the spherical Hankel function of the first ordit)(z), are A X )
indicated. In the case of evéithe images of the branch poirgéy[ the Ju_nctlons _Of the sheets at the bran_ch points Who_se Images
andgl; are situated on the negative imaginargxis and the value are S|tuate(_j in Fhe fourth quadrant In tkepla_ne will _be
of the labeln is n=1/2. In the case of oddithe value of the labat  9iV€N. The junctions at the branch points having the images
is n=(1—1)/2. symmetrically distributed with respect to the imagindey
axis can easily be deduced by using the above symmetry
property of theS-matrix elements. At the branch points hav-
ing images in the fourth quadrant of theplane, the sheets

FIG. 1. In panels(a) and (b) the way the images:'s',i of the
branch pointsg's’j, are distributed in the fourth quadrant of tke

increased. The exotic resonant state poles exidt=fdr, and

they are located on certain Riemann sheet images. 350 and3 Y with n,m>0 for evenl and withn,m=0 for

Because at the |Ogal’ithmic branch p(gﬁo all the Rie- odd | having the image§!(|) andzrﬂ) in the ha|f-p|ane
mann sheets are joined together, in the following only theq, |~ e joined1] . m

junctions at the algebraic branch poi _f will be studied.
In order to establish which are the sheets that are joined at
each algebraic branch poirg's’;", successive small circuits
I+, ' . .|+
lg—9. | =p are taken round the given branch pogi;s, . : : W _
Let us start withg=g; eEﬂ) andk; =k"(g;) Egé(') . Aftera  the branch points with Rk(g, ;,)>0 are presented for vari-
complete rotation of round the branch poingls' ; , the pole  ous values of the orbital angular momenturithe labeln or
reaches the other value=k;e /(). After a second com- M of each sheet is indicated by the number given at the left
plete rotation ofg, the pole reaches again its initial value @nd right ends of the picture. Let=(I—1)/2, t=1 for odd
kieﬁrﬁ(') It results thatg"i is a branch point where the l, andr|=I/2, t=2 for evenl|>0. Then(?)l) at the branch
. S,S/ . = _ . « .

sheetss) and () are joined together. If the functiok ~ POMSYsp (p=tt+1,... 1) the sheeB:,_, is joined fo

Ny m . the sheets() and (2) at the branch pointg.® (p
=k()(g) returns to its initial value after a complete rotation el S“’;i’ the sheets®) - is ioined t thS'P heet
of g roundgl;,, theng.;, is not a branch point for (). ' 0t ) the shee”, is joined to the shee

; {,1. Heres=12,.... Therules (1 2) for th
The values of the first three branch poilgjgg, (i.e., fors oipo1. Heres=1.2, erules (1) and (2) for the

i i ] (1 gy
=1,2, and 3 that have the images in the fourth quadrant ofJun.Ctlon of.the sheets;” and, at a bran-ch poing, ;, are .
thek plane in the cask=0—8 are given in Table I. A similar valid, provided that the pole corresponding to the potential

s,s’
= . ;

table has been published in REE] for | =0—4. However, in strength valueyg g, |sI not an Iexotlc resonant-state pole on
the present paper the necessity to give some rules for tH2oth sheetimages; ! and3;{" (see for example, the cases
junctions imposes other labeling of the branch points. If=1,2,3, and 4 in Fig. 2 The modifications to the ruled)
comparison to Ref(1] the labels are presently assigned in aand(2) induced by the existence of the exotic resonant-state
more systematic way, as explained above and illustrated ifoles on some Riemann sheets will be given in Sec. Il C.
Fig. 1.

The algebraic branch points are of order one, so that there

are only two sheets that are joined at eagff, . The rules A special case is that of the branch poigts for evenl,
that specify the Iablelfl andm of the sheets that are joined at having the images on the negative imaginlaéxis. For even
each branch poing, (junction ruleg can be established. | at the branch pointgl; , the junctions between the sheets
The labelsn and m of the sheets joined at a givegi’; are  with k-plane images in the half plane Re=0 and the sheets
determined by the procedure mentioned above. From theith the images in the half plane Re=0 occur. Due to this
analysis of the Riemann surfaces some regularities concerin the case of evehthe junctions at the branch poirgéf

ing the junctions between the sheets of e&(fﬁ at the are governed by rules that differ from the rulds and (2).

A. Junction rules at g!sf with Re k(g's’;",)>0

In Fig. 2 the junctions between various Riemann sheets at

B. Junction rules at g_%, with Re k(gys)=0
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TABLE I. The branch pomtgs < Whosek-plane i |mage3< “ are situated in the fourth quadrant, includ-

ing the negativek axis, in the caseb=0-8 for a rectangular potential. anOS and K the zeros of the

spherical Bessel function,_4(z) and j,1(z), respectively, are denotedc (s'= .m), m=(l

—1)/2 for oddl >1 andm=1/2 for evenl >0 stand for the zeros of the spherlcal Hankel function of the first

kind, (1)1(2) situated in the fourth quadrant of tHe plane and on the imaginark axis.

=1,...m), m=(I+1)/2 for oddl andm=1/2+1 for evenl, respectively, stand for the zeros )1(2)

In the present table only the first three branch pogité for each value o8’ are presented, i.e., the latsl

is limited tos=1, 2, and 3.

s s KOs Ko gos

1 1 4.493 =i 21.191

1 2 7.725 i 60.679

1 3 10.904 —i 119.897

s s K55 Kg' U5y

1 1 5.763 0.866-11.500 34.71#i2.598
1 2 9.005 0.86611.500 84.219-12.508
1 3 12.323 0.86611.500 153.35512.598
s’ s Kos Ko g2y

1 1 4.493 —1.000 21.191

1 2 7.725 —1.000 60.679

1 3 10.904 —1.000 119.897

s’ s Koe K5 gos

1 1 6.988 —2.324 54.224

1 2 10.417 —2.322 113.909

1 3 13.698 —2.321 193.028

2 1 6.988 1.75411.839 49.135.16.452
2 2 10.417 1.754i1.839 108.828-16.452
2 3 13.698 1.754i1.839 187.948-16.452
s’ s Kg; Kz;_ g§;,

1 1 5.763 0.866-11.500 34.71#i2.598
1 2 9.005 0.86611.500 84.219-12.508
1 3 12.323 0.86611.500 153.35512.598
s’ s ke Kot gas

1 1 8.183 0.86712.896 74.596-15.023
1 2 11.705 0.86712.896 144.64%15.023
1 3 15.040 0.86712.896 233.82%15.023
2 1 8.183 2.65712.104 64.319111.181
2 2 11.705 2.65%i2.104 134.368i11.181
2 3 15.040 2.65%i2.104 223.556-111.181
s’ s K55 kS Jes

1 1 6.988 —2.322 54.224

1 2 10.417 —2.322 113.909

1 3 13.698 —2.321 193.028

2 1 6.988 1.754i11.839 49.135-16.452
2 2 10.417 1.754i1.839 108.820-16.452
2 3 13.698 1.754i1.839 187.94016.452
s’ s Kga o Jev

1 1 9.356 —3.641 100.830

1 2 12.967 —3.6417 181.430

1 3 16.355 —3.647 280.775

2 1 9.356 1.74313.352 95.730-111.683
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s ; & & oty
2 2 12.967 1.743i3.352 176.338-111.683
2 3 16.355 1.74313.352 275.67%111.683
3 1 9.356 3.57%i2.325 80.183-116.603
3 2 12.967 3.57%i12.325 160.783+i116.603
3 3 16.355 3.57%i2.325 260.128+116.603
s s Kos Ko 9oy
1 1 8.183 0.86712.896 74.596-15.023
1 2 11.705 0.86%i2.896 144.64%i5.023
1 3 15.040 0.86%i2.896 233.82Fi5.023
2 1 8.183 2.657%i2.104 64.319-i11.181
2 2 11.705 2.657i2.104 134.368i11.181
2 3 15.040 2.657i2.104 223.556-111.181
s s K3y Ko 924
1 1 10.513 0.868i4.248 127.816i7.371
1 2 14.207 0.86814.248 219.146-17.371
1 3 17.648 0.86814.248 328.74%17.371
2 1 10.513 2.62613.736 117.578119.622
2 2 14.207 2.62613.736 208.908119.622
2 3 17.648 2.62613.736 318.509-119.622
3 1 10.513 4.493i2.516 96.666-122.606
3 2 14.207 4.493i2.516 187.996:122.606
3 3 17.648 4.493i2.516 297.59F122.606
s’ s Kg;; Kg}_ 92’;
1 1 9.356 —3.641 100.830
1 2 12.967 —3.647 181.430
1 3 16.355 —3.641 280.775
2 1 9.356 1.74313.352 95.736-111.683
2 2 12.967 1.743i3.352 176.338-111.683
2 3 16.355 1.743i3.352 275.67%111.683
3 1 9.356 3.57%+i2.325 80.183-116.603
3 2 12.967 3.57%i2.325 160.783116.603
3 3 16.355 3.57%i2.325 260.128116.603
s s & o &
1 1 11.657 —-4.972 160.61
1 2 15.431 —4.972 262.84
1 3 18.923 —-4.972 382.80
2 1 11.657 1.739i4.758 155.503116.552
2 2 15.431 1.739i4.758 257.74%116.552
2 3 18.923 1.739i4.758 377.696-116.552
3 1 11.657 3.51%i4.070 140.082128.631
3 2 15.431 3.51%i4.070 242.326-128.631
3 3 18.923 3.51%i4.070 362.275%128.631
4 1 11.657 5.42%12.686 113.715i29.116
4 2 15.431 5.42%4i2.686 215.954129.116
4 3 18.923 5.42%4i2.686 335.909129.116
/ 7- 7 7-
S S Kos Kgr gs,s’
1 1 10.513 0.86814.248 127.816i7.371
1 2 14.207 0.86814.248 219.146-17.371
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5 s & o

1 3 17.648 0.86814.248 328.74%i7.371
2 1 10.513 2.626i13.736 117.57819.622
2 2 14.207 2.62613.736 208.908 119.622
2 3 17.648 2.62613.736 318.509119.622
3 1 10.513 4.49312.516 96.666-122.606
3 2 14.207 4.49312.516 187.996-122.606
3 3 17.648 4.49312.516 297.59%122.606
s' s Kgs Ky doy

1 1 12.791 0.86815.588 194.07619.696
1 2 16.641 0.86815.588 307.39519.696
1 3 20.182 0.8685.588 437.80419.696
2 1 12.791 2.616i5.205 183.858127.233
2 2 16.641 2.616i5.205 297.16%127.233
2 3 20.182 2.61615.205 427.578127.233
3 1 12.791 4.41414.368 163.199 138.567
3 2 16.641 4.41414.368 276.518 138.567
3 3 20.182 4.41414.368 406.927138.567
4 1 12.791 6.35412.839 131.29136.077
4 2 16.641 6.35412.839 244.61%136.077
4 3 20.182 6.3542.839 375.026136.077
s’ s Kg;; KS}_ 93‘;

1 1 11.657 —4.972 160.61

1 2 15.431 —4.972 262.84

1 3 18.923 —4.972 382.80

2 1 11.657 1.73914.758 155.50+116.552
2 2 15.431 1.73914.758 257.74+116.552
2 3 18.923 1.739i14.758 377.76-116.552
3 1 11.657 3.51714.070 140.08 128.631
3 2 15.431 3.51714.070 242.32128.631
3 3 18.923 3.51714.070 362.28 128.631
4 1 11.657 5.4212.686 113.72.129.116
4 2 15.431 5.4212.686 215.95129.116
4 3 18.923 5.4212.686 335.9%i29.116
s’ s KOs K5 Ooy

1 1 13.916 —6.291 233.30

1 2 17.839 —6.291 357.87

1 3 21.428 —6.291 498.83

2 1 13.916 1.738i6.129 228.26-121.304
2 2 17.839 1.738i6.129 352.7#i21.304
2 3 21.428 1.738i6.129 493.73121.304
3 1 13.916 3.4985.604 212.82139.210
3 2 17.839 3.498i5.604 337.39139.210
3 3 21.428 3.498i5.604 478.35-139.210
4 1 13.916 5.31714.638 186.89-149.328
4 2 17.839 5.31714.638 311.46-149.328
4 3 21.428 5.31714.638 452.42149.328
5 1 13.916 7.29%12.979 149.36-143.446
5 2 17.839 7.29%12.979 273.93 143.446
5 3 21.428 7.29%12.979 414.89-143.446
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FIG. 2. Schematical representation of the junctions of the sheets :; X X X/ :;
>0 and3 (), for a central rectangular potential witk- 1—8 at the 3 7\ A\ _3
branch points\jls’;, with s=1, 2, and 3 and’=t,t+1,... r and at —4 [N -4
the branch point:g's';, with s=1, 2, and 3 and’=t,t+1,...r /=8
+1, wherer=(1—-1)/2,t=1 for oddl andr =1/2, t=2 for evenl. 6 7 6
The labeln or m of each sheet is indicated by the number given at i \ 7/ \/ ‘2
the left and right ends of the picture. These junctions have been g \\/ \X/ X g
established by the Riemann sheet analysis. 1 //\\\ ) // \\\ J // \\\ ,
IV Vi WA
. -2 —/% A 22
The junctions for even at the branch pointg's'g with s 1 7% // \\ it
=1,2, and 3 are shown in Fig. 3. -5 -
1, FE" 11
g1,1 gz,1 93,1

1. Case &0
FIG. 3. Schematical representation of the junctions of the sheets
In the casel=0 there is a single set of branch points, = and (), for a central rectangular potential with evén
namely,g27 , whose image in thé plane is situated on the =0-8 at the branch points; with s=1, 2, and 3. Fot=0 there

. 0+ .
imaginaryk axis atk=x%" = —i. The analysis of the Rie- & only the branch pointg; . The labeln or m of each sheet is
9 y “s y indicated by the number given at the left and right ends of the

(0) 0.+ (0)
mar_m_ surfaceRg shows that aUgs,ol the _sheeEo cannot picture. These junctions have been established by the analysis of the
be joined to any other sheet &). This means that the Riemann sheets.

potential strength variation does not induce any jump be-
tween the ground state (0,0) and the other statey (d,the
system. Atgd; the sheetss’® and 39 with s>0 are By the analysis of the Riemann surfadg§’ with even
joined. In the casé=0, the following rules for the junctions | >0 the rules for the junctions g‘lsf have been deduced. It

of the Riemann sheets at the branch points can be extracte@sults that there are two pairs of sheets that are joined at
(3) for =0 the sheeE{” is not joined to any other sheet, each branch poingl: : (5) for evenl>0 at the branch
and (4) for =0 at the branch pointgg’l+ the sheeiEgO) is pointsg's'f the sheeE’(()') is joined to the sheeﬁf,'%,ﬂs, and
joined to the sheek(®). the sheet.{" is joined to the sheet ) ,,, ..

2. Case >0
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The rules(1-5 given above for the junction of various =0,1,...,{—3)/2 for oddI>1, there are two such bound
sheets define some selection rules for the jump from oneegions in the fourth quadrant of thkeplane where the exotic
sheet of the Riemann surfa&’ to some other sheet of the poles are located. On the sheet imagé” , with n=1/2 for
same surface. As it can be seen from Figs. 2 and 3, there ag&enl>0 andn=(l—1)/2 for oddl, there is only a bound
some sheet§$ﬂ) that are not joined to any other sheet atregion of thek plane in the fourth quadrant of tHeplane
Somegls'; . ie., g:gls'; is not a branch point foE (. In  where the exotic poles are located. With the notation shown
this case the jump front() to other sheet(!) when the in Figs. Xa) and 1b), the analysis of the Riemann sheets on

potential strength varies arouny ;, is forbidden. a large range of values {=0-8) allows us 1o draw the
s ollowing conclusions concerning the localization of the

As thek-plane images of the branch points are situated ir{) . . .
the lowerk half plane, the jumps occur only for potential ound regions in thé& plane where the exot||c resonant state
' geoles are located: The bound region 83", n=1/2 for

strength variations around values for which the correspon : 0
ing poles are resonant-state poles. There are not jumps bgven!=0 andn=(l—1)/2 for oddl, lies onK'y" and on

tween bound states induced by small potential strength varid(9ss+1)- On the sheet images, ), n=12, ... ,(/2-1)
tion. for evenl>2 andn=0,1,...,(—3)/2 for oddl>1, there

is a bound region that lies o6 andk(gy . ;) and another
bound region that lies ofc{) ; andk(gk, ).
C. Exceptions to the junction rules On all the other sheet imaggs> (I —1)/2 for odd! and
As already mentioned, the junction rules that specify theh>1/2 for evenl#0] there are only usual resonant-state
labelsn and m of the sheets that are joined at each branctPoles, i.e., poles that move towards the imaginagxis as

pointg. ., are valid, provided that the pole corresponding tothe strength of the potential well increases and become
S I+ . . bound- or virtual-state poles for a sufficiently deep potential
the potential strengtly,,, is not an exotic resonant-state

"l ' . N well.
pole on3/(" wherem>n. In the following, it will be The borders of a given sheet are made of the edges of the

. I, + . . . X X
shown that if forg ¢, there are exotic resonant-state poles oncuts taken along the branch points with the same imaginary
3/ and 3/, wherem>n, then the potential strength part and a large radius circle that joins the cuts. The cuts that
valueg=g., cannot be a branch point f&). As a con-  are boundaries of a given she&{ determine some thresh-

sequences. ) andx (") cannot be joined a'>,, eveninthe old values for the imaginary part of the complex potential
. ) s,s’ . ) . . )

case when the junction ruld) or (2) would require this. In streng.thg. For a gl(\ll)en potential stren.gtj]e E,n(l)’ the corre-

order to explain why the existence of the exotic resonantsponding polé&=k'’(g) on the sheetimagk "’ belongs to

state poles corresponding to the potential strength \@!@e the usual or exotic class of resonant-state poles. This depends

on bothE,;(" andE,’n(" leads to an exception to the jurfction on the sheet to which the givegrbelongs and on the value of

le ata">  in the following th . " fth the absorption Ing>0 with respect to the thresholds on that
rule _a Yss . N IN€ Toflowing the r‘_naln properties of e gheet. The situation is illustrated in Figiast for evenl and
exotic resonant-state poles are outlined.

' Fig. 4(b) for odd|. The exotic poles occur when the absorp-
In Ref. [1] it was shown that for each=1 there are oy of the potential on the given sheet is located in the

resonant-state poles for absorptive potential §iwD) that  4rresponding region indicated by the hatching. There are
do not become bound- or virtual-state poles as the potenti xotic resonant-state poles for a strong gmlmg"+) or
s,s’

strength g increases. Due to their unusual behavior . - .
these poles have been called “exotic resonant-state polesWeak absorption (Ig<imgg,) potential. The strong ab-

In the fourth quadrant of thek plane of the sheet sorption is related to the brflnch points wh&galane imaggs
images 3/, where n=1,2,...)/2 for evenl=2 and porrespond to the zeros bff)l(z), and the W(_aak absorption
n=0,1,2...,(1—1)/2 for odd|, there are bound regions S related to the branch points whoklane images corre-
where the exotic resonant-state poles for absorptive potentigPond to the zeros dft)y(2).
are located. When the strength of the potential increases to Let Imgy ., ; be the absorption thresholds for the occur-
infinity, the exotic resonant-state pole remains inside a cerrence of the exotic resonant-state poles on the Riemann
tain bound region of th& plane. We remind that the label ~ sheet imageS (). Taking into account that the exotic
of the Riemann sheets is the number which counts the polegsonant-state poles for a givércould occur only on the
as they occur agj—0 [see Eq(3.17) of Ref.[1]]. sheets with the labele=1,2,...]/2 for even|>0 and

The border of each bound region of thkelane, where an n=0,1,...,{—1)/2 for oddl, and that the occurrence of an
exotic resonant-state pole of tlematrix elementS, is situ-  exotic resonant-state pole (ﬁ{,(') is determined by the ab-
ated, lies on a pair of points: an attractof’ which is a zero  sorption thresholds Img% 5, ; on the corresponding Riemann
of the spherical Hankel functions of the first kinia{")(z), sheet, the exception to the junction rule can be expressed as
and thek-plane image of a branch poih(g'sf,), which isa  follows:

. . ’ . . _ Al : .

zero of the spherical Hankel functions of the first kind, If for g=gg;, 1, which defines the threshold for the ab-
h{Y(2). In Ref.[1] it was shown thak. (" act as attractors Sorption window on the sheek{), there is an exotic
for the exotic resonant-state poles; i.e.,gas, the exotic ~ resonant-state pole on the Riemann sheet inBgé with
resonant-state pole tends to an attractor. On each of the sheet=p, ie., if Imgy,,;=Img>Imggy., or Imggy,,
images>;, n=12,...,(/2-1) for even|>2 andn  =Img<Imgy ;. then the potential strength valug
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FIG. 4. Panelga) and (b) give a schematic illustration of the

absorption windows related to the imaginary parts of the branch

points for a given =1. For evenl we have Irrg's’j:O. There are
I1/2—1 weak absorption windows (lig<Im gL";,) for even!| and
(I1—-1)/2 weak absorption windows for odd There ard/2 strong
absorption windows (Ing>1Im g's’;,) for evenl and ( +1)/2 strong
absorption windows for odd. The label of the Riemann sheets

where these absorption windows are situated is indicated on the

abscissa.

=gips1 IS NOt @ branch point for the Riemann sh&g} .
Consequently, a§=gy ., the sheek ) cannot be joined to
any other sheet.

Indeed, if it were an exotic pole oi‘lr'n(') , this exotic pole

would remain inside its own bound region that lies on ansr?eetz

attractor ) or K1), , , which is a zero oh{*)(z) and on the
k-plane image of the branch poiggﬁwl, and therefore it
would be placed in some other region of thplane as com-
pared to thek-plane image ogzg's";l, which is a zero of
h(1).(z). For example, let us suppose that in the cas®
the potential strength takes the valuge= g?11=74.590
+i5.023. As Img2y <Img3, =11.181, forg=gj; the
pole on3 ;) will be an exotic pole and will be situated in a
bound region of the&k plane that lies on the image of the
branch pointg2; [i.e., k3~ =K(g23)=2.657-12.104] and
on the attractorC ¥=3.571-i2.325. This pole cannot be
brought in the neighborhood of tHeplane image ofgts_’"l_
[i.e., k3~ =k(g31)=0.867-i2.896], does not matter how
much the potential strength is varied. Consequendy,
=g2; are not branch points f&{*> . That is why the jump
atgy; between the sheeB to 3{> is forbidden. Corre-
spondingly, agf;[ the jump between the associated states
forbidden, i.e., (5,0%>(5,1) is forbidden. Instead of this, at
971 the sheeB ) is joined to the next sheet, i.e., B,
and a small variation of the potential strength arou_xﬁq
can induce the jump (5,83 (5,2).

In case the pole corresponding gﬁ is an exotic
resonant-state pole on both sheet imag§$ and (), the
junction rules(1) and(2) have to be modified as follows:

If the pole corresponding tg= g'l'],; is an exotic resonant-
state pole or¥ )", and= /"), thengy, is not a branch point

PHYSICAL REVIEW A 68, 032723 (2003
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FIG. 5. The figure indicates by hatching the absorption windows
for the exotic resonant-state poles in the fourth quadrant of various
Riemann sheet images in th@lane in the case=1-8. The labels
of the sheets for eadhare indicated on the abscissa.
for (). Consequentlys.{’, cannot be joined ag}, to
>0 as the rulg1) would require, but it will be joined to the
()1, provided that the pole oB/{ is not an exotic
resonant-state pole, otherwig§ ; will be joined to={),,
etc. Once the junction ag;'l*’g is established, the junctions at
g!s*’; (s=2,3,4 ...) aredetermined as follows: Let us sup-
pose that aty, the sheet&{), and3 () ; are joined, then
atgy, the sheet®l) . ,ands{) .. ; are joined.
Similarly, if the pole corresponding tgzg's',; is an ex-
otic resonant-state pole an,®; ands ), thengy) is
not a branch point fo&{) ;. Consequently3 ; cannot
be joined atgy; to 3{) _,, as the rule(2) would require,
but it will be joined toX{} ), provided that the pole corre-
sponding tog's'yg is not an exotic resonant-state pole on
3.0, otherwises () ; will be joined toS{) ., , etc.

In the following, a simple method to identify the forbid-
den jumps will be given. It is based on the calculation of the
thresholds for the absorption windows that determine the ex-

_istence of the exotic resonant-state poles on some sheets.
I¥rom Fig. 5 it is easy to understand the exceptions to the
junction rules(1) and(2). Figure 5 gives the absorption win-
dows for the existence of the exotic resonant-state poles on
various Riemann sheet images in thelane in the casé
=1-8. Letgs'j be the potential strength value at which the
sheet> () should be joined to other sheet, according to the
junction rules. From Fig. 5 one can see which are the sheet
imagesEr’n(') on which there are exotic resonant-state poles
corresponding to this potential strength value. In this way the

forbidden jumps K,n) < (1,m) atg's”st, can be identified, and
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therefore one can see the cases where the modified junctiahree distinct Riemann surfacg’, R{ ", andR{ " that
rules have to be used. For example, fer7 the sheeB (/)  are joined at a given value of the potential strength from the
should be joined, according to the rulel and (2), to the  setg(!). A careful analysis of the Riemann surfaces shows
sheets{") at g7 . However,g{; are not branch points for that atg(}, for which there is a pole at the attractti(
2{7. Indeed, as it can be seen from Fig. 5, the pol&g) 3/ ‘the sheetg| ¥, 3V, and3{*Y (1>1), where
that corresponds tcgzg;’f is an exotic pole, because q=j+i—1 for evenl andq=j+i for oddl, are joined. Here
Imgly =Img<Img.; . This pole remains in the bound re- i=1,2, ...]/2 for evenl andi=1,2, ... ,(—1)/2 for oddI.
gion of thek plane that lies on the image gf, on3;”  For oddl there is also an attractdt ) situated on the imagi-
(k}~=2.626-13.736) and on the stable poift}’=3.517 naryk axis of 3¢() . This attractor is reached for a potential
—i4.070. This exotic pole cannot be brought near the imagealue in the seg(), with j=1,2,.... Forg=g{'} (odd1)

of g7 (k]"=0.868-i5.588) or near the image a@{;  the sheet®{ ), 3{), ands{*" are joined.

(k™ =0.868-14.248). Consequently, the sh&”) cannot This means that a resonant levkli§ with orbital angular

be joined with the sheet{”) at gﬁ . For a similar reason momentuml, corresponding to a pole situated at an attractor
the sheet (") cannot be joined with the shest” at gl . K" is degenerate with other resonant levels with orbital
Consequently, the jumps (78)(7,1) and (7,03=(7,2) are angular momenta—1 andl+1. If the potential strengtly
forbidden. Similarly, ag], the sheet{”) cannot be joined Vvaries around the valug= QJ(I.) the position of the pole in
with the sheeTE(27) and the jump (7,19>(7,2) is forbidden. the k plane and the corresponding level energy changes for
Forl=8 it can be seen that af’; the sheeB ¥ cannot be all three partial waves‘.—;,l,l_+1 v2vith different rates of
joined either with the sheeE(ZS)’or with &) At g%g the change. In Refl11] the denvatlve_d_k /dg that desc_nbes the
sheets® cannot be joined with the sheB{®. At gi’I the 'ate of changg of the pole position fqr the orbital ar_lgglar
sheet>® cannot be joined with the she&® . Conse- momentuml with respect to the potential strength variation

quently, forl=8 the jumps (8,1%(8,2) and (8,13 (8,3) has been calculated,
are forbidden. The jump (8,2}(8,3) is forbidden for the

potential strength variation in the neighborhooctg@g , but d_k2: _ k®+g hl(l)(k) " k_2 (4)
it is allowed nearg?; . Similarly, the jump (8,3} (8,4) is dg g hBkh®(k) 9°

forbidden neag?;, , but it is allowed neag?; .
By the simple c_alculation of the potential absorption win- et us suppose that the potential has a small variation
dows that determine the occurrence of the exotic resonantyound the valugj('i) for which there is a pole at the attractor

state poles on the corresponding Riemann sheet images, o;fu) onEi’('). Fork=lCi('), wherelCi(') is a zero thl(l)(k)

can directly establish the jumps between the sheets for sma(l éable point, and for largeg we obtain from Eq.(4)

dk?/dg—0, i.e., the pole for the orbital angular momentum
“is stable with respect to the potential strength variation. For
the same potential strength valgéz!i) there is a pole fot

—1 and a pole foll +1, which are situated at thieplane
image of a branch point. By replacing—1—1 and|—I

%1 in Eqg. (4), we obtain the rate of change of the pole
sition in the waveb—1 andl + 1 for the potential strength

potential strength variation around a branch point. As the
exotic resonant-state poles occur on a small number of Riq
mann sheet images, "’ [n=1,2, . .. /2 for evenl >0 and
n=0,1,...,{—1)/2 for oddl], at a first sight it could seem
that a general rule for the jumps, which includes the modifi-
cations mentioned above, would be possible. This is not tru
because the thresholds gbj of the absorption windows &)
that determine the occurrence of the exotic resonant-stal ; 0) A2 ; .
oles on a given Riemann sheet imagg" do not depend fying aroundy . 1t results indc/dg-z, L., the pos!
P ag p tion of the pole in the wavels—1 andl + 1 is unstable with
monotonically on the label of the sheetgsee, e.g., the case respect to the potential strength variation.
[=8 in Fig. 5, where there is an inversion betweengﬁﬁ For example, fog=g{3)=34.717+i2.598 there is a pole
and Img§"5+ ; for larger values of there are numerous inver- 4t the stable poinlC(lz)=Y0.866—i1.500 on3!® . For the
sions of this kind. same potential value there is also a polexgt =k(gy;

=0.866-11.500 on3;" and a pole atxi =k(g3;)
lll. LOCAL DEGENERACY WITH RESPECT TO THE —0.866-11.500 on3., ). The sheets), 3 ands )

ORBITAL ANGULAR MOMENTUM are joined atg=g(f{. In Fig. 6 the derivativedk?/dg is

Besides the junctions between the sheets of a given Rieshown forl=1,2,3, withg taking values around the value
mann surfaceR!, discussed above, there are junctions be-g=09{?, for which onX;‘® the pole is situated at the attrac-
tween the sheets of the Riemann surfaces for differelit ~ tor. One can see that fdr=2 the derivativedk?/dg has a
Ref.[1] it was shown that the resonant levels for the rectansmall value with a minimum aroung=g(f1), while for |
gular central potential exhibit a local degeneracy with re-=1 andl =3 the derivative has a sharp change, with a maxi-
spect to the orbital angular momenturh Let g{')  mum for this value of the potential. This means that in the
(j=1,2,...) be the set gfotential-well strengths for which wavel=2 the system reaches a stable equilibrium, while in
there is a resonant state of angular momenkworrespond- the waved =1 andl =3 the system is unstable in the neigh-
ing to a polek situated at an attractdé(’ 3/ InRef.[1]  borhood ofg=g{?. The sharp change in the pole position
it was demonstrated that there are three sheets belonging tor | =1 andl =3 induced by the potential strength variation
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FIG. 6. The absolute value of the derivatidéc/dg for three 951 153.355r12.598, respectively. By arrows R¢?) is indi-
adjacent values ofl (1=1,2,3) around the value og=g(12{ cated. Img has been kept constant to the valuegm?2.598.

=34.717 i 2.598, for which there is an attractor &{‘®. Img _
has been kept constant to the valuegm?2.598. The exact local degeneracy of three partial waves occurs
also in the case when a Coulomb barrier for a point charge is
means that the degeneracy of the three waves=a3{®} can  added to the rectangular well potential Rif2]. In [11] the
easily be removed. Agzg(ff=84.219+i2.598 there is a effect of the potential-well diffuseness on the pole positions
pole atx}™ on 3, and a pole aki" on3)® sothatat was studied. It was shown that the attrackef’ is slightly
g=0%) the sheet&{", 32, and=$®) are joined. Similarly,  shifted and that the poles in the wavés-(1) and (+ 1) are
atg=g{3)=153.355+i2.598 there is a pole act%”r on3;®  shifted too, provided that the diffuseness is small. Conse-
and a pole at?” on 33, so that atg=g}; the sheets quently, for a diffuse edge well &), for which there is a
3 33 and3 ) are joined. pole at the attractokl (Ve 3/ | the levels (—1,9), (I,i),
Equation(4) shows that the derivativdk?/dg becomes and (+14q), whereq=j+i—1 for evenl andq=j+i for
closer and closer to zero in the neighborhoodgPf with  oddl, are rather quasidegenerate than degenerate.
increasing value of the potential strength from theg.§§t In
other words, for a givenh the stability of the system in the
neighborhood of the attractor increases by increasing the
depth of the potential welly. This conclusion is illustrated in The effects of the potential strength variation on the
Fig. 7, where the derivativek?/dg for |=2 is shown as the Smatrix poles are discussed in the framework of the Rie-
potential varies in the neighborhood @f?, g%}, andg¥?,  mann surface approach to bound and resonant states.
respectively. Equal lengths of the interval for R&ariation, By associating a she&t{ of the Riemann surface of the
centered on Rgy’}, Regl!, and Regl?}, respectively, have fynction k()(g) over theg plane and the corresponding
been taken. One can see that the cutk&/dg vs Reg is | pjane images /() to each state with the quantum numbers

ith | o _ .
flatt(?]r and closer to zero ywth mcreasnggzi . f _ (1,n) the jump between the statesr{) and (,m), induced
The degeneracy described above occurs for some partiCyy, 5 small potential strength variation around a branch point

lar values of the potential strength, i.e., it is a local degen-7+ . .

eracy. Due to exact local degeneracy three angular momentys' is treated as the jump between the shegfé and
do contribute to the resonant cross section. This degenerati(%n .

supports a new type of resonance in the cross section, which The rules for the jumps between states wkh=0, i.e.,
is associated to the cooperative contribution of three adjoinfl,n)<(I,m), are established. In other words, the labels

angular momenta. andm of the sheet€ () and3(), and of the corresponding

IV. CONCLUSIONS
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k-plane images that are joined at a given branch pg)érgt the case where the junction rules would require this. The
are determined. The forbidden jumps can be identified by théhodifications to the junction rules, induced by the existence
calculation of the thresholds of the absorption windows forof the exotic resonant-state poles, are given.

the potential, which determine the occurrence of the exotic The local degeneracy of the energy levels for three partial
resonant state poles on various Riemann sheet inﬁgé?s wavesl —1, |, andl + 1 is generated by the potential strength
It is shown that if for a glverg * there are exotic resonant Vvariation around the value for which there is an attractor on a
state poles o /(" andE’(') wherem>n then the poten- Riemann sheet for the orbital momentuinfror this potential
value the system reaches a stable equilibrium in the vave

tial strength valuey.'_, is not a branch point foE(') and, : _
g egss P m and is unstable in the wavés- 1 andl+1.

consequentlys " and3 ") cannot be joined @, , evenin

[1] C. Grama, N. Grama, and |. Zamfirescu, Phys. Rew61A [8] O. Latinne, N.J. Kylstra, M. Dw, J. Purvis, M. Terao-

032716(2000. Dunseath, C.J. Joachain, P.G. Burke, and C.J. Noble, Phys.
[2] R. Seydel,Practical Bifurcation and Stability Analysis. From Rev. Lett.74, 46 (1995.

Equilibrium to Chaos 2nd ed.(Springer-Verlag, New York,  [9] A. Cyr, O. Latinne, and P.G. Burke, J. Phys38 659(1997.

1994. [10] H.A. Antosiewicz, in Handbook of Mathematical Functions
[3] C. Grama, N. Grama, and |. Zamfirescu, Ann. Phis.Y.) with Formulas, Graphs and Mathematical Tahleslited by M.

232, 24,3 (1994. i Abramovitz and |.A. Stegun, Natl. Bur. Stand. Applied Math-
[4] E. Hernadez, A. Jaregui, and A. Mondragg J. Phys. A33, ematics Series, 9th printing).S. GPO, Washington, D.C.,

4507 (2000). 1970, p. 435.

[5] E. Hernandez and A. Mondragg Phys. Lett. B326, 1 (1994).

[6] W. Vanroose, P. van Leuwen, F. Arickx, and J. Broeckhove, J.
Phys. A30, 5543(1997).

[7] N.J. Kylstra and C.J. Joachain, Europhys. L&&.657 (1996);
Phys. Rev. A57, 412 (1998.

[11] C. Grama, N. Grama, and |. Zamfirescu, Ann. Ph§$.Y.)
218 346(1992.

[12] C. Grama, N. Grama, and |. Zamfirescu, Europhys. LZ4t.
353 (1997.

032723-12



