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Application of the hyperspherical hidden-crossing method to positronium formation
in positron-lithium collisions
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The hyperspherical hidden-crossing methetHCM) has been applied ts-, p-, and d-wave positronium
formation in positron-lithium collisions in the energy range 0—1.8 eV, using a model potential to describe the
atomic core. The calculations have provided a test of the HHCM sT,ie, andd-wave positronium formation
cross sections are reported and compared with variational and close-coupling calculations. A minimum is
obtained in thes-wave positronium formation cross section which is due to the Stuckelberg phase having a
value of 7. The cross sections have also been computed including the correction term which emerges from the
one-Sturmian theory.
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I. INTRODUCTION Kernogharet al.[11] performed a number of CCA calcu-
lations for thes-, p-, andd-wave positronium formation cross
Low-energy positron-lithium collisions are of interest be- section for energies up to 2.8 eV. They varied the number of
cause the ground-state positronium formation channel igrget atomic states, positronium atomic states, and pseu-
open even at zero incident positron energy. The ionizatiofflostates in the expansion of the wave function. Their most
energy of lithium(5.4 eV) [1] is smaller than the binding elaborate calculation is a 14-state Psgb,3s,4s,2p,
energy of positronium(6.8 eV). According to Wigner's  3p 4p,3d,4d)+Li(25s,2p,3s,3p,3d) CCA. For thes wave,
threshold law[2], the sswave positronium formation cross there is some discrepancy between the 14-state CCA and the
section is infinite at zero incident positron energy. Lithium variational results, but the cross sections are the same order
can be approximated as an one-electron atom which meam$ magnitude and good agreement is achieved at energies
that positron-lithium collisions can be considered as an efabove 1.6 eV. For thp wave, the 14-state CCA and varia-
fective three-body system. tional results agree well for the entire energy range.
McAlinden et al. [12] have extended the 14-state CCA
calculation of Kernogharet al. [11] to higher energies
A. Previous experimental measurements and calculations (0.5-60 eV and have also performed a 32-state CCA calcu-
of positronium formation in e*+Li collisions lation. The 32-state CCA includes 3 positronium states and
29 lithium atomic and pseudostates. There is good agreement
between the 14-state CCA and the 32-state CCA for the
round-state positronium formation cross sectisammed
ver partial waves The total positronium formation cross
ection agrees with experimental measuremggits

Recently, Surdutoviclet al.[3] measured the positronium
formation cross section for positron-lithium collisions for en-
ergies down to a few tenths of an electron volt. There hav%
been several calculations of the positronium formation crosg
section but relatively few for low energy.

Watts and Humberstopt—6] employed the Kohn varia-
tional method to compute ttee, p-, andd-wave positronium
formation cross sections for positron-lithium collisions in the
energy range 0—1.8 eV where there are only two open chan- The hyperspherical hidden-crossing metlidltHCM) was
nels, elastic scattering and ground-state positronium formaermulated to treat the correlated motion of three charged
tion. They reported that thewave positronium formation particles of arbitrary mass and chafgs)]. A significant fea-
cross section decreased as the number of terms in the triadre of HHCM is that it can give rise to an interpretation of a
function was increaselb]. scattering process. For instance, the HHCM calculations of

A pioneering calculation of the positronium formation the s-, p-, andd-wave positronium formation cross sections
cross section in the energy range 0.5—-10 eV was performefdr positron-hydrogen collisions in the Ore gap provided an
by Guha and Ghosh7] using a two-state Li(&)+ Ps(1s) explanation for the smali-wave and largal-wave positro-
close-coupling approximatiofCCA). Later, Basu and Ghosh nium formation cross sectiongl4]. For the s wave, the
[8] used a three-state Lié2p)+ Ps(1s) CCA to compute Stuckelberg phase is close toand the two amplitudes that
the positronium formation cross section for energies up taorrespond to different paths leading to positronium forma-
100 eV. Hewittet al.[9,10] considered the Li(&2p,3s,3p) tion interfere destructively. In contrast, for tlilewave, the
+Ps(1s,2s,2p) CCA for positron-lithium collisions for en- Stuckelberg phase is close t&/2 and the two amplitudes
ergies up to 50 eV. interfere constructively. The HHCM has also provided an

B. Previous calculations using the hyperspherical
hidden-crossing method
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interpretation of the the minimum in the transition probabil- 1 1 1

ity for the reaction “He+“He+“He—*He+*He, [15], C(Q)=——+ - _ . 3
which occurs at an energy where the Stuckelberg phase is SN COSa /1 —sin 2a cosf

3.

Despite the success of HHCM in giving an interpretation '€ hyperspherical adiabatic basis functiopg(R;{2)
of scattering processes, there have only been a limited nunf'® found by holdingR fixed and solving
ber of application§13—21] of the method since its formula- 2 P 2 .
tion. The method is not exact, and needs to be further tested [ATF2RCD)] (R Q) =22, (RR7,(RO)  (4)
to determine its accuracy in describing collisions involvingfor the adiabatic ener
three particles. With this goal in mind, we have applied th
HHCM to positronium formation for low-energy positron
collisions with lithium. Although formulated for three-body
systems, the method is readily extended to positron-lithium [A242p,(1)C(Q)]S,(v:Q)= (12— 1)S,(1:Q) (5
collisions by incorporating a model potential to describe the

atomic core. ) for the eigenvaluep,(v). The adiabatic energy eigenvalues
In Sec. II, we present a summary of the formulation of the; (R) correspond to different branches on the real axis of

HHCM and provide details on the model potential. In Sec.the functione (R), which is single-valued function on a Rie-

lll, we discuss the computational tools which we developednann surfac§13,24). The sheets are joined at branch points

specifically for the application of the HHCM to low-energy in the complex plane, and different sheets can be reached by

positron collisions. In Sec. IV, we present tse p-, and  ¢jrcling a branch point. Since(R) is defined for alR, when
d-wave positronium formation cross sections for positron-p,(p),2=1,2— 1 the Sturmian eigenfunctios,(v:Q) is

lithium collisions; we compare the HHCM results with varia- oqual to the adiabatic functiop(R=p(»);Q) to within a
tional and CCA results and discuss the importance of the qmalization constant.
Stuckelberg phase. In Sec. V, we give the conclusion and the The exact wave functio®’ (R,Q) for three charged par-
long term goal of the HHCM study of positron—alkali-metal tjcjes can be expressed as
collisions.

Atomic units are used throughout unless explicitly stated.

gy eigenvalueg(R). Alternatively,
€the angle-Sturmian basis functioiB;(v;€2) are found by
holding (»?>— %) fixed and solving

W(R,Q)zf JRZ(KR)®(v,Q)2vdv, (6)
Il. HYPERSPHERICAL HIDDEN-CROSSING METHOD ¢

The original hidden-crossing theory developed by Landat)’Vhezre Z,(KR) are Bessel functions of total enerdy
[22] for ion-atom collisions used a semiclassical approxima-= K*/2 andc denotes a contour in theplane. The unknown
tion for internuclear motion. Macek and Ovchinnikpy3]  coefficients®(»,Q) can be expanded in the angle Sturmian
derived a hidden-crossing theory without the semiclassicapasis functions. The hidden-crossing theory emerges by trun-
approximation, thus extending the applicability to threecating the expansion to a single-Sturmian function, taking
charged particles of arbitrary mass. Their derivation is basethe asymptotic limit R—) of the wave function, and
on the hyperspherical representation. The theory is summéValuating the integral using stationary phase approximation.
rized below for positron-hydrogen collisions; the application The resulting wave equatidisee Ref[13] for detail9, aside
of the hidden-crossing method to positron-lithium collisionsfrom an unimportant multiplicative factor, is given by
is discussed at the end of this section. L

The hyperspherical coordinates are the hyper-radius V(R.O)~ 2 E

=\/r21+r22 and the hyperanglesr=tan (r,/r;) and 6 paths 2 ~/KM(R)

=cos (r,-r,), wherer, andr, are the position vectors of R

e” ande” with respect to théinfinitely heavy proton[23]. xexpl(if K (R')dR')(p (R:Q), R,
The reduced wave functiont'(R,Q) is related to the ¢, a

Schralinger wave function ¥(R,Q) by V¥(R,Q) 7

=R¥%sina cosa Y(R,Q) [23], whereQ) represents the hyper-
anglesa, 6, and the three Euler angles. The Sainger \yhere
equation is expressed as

2 A+2RCQ) KL(R)=K?=2¢(R) ®)
_W—FT_ZE lI’(R,\Q):O, (1) and
where 1/ 1
SL(R):SM(R)—'—E(W)' 9

A2 ? L2 L 1 -
90?" coda  sita 4

Note that the wave functiod’(R,Q) of Eq. (7) is of the
WKB form even though no semiclassical approximation was
and made at the outset.
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To apply the HHCM, one must compute the wave vector Within the framework of the one-Sturmian theory, one
K,(R). Following Zhou and Lif{23], the adiabatic function can calculate a correction to the wave vector for laRje
¢(R; Q) is expanded into states of total angular momentunmwheree(R) is a slowly varying function oR [13,14. The

L: corrected wave vectdf’(R) is given by
L
2 _w2_~o71
QDM(R;Q)=|§=:0 f|(R;a,H)Df,I‘l?M(wl,wz,wg), (10 KL(R)=K"=2¢,(R), (17)
where
where w1 ,w,,w3 are the three Euler angles. The functions
fi(R;a,0) are solutions to the coupled partial differential ~, , 1 P,
equations slu(R)=s'u(R)— 3 WJF CuloRe
: . — 2.7 . _ 1 azgop.
2 Hiaf (R, 0)=2R% (R)fy (R, 0), =e,(R) =5 ¢4 o7 ) (18)
1=0,1,2....L, (1) It has been shown that the potentBi[(R) asymptotically

gives the close-coupling channel potentials through terms of
the order of 1R? [28-30.

The HHCM can be applied to positron-lithium collisions
by using model potentials. We chose the same model poten-
Rial as used in the variational calculatipp—6] to allow a
more direct comparison of results. The model potential is of
the form given by Peach31] but without the core-
polarization term. The electron-core interaction is

where the operator8{, ; are given in Refs[23,25. The
eigenvalues;l’L(R) [14] can then be used to calculate the
wave vectorK ,(R) for the Lth partial wave(The L super-
script for the wave vector and eigenvalues has been su
pressed for brevity

The Jost matrix for th&.th partial wave is obtained from
the asymptotic form of the wave function. TBamatrix ele-
ment for a transition between two adjacent levieendj is
given by

1 2
Ve-pj+=————€ "(1+r+8'r?). 19
Si=[) a3+ 195 (12) ot ) 9
The modulus square of th&matrix elementS;|? can be ~ The values of the parameters are given in i8f.and were
expressed in the form chosen to fit spectroscopic data. The potential also supports a
bound Is state (-51.5 eV) which is unphysical but well
S5 [2= 4P} sirPAf; (13  separated in energy from the ground-state K)(2
(—5.39 eV). The positron-core interaction is taken to be the
where negative of the static interaction E.9). Unlike the hydro-
genic case, the reduced potential,
Ahz‘ReUK(R)dRH,
c C(R;a,0)
1
Ph =ex;{ -2 Im[ LK(R)dR _ (14) = COSa[1+ 2e  "Reose(1 4+ SR cosa+ 8'R?*cofa)]
In Eq. (14).,.A='J- is the Stuckelberg phase aRy is the one- _ _L[lJrZef Rsna(1 4 sRsina+ & Rsirfa)]
way transition probability. The contouwris from the classical Sina
turning pointRit on the sheet of the Riemann surface corre-
sponding to level, around the branch poifR,, to the clas- _ 1 (20)
sical turning poinIR} on the sheet corresponding to leyel [1-sin 2« cos]¥?’

The S matrix of Eqg.(13) does not satisfy unitarity. To ensure
unitarity, Eq.(13) is multiplied by the factor (+ P};) to give ~ depends upon the parameter

S5 |2=4P5(1-Pj)si? A . (15 IIl. COMPUTATIONAL TOOLS

The justification for the factor (% Ph) can be found in  To apply the HHCM tos,, p-, and d-wave positron-
Refs.[26,27]. The partial wave cross section for the transi- lithium scattering, it is necessary to solve the hyperspherical

tion between two level§in units of ra2) cpupled partial differential equations, E41), for the lowest
eigenvalues at thousands of valuesRyfreal and complex.

L (2L+1) o, The eigenvalues need to be obtained to a high accuracy: a
i :T|Sli| ' (16 feow parts in 16 for smallR and a few parts in T0for large
R. We developed two numerical tools to compute the eigen-
wherek; is the incident momentum. values accurately and efficiently. First, we wrote finite ele-
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ment method (FEM) codes to solve the hyperspherical 30 T . T T
coupled partial differential equations far=0,1, and 2[32]. b
Second, we developed a vector iteration program for the ei- i
genvalue equation. ool |
The FEM is ideally suited for hyperspherical calculations ™ i

of Coulomb system§33]. The use of local interpolation al-

lows one to concentrate the polynomial basis functions in the :
region of the potential singularities, which include an attrac- ¢ L
tive line singularity ate=0, a repulsive line singularity at L
a=m/2, and an attractive point singularity ai=0,« e;u(R) L
= 7r/4. Although the FEM polynomials guarantee continuity

of the functionW(R;«,6) and its derivatives)¥/da and e N em(zs) _________
d¥/96 across the element interfaces, it is possible to relax Ps (1s)+ LI -
this condition and allow the derivativieV/d« to be discon-

tinuous at the point singularity. Although this modificationis /| ]
not particularly important at smalR, it improves signifi-

cantly the accuracy of the energy at lafgewhere the cusp o Litte)

in the wave function is extremely sharp and narrow.
Most of the CPU time in the HHCM calculation is spent 20 | , , . .
in solving the resulting eigenvalue problem. In FEM, one 0 5 R 10 15 20
obtains a banded generalized eigenvalue matrix equation;
only the lowest few eigenvalues are needed. The matrix is FIG. 1. The lowest three, (R) potentials forL=0.
complex for complexR. We developed a code to solve the
real/complex generalized eigenvalue problem in banded storium formation cross sections f&" + Li collisions in the
age mode using vector iteration. The rate of convergence adnergy range 0—1.8 eV. We computed along the real axis
vector iteration depends on the accuracy of the initial guessg®<R=80) the lowest three potentiaies;L(R) for the s, p,
of the eigenvalue and eigenvector. andd waves. Figure 1 is a plot of the potential§(R) for
The exact eigenvalues and eigenvectors are knowiRfor the s wave. The lowest three eigenvalue§(R) for each

=0. Since some of the levels are degeneratBa0, itis  partial wave asymptotically approach L&), Ps(is), and
important to split the degeneracy and order the levels cortj2s), respectively.

rectly for the first nonzerdR point on the real axis. In this  For each partial wave, we located as a function of energy
case, our input into the vector iteration is the exact eigenvale classical turning point&, and RS on the second and

ues at_R=0 (plus a correction obtaine_d ffo’.“ first-order Per third potential curves and the branch polﬁ’ﬁ3 that connects
turbation }heor)/ an.d the exact analytlcal ¢|genfuncthns. At eigenvaluess j(R) and s4(R). For thes and p waves, the
each additional point on the real axis, we input the elgenval—b h boint is aR.— 10.80+14.80 and for thed i
ues[plus a correction termXE/AR- AR)] and eigenvectors rl')anc poInt 1S atzs -ouria.cband for thal wave at
from the previous value dR. In all cases, we obtained eight R2s=10.65+14.95. The real part of the position of this
digit convergence in just two or three iterations. We compute®ranch point for each partial wave is to the rightr.
the eigenvalues up to large=80 a.u. in order to identify We also found another branch point connec#ggr) and
which physical channel is associated with each of the eigere3(R) much closer to the origin. It is likely due to the use of
values. This also enables us to to check the accuracy of th@odel potentials rather than a pure Coulomb potential. How-
eigenvalues at large by comparing the computed eigenval- ever, because R§€3)<Rt2 a transition can only be made
ues with the known values of the bound-state energies of thitom the £5(R) to £5(R) around this branch point via tun-
ground and excited states of lithium and positronium. neling. It is therefore a reasonable approximation to neglect
The next step is to locate the branch point that connectghis branch point. We also located a branch point that con-
the two sheets whose eigenvalues asymptotically correspontkcts eigenvalues;(R) and £5(R) for the s wave and a
to the physical levels oé" +Li(2s) and Ps(3)+Li". As  pranch point that connects eigenvalug$R) andej(R) for

one goes around a closed path that encloses this branghe p wave. The real part of the position of these branch
point, the eigenvalues associated with these two sheets INt&fnints is less thamiR, and Ry, and for the same reason we

change. Because we are inputting both an initial eigenvalugemected them in the calculations.
and eigenvector into the vector iteration, there is no ambigu- Fqr each partial wave, we computed the contour integral

ity about the ordering of the complex eigenvalues. We cany Eq. (14) where the contouc is from R, around the branch
obtain the position of the branch point to the desired accu-

: : ' oint RS, to RS. Using this contour integration, we com-
racy by systematically decreasing the size of the closed patlg'uted the Stuckelberg phase and probability according to Eq.

(14) and the modulus squared of tBanatrix elemenBs, for

the transition Ps(d)+Li*—e* +Li(2s) according to Eq.
Using the HHCM with the model potential given by Egs. (15). The Smatrix elemeniS;, for ground-state positronium

(19) and (20), we calculated the-, p-, andd-wave positro-  formation is equal to thi§-matrix elemenSs,. From|S5,/?,

IV. RESULTS
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FIG. 2. Theswave positronium formation cross section for  F|G. 3. The p-wave positronium formation cross section for
e"+Li collisions computed by the HHCMlong-dashell the o+ | collisions computed by the HHCMlong-dashell the
HHCM™* (solid), the variational methodshort-dashed[4—6],  pyHcM*eo (solid), the variational methodshort-dashed[4—6],
and the 14-state CCAdot-dashefi[11]. The variational and 14- gnq the 14-state CCAdot-dashel[11]. The variational and 14-
state CCA results are from the figures in R&). state CCA results are from the figures in R&.

we computed the positronium formatlon cross section aCfion, the Stuckelberg phase goes throughat a different
cording to Eq.(16), o3,=[(2L+1)/k3][S5,J%, whereks is  energyk=0.08, giving a minimum in the cross section. In-
the wave vector of the incoming positron. In the HHCM terestingly, the position of the minimum in HHCM cross
calculation, the wave vectd ,(R) defined by Eq.(8) is  section is close to the second minimum in the variational
used for all values oR, real and complex. calculation and the position of the minimum in the
In order to take into account the correction term to the

HHCM, we also computed the Stuckelberg phase, probabil- 5, : : :
ity, and positronium formation cross section using the wave

vectorRM(R) defined by Eq.(17) along the real axisR

>R}) and K,(R) defined by Eq(8) in the complex plane.

We refer to these calculations as HHCHA" 0
We present in Figs. 2—4, respectively, tbe p- and

d-wave positronium formation cross section computed with

the HHCM and the HHCM®" calculations and compare a0 -
these calculations with variationpd—6] and 14-state CCA
[11] calculations. OF, (a?)

A. Results for the s wave 20

It has been known for over a decade from the variational
results that the-wave positronium formation cross section is
small and has two minimum &=0.074 and 0.314]. The
HHCM and the HHCM " calculations explain why the
s-wave positronium formation cross section is small and the S
reason for a minimum. These calculations obtain a Stuckel- 0 L ,
berg phase close to, or equal te, This means the two 0.0 0.1 K 0.2 03
amplitudes that correspond to different paths leading to pos- :
itronium formation destructively interfere and that the corre- i, 4. The d-wave positronium formation cross section for
spondings-wave cross section is nearly zero. In the HHCM g* 4 |j collisions computed by the HHCM(long-dashey the
calculation, the Stuckelberg phase goes throughat k  HHCM*®" (solid), the variational methodshort-dashed[4—6],
=0.26 giving a minimum in the-wave positronium forma- and the 14-state CCAdot-dashefi[11]. The variational and 14-
tion cross section at this energy. In the HHCR calcula-  state CCA results are from the figures in Rif.

10 -
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HHCM™ " cross section is extremely close to the first mini- | T|? is close to unity and the barrier has negligible effect on
mum in the variational calculation. the cross section away from thresholkl<{0.1). Ask ap-
Because the Stuckelberg phase is nearlythe swave proaches zerdT|? tends to zero and this lowers the cross
positronium formation cross section is very sensitive to thesection dramatically.
accuracy with which the phase is determined. This is re- Fork<0.11, the HHCM " cross section is smaller than
flected in the extreme sensitivity of the variational calcula-the HHCM cross section and in better accord with the varia-
tions to the choice of model potential, and the CCA calculational and CCA calculations. The difference between the
tions to the number of states and pseudostates includettHCM and HHCM" " results, which is more significant
Watts and Humberstof#] reported a factor of 10 difference with decreasingk, can primarily be attributed to the long-
between thes-wave positronium formation cross section range behavior of the* +Li(2s) potentials used in the cal-
computed with the two different model potentials. The culations. For smalk, Ri<Re(Rb,). As k is decreasedy}
swave elastic cross section and theand d-wave elastic 6yes to largeR. The potentialz 4(R) lies slightly above
and positronium fqrmatlon cross sections showed SlglT"f"the potentiale 3(R) for R<1.1. This has the effect that for
cantly less sensitivity to the choice of the model potential. 2 cor T
Kernoghanet al. [11] noted a factor of 1000 difference be- V€'Y Smallk, Rs in the HHCM" " calculation is significantly
tween their 8-state CCA and 14-state CCA calculations of théarger than in the HHCM calculation which means that one
s-wave positronium formation cross section. The two sets of'@s to integrate over a longer range to compute the probabil-
CCA calculations did not vary so dramatically for thevave ity. This results in a smaller probability and a smaller cross
elastic cross section ang and d-wave elastic and positro- Section. The comparison of the HHCM and the HHC¥I
nium formation cross sections. calculations for smalk suggests that one should use the po-
The HHCM and HHCM ° calculations do not give the tential’s),(R) for large R. There is little difference between
resonance that is seen in the 14-state CCA calculdfith  the p-wave Stuckelberg phase computed between the two
The resonance occurs at a valukafose to the minimumin  sets of calculations. For the HHCM, the Stuckelberg phase
the HHCM and the second minimum in the variational re-y4ries from 2.724 to 2.643 for the energy range 0-1.8 eV,

sults. The cause of this resonance is not known and it is NQfhereas for the HHCNIS® calculation the Stuckelberg phase
present in the 8-state CJAL1] or the variationa[4—6] cal- varies from 2.661 to 2.885.

culations. A noteworthy feature of the HHCM is that it does
not seem to give rise to spurious resonances which can be a
problem with CCA and Kohn variational methods. C. Results for thed wave

The HHCM and HHCM ' calculations have provided
an interpretation of the-wave positronium formation cross By comparing the HHCM calculation of thtwave pos-
section results. Although the HHCM and the HHCRM" cal-  itronium formation cross section with the 14-state CCA cal-
culations generally overestimates the cross section, they exulation[11] (Fig. 4), it can be seen that the HHCM has the
plain the reason for a minimum and the overall small mag-main features of the cross section. The cross section tends to

nitude of the cross section. zero as the incident positron wave number is decreased to-
wards the Li(3) threshold. The maximum in the cross sec-
B. Results for the p wave tion is atk=0.15, slightly to left of the position of the maxi-

For thep-wave positronium formation cross section, the mum in the 14-state CCA calculatiok€ 0.18). The HHCM
HHCM ™ results are in closer agreement in both shape an€ross section is larger than the 14-state CCA cross section.
magnitude with the variation4b,6] and 14-state CCA11] For instance, the height of the maximum in the HHCM cal-
results than the HHCM resuliEig. 3). The position of the culation is about twice the 14-state CCA calculati¢Ac-
maximum in the HHCM " calculation k=0.07) isin close cording to Watts[5] and Humberstor{34] their d-wave
agreement with the position of the maximum in the varia-variational results are not fully converged and therefore are
tional and 14-state CCA resultk€£0.08). The HHCM over-  probably significantly less accurate than the lower partial-
estimates the cross section compared to the variational revave variational resultsThe HHCM and HHCM °°' calcu-
sults by a factor of 2 for 0.16k=<0.362. The HHCM "  |ations do not give the resonance seen in the 14-state CCA
cross section is a factor of 1.9 times larger than the Val’iaE]_]_]_ This resonance is also not present in the 8-state CCA
tional results atk=0.1. However, with increasing the  [11] and its physical origin is not known.
agreement between the HHCWP" and variational results The HHCM' ' calculation gives better agreement than
significantly improves so that by= 0.3 the difference is less the HHCM with the 14-state CCA calculatidii1] for the
than 20%. This clearly illustrated the importance of includ-d-wave positronium formation cross section. The position of
ing the[ 1/4R%*+ (¢ ,(R)|#*¢, /dR?)] correction ternf14]in  the maximum k=0.19) in the HHCM " calculation is in
the wave vector. good agreement with the position of the maximum in the

There is a slight barrier (34104 a.u.) in thep-wave  CCA calculation. The magnitude of the HHCNP' cross
potentiale 5(R) used in the HHCM calculation. The HHCM section is generally smaller than the HHCM cross section. At
cross section must be multiplied by the transmission moduthe height of the maximum, the HHCM cross section is only
lus squared terniT|? associated with the barri¢t4]. How-  about a factor of 1.4 times larger than the 14-state CCA
ever, because the height of the barrier is extremely smalkalculation[11].
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The d-wave Stuckelberg phase obtained in the HHCMFor thep- and thed-wave positronium formation cross sec-
and HHCM' " calculations varies from 1.960 to 2.104 and tions, the HHCM ' calculation gives better agreement with
from 1.909 to 2.207, respectively. the variational4—6] and CCA[11] results than the HHCM
calculation. The position of the HHCM® maximum in the
p- and the d-wave positronium formation cross sections
, ) agrees well with the variationg#t—6] and CCA[11] calcu-
The HHCM and HHCMCO_r calculations have provided |ations. It should be noted that both HHCM and HHCRY
an interpretation of the main features of tse p-, and  cgicylations generally overestimates the positronium forma-
d-wave positronium formation cross sections for positron-jon cross section for all partial waves. The correction term,
lithium co|||s|on§_ For thes wave, qbtalnlng a Stuckelberg previously derived asymptotically from the one-Sturmian
phase close tar is an important finding k_)ecausg there are NOtheory[13,14), improves the HHCM results. These calcula-
examples of the Stuckelberg phase being an integer multiplgons ‘therefore demonstrate the importance of including the

V. CONCLUSION

of 7/2 for electron collisions. There are, however, example.orrection term.

of the Stuckelberg phase being integer multiplesmé? for
other reactions. For example, Waetlal. [14] showed using
the HHCM that the Stuckelberg phase is close rtofor
swave positronium formation in positron-hydrogen colli-
sions andw/2 for the d wave. Ostrovsky{35] has noted
Stuckelberg phases close to integer multiplesr# for the

The HHCM and the HHCM°®® results for low-energy
positron-lithium collisions are encouraging and motivate a
complete study of positron collisions with the alkali metals.
The primary goal of this study is to provide insight into what
causes the Stuckelberg phase to be integer multiple/af
The application of HHCM to positron—alkali-metal colli-

L=0dtu rearrangement process. In addition, Nielsen andjons will enable a systematic study of the dependency of the

Macek [15] have reported a Stuckelberg phase of %r

Stuckelberg phase on enerBytotal orbital angular momen-

low-energy recombination of identical bosons in three-bodytym L, and atomic numbeZ for the same atomic series.
collisions. The reason why the Stuckelberg phase has a value

equal to an integer multiple ofr/2 for certain reactions at

particular energies is not known. The present result together

with the earlier results of Waret al.[14] and Ostrovsky35]
shows the Stuckelberg phases of integer multiples/@fcan
be obtained for rearrangement processes.

For s-wave positronium formation in positron-lithium col-
lisions, because the Stuckelberg phase is clos@rt@®qual
to) m, the cross section is very smabr zerg and highly
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