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Jump phenomenon induced by potential strength variation and the influence
of exotic resonant states
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The jump phenomenon between twoS-matrix poles induced by a small potential strength variation is studied
in the framework of the nonrelativistic scattering by a central potentialgV(r ), gPC. Let Rg

( l ) denote the
Riemann surface over the complexg plane, on which the pole functionk5k( l )(g) is single valued and analytic.
By associating a sheetSn

( l ) of Rg
( l ) and itsk-plane imageSn8

( l ) to a state with the quantum numbers (l ,n), the
jump between the states (l ,n) and (l ,m), induced by the potential strength variation, is understood as the jump
between the sheet imagesSn8

( l ) andSm8
( l ) . The rules for the jumps (l ,n)⇔( l ,m) as a consequence of a small

potential strength variation are deduced. The influence of the exotic resonant states on the selection rules for
the jumps is discussed. The occurrence of the local degeneracy with respect tol of the resonant levels (l
21,n), (l ,m), and (l 11,p) for the rectangular central potential and the level stability with respect to the
potential strength variation are also discussed.
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I. INTRODUCTION

We consider the nonrelativistic scattering of a spinle
particle by a central potentialgV(r ), gPC. In a scattering
problem the potentialgV(r ) represents a mean potential. F
example, in atomic physics it represents the mean inter
lecular potential averaged over internal states. Conseque
the potential strengthg could undergo small changes and w
may ask which is the effect of these changes.

An adequate quantum-mechanical description of
bound and resonant states is through theS-matrix poles. The
function k5k( l )(g) which defines aS-matrix bound- and
resonant-state pole as a function of the potential strengthg is
a multivalued function. In Ref.@1# an approach to bound an
resonant states, based on the construction of the Riem
surface over theg plane, on which the pole functionk
5k( l )(g) is single valued and analytic, has been presen
The Riemann surfaceRg

( l ) has been divided into sheetsSn
( l )

and the imagesSn8
( l ) of these sheets in thek plane have been

constructed. If the potential strengthg takes a value on a
given sheetSn

( l ) , then the functionk5k( l )(g) takes only one
value on thek-plane imageSn8

( l ) of the sheet, i.e., there i
only a single pole on each sheet image. In other words e
branch of the functionk5k( l )(g) is situated on thek-plane
image of the associated Riemann sheet. In this way the s
Sn

( l ) of the Riemann surfaceRg
( l ) and itsk-plane imageSn8

( l )

have been associated to a given state with quantum num
( l ,n). This allows us to study each state (l ,n) separately and
to understand the jump from the state (l ,n) to the state (l ,m)
as a result of a small potential strength variation.

Let us suppose that the potential strength has a s
variation around a branch point of the functionk5k( l )(g).
This small potential strength variation can either determin
small change of the pole functionk5k( l )(g), or it may in-
duce a large variation of the functionk5k( l )(g) by the tran-
sition from one branch of the function to another bran
Variation of the parameterg can determine a transition from
a quantitative change to a qualitative change, i.e., in a ju
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phenomenon. As jump phenomena, ubiquitous in science@2#,
are characterized by large dynamic responses of the sy
to small amplitude disturbances, it is justified to call ‘‘jump
the transition of the system from the state (l ,n) to the state
( l ,m) as a result of a small potential strength variation. T
rules governing the jump phenomenon are important in
study of the pole trajectories. In such a study the position
a pole in thek plane is investigated as a function of th
potential strength. By knowing the jumping rules one avo
the accidental jumps from one pole to other pole when o
calculates the pole trajectories. In this way we are sure
the same pole is followed.

The aim of this paper is to establish the conditions for
system to undergo a jump from one state (l ,n) to other state
( l ,m) as a consequence of a small potential strength va
tion. Let the parameterg follow a prescribed contour startin
from a valuegPSn

( l ) . The choice of the contour can induc
quite distinct effects:~a! if g describes a closed curve onSn

( l )

not enclosing a branch point whereSn
( l ) is joined to other

sheet, then its imagek5k( l )(g) takes values on a continuou
path on the Riemann sheet imageSn8

( l ) , i.e., the potential
strength variation does not change the state (l ,n); ~b! on the
contrary, ifg describes a closed contour which starts from
point on the sheetSn

( l ) and encloses the branch point joinin
the sheetsSn

( l ) andSm
( l ) and no other branch points, then th

variableg is transferred from the sheetSn
( l ) to the sheetSm

( l ) .
As a consequence, the polek5k( l )(g) is transferred from the
sheet imageSn8

( l ) to the sheet imageSm8
( l ) . In other words

the potential strength variation induces a jump from the s
( l ,n) to the state (l ,m).

In the following a rectangular central potential

2mR2

\2
gV~r !5H 2g for r /R<1, gPC,

0 for r /R.1,
~1!

will be considered. We will use the dimensionless varia
©2003 The American Physical Society23-1
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r /R rather than the variabler. For the sake of simplicity in
the following, the notationk will be used for the dimension
less variablekR.

In order to understand the jumps between the states (l ,n)
and (l ,m) or, equivalently, the jumps from thek-plane image
of a sheetSn of the Riemann surfaceRg

( l ) to the k-plane
image of other sheetSm , the way the various sheets a
joined at the branch points has to be analyzed. The Riem
surfaces for a large range of orbital angular-momentum
uesl have to be studied in order to extract a rule govern
the jumps. In the present paper the rangel 50 –8 is covered.
In Sec. II the jumps between the Riemann sheets of a R
mann surfaceRg

( l ) for a givenl are studied. In Ref.@1# it was
shown that in the case of a potential well followed by
barrier, there were poles situated on certain Riemann s
images that had extraordinary properties so that they h
been called ‘‘exotic’’ poles. An exotic resonant-state po
does not become a bound- or virtual-state pole as the d
of the potential well increases to infinity, but it remains
resonant-state pole situated in the neighborhood of an at
tor in thek plane. The wave function of the exotic resona
state corresponding to an exotic resonant pole situated
the attractor is almost completely localized inside the pot
tial barrier. In Ref.@3# it was shown that for a potential mad
of a well plus a Coulomb barrier the exotic poles situated
certain attractors correspond to the well known quasimole
lar states excited in heavy-ion collisions. The properties
the quasimolecular states@energies, widths, deviation from
the linear dependence of the energy onl ( l 11), doorway
character, and criteria for observability# have been shown to
result naturally from the general properties of the exo
resonant states. The influence of the exotic resonant-s
poles on the rules governing the jumps is discussed
Sec. II C.

Another effect produced by the potential strength var
tion is the occurrence of the local degeneracy of the reso
levels for the rectangular central potential with respect to
orbital angular momentum. Recently, the problem of m
tiple pole degeneracy for a givenl has been discussed b
several authors@4–9# for various potentials. In the presen
paper some other kind of pole degeneracy will be stud
namely, the degeneracy with respect to the orbital ang
momentum. In Ref.@1# it was shown that three Rieman
sheets belonging to three distinct Riemann surfacesRg

( l 21) ,
Rg

( l ) , and Rg
( l 11) are joined at some special values of t

potential strength. In other words three resonant levelsl
21,n), (l ,m), and (l 11,p) are degenerate, provided that th
potential strength takes a value from a given discrete set.
labelsn, m, andp of the sheets ofRg

( l 21) , Rg
( l ) , andRg

( l 11)

that are joined at each of these special values of the pote
strength, extracted by the analysis of the Riemann surfa
are given in Sec. III. If the potential strength varies arou
one of these special values, the degeneracy of the three
nant states may be brought about and the cooperative co
bution in the cross section from three adjacent partial wa
occurs. The occurrence of the local degeneracy with res
to l as an effect of the potential strength variation and
03272
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level stability in the three adjacent waves (l 21), l, and
( l 11) are discussed in Sec. III.

II. JUMPS BETWEEN STATES WITH THE SAME l

In the case of a central rectangular potential besides
logarithmic branch pointg50, where all the sheetsSn

( l ) are
joined, there are the following algebraic branch points of
function k5k( l )(g):

gs,s8
l ,1

5~k0,s
l ,1!22~ks8

l ,1
!2, ~2!

gs,s8
l ,2

5~k0,s
l ,2!22~ks8

l ,2
!2, l .1, ~3!

where k0,s
l ,1 and k0,s

l ,2 (s51,2, . . . ) are thezeros of the
spherical Bessel functionsj l 11(z) and j l 21(z), respectively.
ks8

l ,1 andks8
l ,2 are the zeros of the spherical Hankel functio

of the first kind, i.e.,hl 11
(1) (z) and hl 21

(1) (z), respectively. In
Ref. @1# it was shown that all the branch pointsgs,s8

l ,6 are of
order one, i.e., there are only two sheets that are joine
each algebraic branch pointgs,s8

l ,6 .
Thek-plane images of the branch pointsgs,s8

l ,1 are the com-
plex zeros of the spherical Hankel functions of the first kin
hl 11

(1) (z). Similarly the k-plane images of the branch poin
gs,s8

l ,2 are the complex zeros of the spherical Hankel functio
of the first kind,hl 21

(1) (z). According to Ref.@10#, hm
(1)(z) has

m zeros situated along an half-eye shaped curve in the lo
k half plane, symmetrically distributed with respect to t
imaginaryk axis. Due to the symmetry with respect to th
imaginaryk axis for a given evenl, there arel 11 images of
the branch points in the fourth quadrant of thek plane in-
cluding the imaginaryk axis, distributed on two half-eye
shaped curves:l /2 zeros ofhl 21

(1) (z) and l /211 zeros of
hl 11

(1) (z). Similarly, for a given oddl in the fourth quadrant of
the k plane, there arel images of the branch points, distrib
uted on the two half-eye shaped curves: (l 21)/2 zeros of
hl 21

(1) (z) and (l 11)/2 zeros ofhl 11
(1) (z). The way the images

of the branch points in the fourth quadrant of thek plane are
denoted is illustrated in Fig. 1~a! for evenl and Fig. 1~b! for
odd l. There is an infinity of branch pointsgs,s8

l ,6 for a given
s8 that have the samek-plane imageks8

6
5k(gs,s8

l ,6 ), ass takes
an infinity of valuess51,2,3, . . . .

In Ref. @1# a quantum numbern with a topological mean-
ing has been introduced in order to label the Riemann sh
and theirk-plane images. Because there is a single pole o
given Riemann sheet image, the labeln of the sheet image
Sn8

( l ) is also used as a label for that pole and for the cor
sponding state (l ,n). The integern counts the roots of the
pole equation forg50 @see Eq.~3.17! of Ref. @1##. The Rie-
mann sheet analysis shows that there are two classes of
nant poles:~a! the class of usual resonant-state poles t
have the familiar property to become bound- or virtual-st
poles when the depth of the potential well is increased
~b! the class of exotic resonant-state poles that remain
bound regions of the lowerk half plane, in the neighborhood
of some attractors, when the potential strength of the we
3-2
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increased. The exotic resonant state poles exist forl>1, and
they are located on certain Riemann sheet images.

Because at the logarithmic branch pointg50 all the Rie-
mann sheets are joined together, in the following only
junctions at the algebraic branch pointsgs,s8

l ,6 will be studied.
In order to establish which are the sheets that are joine
each algebraic branch point,gs,s8

l ,6 successive small circuit
ug2gs,s8

l ,6 u5r are taken round the given branch pointgs,s8
l ,6 .

Let us start withg5giPSn
( l ) andki5k( l )(gi)PSn8

( l ) . After a
complete rotation ofg round the branch point,gs,s8

l ,6 , the pole
reaches the other valuek5kfPSm8

( l ) . After a second com-
plete rotation ofg, the pole reaches again its initial valu
kiPSn8

( l ) . It results thatgs,s8
l ,6 is a branch point where th

sheetsSn
( l ) and Sm

( l ) are joined together. If the functionk
5k( l )(g) returns to its initial value after a complete rotatio
of g round gs,s8

l ,6 , then gs,s8
l ,6 is not a branch point forSn

( l ) .
The values of the first three branch pointsgs,s8

l ,6 ~i.e., for s
51,2, and 3! that have the images in the fourth quadrant
thek plane in the casel 50 –8 are given in Table I. A similar
table has been published in Ref.@1# for l 50 –4. However, in
the present paper the necessity to give some rules for
junctions imposes other labeling of the branch points.
comparison to Ref.@1# the labels are presently assigned in
more systematic way, as explained above and illustrate
Fig. 1.

The algebraic branch points are of order one, so that th
are only two sheets that are joined at eachgs,s8

l ,6 . The rules
that specify the labelsn andm of the sheets that are joined
each branch pointgs,s8

l ,6 ~junction rules! can be established
The labelsn andm of the sheets joined at a givengs,s8

l ,6 are
determined by the procedure mentioned above. From
analysis of the Riemann surfaces some regularities conc
ing the junctions between the sheets of eachRg

( l ) at the

FIG. 1. In panels~a! and ~b! the way the imagesks8
l ,6 of the

branch pointsgs,s8
l ,6 are distributed in the fourth quadrant of thek

plane for evenl and for oddl, respectively, is schematically repre
sented. Byd the imagesk(gs,s8

l ,6 )5ks8
l ,6 of the branch pointsgs,s8

l ,6

that are the zeros of the spherical Hankel function of the first or
hl 61

(1) (z), are indicated. By! the attractorsK i
( l ) , which are the

zeros of the spherical Hankel function of the first order,hl
(1)(z), are

indicated. In the case of evenl the images of the branch pointsgs,1
l ,2

andgs,1
l ,1 are situated on the negative imaginaryk axis and the value

of the labeln is n5 l /2. In the case of oddl the value of the labeln
is n5( l 21)/2.
03272
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branch points having the images in the fourth quadrant of
k plane and on the negative imaginaryk axis have been ob
served. Rules for the junctions between the Riemann sh
are extracted and given in Secs. II A and II B. However, t
existence of the exotic resonant-state poles on the shee
ages Sn8

( l ) with n51,2, . . . ,l /2 for even l and n
50,1, . . . ,(l 21)/2 for oddl induces some exceptions to th
junction rules. If for the potential strength valuegs,s8

l ,6 there
are exotic resonant-state poles onSn8

( l ) and Sm8
( l ) with m

.n , then g5gs,s8
l ,6 is not a branch point where the shee

Sn
( l ) andSm

( l ) are joined. The reason for this will be explaine
in Sec. II C. As a consequence,Sn

( l ) andSm
( l ) cannot be joined

at gs,s8
l ,6 . Modifications to the junction rules induced by th

existence of the exotic resonant-state poles have to be in
duced. These modifications are given in Sec. II C.

Taking into account theS-matrix property Sl(k,g)
5Sl* (2k* ,g* ), where * means complex conjugation, on
the junctions of the sheets at the branch points whose ima
are situated in the fourth quadrant in thek plane will be
given. The junctions at the branch points having the ima
symmetrically distributed with respect to the imaginaryk
axis can easily be deduced by using the above symm
property of theS-matrix elements. At the branch points ha
ing images in the fourth quadrant of thek plane, the sheets
Sn

( l ) and Sm
( l ) with n,m.0 for evenl and with n,m>0 for

odd l, having the imagesSn8
( l ) and Sm8

( l ) in the half-plane
Re k>0, are joined@1#.

A. Junction rules at gs,s8
l ,Á with Re k„gs,s8

l ,Á
…Ì0

In Fig. 2 the junctions between various Riemann sheet
the branch points with Rek(gs,s8

l ,6 ).0 are presented for vari
ous values of the orbital angular momentuml. The labeln or
m of each sheet is indicated by the number given at the
and right ends of the picture. Letr 5( l 21)/2, t51 for odd
l, and r 5 l /2, t52 for even l .0. Then ~1! at the branch
pointsgs,p

l ,2 (p5t,t11, . . . ,r ) the sheetSs1p22
( l ) is joined to

the sheetSs1p21
( l ) , and ~2! at the branch pointsgs,p

l ,1 (p
5t,t11, . . . ,r 11) the sheetSp21

( l ) is joined to the shee
Ss1p21

( l ) . Here s51,2, . . . . Therules ~1! and ~2! for the
junction of the sheetsSn

( l ) andSm
( l ) at a branch pointgs,s8

l ,6 are
valid, provided that the pole corresponding to the poten
strength valuegs,s8

l ,6 is not an exotic resonant-state pole o
both sheet imagesSn8

( l ) andSm8
( l ) ~see for example, the case

l 51,2,3, and 4 in Fig. 2!. The modifications to the rules~1!
and~2! induced by the existence of the exotic resonant-s
poles on some Riemann sheets will be given in Sec. II C

B. Junction rules at gs,s8
l ,Á with Re k„gs,s8

l ,Á
…Ä0

A special case is that of the branch pointsgs,1
l ,6 for evenl,

having the images on the negative imaginaryk axis. For even
l at the branch pointsgs,1

l ,6 , the junctions between the shee
with k-plane images in the half plane Rek<0 and the sheets
with the images in the half plane Rek>0 occur. Due to this
in the case of evenl the junctions at the branch pointsgs,1

l ,6

are governed by rules that differ from the rules~1! and ~2!.

r,
3-3
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TABLE I. The branch pointsgs,s8
l ,6 whosek-plane imagesks8

l ,6 are situated in the fourth quadrant, inclu
ing the negativek axis, in the casesl 50 –8 for a rectangular potential. Byk0,s

l ,2 and k0,s
l ,1 the zeros of the

spherical Bessel functionj l 21(z) and j l 11(z), respectively, are denoted.ks8
l ,2 (s851, . . . ,m), m5( l

21)/2 for oddl .1 andm5 l /2 for evenl .0 stand for the zeros of the spherical Hankel function of the fi
kind, hl 21

(1) (z), situated in the fourth quadrant of thek plane and on the imaginaryk axis. ks8
l ,1 (s8

51, . . . ,m), m5( l 11)/2 for oddl andm5 l /211 for evenl, respectively, stand for the zeros ofhl 11
(1) (z).

In the present table only the first three branch pointsgs,s8
l ,6 for each value ofs8 are presented, i.e., the labels

is limited to s51, 2, and 3.

s8 s k0,s
0,1 ks8

0,1 gs,s8
0,1

1 1 4.493 2 i 21.191
1 2 7.725 2 i 60.679
1 3 10.904 2 i 119.897
s8 s k0,s

1,1 ks8
1,1 gs,s8

1,1

1 1 5.763 0.8662 i1.500 34.7171 i2.598
1 2 9.095 0.8662 i1.500 84.2191 i2.598
1 3 12.323 0.8662 i1.500 153.3551 i2.598
s8 s k0,s

2,2 ks8
2,2 gs,s8

2,2

1 1 4.493 21.000i 21.191
1 2 7.725 21.000i 60.679
1 3 10.904 21.000i 119.897
s8 s k0,s

2,1 ks8
2,1 gs,s8

2,1

1 1 6.988 22.322i 54.224
1 2 10.417 22.322i 113.909
1 3 13.698 22.322i 193.028
2 1 6.988 1.7542 i1.839 49.1351 i6.452
2 2 10.417 1.7542 i1.839 108.8201 i6.452
2 3 13.698 1.7542 i1.839 187.9401 i6.452
s8 s k0,s

3,2 ks8
3,2 gs,s8

3,2

1 1 5.763 0.8662 i1.500 34.7171 i2.598
1 2 9.095 0.8662 i1.500 84.2191 i2.598
1 3 12.323 0.8662 i1.500 153.3551 i2.598
s8 s k0,s

3,1 ks8
3,1 gs,s8

3,1

1 1 8.183 0.8672 i2.896 74.5901 i5.023
1 2 11.705 0.8672 i2.896 144.6411 i5.023
1 3 15.040 0.8672 i2.896 233.8271 i5.023
2 1 8.183 2.6572 i2.104 64.3191 i11.181
2 2 11.705 2.6572 i2.104 134.3681 i11.181
2 3 15.040 2.6572 i2.104 223.5561 i11.181
s8 s k0,s

4,2 ks8
4,2 gs,s8

4,2

1 1 6.988 22.322i 54.224
1 2 10.417 22.322i 113.909
1 3 13.698 22.322i 193.028
2 1 6.988 1.7542 i1.839 49.1351 i6.452
2 2 10.417 1.7542 i1.839 108.8201 i6.452
2 3 13.698 1.7542 i1.839 187.9401 i6.452
s8 s k0,s

4,1 ks8
4,1 gs,s8

4,1

1 1 9.356 23.647i 100.830
1 2 12.967 23.647i 181.430
1 3 16.355 23.647i 280.775
2 1 9.356 1.7432 i3.352 95.7301 i11.683
032723-4
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TABLE I. ~Continued!.

s8 s k0,s
4,1 ks8

4,1 gs,s8
4,1

2 2 12.967 1.7432 i3.352 176.3301 i11.683
2 3 16.355 1.7432 i3.352 275.6751 i11.683
3 1 9.356 3.5712 i2.325 80.1831 i16.603
3 2 12.967 3.5712 i2.325 160.7831 i16.603
3 3 16.355 3.5712 i2.325 260.1281 i16.603
s8 s k0,s

5,2 ks8
5,2 gs,s8

5,2

1 1 8.183 0.8672 i2.896 74.5901 i5.023
1 2 11.705 0.8672 i2.896 144.6411 i5.023
1 3 15.040 0.8672 i2.896 233.8271 i5.023
2 1 8.183 2.6572 i2.104 64.3191 i11.181
2 2 11.705 2.6572 i2.104 134.3681 i11.181
2 3 15.040 2.6572 i2.104 223.5561 i11.181
s8 s k0,s

5,1 ks8
5,1 gs,s8

5,1

1 1 10.513 0.8682 i4.248 127.8161 i7.371
1 2 14.207 0.8682 i4.248 219.1461 i7.371
1 3 17.648 0.8682 i4.248 328.7471 i7.371
2 1 10.513 2.6262 i3.736 117.5781 i19.622
2 2 14.207 2.6262 i3.736 208.9081 i19.622
2 3 17.648 2.6262 i3.736 318.5091 i19.622
3 1 10.513 4.4932 i2.516 96.6661 i22.606
3 2 14.207 4.4932 i2.516 187.9961 i22.606
3 3 17.648 4.4932 i2.516 297.5971 i22.606
s8 s k0,s

6,2 ks8
6,2 gs,s8

6,2

1 1 9.356 23.647i 100.830
1 2 12.967 23.647i 181.430
1 3 16.355 23.647i 280.775
2 1 9.356 1.7432 i3.352 95.7301 i11.683
2 2 12.967 1.7432 i3.352 176.3301 i11.683
2 3 16.355 1.7432 i3.352 275.6751 i11.683
3 1 9.356 3.5712 i2.325 80.1831 i16.603
3 2 12.967 3.5712 i2.325 160.7831 i16.603
3 3 16.355 3.5712 i2.325 260.1281 i16.603
s8 s k0,s

6,1 ks8
6,1 gs,s8

6,1

1 1 11.657 24.972i 160.61
1 2 15.431 24.972i 262.84
1 3 18.923 24.972i 382.80
2 1 11.657 1.7392 i4.758 155.5031 i16.552
2 2 15.431 1.7392 i4.758 257.7411 i16.552
2 3 18.923 1.7392 i4.758 377.6961 i16.552
3 1 11.657 3.5172 i4.070 140.0821 i28.631
3 2 15.431 3.5172 i4.070 242.3201 i28.631
3 3 18.923 3.5172 i4.070 362.2751 i28.631
4 1 11.657 5.4212 i2.686 113.7151 i29.116
4 2 15.431 5.4212 i2.686 215.9541 i29.116
4 3 18.923 5.4212 i2.686 335.9091 i29.116
s8 s k0,s

7,2 ks8
7,2 gs,s8

7,2

1 1 10.513 0.8682 i4.248 127.8161 i7.371
1 2 14.207 0.8682 i4.248 219.1461 i7.371
032723-5
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TABLE I. ~Continued!.

s8 s k0,s
7,2 ks8

7,2 gs,s8
7,2

1 3 17.648 0.8682 i4.248 328.7471 i7.371
2 1 10.513 2.6262 i3.736 117.5781 i19.622
2 2 14.207 2.6262 i3.736 208.9081 i19.622
2 3 17.648 2.6262 i3.736 318.5091 i19.622
3 1 10.513 4.4932 i2.516 96.6661 i22.606
3 2 14.207 4.4932 i2.516 187.9961 i22.606
3 3 17.648 4.4932 i2.516 297.5971 i22.606
s8 s k0,s

7,1 ks8
7,1 gs,s8

7,1

1 1 12.791 0.8682 i5.588 194.0761 i9.696
1 2 16.641 0.8682 i5.588 307.3951 i9.696
1 3 20.182 0.8682 i5.588 437.8041 i9.696
2 1 12.791 2.6162 i5.205 183.8501 i27.233
2 2 16.641 2.6162 i5.205 297.1691 i27.233
2 3 20.182 2.6162 i5.205 427.5781 i27.233
3 1 12.791 4.4142 i4.368 163.1991 i38.567
3 2 16.641 4.4142 i4.368 276.5181 i38.567
3 3 20.182 4.4142 i4.368 406.9271 i38.567
4 1 12.791 6.3542 i2.839 131.291 i36.077
4 2 16.641 6.3542 i2.839 244.6111 i36.077
4 3 20.182 6.3542 i2.839 375.0201 i36.077
s8 s k0,s

8,2 ks8
8,2 gs,s8

8,2

1 1 11.657 24.972i 160.61
1 2 15.431 24.972i 262.84
1 3 18.923 24.972i 382.80
2 1 11.657 1.7392 i4.758 155.501 i16.552
2 2 15.431 1.7392 i4.758 257.741 i16.552
2 3 18.923 1.7392 i4.758 377.701 i16.552
3 1 11.657 3.5172 i4.070 140.081 i28.631
3 2 15.431 3.5172 i4.070 242.321 i28.631
3 3 18.923 3.5172 i4.070 362.281 i28.631
4 1 11.657 5.4212 i2.686 113.721 i29.116
4 2 15.431 5.4212 i2.686 215.951 i29.116
4 3 18.923 5.4212 i2.686 335.911 i29.116
s8 s k0,s

8,1 ks8
8,1 gs,s8

8,1

1 1 13.916 26.297i 233.30
1 2 17.839 26.297i 357.87
1 3 21.428 26.297i 498.83
2 1 13.916 1.7382 i6.129 228.201 i21.304
2 2 17.839 1.7382 i6.129 352.771 i21.304
2 3 21.428 1.7382 i6.129 493.731 i21.304
3 1 13.916 3.4982 i5.604 212.821 i39.210
3 2 17.839 3.4982 i5.604 337.391 i39.210
3 3 21.428 3.4982 i5.604 478.351 i39.210
4 1 13.916 5.3172 i4.638 186.891 i49.328
4 2 17.839 5.3172 i4.638 311.461 i49.328
4 3 21.428 5.3172 i4.638 452.421 i49.328
5 1 13.916 7.2912 i2.979 149.361 i43.446
5 2 17.839 7.2912 i2.979 273.931 i43.446
5 3 21.428 7.2912 i2.979 414.891 i43.446
032723-6
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The junctions for evenl at the branch pointsgs,1
l ,6 with s

51,2, and 3 are shown in Fig. 3.

1. Case lÄ0

In the casel 50 there is a single set of branch point
namely,gs,1

0,1 , whose image in thek plane is situated on the
imaginaryk axis atk5ks8

0,1
52 i . The analysis of the Rie

mann surfaceRg
(0) shows that atgs,1

0,1 the sheetS0
(0) cannot

be joined to any other sheet ofRg
(0) . This means that the

potential strength variation does not induce any jump
tween the ground state (0,0) and the other states (0,n) of the
system. At gs,1

0,1 the sheetsSs
(0) and S2s

(0) with s.0 are
joined. In the casel 50, the following rules for the junctions
of the Riemann sheets at the branch points can be extra
~3! for l 50 the sheetS0

(0) is not joined to any other shee
and ~4! for l 50 at the branch pointsgs,1

0,1 the sheetSs
(0) is

joined to the sheetS2s
(0) .

FIG. 2. Schematical representation of the junctions of the sh
Sn

( l ) andSm
( l ) , for a central rectangular potential withl 51 –8 at the

branch pointsgs,s8
l ,2 with s51, 2, and 3 ands85t,t11, . . . ,r and at

the branch pointsgs,s8
l ,1 with s51, 2, and 3 ands85t,t11, . . . ,r

11, wherer 5( l 21)/2, t51 for oddl andr 5 l /2, t52 for evenl.
The labeln or m of each sheet is indicated by the number given
the left and right ends of the picture. These junctions have b
established by the Riemann sheet analysis.
03272
-

ed:

2. Case lÌ0

By the analysis of the Riemann surfacesRg
( l ) with even

l .0 the rules for the junctions atgs,1
l ,6 have been deduced. I

results that there are two pairs of sheets that are joine
each branch pointgs,1

l ,6 : ~5! for even l .0 at the branch
pointsgs,1

l ,6 the sheetS0
( l ) is joined to the sheetS l /2211s

( l ) , and
the sheetS1

( l ) is joined to the sheetS2 l /2122s
( l ) .

ts

t
n

FIG. 3. Schematical representation of the junctions of the sh
Sn

( l ) and Sm
( l ) , for a central rectangular potential with evenl

50 –8 at the branch pointsgs,1
l ,6 with s51, 2, and 3. Forl 50 there

are only the branch pointsgs,1
0,1 . The labeln or m of each sheet is

indicated by the number given at the left and right ends of
picture. These junctions have been established by the analysis o
Riemann sheets.
3-7
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The rules~1–5! given above for the junction of variou
sheets define some selection rules for the jump from
sheet of the Riemann surfaceRg

( l ) to some other sheet of th
same surface. As it can be seen from Figs. 2 and 3, there
some sheetsSn

( l ) that are not joined to any other sheet
somegs,s8

l ,6 , i.e., g5gs,s8
l ,6 is not a branch point forSn

( l ) . In
this case the jump fromSn

( l ) to other sheetSm
( l ) when the

potential strength varies aroundgs,s8
l ,6 is forbidden.

As thek-plane images of the branch points are situated
the lower k half plane, the jumps occur only for potenti
strength variations around values for which the correspo
ing poles are resonant-state poles. There are not jumps
tween bound states induced by small potential strength va
tion.

C. Exceptions to the junction rules

As already mentioned, the junction rules that specify
labelsn and m of the sheets that are joined at each bran
point gs,s8

l ,6 are valid, provided that the pole corresponding
the potential strengthgs,s8

l ,6 is not an exotic resonant-sta
pole on Sm8

( l ) , where m.n. In the following, it will be
shown that if forgs,s8

l ,6 there are exotic resonant-state poles
Sn8

( l ) and Sm8
( l ) , where m.n, then the potential strengt

valueg5gs,s8
l ,6 cannot be a branch point forSm

( l ) . As a con-
sequence,Sn

( l ) andSm
( l ) cannot be joined atgs,s8

l ,6 , even in the
case when the junction rule~1! or ~2! would require this. In
order to explain why the existence of the exotic resona
state poles corresponding to the potential strength valuegs,s8

l ,6

on bothSn8
( l ) andSm8

( l ) leads to an exception to the junctio
rule at gs,s8

l ,6 , in the following the main properties of th
exotic resonant-state poles are outlined.

In Ref. @1# it was shown that for eachl>1 there are
resonant-state poles for absorptive potential (Img.0) that
do not become bound- or virtual-state poles as the pote
strength g increases. Due to their unusual behav
these poles have been called ‘‘exotic resonant-state pol
In the fourth quadrant of thek plane of the shee
images Sn8

( l ) , where n51,2, . . . ,l /2 for even l>2 and
n50,1,2, . . . ,(l 21)/2 for odd l, there are bound region
where the exotic resonant-state poles for absorptive pote
are located. When the strength of the potential increase
infinity, the exotic resonant-state pole remains inside a
tain bound region of thek plane. We remind that the labeln
of the Riemann sheets is the number which counts the p
as they occur atg→0 @see Eq.~3.17! of Ref. @1##.

The border of each bound region of thek plane, where an
exotic resonant-state pole of theS-matrix elementSl is situ-
ated, lies on a pair of points: an attractorK i

( l ) which is a zero
of the spherical Hankel functions of the first kind,hl

(1)(z),
and thek-plane image of a branch pointk(gs,s8

l ,6 ), which is a
zero of the spherical Hankel functions of the first kin
hl 61

(1) (z). In Ref. @1# it was shown thatK i
( l ) act as attractors

for the exotic resonant-state poles; i.e., asg→`, the exotic
resonant-state pole tends to an attractor. On each of the s
images Sn8

( l ) , n51,2, . . . ,(l /221) for even l .2 and n
03272
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50,1, . . . ,(l 23)/2 for odd l .1, there are two such boun
regions in the fourth quadrant of thek plane where the exotic
poles are located. On the sheet imageSn8

( l ) , with n5 l /2 for
even l .0 andn5( l 21)/2 for odd l, there is only a bound
region of thek plane in the fourth quadrant of thek plane
where the exotic poles are located. With the notation sho
in Figs. 1~a! and 1~b!, the analysis of the Riemann sheets
a large range ofl values (l 50 –8) allows us to draw the
following conclusions concerning the localization of th
bound regions in thek plane where the exotic resonant sta
poles are located: The bound region onSn8

( l ) , n5 l /2 for
even l .0 and n5( l 21)/2 for odd l, lies on K n

( l ) and on
k(gs,n11

l ,1 ). On the sheet imagesSn8
( l ) , n51,2, . . . ,(l /221)

for even l .2 andn50,1, . . . ,(l 23)/2 for odd l .1, there
is a bound region that lies onK n

( l ) andk(gs,n11
l ,1 ) and another

bound region that lies onKn11
( l ) andk(gs,n11

l ,2 ).
On all the other sheet images@n.( l 21)/2 for oddl and

n. l /2 for even lÞ0] there are only usual resonant-sta
poles, i.e., poles that move towards the imaginaryk axis as
the strength of the potential well increases and beco
bound- or virtual-state poles for a sufficiently deep poten
well.

The borders of a given sheet are made of the edges o
cuts taken along the branch points with the same imagin
part and a large radius circle that joins the cuts. The cuts
are boundaries of a given sheetSn

( l ) determine some thresh
old values for the imaginary part of the complex potent
strengthg. For a given potential strengthgPSn

( l ) , the corre-
sponding polek5k( l )(g) on the sheet imageSn8

( l ) belongs to
the usual or exotic class of resonant-state poles. This dep
on the sheet to which the giveng belongs and on the value o
the absorption Img.0 with respect to the thresholds on th
sheet. The situation is illustrated in Fig. 4~a! for even l and
Fig. 4~b! for odd l. The exotic poles occur when the absor
tion of the potential on the given sheet is located in t
corresponding region indicated by the hatching. There
exotic resonant-state poles for a strong (Img.Im gs,s8

l ,1 ) or
weak absorption (Img,Im gs,s8

l ,2 ) potential. The strong ab
sorption is related to the branch points whosek-plane images
correspond to the zeros ofhl 11

(1) (z), and the weak absorption
is related to the branch points whosek-plane images corre
spond to the zeros ofhl 21

(1) (z).
Let Imgs,p11

l ,6 be the absorption thresholds for the occu
rence of the exotic resonant-state poles on the Riem
sheet imageSp8

( l ) . Taking into account that the exoti
resonant-state poles for a givenl could occur only on the
sheets with the labelsn51,2, . . . ,l /2 for even l .0 and
n50,1, . . . ,(l 21)/2 for oddl, and that the occurrence of a
exotic resonant-state pole onSp8

( l ) is determined by the ab
sorption thresholds Imgs,p11

l ,6 on the corresponding Rieman
sheet, the exception to the junction rule can be expresse
follows:

If for g5gs,p11
l ,6 , which defines the threshold for the ab

sorption window on the sheetSp
( l ) , there is an exotic

resonant-state pole on the Riemann sheet imageSm8
( l ) with

m.p, i.e., if Imgs,p11
l ,6 5Im g.Im gs,m11

l ,1 or Imgs,p11
l ,6

5Im g,Im gs,m11
l ,2 , then the potential strength valueg
3-8
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JUMP PHENOMENON INDUCED BY POTENTIAL . . . PHYSICAL REVIEW A 68, 032723 ~2003!
5gs,p11
l,6 is not a branch point for the Riemann sheetSm

( l ) .
Consequently, atg5gs,p11

l ,6 the sheetSm
( l ) cannot be joined to

any other sheet.
Indeed, if it were an exotic pole onSm8

( l ) , this exotic pole
would remain inside its own bound region that lies on
attractor,K m

( l ) or Km11
( l ) , which is a zero ofhl

(1)(z) and on the
k-plane image of the branch pointgs,m11

l ,6 , and therefore it
would be placed in some other region of thek plane as com-
pared to thek-plane image ofg5gs,p11

l ,6 , which is a zero of
hl 61

(1) (z). For example, let us suppose that in the casel 55
the potential strength takes the valueg5g1,1

5,2574.590
1 i5.023. As Imgs,1

5,2,Im gs,2
5,2511.181, for g5g1,1

5,2 the
pole onS18

(5) will be an exotic pole and will be situated in
bound region of thek plane that lies on the image of th
branch pointgs,2

5,2 @i.e., k2
5,25k(gs,2

5,2)52.6572 i2.104] and
on the attractorK 2

(5)53.5712 i2.325. This pole cannot b
brought in the neighborhood of thek-plane image ofgs,1

5,2

@i.e., k1
5,25k(gs,1

5,2)50.8672 i2.896], does not matter how
much the potential strength is varied. Consequently,g
5gs,1

5,2 are not branch points forS1
(5) . That is why the jump

at g1,1
5,2 between the sheetsS0

(5) to S1
(5) is forbidden. Corre-

spondingly, atg1,1
5,2 the jump between the associated state

forbidden, i.e., (5,0)⇔(5,1) is forbidden. Instead of this, a
g1,1

5,2 the sheetS0
(5) is joined to the next sheet, i.e., toS2

(5) ,
and a small variation of the potential strength aroundg1,1

5,2

can induce the jump (5,0)⇔(5,2).
In case the pole corresponding togs,s8

l ,6 is an exotic
resonant-state pole on both sheet imagesSn

( l ) and Sm
( l ) , the

junction rules~1! and ~2! have to be modified as follows:
If the pole corresponding tog5g1,p

l ,2 is an exotic resonant
state pole onSp218( l ) andSp8

( l ) , theng1,p
l ,2 is not a branch point

FIG. 4. Panels~a! and ~b! give a schematic illustration of the
absorption windows related to the imaginary parts of the bra
points for a givenl>1. For evenl we have Imgs,1

l ,650. There are
l /221 weak absorption windows (Img,Im gs,s8

l ,2 ) for even l and
( l 21)/2 weak absorption windows for oddl. There arel /2 strong
absorption windows (Img.Im gs,s8

l ,1 ) for evenl and (l 11)/2 strong
absorption windows for oddl. The label of the Riemann shee
where these absorption windows are situated is indicated on
abscissa.
03272
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for Sp
( l ) . Consequently,Sp21

( l ) cannot be joined atg1,p
l ,2 to

Sp
( l ) , as the rule~1! would require, but it will be joined to the

sheetSp11
( l ) , provided that the pole onSp118( l ) is not an exotic

resonant-state pole, otherwiseSp21
( l ) will be joined toSp12

( l ) ,
etc. Once the junction atg1,p

l ,2 is established, the junctions a
gs,p

l ,2 (s52,3,4, . . . ) aredetermined as follows: Let us sup
pose that atg1,p

l ,2 the sheetsSp21
( l ) andSp1q

( l ) are joined, then
at gs,p

l ,2 the sheetsSs1p1q22
( l ) andSs1p1q21

( l ) are joined.
Similarly, if the pole corresponding tog5gs,p

l ,1 is an ex-
otic resonant-state pole onSp218( l ) and Ss1p218( l ) , thengs,p

l ,1 is
not a branch point forSs1p21

( l ) . Consequently,Sp21
( l ) cannot

be joined atgs,p
l ,1 to Ss1p21

( l ) , as the rule~2! would require,
but it will be joined toSs1p

( l ) , provided that the pole corre
sponding togs,p

l ,1 is not an exotic resonant-state pole o
Ss1p8( l ) , otherwiseSp21

( l ) will be joined toSs1p11
( l ) , etc.

In the following, a simple method to identify the forbid
den jumps will be given. It is based on the calculation of t
thresholds for the absorption windows that determine the
istence of the exotic resonant-state poles on some sh
From Fig. 5 it is easy to understand the exceptions to
junction rules~1! and~2!. Figure 5 gives the absorption win
dows for the existence of the exotic resonant-state poles
various Riemann sheet images in thek plane in the casel
51 –8. Letgs,p

l ,6 be the potential strength value at which th
sheetSn

( l ) should be joined to other sheet, according to t
junction rules. From Fig. 5 one can see which are the sh
imagesSm8

( l ) on which there are exotic resonant-state po
corresponding to this potential strength value. In this way
forbidden jumps (l ,n)⇔( l ,m) at gs,s8

j ,6 can be identified, and

h

he FIG. 5. The figure indicates by hatching the absorption windo
for the exotic resonant-state poles in the fourth quadrant of var
Riemann sheet images in thek plane in the casel 51 –8. The labels
of the sheets for eachl are indicated on the abscissa.
3-9
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therefore one can see the cases where the modified jun
rules have to be used. For example, forl 57 the sheetS0

(7)

should be joined, according to the rules~1! and ~2!, to the
sheetS1

(7) at g1,1
7,6 . However,gs,1

7,6 are not branch points fo
S1

(7) . Indeed, as it can be seen from Fig. 5, the pole onS18
(7)

that corresponds tog5gs,1
7,6 is an exotic pole, becaus

Im gs,1
7,65Im g,Im gs,2

7,2 . This pole remains in the bound re
gion of thek plane that lies on the image ofgs,2

7,2 on S18
(7)

(k2
7,252.6262 i3.736) and on the stable pointK 2

(7)53.517
2 i4.070. This exotic pole cannot be brought near the im
of gs,1

7,1 (k1
7,150.8682 i5.588) or near the image ofgs,1

7,2

(k1
7,250.8682 i4.248). Consequently, the sheetS0

(7) cannot
be joined with the sheetS1

(7) at g1,1
7,6 . For a similar reason

the sheetS0
(7) cannot be joined with the sheetS2

(7) at g1,1
7,6 .

Consequently, the jumps (7,0)⇔(7,1) and (7,0)⇔(7,2) are
forbidden. Similarly, atg1,2

7,2 the sheetS1
(7) cannot be joined

with the sheetS2
(7) and the jump (7,1)⇔(7,2) is forbidden.

For l 58 it can be seen that atg1,2
8,6 the sheetS1

(8) cannot be
joined either with the sheetS2

(8) or with S3
(8) . At g1,3

8,2 the
sheetS2

(8) cannot be joined with the sheetS3
(8) . At gs,4

8,1 the
sheetS3

(8) cannot be joined with the sheetS4
(8) . Conse-

quently, for l 58 the jumps (8,1)⇔(8,2) and (8,1)⇔(8,3)
are forbidden. The jump (8,2)⇔(8,3) is forbidden for the
potential strength variation in the neighborhood ofgs,3

8,2 , but
it is allowed neargs,3

8,1 . Similarly, the jump (8,3)⇔(8,4) is
forbidden neargs,4

8,1 , but it is allowed neargs,4
8,2 .

By the simple calculation of the potential absorption w
dows that determine the occurrence of the exotic reson
state poles on the corresponding Riemann sheet images
can directly establish the jumps between the sheets for s
potential strength variation around a branch point. As
exotic resonant-state poles occur on a small number of
mann sheet imagesSn8

( l ) @n51,2, . . . ,l /2 for evenl .0 and
n50,1, . . . ,(l 21)/2 for oddl ], at a first sight it could seem
that a general rule for the jumps, which includes the mod
cations mentioned above, would be possible. This is not
because the thresholds Imgs,s8

l ,6 of the absorption windows
that determine the occurrence of the exotic resonant-s
poles on a given Riemann sheet imageSn8

( l ) do not depend
monotonically on the labeln of the sheets~see, e.g., the cas
l 58 in Fig. 5, where there is an inversion between Imgs,4

8,1

and Imgs,5
8,1 ; for larger values ofl there are numerous inver

sions of this kind!.

III. LOCAL DEGENERACY WITH RESPECT TO THE
ORBITAL ANGULAR MOMENTUM

Besides the junctions between the sheets of a given
mann surfaceRg

( l ) , discussed above, there are junctions
tween the sheets of the Riemann surfaces for differentl. In
Ref. @1# it was shown that the resonant levels for the rect
gular central potential exhibit a local degeneracy with
spect to the orbital angular momentuml. Let gj ,i

( l )

( j 51,2, . . . ) be the set ofpotential-well strengths for which
there is a resonant state of angular momentuml correspond-
ing to a polek situated at an attractorK i

( l )PS i8
( l ) . In Ref.@1#

it was demonstrated that there are three sheets belongin
03272
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three distinct Riemann surfacesRg
( l ) , Rg

( l 21) , andRg
( l 11) that

are joined at a given value of the potential strength from
set gj ,i

( l ) . A careful analysis of the Riemann surfaces sho
that at gj ,i

( l ) , for which there is a pole at the attractorK i
( l )

PS i8
( l ) , the sheetsSq

( l 21) , S i
( l ) , andSq

( l 11) ( l .1), where
q5 j 1 i 21 for evenl andq5 j 1 i for odd l, are joined. Here
i 51,2, . . . ,l /2 for evenl and i 51,2, . . . ,(l 21)/2 for oddl.
For oddl there is also an attractorK 0

( l ) situated on the imagi-
nary k axis of S08

( l ) . This attractor is reached for a potenti
value in the setgj ,0

( l ) , with j 51,2, . . . . Forg5gj ,0
( l ) ~odd l )

the sheetsS0
( l 21) , S0

( l ) , andS0
( l 11) are joined.

This means that a resonant level (l ,i ) with orbital angular
momentuml, corresponding to a pole situated at an attrac
K i

( l ) , is degenerate with other resonant levels with orb
angular momental 21 and l 11. If the potential strengthg
varies around the valueg5gj ,i

( l ) , the position of the pole in
the k plane and the corresponding level energy changes
all three partial wavesl 21,l ,l 11 with different rates of
change. In Ref.@11# the derivativedk2/dg that describes the
rate of change of the pole position for the orbital angu
momentuml with respect to the potential strength variatio
has been calculated,

dk2

dg
52

k21g

g

hl
(1)~k!

hl 21
(1) ~k!hl 11

(1) ~k!
1

k2

g
. ~4!

Let us suppose that the potential has a small varia
around the valuegj ,i

( l ) for which there is a pole at the attracto
K i

( l ) on S i8
( l ) . For k5K i

( l ) , whereK i
( l ) is a zero ofhl

(1)(k)
~stable point!, and for largeg we obtain from Eq.~4!
dk2/dg→0, i.e., the pole for the orbital angular momentu

l is stable with respect to the potential strength variation.
the same potential strength valuegj ,i

( l ) there is a pole forl
21 and a pole forl 11, which are situated at thek-plane
image of a branch point. By replacingl→ l 21 and l→ l
11 in Eq. ~4!, we obtain the rate of change of the po
position in the wavesl 21 andl 11 for the potential strength
varying aroundgj ,i

( l ) . It results indk2/dg→`, i.e., the posi-
tion of the pole in the wavesl 21 andl 11 is unstable with
respect to the potential strength variation.

For example, forg5g1,1
(2)534.7171 i2.598 there is a pole

at the stable pointK 1
(2)50.8662 i1.500 onS18

(2) . For the
same potential value there is also a pole atk1

1,15k(gs,1
1,1)

50.8662 i1.500 on S18
(1) and a pole atk1

3,25k(gs,1
3,2)

50.8662 i1.500 onS18
(3) . The sheetsS1

(1) , S1
(2) , andS1

(3)

are joined atg5g1,1
(2) . In Fig. 6 the derivativedk2/dg is

shown for l 51,2,3, with g taking values around the valu
g5g1,1

(2) , for which onS18
(2) the pole is situated at the attrac

tor. One can see that forl 52 the derivativedk2/dg has a
small value with a minimum aroundg5g1,1

(2) , while for l
51 andl 53 the derivative has a sharp change, with a ma
mum for this value of the potential. This means that in t
wave l 52 the system reaches a stable equilibrium, while
the wavesl 51 andl 53 the system is unstable in the neig
borhood ofg5g1,1

(2) . The sharp change in the pole positio
for l 51 andl 53 induced by the potential strength variatio
3-10
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means that the degeneracy of the three waves atg5g1,1
(2) can

easily be removed. Atg5g2,1
(2)584.2191 i2.598 there is a

pole atk1
1,1 on S28

(1) and a pole atk1
3,2 on S28

(3) , so that at
g5g2,1

(2) the sheetsS2
(1) , S1

(2) , andS2
(3) are joined. Similarly,

at g5g3,1
(2)5153.3551 i2.598 there is a pole atk1

1,1 on S38
(1)

and a pole atk1
3,2 on S38

(3) , so that atg5g2,1
(2) the sheets

S3
(1) , S1

(2) andS3
(3) are joined.

Equation~4! shows that the derivativedk2/dg becomes
closer and closer to zero in the neighborhood ofgj ,i

( l ) with
increasing value of the potential strength from the setgj ,i

( l ) . In
other words, for a givenl the stability of the system in the
neighborhood of the attractor increases by increasing
depth of the potential well,g. This conclusion is illustrated in
Fig. 7, where the derivativedk2/dg for l 52 is shown as the
potential varies in the neighborhood ofg1,1

(2) , g2,1
(2) , andg3,1

(2) ,
respectively. Equal lengths of the interval for Reg variation,
centered on Reg1,1

(2) , Reg2,1
(2) , and Reg3,1

(2) , respectively, have
been taken. One can see that the curvedk2/dg vs Reg is
flatter and closer to zero with increasinggj ,i

(2) .
The degeneracy described above occurs for some par

lar values of the potential strength, i.e., it is a local deg
eracy. Due to exact local degeneracy three angular mom
do contribute to the resonant cross section. This degenera
supports a new type of resonance in the cross section, w
is associated to the cooperative contribution of three adj
angular momenta.

FIG. 6. The absolute value of the derivativedk2/dg for three
adjacent values ofl ( l 51,2,3) around the value ofg5g1,1

(2)

534.7171 i 2.598, for which there is an attractor onS18
(2) . Im g

has been kept constant to the value Img52.598.
03272
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-
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The exact local degeneracy of three partial waves occ
also in the case when a Coulomb barrier for a point charg
added to the rectangular well potential Ref.@12#. In @11# the
effect of the potential-well diffuseness on the pole positio
was studied. It was shown that the attractorK i

( l ) is slightly
shifted and that the poles in the waves (l 21) and (l 11) are
shifted too, provided that the diffuseness is small. Con
quently, for a diffuse edge well atgj ,i

( l ) , for which there is a
pole at the attractorK i

( l )PS i8
( l ) , the levels (l 21,q), (l ,i ),

and (l 11,q), whereq5 j 1 i 21 for evenl andq5 j 1 i for
odd l, are rather quasidegenerate than degenerate.

IV. CONCLUSIONS

The effects of the potential strength variation on t
S-matrix poles are discussed in the framework of the R
mann surface approach to bound and resonant states.

By associating a sheetSn
( l ) of the Riemann surface of th

function k( l )(g) over the g plane and the correspondin
k-plane imageSn8

( l ) to each state with the quantum numbe
( l ,n) the jump between the states (l ,n) and (l ,m), induced
by a small potential strength variation around a branch po
gs,s8

l ,6 , is treated as the jump between the sheetsSn
( l ) and

Sm
( l ) .
The rules for the jumps between states withD l 50, i.e.,

( l ,n)⇔( l ,m), are established. In other words, the labelsn
andm of the sheetsSn

( l ) andSm
( l ) , and of the corresponding

FIG. 7. The derivativedk2/dg for l 52 in the neighborhood of
three successive values ofgj ,1

(2) for which there is a pole near th
attractor K 1

(2) : g1,1
(2)534.7171 i2.598, g2,1

(2)584.2191 i2.598, and
g3,1

(2)5153.3551 i2.598, respectively. By arrows Regj ,1
(2) is indi-

cated. Img has been kept constant to the value Img52.598.
3-11
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k-plane images that are joined at a given branch pointgs,s8
l ,6 ,

are determined. The forbidden jumps can be identified by
calculation of the thresholds of the absorption windows
the potential, which determine the occurrence of the ex
resonant state poles on various Riemann sheet imagesS i8

( l ) .
It is shown that if for a givengs,s8

l ,6 there are exotic resonan
state poles onSn8

( l ) andSm8
( l ) , wherem.n, then the poten-

tial strength valuegs,s8
l ,6 is not a branch point forSm

( l ) and,
consequently,Sn

( l ) andSm
( l ) cannot be joined atgs,s8

l ,6 , even in
, J

03272
e
r
ic

the case where the junction rules would require this. T
modifications to the junction rules, induced by the existen
of the exotic resonant-state poles, are given.

The local degeneracy of the energy levels for three par
wavesl 21, l, andl 11 is generated by the potential streng
variation around the value for which there is an attractor o
Riemann sheet for the orbital momentuml. For this potential
value the system reaches a stable equilibrium in the wal
and is unstable in the wavesl 21 andl 11.
hys.
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