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Application of the hyperspherical hidden-crossing method to positronium formation
in positron-lithium collisions
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The hyperspherical hidden-crossing method~HHCM! has been applied tos-, p-, andd-wave positronium
formation in positron-lithium collisions in the energy range 0–1.8 eV, using a model potential to describe the
atomic core. The calculations have provided a test of the HHCM. Thes-, p-, andd-wave positronium formation
cross sections are reported and compared with variational and close-coupling calculations. A minimum is
obtained in thes-wave positronium formation cross section which is due to the Stuckelberg phase having a
value ofp. The cross sections have also been computed including the correction term which emerges from the
one-Sturmian theory.
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I. INTRODUCTION

Low-energy positron-lithium collisions are of interest b
cause the ground-state positronium formation channe
open even at zero incident positron energy. The ioniza
energy of lithium~5.4 eV! @1# is smaller than the binding
energy of positronium~6.8 eV!. According to Wigner’s
threshold law@2#, the s-wave positronium formation cros
section is infinite at zero incident positron energy. Lithiu
can be approximated as an one-electron atom which m
that positron-lithium collisions can be considered as an
fective three-body system.

A. Previous experimental measurements and calculations
of positronium formation in e¿¿Li collisions

Recently, Surdutovichet al. @3# measured the positronium
formation cross section for positron-lithium collisions for e
ergies down to a few tenths of an electron volt. There h
been several calculations of the positronium formation cr
section but relatively few for low energy.

Watts and Humberston@4–6# employed the Kohn varia
tional method to compute thes-, p-, andd-wave positronium
formation cross sections for positron-lithium collisions in t
energy range 0–1.8 eV where there are only two open ch
nels, elastic scattering and ground-state positronium for
tion. They reported that thes-wave positronium formation
cross section decreased as the number of terms in the
function was increased@6#.

A pioneering calculation of the positronium formatio
cross section in the energy range 0.5–10 eV was perfor
by Guha and Ghosh@7# using a two-state Li(2s)1Ps(1s)
close-coupling approximation~CCA!. Later, Basu and Ghos
@8# used a three-state Li(2s,2p)1Ps(1s) CCA to compute
the positronium formation cross section for energies up
100 eV. Hewittet al. @9,10# considered the Li(2s,2p,3s,3p)
1Ps(1s,2s,2p) CCA for positron-lithium collisions for en-
ergies up to 50 eV.
1050-2947/2003/68~3!/032720~8!/$20.00 68 0327
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Kernoghanet al. @11# performed a number of CCA calcu
lations for thes-, p-, andd-wave positronium formation cros
section for energies up to 2.8 eV. They varied the numbe
target atomic states, positronium atomic states, and p
dostates in the expansion of the wave function. Their m
elaborate calculation is a 14-state Ps(1s,2s,3s̄,4s̄,2p,
3p̄,4p̄,3d̄,4d̄)1Li(2s,2p,3s,3p,3d) CCA. For thes wave,
there is some discrepancy between the 14-state CCA and
variational results, but the cross sections are the same o
of magnitude and good agreement is achieved at ener
above 1.6 eV. For thep wave, the 14-state CCA and varia
tional results agree well for the entire energy range.

McAlinden et al. @12# have extended the 14-state CC
calculation of Kernoghanet al. @11# to higher energies
~0.5–60 eV! and have also performed a 32-state CCA cal
lation. The 32-state CCA includes 3 positronium states a
29 lithium atomic and pseudostates. There is good agreem
between the 14-state CCA and the 32-state CCA for
ground-state positronium formation cross section~summed
over partial waves!. The total positronium formation cros
section agrees with experimental measurements@3#.

B. Previous calculations using the hyperspherical
hidden-crossing method

The hyperspherical hidden-crossing method~HHCM! was
formulated to treat the correlated motion of three charg
particles of arbitrary mass and charge@13#. A significant fea-
ture of HHCM is that it can give rise to an interpretation of
scattering process. For instance, the HHCM calculations
the s-, p-, andd-wave positronium formation cross section
for positron-hydrogen collisions in the Ore gap provided
explanation for the smalls-wave and larged-wave positro-
nium formation cross sections@14#. For the s wave, the
Stuckelberg phase is close top and the two amplitudes tha
correspond to different paths leading to positronium form
tion interfere destructively. In contrast, for thed wave, the
Stuckelberg phase is close top/2 and the two amplitudes
interfere constructively. The HHCM has also provided
©2003 The American Physical Society20-1
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interpretation of the the minimum in the transition probab
ity for the reaction 4He14He14He→4He14He2 @15#,
which occurs at an energy where the Stuckelberg phas
3p.

Despite the success of HHCM in giving an interpretati
of scattering processes, there have only been a limited n
ber of applications@13–21# of the method since its formula
tion. The method is not exact, and needs to be further te
to determine its accuracy in describing collisions involvi
three particles. With this goal in mind, we have applied
HHCM to positronium formation for low-energy positro
collisions with lithium. Although formulated for three-bod
systems, the method is readily extended to positron-lithi
collisions by incorporating a model potential to describe
atomic core.

In Sec. II, we present a summary of the formulation of t
HHCM and provide details on the model potential. In S
III, we discuss the computational tools which we develop
specifically for the application of the HHCM to low-energ
positron collisions. In Sec. IV, we present thes-, p-, and
d-wave positronium formation cross sections for positro
lithium collisions; we compare the HHCM results with vari
tional and CCA results and discuss the importance of
Stuckelberg phase. In Sec. V, we give the conclusion and
long term goal of the HHCM study of positron–alkali-met
collisions.

Atomic units are used throughout unless explicitly stat

II. HYPERSPHERICAL HIDDEN-CROSSING METHOD

The original hidden-crossing theory developed by Land
@22# for ion-atom collisions used a semiclassical approxim
tion for internuclear motion. Macek and Ovchinnikov@13#
derived a hidden-crossing theory without the semiclass
approximation, thus extending the applicability to thr
charged particles of arbitrary mass. Their derivation is ba
on the hyperspherical representation. The theory is sum
rized below for positron-hydrogen collisions; the applicati
of the hidden-crossing method to positron-lithium collisio
is discussed at the end of this section.

The hyperspherical coordinates are the hyper-radiuR
5Ar 1

21r 2
2 and the hyperanglesa5tan21(r 2 /r 1) and u

5cos21(r̂1• r̂2), wherer1 and r2 are the position vectors o
e1 ande2 with respect to the~infinitely heavy! proton@23#.
The reduced wave functionC(R,V) is related to the
Schrödinger wave function c(R,V) by C(R,V)
5R5/2sina cosa c(R,V) @23#, whereV represents the hyper
anglesa, u, and the three Euler angles. The Schro¨dinger
equation is expressed as

F2
]2

]R2 1
L212RC~V!

R2 22EGC~R,V!50, ~1!

where

L252
]2

]a21
L1

2

cos2a
1

L2
2

sin2a
2

1

4
~2!

and
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C~V!52
1

sina
1

1

cosa
2

1

A12sin 2a cosu
. ~3!

The hyperspherical adiabatic basis functionswm(R;V)
are found by holdingR fixed and solving

@L212RC~V!#wm~R;V!52«m~R!R2wm~R;V! ~4!

for the adiabatic energy eigenvalues«m(R). Alternatively,
the angle-Sturmian basis functionsSn(n;V) are found by
holding (n22 1

4 ) fixed and solving

@L212rn~n!C~V!#Sn~n;V!5~n22 1
4 !Sn~n;V! ~5!

for the eigenvaluesrn(n). The adiabatic energy eigenvalue
«m(R) correspond to different branches on the real axis
the function«(R), which is single-valued function on a Rie
mann surface@13,24#. The sheets are joined at branch poin
in the complex plane, and different sheets can be reache
circling a branch point. Since«(R) is defined for allR, when
2«(r)r25n22 1

4 , the Sturmian eigenfunctionSn(n;V) is
equal to the adiabatic functionw„R5r(n);V… to within a
normalization constant.

The exact wave functionC(R,V) for three charged par
ticles can be expressed as

C~R,V!5E
c
ARZn~KR!F~n,V!2ndn, ~6!

where Zn(KR) are Bessel functions of total energyE
5K2/2 andc denotes a contour in then plane. The unknown
coefficientsF(n,V) can be expanded in the angle Sturmi
basis functions. The hidden-crossing theory emerges by t
cating the expansion to a single-Sturmian function, tak
the asymptotic limit (R→`) of the wave function, and
evaluating the integral using stationary phase approximat
The resulting wave equation~see Ref.@13# for details!, aside
from an unimportant multiplicative factor, is given by

C~R,V!' (
paths

(
m

1

AKm~R!

3expS i E
cm

R

Km~R8!dR8Dwm~R;V!, R→`,

~7!

where

Km
2 ~R!5K222«m8 ~R! ~8!

and

«m8 ~R!5«m~R!1
1

2 S 1

4R2D . ~9!

Note that the wave functionC(R,V) of Eq. ~7! is of the
WKB form even though no semiclassical approximation w
made at the outset.
0-2
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To apply the HHCM, one must compute the wave vec
Km(R). Following Zhou and Lin@23#, the adiabatic function
w(R;V) is expanded into states of total angular moment
L:

wm~R;V!5(
I 50

L

f I~R;a,u!DuI u,M
(L) ~v1 ,v2 ,v3!, ~10!

wherev1 ,v2 ,v3 are the three Euler angles. The functio
f I(R;a,u) are solutions to the coupled partial differenti
equations

(
J50

L

HI ,Jf J~R;a,u!52R2«m8 ~R! f I~R;a,u!,

I 50,1,2, . . . ,L, ~11!

where the operatorsHI ,J are given in Refs.@23,25#. The
eigenvalues«m8 (R) @14# can then be used to calculate th
wave vectorKm(R) for the Lth partial wave.~The L super-
script for the wave vector and eigenvalues has been
pressed for brevity!.

The Jost matrix for theLth partial wave is obtained from
the asymptotic form of the wave function. TheS-matrix ele-
ment for a transition between two adjacent levelsi and j is
given by

Si j
L 5@~J2!21# i i Ji j

11@~J2!21# i j Jj j
1 . ~12!

The modulus square of theS-matrix elementuSi j
L u2 can be

expressed in the form

uSi j
L u254Pi j

L sin2D i j
L , ~13!

where

D i j
L 5UReF E

c
K~R!dRGU,

Pi j
L 5expS 22UImF E

c
K~R!dRGU D . ~14!

In Eq. ~14!, D i j
L is the Stuckelberg phase andPi j

L is the one-
way transition probability. The contourc is from the classical
turning pointRi

t on the sheet of the Riemann surface cor
sponding to leveli, around the branch pointRb , to the clas-
sical turning pointRj

t on the sheet corresponding to levelj.
TheSmatrix of Eq.~13! does not satisfy unitarity. To ensur
unitarity, Eq.~13! is multiplied by the factor (12Pi j

L ) to give

uS̃i j
L u254Pi j

L ~12Pi j
L !sin2 D i j

L . ~15!

The justification for the factor (12Pi j
L ) can be found in

Refs. @26,27#. The partial wave cross section for the tran
tion between two levels~in units of pa0

2)

s i j
L 5

~2L11!

ki
2 uS̃i j

L u2, ~16!

whereki is the incident momentum.
03272
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Within the framework of the one-Sturmian theory, on
can calculate a correction to the wave vector for largeR
where«(R) is a slowly varying function ofR @13,14#. The
corrected wave vectorK̃m

2 (R) is given by

K̃m
2 ~R!5K222«̃m8 ~R!, ~17!

where

«̃m8 ~R!5«m8 ~R!2
1

2F 1

4R2 1 K wmU]2wm

]R2 L G
5«m~R!2

1

2K wmU]2wm

]R2 L . ~18!

It has been shown that the potential«̃m8 (R) asymptotically
gives the close-coupling channel potentials through term
the order of 1/R2 @28–30#.

The HHCM can be applied to positron-lithium collision
by using model potentials. We chose the same model po
tial as used in the variational calculation@4–6# to allow a
more direct comparison of results. The model potential is
the form given by Peach@31# but without the core-
polarization term. The electron-core interaction is

Ve2Li152
1

r
2

2

r
e2gr~11dr 1d8r 2!. ~19!

The values of the parameters are given in Ref.@5# and were
chosen to fit spectroscopic data. The potential also suppo
bound 1s state (251.5 eV) which is unphysical but wel
separated in energy from the ground-state Li(2s)
(25.39 eV). The positron-core interaction is taken to be
negative of the static interaction Eq.~19!. Unlike the hydro-
genic case, the reduced potential,

C~R;a,u!

5
1

cosa
@112e2gRcosa~11dR cosa1d8R2cos2a!#

2
1

sina
@112e2gR sin a~11dR sina1d8R2sin2a!#

2
1

@12sin 2a cosu#1/2
, ~20!

depends upon the parameterR.

III. COMPUTATIONAL TOOLS

To apply the HHCM tos-, p-, and d-wave positron-
lithium scattering, it is necessary to solve the hyperspher
coupled partial differential equations, Eq.~11!, for the lowest
eigenvalues at thousands of values ofR, real and complex.
The eigenvalues need to be obtained to a high accurac
few parts in 106 for small R and a few parts in 104 for large
R. We developed two numerical tools to compute the eig
values accurately and efficiently. First, we wrote finite e
0-3
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ment method~FEM! codes to solve the hyperspheric
coupled partial differential equations forL50,1, and 2@32#.
Second, we developed a vector iteration program for the
genvalue equation.

The FEM is ideally suited for hyperspherical calculatio
of Coulomb systems@33#. The use of local interpolation al
lows one to concentrate the polynomial basis functions in
region of the potential singularities, which include an attra
tive line singularity ata50, a repulsive line singularity a
a5p/2, and an attractive point singularity atu50,a
5p/4. Although the FEM polynomials guarantee continu
of the functionC(R;a,u) and its derivatives]C/]a and
]C/]u across the element interfaces, it is possible to re
this condition and allow the derivative]C/]a to be discon-
tinuous at the point singularity. Although this modification
not particularly important at smallR, it improves signifi-
cantly the accuracy of the energy at largeR, where the cusp
in the wave function is extremely sharp and narrow.

Most of the CPU time in the HHCM calculation is spe
in solving the resulting eigenvalue problem. In FEM, o
obtains a banded generalized eigenvalue matrix equa
only the lowest few eigenvalues are needed. The matri
complex for complexR. We developed a code to solve th
real/complex generalized eigenvalue problem in banded s
age mode using vector iteration. The rate of convergenc
vector iteration depends on the accuracy of the initial gues
of the eigenvalue and eigenvector.

The exact eigenvalues and eigenvectors are known foR
50. Since some of the levels are degenerate atR50, it is
important to split the degeneracy and order the levels c
rectly for the first nonzeroR point on the real axis. In this
case, our input into the vector iteration is the exact eigen
ues atR50 ~plus a correction obtained from first-order pe
turbation theory! and the exact analytical eigenfunctions.
each additional point on the real axis, we input the eigenv
ues@plus a correction term (DE/DR•DR)] and eigenvectors
from the previous value ofR. In all cases, we obtained eigh
digit convergence in just two or three iterations. We comp
the eigenvalues up to largeR580 a.u. in order to identify
which physical channel is associated with each of the eig
values. This also enables us to to check the accuracy o
eigenvalues at largeR by comparing the computed eigenva
ues with the known values of the bound-state energies of
ground and excited states of lithium and positronium.

The next step is to locate the branch point that conne
the two sheets whose eigenvalues asymptotically corresp
to the physical levels ofe11Li(2s) and Ps(1s)1Li1. As
one goes around a closed path that encloses this br
point, the eigenvalues associated with these two sheets i
change. Because we are inputting both an initial eigenva
and eigenvector into the vector iteration, there is no ambi
ity about the ordering of the complex eigenvalues. We c
obtain the position of the branch point to the desired ac
racy by systematically decreasing the size of the closed p

IV. RESULTS

Using the HHCM with the model potential given by Eq
~19! and ~20!, we calculated thes-, p-, andd-wave positro-
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nium formation cross sections fore11Li collisions in the
energy range 0–1.8 eV. We computed along the real a
(0<R<80) the lowest three potentials«m8 (R) for the s, p,
and d waves. Figure 1 is a plot of the potentials«m8 (R) for
the s wave. The lowest three eigenvalues«m8 (R) for each
partial wave asymptotically approach Li(1s), Ps(1s), and
Li(2s), respectively.

For each partial wave, we located as a function of ene
the classical turning pointsR2

t and R3
t on the second and

third potential curves and the branch pointR23
b that connects

eigenvalues«28(R) and «38(R). For thes and p waves, the
branch point is atR23

b 510.801 i4.80 and for thed wave at
R23

b 510.651 i4.95. The real part of the position of thi
branch point for each partial wave is to the right ofR2

t .
We also found another branch point connecting«28(R) and

«38(R) much closer to the origin. It is likely due to the use
model potentials rather than a pure Coulomb potential. Ho
ever, because Re(R23

b ),R2
t a transition can only be mad

from the «28(R) to «38(R) around this branch point via tun
neling. It is therefore a reasonable approximation to neg
this branch point. We also located a branch point that c
nects eigenvalues«18(R) and «28(R) for the s wave and a
branch point that connects eigenvalues«18(R) and«38(R) for
the p wave. The real part of the position of these bran
points is less thanR2

t and R3
t , and for the same reason w

neglected them in the calculations.
For each partial wave, we computed the contour integ

of Eq. ~14! where the contourc is from R2
t around the branch

point R23
b to R3

t . Using this contour integration, we com
puted the Stuckelberg phase and probability according to
~14! and the modulus squared of theS-matrix elementS̃23

L for
the transition Ps(1s)1Li1→e11Li(2s) according to Eq.
~15!. TheS-matrix elementS̃32

L for ground-state positronium

formation is equal to thisS-matrix elementS̃23
L . FromuS̃32

L u2,

FIG. 1. The lowest three«m8 (R) potentials forL50.
0-4
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APPLICATION OF THE HYPERSPHERICAL HIDDEN- . . . PHYSICAL REVIEW A 68, 032720 ~2003!
we computed the positronium formation cross section
cording to Eq.~16!, s32

L 5@(2L11)/k3
2#uS̃32

L u2, wherek3 is
the wave vector of the incoming positron. In the HHC
calculation, the wave vectorKm(R) defined by Eq.~8! is
used for all values ofR, real and complex.

In order to take into account the correction term to t
HHCM, we also computed the Stuckelberg phase, proba
ity, and positronium formation cross section using the wa
vector K̃m(R) defined by Eq.~17! along the real axis (R
.R2

t ) andKm(R) defined by Eq.~8! in the complex plane.
We refer to these calculations as HHCM1cor.

We present in Figs. 2–4, respectively, thes-, p- and
d-wave positronium formation cross section computed w
the HHCM and the HHCM1cor calculations and compar
these calculations with variational@4–6# and 14-state CCA
@11# calculations.

A. Results for the s wave

It has been known for over a decade from the variatio
results that thes-wave positronium formation cross section
small and has two minimum atk50.074 and 0.31@4#. The
HHCM and the HHCM1cor calculations explain why the
s-wave positronium formation cross section is small and
reason for a minimum. These calculations obtain a Stuc
berg phase close to, or equal to,p. This means the two
amplitudes that correspond to different paths leading to p
itronium formation destructively interfere and that the cor
spondings-wave cross section is nearly zero. In the HHC
calculation, the Stuckelberg phase goes throughp at k
50.26 giving a minimum in thes-wave positronium forma-
tion cross section at this energy. In the HHCM1cor calcula-

FIG. 2. The s-wave positronium formation cross section f
e11Li collisions computed by the HHCM~long-dashed!, the
HHCM1cor ~solid!, the variational method~short-dashed! @4–6#,
and the 14-state CCA~dot-dashed! @11#. The variational and 14-
state CCA results are from the figures in Ref.@5#.
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tion, the Stuckelberg phase goes throughp at a different
energy,k50.08, giving a minimum in the cross section. In
terestingly, the position of the minimum in HHCM cros
section is close to the second minimum in the variatio
calculation and the position of the minimum in th

FIG. 3. The p-wave positronium formation cross section fo
e11Li collisions computed by the HHCM~long-dashed!, the
HHCM1cor ~solid!, the variational method~short-dashed! @4–6#,
and the 14-state CCA~dot-dashed! @11#. The variational and 14-
state CCA results are from the figures in Ref.@5#.

FIG. 4. The d-wave positronium formation cross section fo
e11Li collisions computed by the HHCM~long-dashed!, the
HHCM1cor ~solid!, the variational method~short-dashed! @4–6#,
and the 14-state CCA~dot-dashed! @11#. The variational and 14-
state CCA results are from the figures in Ref.@5#.
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HHCM1cor cross section is extremely close to the first mi
mum in the variational calculation.

Because the Stuckelberg phase is nearlyp, the s-wave
positronium formation cross section is very sensitive to
accuracy with which the phase is determined. This is
flected in the extreme sensitivity of the variational calcu
tions to the choice of model potential, and the CCA calcu
tions to the number of states and pseudostates inclu
Watts and Humberston@4# reported a factor of 10 differenc
between thes-wave positronium formation cross sectio
computed with the two different model potentials. T
s-wave elastic cross section and thep- and d-wave elastic
and positronium formation cross sections showed sign
cantly less sensitivity to the choice of the model potent
Kernoghanet al. @11# noted a factor of 1000 difference be
tween their 8-state CCA and 14-state CCA calculations of
s-wave positronium formation cross section. The two sets
CCA calculations did not vary so dramatically for thes-wave
elastic cross section andp- and d-wave elastic and positro
nium formation cross sections.

The HHCM and HHCM1cor calculations do not give the
resonance that is seen in the 14-state CCA calculation@11#.
The resonance occurs at a value ofk close to the minimum in
the HHCM and the second minimum in the variational
sults. The cause of this resonance is not known and it is
present in the 8-state CCA@11# or the variational@4–6# cal-
culations. A noteworthy feature of the HHCM is that it do
not seem to give rise to spurious resonances which can
problem with CCA and Kohn variational methods.

The HHCM and HHCM1cor calculations have provided
an interpretation of thes-wave positronium formation cros
section results. Although the HHCM and the HHCM1cor cal-
culations generally overestimates the cross section, they
plain the reason for a minimum and the overall small m
nitude of the cross section.

B. Results for thep wave

For thep-wave positronium formation cross section, t
HHCM1cor results are in closer agreement in both shape
magnitude with the variational@5,6# and 14-state CCA@11#
results than the HHCM results~Fig. 3!. The position of the
maximum in the HHCM1cor calculation (k50.07) is in close
agreement with the position of the maximum in the var
tional and 14-state CCA results (k50.08). The HHCM over-
estimates the cross section compared to the variationa
sults by a factor of 2 for 0.16<k<0.362. The HHCM1cor

cross section is a factor of 1.9 times larger than the va
tional results atk50.1. However, with increasingk the
agreement between the HHCM1cor and variational results
significantly improves so that byk50.3 the difference is less
than 20%. This clearly illustrated the importance of inclu
ing the@1/4R21^wm(R)u]2wm /]R2&# correction term@14# in
the wave vector.

There is a slight barrier (3.431024 a.u.) in thep-wave
potential«38(R) used in the HHCM calculation. The HHCM
cross section must be multiplied by the transmission mo
lus squared termuTu2 associated with the barrier@14#. How-
ever, because the height of the barrier is extremely sm
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uTu2 is close to unity and the barrier has negligible effect
the cross section away from threshold (k,0.1). As k ap-
proaches zero,uTu2 tends to zero and this lowers the cro
section dramatically.

For k,0.11, the HHCM1cor cross section is smaller tha
the HHCM cross section and in better accord with the va
tional and CCA calculations. The difference between
HHCM and HHCM1cor results, which is more significan
with decreasingk, can primarily be attributed to the long
range behavior of thee11Li(2s) potentials used in the cal
culations. For smallk, R3

t ,Re(R23
b ). As k is decreased,R3

t

moves to largerR. The potential«̃38(R) lies slightly above
the potential«38(R) for R,1.1. This has the effect that fo
very smallk, R3

t in the HHCM1cor calculation is significantly
larger than in the HHCM calculation which means that o
has to integrate over a longer range to compute the proba
ity. This results in a smaller probability and a smaller cro
section. The comparison of the HHCM and the HHCM1cor

calculations for smallk suggests that one should use the p

tential «̃m8 (R) for large R. There is little difference between
the p-wave Stuckelberg phase computed between the
sets of calculations. For the HHCM, the Stuckelberg ph
varies from 2.724 to 2.643 for the energy range 0–1.8
whereas for the HHCM1cor calculation the Stuckelberg phas
varies from 2.661 to 2.885.

C. Results for thed wave

By comparing the HHCM calculation of thed-wave pos-
itronium formation cross section with the 14-state CCA c
culation@11# ~Fig. 4!, it can be seen that the HHCM has th
main features of the cross section. The cross section tend
zero as the incident positron wave number is decreased
wards the Li(2s) threshold. The maximum in the cross se
tion is atk50.15, slightly to left of the position of the maxi
mum in the 14-state CCA calculation (k50.18). The HHCM
cross section is larger than the 14-state CCA cross sec
For instance, the height of the maximum in the HHCM c
culation is about twice the 14-state CCA calculation.~Ac-
cording to Watts@5# and Humberston@34# their d-wave
variational results are not fully converged and therefore
probably significantly less accurate than the lower part
wave variational results.! The HHCM and HHCM1cor calcu-
lations do not give the resonance seen in the 14-state C
@11#. This resonance is also not present in the 8-state C
@11# and its physical origin is not known.

The HHCM1cor calculation gives better agreement th
the HHCM with the 14-state CCA calculation@11# for the
d-wave positronium formation cross section. The position
the maximum (k50.19) in the HHCM1cor calculation is in
good agreement with the position of the maximum in t
CCA calculation. The magnitude of the HHCM1cor cross
section is generally smaller than the HHCM cross section
the height of the maximum, the HHCM cross section is on
about a factor of 1.4 times larger than the 14-state C
calculation@11#.
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APPLICATION OF THE HYPERSPHERICAL HIDDEN- . . . PHYSICAL REVIEW A 68, 032720 ~2003!
The d-wave Stuckelberg phase obtained in the HHC
and HHCM1cor calculations varies from 1.960 to 2.104 an
from 1.909 to 2.207, respectively.

V. CONCLUSION

The HHCM and HHCM1cor calculations have provided
an interpretation of the main features of thes-, p-, and
d-wave positronium formation cross sections for positro
lithium collisions. For thes wave, obtaining a Stuckelber
phase close top is an important finding because there are
examples of the Stuckelberg phase being an integer mul
of p/2 for electron collisions. There are, however, examp
of the Stuckelberg phase being integer multiples ofp/2 for
other reactions. For example, Wardet al. @14# showed using
the HHCM that the Stuckelberg phase is close top for
s-wave positronium formation in positron-hydrogen col
sions andp/2 for the d wave. Ostrovsky@35# has noted
Stuckelberg phases close to integer multiples ofp/2 for the
L50 dtm rearrangement process. In addition, Nielsen a
Macek @15# have reported a Stuckelberg phase of 3p for
low-energy recombination of identical bosons in three-bo
collisions. The reason why the Stuckelberg phase has a v
equal to an integer multiple ofp/2 for certain reactions a
particular energies is not known. The present result toge
with the earlier results of Wardet al. @14# and Ostrovsky@35#
shows the Stuckelberg phases of integer multiples ofp/2 can
be obtained for rearrangement processes.

For s-wave positronium formation in positron-lithium co
lisions, because the Stuckelberg phase is close to~or equal
to! p, the cross section is very small~or zero! and highly
sensitive to the accuracy with which the phase is determin
nd

er

J.

J.

. A
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For thep- and thed-wave positronium formation cross se
tions, the HHCM1cor calculation gives better agreement wi
the variational@4–6# and CCA@11# results than the HHCM
calculation. The position of the HHCM1cor maximum in the
p- and the d-wave positronium formation cross section
agrees well with the variational@4–6# and CCA@11# calcu-
lations. It should be noted that both HHCM and HHCM1cor

calculations generally overestimates the positronium form
tion cross section for all partial waves. The correction ter
previously derived asymptotically from the one-Sturmi
theory @13,14#, improves the HHCM results. These calcul
tions therefore demonstrate the importance of including
correction term.

The HHCM and the HHCM1cor results for low-energy
positron-lithium collisions are encouraging and motivate
complete study of positron collisions with the alkali meta
The primary goal of this study is to provide insight into wh
causes the Stuckelberg phase to be integer multiple ofp/2
The application of HHCM to positron–alkali-metal coll
sions will enable a systematic study of the dependency of
Stuckelberg phase on energyE, total orbital angular momen
tum L, and atomic numberZ for the same atomic series.
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