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Two-loop corrections to the decay rate of parapositronium
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Order-a2 corrections to the decay rate of parapositronium are calculated. A QED scattering calculation of the
amplitude for electron-positron annihilation into two photons at threshold is combined with the technique of
effective field theory to determine a nonrelativistic QED Hamiltonian, which is then used in a bound-state
calculation to determine the decay rate. Our result for the two-loop correction is 5.124 3(33) in units of (a/p)2

times the lowest-order rate. This is consistent with but more precise than the result 5.1(3) of a previous
calculation.
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I. INTRODUCTION

Effective-field theories have proved to be a powerful to
in a variety of applications, ranging over areas as divers
nuclear physics@1#, lattice QCD @2#, heavy flavor physics
@3#, and Bose-Einstein condensation@4#. One of the first ap-
plications of the technique@5# was to the bound-state prob
lem in quantum electrodynamics~QED!. As the approach
incorporates QED effects as perturbations to a nonrelativ
Schrödinger problem, it is known as nonrelativistic QE
~NRQED!.

Effective-field theories in general provide a way of tre
ing physics that involves multiple scales. Specifically in t
case of atomic physics, NRQED deals with the fact that th
scales—the rest mass of the electronm; the average three
momentum of an electronma; and the electron binding en
ergy ma2—all play significant roles in radiative and reco
corrections. While the Bethe-Salpeter equation@6# or three-
dimensional variants of it@7–9# provide a consistent frame
work to carry out calculations of atomic properties, t
implementation is sufficiently complicated so that wh
first-order calculations were carried out in the early 1950s
a number of systems, the next order calculations were
completely evaluated for over 40 years.

This situation has radically changed since the introduct
of effective field theory techniques for QED bound-state c
culations. A set of calculations using various implemen
tions of NRQED that complete the evaluation of ordera4 Ry
energy shifts have been carried out over the last few ye
we note progress in helium@10#, positronium@11#, and muo-
nium @12#. In addition to this work on energy levels, th
order-a2 corrections to the decay rate of orthopositroniu
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@13# and parapositronium@14# have also been treated usin
NRQED.

In this paper we will be concerned with the latter dec
rateGpara-Ps. The dominant decay mode ofp-Ps is into two
photons, and the associated decay rate was found by Wh
@15# and Pirenne@16# to be

Gpara-Ps
(0) ~2g!5

1

2

mc2

\
a552pcR`a3

58032.502 8~1! ms21. ~1!

The numerical value is determined using the 1998 CODA
adjustment of constants@17#, with the 12-ppb uncertainty
dominated by the uncertainty in the fine structure consta
In the following we will refer to this lowest-order result sim
ply asG0.

The lowest-order rate differs by 0.52% from the most a
curate measurement@18#, which determines

Gpara-Ps
expt 57990.9~1.7! ms21. ~2!

The bulk of the difference is accounted for by the one-lo
corrections to the decay rate, calculated by Harris and Bro
@19#, which change the theoretical prediction by 0.59% to

G~1-loop!5G0H 11
a

pS p2

4
25D J 57985.249 ms21.

~3!

The residual 0.07 percent discrepancy corresponds to a t
standard deviation difference between experiment and the
at the one-loop order, and is of a size compatible with or
a2 corrections.

Corrections of this order arise both from two-loo
corrections—the subject of this paper—and from the fo
photon decay of para-Ps. The experiment@18# measures the
total decay rate of para-Ps, which in QED includes dec
into any even number of photons. We note that exotic int
©2003 The American Physical Society12-1
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actions could allow decay into an odd number of photo
and experiments looking for this kind of decay have p
limits on the branching ratio arising from such interaction
specifically 2.831026 for para-Ps→3g @20# and 2.731027

for para-Ps→5g @21#. The only effect that contributes at
non-negligible level is four-photon decay, which was fi
calculated in Ref.@22#. The highest accuracy determinatio
of the rate, along with a calculation of first-order radiati
corrections to it, is given in Ref.@23#, where references to
other calculations can be found. The result is

Gpara-Ps~4g!50.274 290~8!S a

p D 2

G0H 1214.5~6!S a

p D J .

~4!

While this effect is well under the present level of expe
mental precision, we will include it in our final prediction.

The remaining contribution from two and higher loo
can be parametrized via

Gpara-Ps~21loop!5G0H 22a2ln a1B2gS a

p D 2

2
3a3

2p
ln2a

1C
a3

p
ln a1DS a

p D 3J . ~5!

TheO(a2) logarithmic term was calculated in Ref.@24#, and
the leadingO(a3) logarithm in Ref.@25#. The coefficient of
the subleadingO(a3) logarithmic term

C52
p2

2
110 ln 21

533

90
57.918 9 ~6!

is also now well established, with three different groups@26–
28# in agreement. The terms of ordera3G0 are well below
the experimental accuracy, but will be included in our fin
tally. The leading logarithmic term removes almost all t
residual 0.07% discrepancy, so as long as the constantB2g is
not too large, theory and experiment are in agreement.
experimental error corresponds to a value of 39 forB2g .
Nevertheless, a direct calculation of this constant is de
able, both because it is possible that the constant is larg
is frequently the case in QED bound-state calculations,
for comparison with future experiments of higher precisio
As mentioned above, this calculation has been recently
ried out using effective-field theory techniques by Czarnec
Melnikov, and Yelkhovsky@14#, referred to here as CMY
After correction of one part of their calculation@29#, their
result is

B2g55.1~3!. ~7!

This gives for the total theory, including the four-photon d
cay, the prediction

Gpara-Ps
theor ~CMY!57989.616~13! ms21, ~8!

which is in good agreement with experiment. The princip
result of this paper is the confirmation of the previous cal
lation, but with higher precision,
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B2g55.1243~33!, ~9!

which leads to our main result,

Gpara-Ps
theor 57989.617 8~2! ms21. ~10!

The plan of this paper is the following. In Sec. II w
explain our implementation of NRQED, which differs sig
nificantly from that of CMY. In Sec. III we carry out a QED
calculation of the scattering amplitude at threshold to t
loops. In the concluding section we use this amplitude i
bound-state calculation to determineB2g , and we discuss the
related ortho-Ps decay rate calculation.

II. NONRELATIVISTIC QUANTUM ELECTRODYNAMICS

The basic idea of NRQED is to take advantage of the f
that many of the complexities of QED are associated w
the scale of the electron Compton wavelength, which in
atomic bound-state is effectively a point interaction, so t
in a bound-state calculation one can account for most Q
effects by introducing ad function potential along with the
usual relativistic perturbations. However, ultraviolet dive
gences are present when these interactions are treate
higher order, and the regularization of these divergences
be done in different ways. In addition, when carrying o
scattering calculations, the infinite range of the Coulomb
teraction leads to infrared divergences that can also be r
larized in different ways. For these reasons, the details o
NRQED calculation can be quite different when done
different groups. We consider this to be an advantage
agreement between different methods, such as will be fo
here, lends support to the reliability of these complex cal
lations.

CMY handled both ultraviolet and infrared divergenc
with dimensional regularization. In the present work, w
only use dimensional regularization to handle ultraviolet
vergences in the QED scattering calculation of Sec. III. W
regulate infrared divergences by introducing a photon m
l̃5ml, and we cut off ultraviolet divergences in th
NRQED calculation with a maximum loop three-momentu
L.

A detailed description of NRQED applied to the dec
rate of orthopositronium can be found in Ref.@13#. A great
deal of the analysis given there applies equally well to pa
positronium, but for completeness we give here a compl
but somewhat abbreviated, discussion, referring the rea
interested in more details to Ref.@13#.

Because we regulate infrared infinities with a phot
mass, it is necessary to set up a consistent set of interac
that incorporate this effect. These interactions are most c
veniently expressed in the center-of-mass frame in mom
tum space, with an incoming electron momentumkW and an
outgoing electron momentumlW. It is also useful to define the
frequently occurring denominators

Dl~kW !5kW21l̃2 ~11!

and
2-2
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Dk5kW21g2, ~12!

where g5ma/2. The NRQED interactions are depicted
Fig. 1.

At lowest order, the NRQED Hamiltonian consists of t
usual nonrelativistic kinetic energy together with a modifi
Coulomb potential

VC~kW , lW !52
4pa

Dl~kW2 lW !
. ~13!

The usual relativistic perturbations responsible for the fi
structure of hydrogen are present, including the relativis
mass increase~RMI!,

VRMI~kW , lW !52~2p!3d~kW2 lW !
kW4

4m3
~14!

and a term, which includes both relativistic corrections to
Coulomb potential and the exchange of a transverse pho
denoted asVBF . The full form of this ‘‘Breit-Fermi’’ inter-
action when a photon mass is present is

VBF~kW , lW !52
4pa

m2
F ukW3 lWu21

1

4
l̃2ukW1 lWu2

Dl
2~kW2 lW !

2
~kW2 lW !3SW 2•~kW2 lW !3SW 1

Dl~kW2 lW !

1
3

2
i
~kW3 lW !•~SW 21SW 1!

Dl~kW2 lW !
2

1

4

ukW2 lWu2

Dl~kW2 lW !
G .

~15!

FIG. 1. The NRQED instantaneous potentials:~a! Coulomb,~b!
relativistic mass increase,~c! Breit-Fermi,~d! four-fermion contact,
~e! four-fermion derivative.
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It includes the Darwin term and the spin-orbit interactio
though we note the latter interaction does not contribute foS
states.

The next interaction we need for NRQED is the four-po
interaction describing the decay process,

V4~kW , lW !5V4
0H 11

a

p
e11S a

p D 2

e2J , ~16!

where

V4
052

2pa2

m2 i . ~17!

The constantse1 ande2 renormalize the interaction and wi
be determined from a matching calculation below. This
teraction corresponds to ad function in coordinate space an
gives rise to an energy in whichV4 is multiplied by the
square of the wave function at the origin,m3a3/8p. The
leading term is chosen so that the decay rate, given bG
522 Im(E), reproduces the known lowest-order result.

An important difference of the para-Ps calculation fro
the ortho-Ps calculation is the fact that the latter has a
contribution toV4 arising from one-photon annihilation,
channel not available in the present case. The last interac
needed for the calculation accounts for the fact that the
nihilation is not exactly pointlike, which leads to a derivativ
term

V4der~kW , lW !5
4pa2

3m4 i ~kW21 lW2!. ~18!

We note the relationship

V4der~kW , lW !52
2

3
V4

0kW21 lW2

m2
~19!

happens to be identical to the behavior of the interaction
ortho-Ps arising from one-photon exchange, which cont
utes to the hyperfine structure~hfs! of positronium; this fact
will be used below. We now describe how these interactio
are used in a bound-state NRQED calculation.

A. Bound-state calculation

We now apply standard Rayleigh-Schro¨dinger perturba-
tion theory to second order.~The corresponding diagrams a
shown in Fig. 2.! We are interested only in imaginary con
tributions to the energy, so one factor ofV4 or V4der must be
present. The expression for first-order perturbation theor
momentum space is

EV
(1)5E d3p2

~2p!3

d3p1

~2p!3 f* ~pW 2!V~pW 2 ,pW 1!f~pW 1!, ~20!

where the wave function is

f~pW !5S g3

p D 1/2 8pg

~pW 21g2!2
. ~21!
2-3
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This gives the contributions

EV4

(1)52
i

4
ma5H 11

a

p
e11S a

p D 2

e2J ~22!

from Fig. 2~a! and

EV4der

(1) 5
2iLa6

3p
2

1

4
ima7 ~23!

from Fig. 2~b!, whereL is the maximum value allowed fo
the magnitude of the three-momentumupW 2u or upW 1u.

In second order we need to evaluate expressions of
form

Ei j
(2)5 (

nÞ0

^0uVi un&^nuVj u0&
E02En

, ~24!

which can be written in terms of a reduced Coulomb Gree
function

Ei j
(2)5

1

~2p!12E d3p2d3kd3ld3p1f* ~pW 2!

3Vi~pW 2 ,kW !GR~kW , lW !Vj~ lW,pW 1!f~pW 1!. ~25!

The reduced Green’s function in momentum space con
niently breaks into three parts, in which the electron eit
propagates freely, interacts once with a Coulomb poten
or interacts more than once. It is given by

G~kW , lW !52~2p!3d3~kW2 lW !
m

Dk
2

m

Dk

4pa

ukW2 lWu2
m

Dl
2R~kW , lW !,

~26!

where

FIG. 2. First- and second-order bound-state perturbation-the
contributions to the energy shift. They are the first-order~a! contact
and ~b! derivative contributions, and the second-order~c! relativis-
tic mass increase and~d! Breit-Fermi contributions. Contributions
~c! and ~d! are shown separated into their zero-, one-, and ma
potential parts.
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R~kW , lW !5
32pmg3

Dk
2Dl

2 F5

2
2

4g2

Dk
2

4g2

Dl
1

1

2
ln A

1
2A21

A4A21
tan21A4A21G , ~27!

with

A5
DkDl

4g2ukW2 lWu2
. ~28!

When the interaction is a relativistic mass increase@see
Fig. 2~c!#, second-order perturbation theory gives

EV4 ,VRMI

(2) 1EVRMI ,V4

(2) 52 i
La6

4p
2 i

ma7

8
lnS L

2g D2 i
ma7

32
,

~29!

and when it is a Breit-Fermi interaction@see Fig. 2~d!#, the
contribution is

EV4 ,VBF

(2) 1EVBF ,V4

(2) 52 i
La6

4p
2 i

3ma7

8
lnS L

2g D2 i
7ma7

16
,

~30!

where contributions of orderma8 and higher are dropped. A
table of integrals useful in arriving at these results can
found in Ref.@13#.

The final result for the NRQED bound-state calculation
then

GNRQED5H 11
a

pFe12
2L

3mG1S a

p D 2Fe21
23p2

8

12p2lnS L

2g D G J G0 , ~31!

which has been converted to a decay rate in the usual m
ner.

B. NRQED scattering calculation

The next step in the analysis is to consider the imagin
part of the amplitude in NRQED for Bhabha scattering
threshold. In lowest order this is simplyV4

0, with no contri-
bution fromV4der because of the presence of the moment
factors. Including the renormalization terms, we denote
overall effect ofV4 as

MNRQED
(0) 5V4

0H 11
a

p
e11S a

p D 2

e2J . ~32!

In first order, a simple calculation gives the contributions

MNRQED
(1) ~VC!5

a

p
V4

0S 2p

l D H 11
a

p
e1J , ~33!

MNRQED
(1) ~VRMI!5

a

p
V4

0S L

m
2

pl

2 D , ~34!

ry

y-
2-4



e

n
fo

,

ke
e

ng
in

-
st-
Ps,
e
r-

the

ing
wo
and
n-
D

we

o-
ve-

ply

n

p

ee
elf-

.

.

TWO-LOOP CORRECTIONS TO THE DECAY RATE OF . . . PHYSICAL REVIEW A 68, 032512 ~2003!
MNRQED
(1) ~VBF!5

a

p
V4

0S L

m
2

pl

4 D , ~35!

and

MNRQED
(1) ~V4der!5

a

p
V4

0S 2
8L

3m
1

4pl

3 D , ~36!

shown in Figs. 3~a–d!, which sum to

MNRQED
(1) 5

a

p
V4

0S 2p

l H 11
a

p
e1J 2

2L

3m
1

7pl

12 D . ~37!

In the following section we will require this amplitud
equal the one-loop QED amplitude to determinee1. To de-
terminee2 a two-loop calculation is required. The calculatio
is almost identical to the scattering calculation carried out
hyperfine splitting in Sec. 3 of Ref.@13#, where 12 diagrams
@labeled~a!–~l!# were analyzed. The last two of them,k and
l, involved a real contribution toV4 not present for para-Ps
so they are dropped. The other ten~see Fig. 4! are all pro-
portional to the lowest-order amplitude and can be ta
over directly to para-Ps by simply using the lowest-ord
amplitude for para-Ps instead of hfs. The only other cha
needed is the modification of the three diagrams which
volve the VBF interaction, which is different for the two
states. However, the difference is simply

dVBF52
8pa

3m2

ukW2 lWu2

Dl~kW2 lW !
, ~38!

which leads to the modifications

d f 5S a

p D 2

V4
0S 8pL

3l̃
2

4p2 ln 2

3 D , ~39!

FIG. 3. The one-loop NRQEDe2e1→e2e1 scattering graphs

FIG. 4. The two-loop NRQEDe2e1→e2e1 scattering graphs
03251
r

n
r
e
-

dg5S a

p D 2

V4
04p2

3
lnS L

2l̃
D , ~40!

and

dh5S a

p D 2

V4
0S 8pL

3l̃
2

4p2

3 D . ~41!

Finally, graphsi and j are derivative terms, but as men
tioned earlier, the ratio of the derivative term to the lowe
order matrix element is the same for hfs as it is for para-
so the results from Ref.@13# can be taken over directly. Th
final result for the two-loop contribution to threshold scatte
ing is

MNRQED
(2) 5S a

p D 2

V4
0Fp2~2 ln 211!

l2 2
4pL

3l̃
12p2 lnS L

2l̃
D

1
4p2

3 G , ~42!

and the NRQED amplitude that is to be compared to
QED scattering calculation is

MNRQED5MNRQED
(0) 1MNRQED

(1) 1MNRQED
(2) . ~43!

III. QED SCATTERING CALCULATION

We are interested in the imaginary part of the scatter
amplitude for an electron and positron to annihilate into t
photons, and the two photons then to create an electron
positron. While this amplitude at threshold is simply a co
stant, in order to determine the derivative term in NRQE
we also need the behavior slightly above threshold. If
assign the momentumkW to the incoming electron andlW to the
outgoing electron, with the positrons having opposite m
mentum, a straightforward calculation leads to the abo
threshold matrix element

MQED
(0) ~kW , lW !5V4

0S 12
2

3

kW21 lW2

m2 D . ~44!

This requires that NRQED have the forms forV4 andV4der
used in the preceding section. At threshold we have sim

MQED
(0) 5V4

0 . ~45!

We will follow the convention of listing results for a give
n-loop contribution to the scattering amplitude

MQED
(n) 5S a

p D n

V4
0I (n) ~46!

by giving I instead of the full amplitude. So for the zero-loo
contribution we have

I (0)51. ~47!

Continuing to the one-loop calculation, there are thr
diagrams that must be considered, which we call the s
2-5
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energy~SE!, vertex (V), and ladder (L). They are shown in
Fig. 5. The self-energy and vertex results are

I SE52 lnl14 ln 2111O~l! ~48!

and

I V524 lnl1
p2

4
24 ln 2241O~l!. ~49!

The infrared logarithms present inI SE andI V are artifacts of
the renormalization process. The ladder diagram has an
frared singularity associated with binding that we denote
I B , defined by

I B5
p

l
1 ln l212

pl

8
1O~l2!. ~50!

The ladder diagram turns out to be proportional toI B , which
will also prove a useful factor in the two-loop calculatio
We find

I L52I B1O~l!. ~51!

A simple summation of the one-loop contributions gives
overall result

I (1)5
2p

l
1A~l!, ~52!

with

A~l!5
p2

4
251El. ~53!

Here El represents the uncalculated orderl contribution.
The value ofE does not affect the final result.

The two-loop calculation involves eight sets of graphs.
this part of the calculation ultraviolet divergences are re
lated by working inn5422e dimensions. When doing so
common factor of@(4pm2/m2)e2gE#2e is always presen
~wherem is a mass scale introduced in the process of dim
sional regularization andgE is the Euler gamma constant!,
but we leave it unwritten. It can be taken to unity after ren
malization.

We begin the discussion with two-loop corrections to
photon vertex, shown in Fig. 6~a!. In diagrams~a2! and~a5!
the self-energy subdiagram is understood to be accompa
by a self-mass counterterm. This convention differs fro
CMY, but we have been able to show agreement with th

FIG. 5. One-loop QED graphs contributing to the paraposit
nium decay rate. They are~SE! the self-energy graph,~V! the vertex
graph, and~L! the ladder graph.
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results if the counterterm is included. The unrenormaliz
results are given in Table I. The total class~a! unrenormal-
ized result is

I a85
1

8e2 1
1

e S p2

16
2 ln 22

3

16D12.884 125 5~52!. ~54!

This is renormalized according to

I a5I a82,1I V824~ ,̃22,1
2!I (0), ~55!

where

I V85
1

e
1S p2

4
24 ln 2D1eS 7

2
z~3!1

p2

4
14 ln2 228 ln 2D

1O~e2! ~56!

is the unrenormalized one-loop vertex correction~see Fig. 5!;
L15(a/p),1, where

-

FIG. 6. Contribution to the para-Ps decay rate from groups~a!
~the two-loop vertex corrections!, ~b! ~the two-loop self-energy cor-
rections!, and ~c! ~products of one-loop vertex and self-energ
parts!.

TABLE I. Unrenormalized contributions to the parapositroniu
decay rate from class~a!. Class ~a! consists of two-loop vertex
corrections.

Diagram
1

e2

1

e
1

~a1!
1

8

p2

16
2 ln 21

3

16
20.323 746 9(14)

~a2! 2
1
8

2
p2

16
1 ln 22

3

16
20.324 575 8(11)

~a3!
1

8

p2

16
2 ln 21

5

16
1.476 986 9~20!

~a4! 0 2
1

2
3.492 237~3!

~a5! 2
1

8
2

p2

16
1 ln 22

3

16
21.330 000(3)

~a6!
1

8

p2

16
2 ln 21

3

16
20.106 775 7(12)

Total
1

8

p2

16
2 ln 22

3

16
2.884 125 5~52!
2-6
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,15
1

4e
1~ ln l11!1eS 2 ln2 l1

p2

48
12D1O~e2!

~57!

is the one-loop vertex renormalization constant; andL̃2

5(a/p)2,̃2, where

,̃25
1

32e2 1
1

e S ln l

4
1

13

64D1S 1

4
ln2 l1 ln l1

3

2
z~3!

2p2 ln 21
157p2

192
2

49

128D1O~e! ~58!

is the two-loop renormalization constant~with the vacuum
polarization effect excluded!. Because we treat vacuum po
larization separately, it is important to again emphasize
the renormalization constant above also does not include
effect of vacuum polarization. Our result for the two-loo
renormalized class~a! contribution is

I a522 ln2 l2 ln lI V~l!21.966 447~6!, ~59!

whereI V(l) is the one-loop vertex factor of Eq.~49!.
Turning to the two-loop self-energy diagrams, shown

Fig. 6~b!, we again present results with self-mass coun
terms understood. The unrenormalized results are give
Table II and are in agreement, after accounting for the
ferent convention, with CMY. The total class~b! unrenormal-
ized result is

I b852
1

16e2 1
1

e S ln 22
5

32D21.672 703 8~15!. ~60!

The corresponding renormalized expression is

TABLE II. Unrenormalized contributions to the parapositroniu
decay rate from class~b!. Class~b! consists of two-loop self-energ
corrections.

Diagram
1

e2

1

e
1

~b1! 2
1
8 2 ln 22

7
16 21.4022755(10)

~b2! 1
16 2 ln 21

9
32 20.2704283(10)

Total 2
1

16 ln 22
5
32 21.6727038(15)
03251
at
he

r-
in
f-

I b5I b82,1I SE8 12~ ,̃22,1
2!5 ln2 l2 ln lI SE~l!

22.027 743 0~15!, ~61!

whereI SE8 is the unrenormalized one-loop self-energy corre
tion

I SE8 52
1

2e
1~4 ln 221!1eS 7p2

24
24 ln2 216 ln 222D

1O~e2!, ~62!

andI SE(l) is the renormalized one-loop self-energy factor
Eq. ~48!.

The diagrams with two separate one-loop correctio
shown in Fig. 6~c! are simple to evaluate and can be do
entirely analytically. The breakdown of the calculation
given in Table III and agrees exactly with CMY. Interes
ingly, the total class~c! contribution is unchanged by reno
malization. It is

I c5
p4

128
1

1

4
p2 ln 22

p2

8
1 ln2 22 ln 21

1

4
. ~63!

The least complicated contributions are those, shown in
7~d!, which have no ultraviolet or infrared divergences. T
results, given in Table IV, can be directly compared with t
diagrams calledD14 andD3 by CMY and are in agreement
For the class~d! total we find

I d520.877 83~7!. ~64!

The vacuum polarization diagrams of Fig. 7~e! were
evaluated in Refs.@30,31#, with result

FIG. 7. Contribution to the para-Ps decay rate from groups~d!
~infrared and ultraviolet finite contributions!, ~e! ~vacuum polariza-
tion corrected one-loop graphs!, and~f! ~ladder graphs!.
TABLE III. Unrenormalized contributions to the parapositronium decay rate from class~c!. Class~c!
consists of products of two one-loop vertex or self-energy corrections.

Diagram
1

e2

p2

e

ln 2

e

1

e
p4 z(3) p2 ln 2 p2 ln 2 2 ln 2 1

~c1! 2
1
4 2

1
16

3 2
1
2

0 2
7
8

1
2 2

1
24

27 6 21

~c2! 1
8

1
16 21 0 1

128
7
8 2

1
4

1
16 2 22 0

~c3! 1
8 0 22 1

2 0 0 0 2
7

48
6 25 5

4

Total 0 0 0 0 1
128 0 1

4 2
1
8

1 21 1
4

2-7
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I e50.447 343 0~6!. ~65!

As with ortho-Ps, by far the most difficult diagrams
treat were those of class~f!, with at least one binding photo
exchanged. As before, the most infrared singular contri
tions are the ladder and crossed-ladder~f1! and ~f2!. They
were treated just as in the ortho-Ps calculation by subtrac
off the most infrared singular part of each@called~f1a0! and
~f2a0!#, which were evaluated as a unit. We found that

I ~ f1 !5I ~ f1a0!1I B~l!I LS~l!23p2 ln l255.227 7~15!,
~66!

I ~ f2 !5I ~ f2a0!1p2 ln l130.834 6~7!, ~67!

where @see Eq. ~51!# I LS[I L22I B5O(l). The leading
binding singularity is contained in

I ~ f1a0!1I ~ f2a0!52I a05
2p2 ln 2

l2 12S I B2
p

l D p

l
1 ln2 l

22 lnl12A0 , ~68!

where

A0523.2036~13! ~69!

as given in Eqs.~3.37! and~3.86! of Ref. @13#. Diagrams~f3!
and~f4! were evaluated using Yennie gauge for the vertex
self-energy photon and Feynman gauge for the ladder p
ton. This procedure is consistent since the sum of the tw
independent of the gauge of the vertex or self-energy pho
An all-Feynman-gauge evaluation of~f3! and ~f4! proved to
be numerically difficult. The class~f! results are given in
Table V. The total class~f! contribution is

TABLE IV. Contributions to the parapositronium decay ra
from class~d!. Class~d! consists of ultraviolet and infrared finit
two-loop corrections.

Diagram 1

~d1! 20.803 94(3)
~d2! 20.073 89(6)
Total 20.877 83(7)
03251
-

g

r
o-
is
n.

I f5
2p2 ln 2

l2 1
p

l
A~l!1 ln2 l1@ I V~l!1I SE~l!

22p2# ln l235.035 7~32!. ~70!

Class~g! is the set of energy shift contributions havin
one-loop corrections~SE,V, or L) both before and after the
annihilation into two photons. This contribution is easi
evaluated as the square of half the one-loop correction:

I g5F1

2
I (1)G2

5
p2

l21
p

l
A~l!1S p2

8
2

5

2D 2

. ~71!

Finally, class~h! represents the effect of light-by-ligh
scattering on the annihilation photons. This contribution w
evaluated in Ref.@29# to be

I h51.293 92~4!. ~72!

The total two-loop contribution is then~see Table VI!

I (2)5
p2~2 ln 211!

l2 1
2p

l
A~l!22p2 ln l1B2 , ~73!

with

B25235.2881~33!. ~74!

The total QED scattering amplitude at threshold throu
two-loop order is the sum of theMQED

( i ) for i equal to 0, 1,
and 2.

Most of the two-loop results can be cross-checked aga
corresponding results of CMY as given in Ref.@14#. This
comparison is detailed in Table VII. The class~a! graphs can
be compared directly to the corresponding CMY graphs
cept for~a2! and~a5!, whose CMY counterpartsD11 andD12
require the inclusion of the one-loop self-massdm(1) as
given in CMY Eq. ~48!. ~For ease of notation we takem
→1 in the CMY expressions fordm.! The CMY counter-
parts of the~b! graphs require one- and two-loop self-ma
insertions. It is necessary to isolate the ‘‘crossed rainbo
and ‘‘double rainbow’’ contributions todm(2), which are

dmCR
(2)52

3

e2 2
5

2e
212z~3!18p2 ln 22

9p2

2
1

1

4
,

TABLE V. Contributions to the parapositronium decay rate from class~f!. Class~f! contains the ladder
graphs.

Diagram I B(l) p2 ln l 1

~f1!-~f1a0! I LS(l) 23 255.227 7(15)
~f2!-~f2a0! 0 1 30.834 6~7!

~f3! 0 0 210.058 55~11!

~f4! 0 0 3.996 567 3~13!

~f5! I V(l) 0 1.949 68~4!

~f6! I SE(l) 0 20.655 722~5!

Total I LS(l)1I V(l)1I SE(l) 22 229.161 1(17)
2-8
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TABLE VI. Renormalized two-loop QED contributions to the parapositronium decay rate by class.

Class
p2

l2

p

l
ln2 l ln l 1

~a! 0 0 22 2I V(l) 21.966 447(6)
~b! 0 0 1 2I SE(l) 22.027 743 0~15!

~c! 0 0 0 0 1.274 886
~d! 0 0 0 0 20.877 83(7)
~e! 0 0 0 0 0.447 343 0~6!

~f! 2 ln 2 A(l) 1 I V(l)1I SE(l)22p2 235.035 7(32)
~g! 1 A(l) 0 0 1.603 514
~h! 0 0 0 0 1.293 92~4!

Total 2 ln 211 2A(l) 0 22p2 235.288 1(33)
Y.
n
a

-
le

r

m

m

gy
so

h,

gu-
d of
dmDR
(2)5

15

2e2 1
55

4e
1

p2

4
1

197

8
, ~76!

as given in Ref.@32# but adapted to the conventions of CM
The ~c! graphs were done analytically by both groups, a
agree exactly once appropriate self-mass insertions are m
The ~d! graphs are directly comparable. The~e! ~vacuum
polarization! graphs were taken from Ref.@31# by both
groups. The~f! graphs, which involve the binding interac
tion, were the most difficult to compare. In fact, the doub
ladder and crossed ladder graphs~f1! and ~f2! could not be
checked against their CMY counterpartsD4 andD1 because
the methods for regulating the binding singularities we
completely different. We evaluated graphs~f3! and~f4! with
Yennie gauge vertex and self-energy photons, but the su
directly comparable withD21D5 of CMY after the appro-
priate self-mass correction is made to their result. The co
parison for~f5! and ~f6! is a bit more delicate. For the sum
~f5!1~f6! we found
03251
d
de.

e

is

-

I ~ f5 !1I ~ f6 !5~ I V1I SE!I B11.293 96~4!, ~77!

whereI V andI SE are the renormalized vertex and self-ener
corrections. Now CMY calculate unrenormalized graphs,
we revert to the unrenormalized contribution as well:I V

1I SE→I V81I SE8 , where in CMY notation

I V81I SE8 54~S21S31dm(1)B1!. ~78!

Now I B is half the contribution of the one-loop ladder grap
which in CMY terms is I B5(4S1)/252S1. Note that we
must regulate the infrared divergence via dimensional re
lation for purposes of comparison, since that is the metho
CMY. Now the sumI (f5)1I (f6), with the substitutions for
I V1I SE and I B discussed above, is given by

I ~ f5 !1I ~ f6 !→
1

4e2 1
1

e S p2

8
21D15.848 51~4!, ~79!

while the corresponding CMY contribution is
TABLE VII. Cross-check of results between this work@Adkins-McGovern-Fell-Sapirstein~AMFS!# and CMY. The 1/e2 and 1/e terms
agree analytically in all cases, only the finite parts are displayed. The comparison for~f5!1~f6! is subtle and is discussed in the text.

AMFS CMY AMFS CMY Difference
graph graph result result AMFS-CMY

~a1! D8 20.323 746 9(14) 20.324(1) 0.000~1!

~a2! D111dm(1)C11 20.324 575 8(11) 20.33(3) 0.01~3!

~a3! D9 1.476 986 9~20! 1.475~50! 0.00~5!

~a4! D10 3.492 237~3! 3.488~2! 0.004~2!

~a5 D121dm(1)C12 21.330 000(3) 21.27(12) 20.06(12)
~a6! D13 20.106 775 7(12) 20.12(1) 0.01~1!

~b1! D161dmCR
(2)B1 21.402 275 5(10) 21.403(4) 0.001~4!

~b2! D171dm(1)C171dmDR
(2)B1 20.270 428 3(10) 20.271(1) 0.001~1!

~c1! D191dm(1)C19 Analytic Analytic 0
~c2! D18 Analytic Analytic 0
~c3! D151dm(1)C151(dm(1))2B2 Analytic Analytic 0
~d1! D14 20.803 94(3) 20.804(2) 0.000~2!

~d2! D3 20.073 89(6) 20.074(2) 0.000~2!

~f3!1~f4! D21D51dm(1)C5 26.061 98(11) 26.03(20) 20.03(20)
~f5!1~f6! D61D71dm(1)C7 5.848 51~4! 5.850~12! 20.001(12)
2-9
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D61D71dm(1)C75
1

4e2 1
1

e S p2

8
21D15.850~12!.

~80!

IV. RESULTS AND CONCLUSION

The NRQED couplingse1 and e2 are determined by re
quiring agreement between the imaginary parts of the s
tering amplitude as calculated by NRQED and QED. T
NRQED version of this amplitude, given in Eq.~43!, is

MNRQED5V4
0H F11

a

p
e11S a

p D 2

e2G1
a

pF2p

l S 11
a

p
e1D

2
2L

3m
1

7pl

12 G1S a

p D 2Fp2~2 ln 211!

l2 2
4pL

3l

12p2 lnS L

2l̃
D 1

4p2

3
. ~81!

The corresponding QED version is

MQED5V4
0H 11

a

p F2p

l
1A~l!G1S a

p D 2Fp2~2 ln 211!

l2

1
2p

l
A~l!22p2 ln l1B2G J . ~82!

Matching at the one-loop~ordera) level yields

e15
2L

3m
1A~l!2

7pl

12
. ~83!

To orderaG0, this value ofe1 used in Eq.~31! cancels the
ultraviolet divergent term and reproduces the Harris-Bro
result@19# after taking the limitl→0. Matching at the two-
loop ~order-a2) level gives

e2522p2 lnS L

2mD2
p2

6
1B2 . ~84!

Care is required with the photon massl in this evaluation.
While it is ultimately taken to vanish, we keep it ine1 be-
cause that factor enters as a factor of 1/l terms. However,
while e2 also has terms proportional to the photon mass, t
can be dropped because we do not need the next renor
ization constante3, which enters in higher order. We no
that the uncalculatedO(l) part of A(l) cancels from the
calculation.

With e1 ande2 now determined from the matching calc
lation, we return to the bound-state NRQED calculation a
use these values in Eq.~31!. Taking the limit l→0 then
gives our final result for the two-photon decay rate throu
two-loop order:

GNRQED5H 11
a

p S p2

4
25D1S a

p D 2

@22p2 ln a1B2g#J G0 ,

~85!
03251
t-
e

n

y
al-

d

h

where

B2g5B21
65p2

24
12p2 ln 255.124 3~33!. ~86!

As noted in the Introduction, this is consistent with the CM
result. Inclusion of all known contributions leads to

Gpara-Ps5H 11A
a

p
22a2 ln a1BS a

p D 2

2
3a3

2p
ln2a

1C
a3

p
ln a1DS a

p D 3J G0 , ~87!

whereA5p2/425,

B5B2g1B4g55.398 6~33!, ~88!

C57.9189, andD is uncalculated. Our final numerical resu
is

Gpara-Ps57989.617 8~2! ms21. ~89!

The uncalculated D term makes a contribution o
0.000 10D ms21. Numerical contributions of the variou
terms inGpara-Psare detailed in Table VIII. While the experi
mental precision is relatively high for a decay measureme
it is far too low to be sensitive to the precise value ofB, only
disfavoring a very large value of the order of 50 or more. T
very short lifetime of the state makes it unlikely that signi
cant improvements in the experimental precision can
achieved in the near future.

We consider one of the most important aspects of
present calculation to be its impact on the decay rate
ortho-Ps. We have applied exactly the same methods to
decay rates. In the ortho-Ps case, while no independent c
of our calculation was then, or is now, available, we did u
the same implementation of NRQED to calculate a contri
tion to the ground-state hyperfine splitting of positroniu

TABLE VIII. Numerical values of contributions to the para
positronium decay rate.

Term Contribution (inms21)

1 8032.502 8(1)

A
a

p
247.2534

22a2 ln a 4.2092

BSapD2

0.234 0~1!

2
3a3

2p
ln2a 20.0361

C
a3

p
ln a 20.0387

DSapD3

0.000 10D

Total 7989.617 8(2)10.000 10D
2-10
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that had been determined using Coulomb gauge Be
Salpeter methods@33# and additionally an independen
NRQED approach@34#, finding good agreement. This ind
rect confirmation of the validity of our methods has no
been further buttressed by the fact that we have agreem
for the decay rate of para-Ps with CMY, who, as we ha
emphasized above, use an entirely different implementa
of NRQED. Therefore, the confrontation of QED with e
periment in this system, summarized as

Gortho-Ps
theor @13#57.039 979~11! ms21,

Gortho-Ps
expt @35#57.051 4~14! ms21,

Gortho-Ps
expt @36#57.048 2~16! ms21,
f
,

A

03251
e-

nt
e
n

Gortho-Ps
expt @37#57.039 8~29! ms21, ~90!

remains in an unresolved state, and strongly indicates
need for further experimental work.

Note added in proof.Recently a paper addressing the o
thopositronium decay rate discrepancy was published@38#,
and theory and experiment are now in agreement.
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