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Two-loop corrections to the decay rate of parapositronium
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Order«? corrections to the decay rate of parapositronium are calculated. A QED scattering calculation of the
amplitude for electron-positron annihilation into two photons at threshold is combined with the technique of
effective field theory to determine a nonrelativistic QED Hamiltonian, which is then used in a bound-state
calculation to determine the decay rate. Our result for the two-loop correction is 5.124 3(33) in unitsrdf (
times the lowest-order rate. This is consistent with but more precise than the result 5.1(3) of a previous

calculation.
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I. INTRODUCTION [13] and parapositroniumil4] have also been treated using

NRQED.
Effective-field theories have proved to be a powerful tool In this paper we will be concerned with the latter decay
in a variety of applications, ranging over areas as diverse a&te ' yaa.ps The dominant decay mode pfPs is into two
nuclear physicg1], lattice QCD[2], heavy flavor physics Pphotons, and the associated decay rate was found by Wheeler
[3], and Bose-Einstein condensatigt. One of the first ap- [15] and Pirenng16] to be
plications of the techniquEs] was to the bound-state prob-

: i 1 mc
!em in quantum electrodynamldQED}. As the approa(?h . Fé(;)ra_szy): ETQSZZWCR"’QS
incorporates QED effects as perturbations to a nonrelativistic
Schralinger problem, it is known as nonrelativistic QED =8032.50281) us 't 1)
(NRQED). ' '

Effective-field theories in general provide a way of treat-The numerical value is determined using the 1998 CODATA
ing physics that involves multiple scales. Specifically in theadjustment of constantsl7], with the 12-ppb uncertainty
case of atomic physics, NRQED deals with the fact that threglominated by the uncertainty in the fine structure constant.
scales—the rest mass of the electronthe average three- In the following we will refer to this lowest-order result sim-
momentum of an electrome; and the electron binding en- ply asly.
ergy ma’>—all play significant roles in radiative and recoil ~ The lowest-order rate differs by 0.52% from the most ac-
corrections. While the Bethe-Salpeter equafihor three-  curate measuremefit8], which determines
dimensional variants of {t7—9] provide a consistent frame-
work to carry out calculations of atomic properties, the

|mplementat|on IS sufficiently (_:ompllc_ated so_ that while The bulk of the difference is accounted for by the one-loop
first-order calculations were carried out in the early 1950s for . :
orrections to the decay rate, calculated by Harris and Brown

a number of systems, the next order calculations were n(t 9], which change the theoretical prediction by 0.59% to
completely evaluated for over 40 years.

This situation has radically changed since the introduction al
of effective field theory techniques for QED bound-state cal- ~ I'(1-loop) =g 1+ — --—5 ] =7985.249 us .
culations. A set of calculations using various implementa- @)
tions of NRQED that complete the evaluation of ordérRy
energy shifts have been carried out over the last few yearshe residual 0.07 percent discrepancy corresponds to a three
we note progress in heliufil0], positronium[11], and muo-  standard deviation difference between experiment and theory
nium [12]. In addition to this work on energy levels, the at the one-loop order, and is of a size compatible with order
ordera? corrections to the decay rate of orthopositroniuma? corrections.
Corrections of this order arise both from two-loop
corrections—the subject of this paper—and from the four-

I p=7990.91.7) us . )

2
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actions could allow decay into an odd number of photons, B,,=5.124333), 9
and experiments looking for this kind of decay have put

limits on the branching ratio arising from such interactions,which leads to our main result,

specifically 2.8< 108 for para-Ps-37y [20] and 2.7 10’

for para-Ps-57y [21]. The only effect that contributes at a [ piaps 7989.61782) us . (10
non-negligible level is four-photon decay, which was first

calculated in Ref[22]. The highest accuracy determination ~ The plan of this paper is the following. In Sec. Il we
of the rate, along with a calculation of first-order radiative €xplain our implementation of NRQED, which differs sig-

corrections to it, is given in Ref23], where references to nificantly from that of CMY. In Sec. Ill we carry out a QED
other calculations can be found. The result is calculation of the scattering amplitude at threshold to two

loops. In the concluding section we use this amplitude in a

a\? @ bound-state calculation to determiBg,, and we discuss the
I para-pb4y) =0.274 29@8)(;) FO{ 1- 14-5(6)(;) ’ related ortho-Ps decay rate calculation.
4
II. NONRELATIVISTIC QUANTUM ELECTRODYNAMICS
While this effect is well under the present level of experi-
mental precision, we will include it in our final prediction. The basic idea of NRQED is to take advantage of the fact
The remaining contribution from two and higher loops that many of the complexities of QED are associated with
can be parametrized via the scale of the electron Compton wavelength, which in an
atomic bound-state is effectively a point interaction, so that
) a\? 3ad 5 in a bound-state calculation one can account for most QED
Iparapb2:100p) =T'o) —2a%Ina+By,| —| —5—In‘a effects by introducing & function potential along with the
usual relativistic perturbations. However, ultraviolet diver-
a® a)\d gences are present when these interactions are treated in
+C?|” a+D ;) : ) higher order, and the regularization of these divergences can

be done in different ways. In addition, when carrying out
The O(a?) logarithmic term was calculated in R¢R4], and  scattering calculations, the infinite range of the Coulomb in-
the leadingO(«®) logarithm in Ref[25]. The coefficient of  teraction leads to infrared divergences that can also be regu-
the subleading(«®) logarithmic term larized in different ways. For these reasons, the details of a

NRQED calculation can be quite different when done by

2 533 different groups. We consider this to be an advantage, as
C=- 2 +10In2+ 90 7.9189 (6) agreement between different methods, such as will be found
here, lends support to the reliability of these complex calcu-
is also now well established, with three different gro[@8—  lations.
28] in agreement. The terms of orderl’ are well below CMY handled both ultraviolet and infrared divergences

the experimental accuracy, but will be included in our finalwith dimensional regularization. In the present work, we
tally. The leading logarithmic term removes almost all theonly use dimensional regularization to handle ultraviolet di-
residual 0.07% discrepancy, so as long as the conBigns ~ vergences in the QED scattering calculation of Sec. Ill. We
not too large, theory and experiment are in agreement. Theegulate infrared divergences by introducing a photon mass
experimental error corresponds to a value of 39 Bgr,. ~ X=m\, and we cut off ultraviolet divergences in the
Nevertheless, a direct calculation of this constant is desirNRQED calculation with a maximum loop three-momentum
able, both because it is possible that the constant is large, as,
is frequently the case in QED bound-state calculations, and A detailed description of NRQED applied to the decay
for comparison with future experiments of higher precision.rate of orthopositronium can be found in REE3]. A great
As mentioned above, this calculation has been recently cadeal of the analysis given there applies equally well to para-
ried out using effective-field theory techniques by Czarneckipositronium, but for completeness we give here a complete,
Melnikov, and Yelkhovsky{14], referred to here as CMY. but somewhat abbreviated, discussion, referring the reader
After correction of one part of their calculatid29], their  interested in more details to RéfL3].
result is Because we regulate infrared infinities with a photon
mass, it is necessary to set up a consistent set of interactions
B2,=5.1(3). (7)  that incorporate this effect. These interactions are most con-
veniently expressed in the center-of-mass frame in momen-

tum space, with an incoming electron momentkrand an
outgoing electron momentuin It is also useful to define the

This gives for the total theory, including the four-photon de-
cay, the prediction

FI,Z‘?Q’_LQCMY)=7989.61613) us 1, (8)  frequently occurring denominators
which is in good agreement with experiment. The principal D, (K)=k2+2\?2 (11)
result of this paper is the confirmation of the previous calcu-
lation, but with higher precision, and
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+

It includes the Darwin term and the spin-orbit interaction,
though we note the latter interaction does not contributé&for
states.

The next interaction we need for NRQED is the four-point
interaction describing the decay process,

(%’6’6’6‘6‘6’6"7(%

i

(@) (b)

~
(@]
N’

V,(k, D) =V§

@ 2
62) ’ (16)

T

o
1+ _el+
T

where

2ma’
mZ ! (17)

(d) (e) The constante; ande, renormalize the interaction and will
. . be determined from a matching calculation below. This in-
FIG. 1. The NRQED instantaneous potentia&:Coulomb,(b)  teraction corresponds to&function in coordinate space and
relativistic mass increaség) Breit-Fermi,(d) four-fermion contact, gives rise to an energy in whickl, is multiplied by the
(e) four-fermion derivative. square of the wave function at the origim®a®/87. The
leading term is chosen so that the decay rate, gived by
Dk=|22+ 72, (12 =—2Im(E), reproduces the known lowest-order result.

An important difference of the para-Ps calculation from
where y=ma/2. The NRQED interactions are depicted in the o.rtho.-Ps caIcuIayqn Is the fact that the Iatt(.ar' ha}s a real
Fi contribution toV, arising from one-photon annihilation, a

ig. 1. . . - .
channel not available in the present case. The last interaction
needed for the calculation accounts for the fact that the an-
nihilation is not exactly pointlike, which leads to a derivative
term

At lowest order, the NRQED Hamiltonian consists of the
usual nonrelativistic kinetic energy together with a modified
Coulomb potential

.. Ama® B
(13 Vager K, 1) = 5 1(K+17). (18)

. 4o

VC(E,U:—m.
A

R _ . ~ We note the relationship
The usual relativistic perturbations responsible for the fine

structure of hydrogen are present, including the relativistic . 2 K242
mass increaséRMI), Viger(K,1)=— §V2? (19
Lo 3o © K4 happens to be identical to the behavior of the interaction for
Vemi(k,1)==(2m)6(k— l)m (14 ortho-Ps arising from one-photon exchange, which contrib-

utes to the hyperfine structufbfs) of positronium; this fact

will be used below. We now describe how these interactions
and a term, which includes both relativistic corrections to thegre ysed in a bound-state NRQED calculation.
Coulomb potential and the exchange of a transverse photon,
denoted ad/gr. The full form of this “Breit-Fermi” inter- A. Bound-state calculation
action when a photon mass is present is B
We now apply standard Rayleigh-Sctieger perturba-

tion theory to second ord€iThe corresponding diagrams are

||2>< f|2+ 1}(2“24_ r|2 shown in Fig. 2. We are interested only in imaginary con-
VoKD= — Ama 4 tributions to the energy, so one factor\df or V4., must be
BFL™ m? |_ Df(IZ— B) present. The expression for first-order perturbation theory in

N, momentum space is
(k—T)xS_-(k—T)xS
- - w_ [ 4Pz d°p

Dy(k=1) EV= | G 22 (PV(P2, P (B, (20)

. 3_(IZ>< r).(§_+§+) 1 |IZ— r|2 where the wave function is
_I [R—

2 D,(k—1) 4D, (k—1)

3\ 1/2
y) ( 8wy 2

. 02+ 42)2

15 ¢(|0)=<
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\J \J \/ \/ U MP \J
©
DDy
r\ A M ~N A I = (28
4y2|k—11?
X 8 X |x - -
U J U J U Mp O~ When the interaction is a relativistic mass increfsee
@ Fig. 2(c)], second-order perturbation theory gives
FIQ. 2 First- and second-prder bound-stat(_e perturbation-theory ) , Aa®  ma’ A “ma’

contributions to the energy shift. They are the first-or@gicontact ES/4)'VRMI+ ES,R)MI'\,4=—|4——|T n >y 13
and (b) derivative contributions, and the second-or@grrelativis- ™ (29

tic mass increase andl) Breit-Fermi contributions. Contributions
(c) and (d) are shown separated into their zero-, one-, and many

potential parts and when it is a Breit-Fermi interactidisee Fig. 2d)], the

contribution is

This gives the contributions Aa®  3ma’ [ A ma’
E@, +E? |, =—i—=i nl—|—i :
2 4 VBF BF'V4 At 8 2y 16
where contributions of ordena® and higher are dropped. A
from Fig. 2a) and table of integrals useful in arriving at these results can be
_ found in Ref.[13].
o 2iAa® 1 The final result for the NRQED bound-state calculation is
Ey’' = - —ima (23
4der 3T 4 then
2 2
from Fig. 2b), whereA is the maximum value allowed for r P P 2A o2 e s 23w
) N N NRQED 1 3m T 2 8
the magnitude of the three-momentypy| or |p4|. i
In second order we need to evaluate expressions of the A
form +272In Z) ]FO, (31

(0[Vi[n)(n|V;|0)

Ei(jZ): 2

(24)  which has been converted to a decay rate in the usual man-

0 Eo—En ner.
¥vhich can be written in terms of a reduced Coulomb Green’s B. NRQED scattering calculation
unction
The next step in the analysis is to consider the imaginary
1 part of the amplitude in NRQED for Bhabha scattering at
Ei(J?): f d3p2d3kd3Id3p1¢*(5z) threshold. In lowest order this is simpW'j, with no contri-
(2m)* bution fromV 44, because of the presence of the momentum

- - factors. Including the renormalization terms, we denote the
P1) d(P1)- (25 overall effect ofV, as

r

X Vi(p2,K)Gr(k,NV;(

The reduced Green’s function in momentum space conve- ©) 0 @ a)?
niently breaks into three parts, in which the electron either Mirqeo=Va) 1+ —€1+| —| €. (32
propagates freely, interacts once with a Coulomb potential,
or interacts more than once. It is given by In first order, a simple calculation gives the contributions
PN . .. n m 47a m N (1) a’OZ’lT a
G(k,=-(2m)%8%k—1)=——- — —— =— —R(k,I), MNroed Vo) = —Va| || 1+ —eqy, (33
( ( Dk Dk |k—1]? D ( ™ A ™
26
(26) o a A wA
where MN\roed Vam) = ;V4 w2 (34
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: | 5 X 5 a 2V04772| A 40
i H s i = — (RN -
! ! S | g T 4 3 n ZX ’ ( )
(@ (b) © @
and
FIG. 3. The one-loop NRQER e* —e e* scattering graphs.
sh a) ZVO( 8mwA 4772> 41
=\ — 4 = = A |-
ML o Vee) = EVO é — W_)\ (35) ™ 3\ 3
NRQE BF o 4 m 4 ) Ei . . .
inally, graphsi andj are derivative terms, but as men-
q tioned earlier, the ratio of the derivative term to the lowest-
an order matrix element is the same for hfs as it is for para-Ps,
o 8A 4w\ so the results from Ref13] can be taken over directly. The
(1) - _ 7 i - ibuti _
MRroed Vader) = 7_rV4( amt 3 ) (36) if:1ngalisresult for the two-loop contribution to threshold scatter

shown in Figs. 8a—d, which sum to

m2(2In2+1) 4wA

2
a A
M2 =<—> VO +272In| —
NRQED T 4 )\2 N 2%

1) a of2m a 2N Twh
Miroeo™—Va| 3|1+ €1/ 3712 ) (37

In the following section we will require this amplitude 3
equal the one-loop QED amplitude to determ@e To de-
terminee, a two-loop calculation is required. The calculation and the NRQED amplitude that is to be compared to the
is almost identical to the scattering calculation carried out folQED scattering calculation is
hyperfine splitting in Sec. 3 of Ref13], where 12 diagrams

: (42)

—n\(0) (1) (2)
[labeled(a)—(1)] were analyzed. The last two of thefnand MnroeD=MNRroeD™ MNRQEDT MNRQED: (43)
[, involved a real contribution t&, not present for para-Ps,
so they are dropped. The other t&ee Fig. 4 are all pro- Ill. QED SCATTERING CALCULATION

portional to the lowest-order amplitude and can be taken Wi . dinthe i . £ th :
over directly to para-Ps by simply using the lowest-order e are interested In the imaginary part of the scattering

amplitude for para-Ps instead of hfs. The only other Ch(,ju,]g@.mplitude for an electron and positron to annihilate into two
needed is the modification of the three diagrams which inPhotons, and the two photons then to create an electron and

volve the Vg interaction, which is different for the two positrqn. While this ampl?tude at thrgshpld is simply a con-
states. However, the difference is simply stant, in order to determine the derivative term in NRQED
' ’ we also need the behavior slightly above threshold. If we

8mwa |k—1|2 assign the momentuinto the incoming electron anidto the
BEL N (38)  outgoing electrqn, with the positrons having opposite mo-
A( ) mentum, a straightforward calculation leads to the above-
threshold matrix element

oVgg=

which leads to the modifications

5f:<z)2vo<8m\ 47T2|n2> MQ (K D=V 1

(44)

(39

This requires that NRQED have the forms &5 andV qe,
used in the preceding section. At threshold we have simply

M&2o= V4. (45)

We will follow the convention of listing results for a given
n-loop contribution to the scattering amplitude

M) =(f)nv°|<“) (46)
Qep=| | Va

by giving | instead of the full amplitude. So for the zero-loop
contribution we have

5 | < X
£ PSS S

® (b ® (j)

10=1, (47)
Continuing to the one-loop calculation, there are three
FIG. 4. The two-loop NRQER e*—e~ e scattering graphs. diagrams that must be considered, which we call the self-
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I iy
K L S S -
(al) (a2) (a3) (ad) (a5) (a6)
(SE) V) @®)

FIG. 5. One-loop QED graphs contributing to the parapositro- ‘g} a o [¢
nium decay rate. They afS§E) the self-energy grapliV) the vertex t H e K
graph, andL) the ladder graph.

(bD) (b2) ) (c2) (c3)

energy(SE), vertex (), and ladder ). They are shown in

Fig. 5. The self-energy and vertex results are FIG. 6. Contribution to the para-Ps decay rate from gro@ps

(the two-loop vertex correctiops(b) (the two-loop self-energy cor-

lse=2 INA+4In2+1+O0(\) (49) rectiong, and (c) (products of one-loop vertex and self-energy
parts.
and . - .
results if the counterterm is included. The unrenormalized
w2 results are given in Table I. The total cla@ unrenormal-
IV=—4In)\+ T—4In2—4+0()\) (49) ized result is
he infrared logarith ige and ifacts of L 3
The infrare logarithms present g an Iy are artifacts of ll=——+=| =—=—In2— —| +2.884125%52). (54)
the renormalization process. The ladder diagram has an in- 8e~ €16 16

frared singularity associated with binding that we denote aﬁ'his is renormalized according to

lg, defined by
T A ) la=15—€413—4(C,— €)1, (55)
lg=—+InNN—1——+O(\°). (50
R 8 where
The ladder diagram turns out to be proportional o which L, 1 G 7 w? 5
will also prove a useful factor in the two-loop calculation. lv=_+|,-—4In2|+¢€ 54(3)+-+4In"2-8In2
We find
+0(€?) (56)

is the unrenormalized one-loop vertex correctisee Fig. 5;
A simple summation of the one-loop contributions gives the| ;= (a/)€,, where
overall result
TABLE I. Unrenormalized contributions to the parapositronium

2@ decay rate from clas¢a). Class(a) consists of two-loop vertex
1H_—" .
I A\ +AM), (52 corrections.
with Diagram i } 1
5 é €
o
A(N)=——-5+EN\. (53
4 1 ? 3
a Z R — —0.3237469(14
(@l 5 52+ 5 (14)
Here EX represents the uncalculated ordercontribution. 2

3
The value ofE does not affect the final result. (@2 L T th2-2 -0.3245758(11)
The two-loop calculation involves eight sets of graphs. In >
this part of the calculation ultraviolet divergences are regu+(a3 1 " 2+£ 1.476 986 €20)
lated by working inn=4—2e dimensions. When doing so a 8 16 16
0

common factor of[ (47u?/m?)e” 7€]%¢ is always present (a4 1 3.492 2373)
(whereu is a mass scale introduced in the process of dimen-" 2 '
sional regularization angg is the Euler gamma constant 1 2 3
but we leave it unwritten. It can be taken to unity after renor-(a9 -8 “162- 15 —1.330000(3)
malization.
We begin the discussion with two-loop corrections to a(ag) 1 “_Z_m 2+i —~0.106 775 7(12)

photon vertex, shown in Fig.(8). In diagramsa2 and (a5 8 16 16
Lhe self-energy subdiagram is understood tq be a.ccompanlel%tal 1 f_ln 2_3 2,884 125 §52)

y a self-mass counterterm. This convention differs from 8 16 16

CMY, but we have been able to show agreement with theit
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TABLE Il. Unrenormalized contributions to the parapositronium Noz
decay rate from clas®). Class(b) consists of two-loop self-energy ﬁsi HH% b (é)
corrections.
(1) (d2) el) (2) (e3)
Diagram i } 1
62 € &% Palry
L
(b1) -3 2In2— % —1.4022755(10) E [¢
(b2) 15 —In2+ 3 —0.2704283(10)
1 5 (f1) (f2) (£3) 4) (f5) (t6)
Total -1 In2— 3 —1.6727038(15)

FIG. 7. Contribution to the para-Ps decay rate from grops
(infrared and ultraviolet finite contributionge) (vacuum polariza-

1 e tion corrected one-loop graphsnd(f) (ladder graphs
(=g T(nN+1)+e —Inz)\+@+2 +0(€%)
(57) lo=1{— €115+ 2(T,—€2)=In>x—In Xl gg(\)
is the one-loop vertex renormalization constant; dng —2.027743019), (6D
=(alm)?,, where wherel 5 is the unrenormalized one-loop self-energy correc-
tion
14 ! +1 n» 13 - 1| ZN+1 )\+3§(3)
273527\ "4 T 64 2" nA+> 1 772
32" €\ 4 64] |4 2 Ile=— = +(4In2-1)+ ¢l ——41n22+6 In2—2
s 2e 24
S L IR (58) 2
mIn2+ —19 128 TOLe +0(€?), (62)

is the two-loop renormalization constafwith the vacuum andlsg(\) is the renormalized one-loop self-energy factor of

polarization effect excludedBecause we treat vacuum po- Eq. (48). . . .
larization separately, it is important to again emphasize that '€ diagrams with two separate one-loop corrections

the renormalization constant above also does not include tH&oWn in Fig. &) are simple to evaluate and can be done
effect of vacuum polarization. Our result for the two-loop e_nnrely analytically. The breakdown of .the calculation is
renormalized clas&) contribution is given in Table Il and agrees exactly with CMY. Interest-

ingly, the total clasgc) contribution is unchanged by renor-
la=—2In* \—InX\Iy(\)—1.966 4476), (59)  malization. It is

wherely(\) is the one-loop vertex factor of E49).
Turning to the two-loop self-energy diagrams, shown in

Fig. 6(b), we again present results with self-mass counter-

terms understood. The unrenormalized results are given i§€ 1€ast complicated contributions are those, shown in Fig.
Table Il and are in agreement, after accounting for the dif.(d), which have no ultraviolet or infrared divergences. The

ferent convention, with CMY. The total clags) unrenormal- results, given in Table 1V, can be directly compared with the
diagrams called,, andD5 by CMY and are in agreement.

ized result is G
For the clasgd) total we find
1 1 5
T _ hl g l4=—0.877837). (64)
S @Jr p In2 32) 1.672703815). (60 d
The vacuum polarization diagrams of Fig(ey were
The corresponding renormalized expression is evaluated in Refd.30,31], with result

TABLE Ill. Unrenormalized contributions to the parapositronium decay rate from ¢@s<lass(c)
consists of products of two one-loop vertex or self-energy corrections.

Diagram ;2 l: InTZ 1 at ¢3) @?In2 a2 In?22  In2 1
(cD) i _ 1 3 ~1 0 7 : R 6 -1

4 16 2 8 24
@ & % -1 0 & i i % 2 o
(c3 z 0 -2 3 0 0 0 . -5 3
Total 0 0 0 0 135 0 3 -1 -1 3

032512-7



ADKINS et al. PHYSICAL REVIEW A 68, 032512 (2003
TABLE V. Contributions to the parapositronium decay rate 272In2 &

from class(d). Class(d) consists of ultraviolet and infrared finite If=—)\2—+ XA()\)+In2)\+[IV()\)+ISE()\)

two-loop corrections.

: —2m?]In\—35.035732). (70)
Diagram 1
B Class(g) is the set of energy shift contributions having
Egg _8332 2352; one-loop correction$SE, V, or L) both before and after the

Total —0.877 83(7 annihilation into two photons. This contribution is easily

o ) ) evaluated as the square of half the one-loop correction:

1 1 R m? 5)\?
|e:O44734306) (65) Ig: §| :F+ KA()\)"F ?—E . (71)

As with ortho-Ps, by far the most difficult diagrams to
treat were those of clagf), with at least one binding photon
exchanged. As before, the most infrared singular contribu
tions are the ladder and crossed-ladf@y and (f2). They
were treated just as in the ortho-Ps calculation by subtracting
off the most infrared singular part of eaptalled (f1a0) and
(f2a0], which were evaluated as a unit. We found that

Finally, class(h) represents the effect of light-by-light
scattering on the annihilation photons. This contribution was
evaluated in Ref[29] to be

1,=1.293924). (72
The total two-loop contribution is thefsee Table VI

Iy =1 +1a(\) 1 s(N)—372In\—55.227 115), 72(2In2+1) 2w«
(1)~ 10 T 18(M) 1 Ls(N) 1 )(66) |2)_ ( : )+TA()\)—2772In)\+BZ, 73

| (t2)= (2a0)+ 7° IN\ +30.834 67), 67)  with

where [see Eq.(51)] I, s=I —2lg=0(\). The leading
binding singularity is contained in

B,— —35.288133). (74)

The total QED scattering amplitude at threshold through

2721n 2 w\ two-loop order is the sum of thi1{};, for i equal to 0, 1,
| (f1a0)+ | (2000 = 212°= N2 ( BT X-i—lnz)\ and 2.

Most of the two-loop results can be cross-checked against

—2In\+2A,, (68)  corresponding results of CMY as given in R¢L4]. This

comparison is detailed in Table VII. The clas$ graphs can
where be compared directly to the corresponding CMY graphs ex-

cept for(a2 and(ab), whose CMY counterpart®; andD,

Ag=—3.203613) (69) require the inclusion of the one-loop self-mass?) as

given in CMY Eg. (48). (For ease of notation we taka
as given in Eqs(3.37) and(3.86 of Ref.[13]. Diagramgf3) —1 in the CMY expressions fosm.) The CMY counter-
and(f4) were evaluated using Yennie gauge for the vertex oparts of the(b) graphs require one- and two-loop self-mass
self-energy photon and Feynman gauge for the ladder phadnsertions. It is necessary to isolate the “crossed rainbow”
ton. This procedure is consistent since the sum of the two iand “double rainbow” contributions t@m‘?), which are
independent of the gauge of the vertex or self-energy photon.

. 2
An all-Feynman-gauge evaluation ¢8) and (f4) proved to o 3 5 21 97 1
be numerically difficult. The clas§f) results are given in OMER= "~ "2~ 5~ 12(3)+8m In2 > T
Table V. The total clas§f) contribution is (75)
TABLE V. Contributions to the parapositronium decay rate from cléssClass(f) contains the ladder
graphs.
Diagram Ig(\) a2In\ 1
(f1)-(fLa0) lLs(\) -3 —55.227 7(15)
(f2)-(f2a0 0 1 30.834 67)
(f3) 0 0 —10.058 5%11)
(f4) 0 0 3.996 567 @L3)
(f5) Iv(\) 0 1.949 684)
(f6) Ise(N) 0 —0.655 7225)
Total [Ls(N) +1y(N) +1se(N) -2 —29.1611(17)
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TABLE VI. Renormalized two-loop QED contributions to the parapositronium decay rate by class.

o T 5
Class 2 N In°\ In\ 1
(@ 0 0 -2 —1y(\) —1.966 447(6)
(b) 0 0 1 —lsg(\) —2.027 743 015)
(c) 0 0 0 0 1.274 886
(d) 0 0 0 0 —0.87783(7)
(e) 0 0 0 0 0.447 343 ®)
(f) 2In2 A(N) 1 Iv(N) +1sg(N)— 272 —35.0357(32)
(9 1 A(N) 0 0 1.603514
(h) 0 0 0 0 1.293 9%%)
Total 2ln2+1 2A(N) 0 - 27 —35.288 1(33)
15 55 =72 197 Iy ey =(Iy+1sp)lg+1.293964), 7
5”‘52%:?*;*7*?' 76) st lgey=(vt+lspls 64) (77)

wherely, andl sg are the renormalized vertex and self-energy
corrections. Now CMY calculate unrenormalized graphs, so
as given in Ref[32] but adapted to the conventions of CMY. we revert to the unrenormalized contribution as wej:
The (c) graphs were done analytically by both groups, a“d+|sr>|\'/+|é5, where in CMY notation
agree exactly once appropriate self-mass insertions are made.
The (d) graphs are directly comparable. Tie (vacuum 1+ 1 5e=4(S,+ S3+ 6mB,y). (78
polarization graphs were taken from Ref31] by both
groups. The(f) graphs, which involve the binding interac- Now I is half the contribution of the one-loop ladder graph,
tion, were the most difficult to compare. In fact, the doublewhich in CMY terms islg=(4S,)/2=2S,. Note that we
ladder and crossed ladder grags) and (f2) could not be  must regulate the infrared divergence via dimensional regu-
checked against their CMY counterpals andD, because lation for purposes of comparison, since that is the method of
the methods for regulating the binding singularities wereCMY. Now the suml s+ 1 ), with the substitutions for
completely different. We evaluated grapti3) and(f4) with Ily+Isg andlg discussed above, is given by

Yennie gauge vertex and self-energy photons, but the sum is X

directly comparable wittD,+ D5 of CMY after the appro- R

priate self-mass correction is made to their result. The com- Lits) +ite)— 462 + e\ 8 1]+5.848514), (79
parison for(f5) and (f6) is a bit more delicate. For the sum

(f5)+(f6) we found while the corresponding CMY contribution is

TABLE VII. Cross-check of results between this wdrkdkins-McGovern-Fell-SapirsteitAMFS)] and CMY. The 1¢? and 1k terms
agree analytically in all cases, only the finite parts are displayed. The comparis@B)fe(f6) is subtle and is discussed in the text.

AMFS CMY AMFS CMY Difference
graph graph result result AMFS-CMY
(a1 Dg —0.323 746 9(14) —0.324(1) 0.00Q1)
(a2 Dy +omCy, —0.3245758(11) —0.33(3) 0.013)
(@3 Dy 1.476 986 920) 1.47550) 0.005)
(ad) D10 3.492 2373) 3.4882) 0.0042)
(a5 Dyt omCy, —1.330000(3) —1.27(12) —0.06(12)
(a6) D13 —0.106 775 7(12) —0.12(1) 0.012)
(b1 D6+ SmZB, —1.402 275 5(10) —1.403(4) 0.004)
(b2) D7+ smMC i+ smZB, —0.270 428 3(10) -0.271(1) 0.00(1)
(c1) Digt omCyg Analytic Analytic 0
(c2 Dig Analytic Analytic 0
(€3 D15t SmIC s+ (sm)2B, Analytic Analytic 0
(d2) Dis —0.80394(3) —0.804(2) 0.00@)
(d2 D, —0.07389(6) —-0.074(2) 0.00®)
(f3)+(f4) D,+Dg+ smPCg —6.06198(11) —6.03(20) —0.03(20)
(f5)+(f6) D¢+ D7+ smYc, 5.848 514) 5.85(012) —0.001(12)
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1 1/#2 TABLE VIIl. Numerical values of contributions to the para-
Dg+D,+ 5m(1)C7=ZZ + g~ 1|+5.85012). positronium decay rate.
(80) Term Contribution (inus 1)
IV. RESULTS AND CONCLUSION 1 8032.5028(1)
The NRQED coupling®; ande, are determined by re- Al —47.2534
quiring agreement between the imaginary parts of the scat- . )
tering amplitude as calculated by NRQED and QED. The —2a°Ina 4.2092
: . . . : . )
NRQED version of this amplitude, given in E@3), is B(f) 0.234G1)
2 o
0 @ o ol 2 «o 303
Mnroeo™Va) |1+ —€1+| —| €+ — == 1+ —e _EmZa —0.0361
3
B ﬂ-i— F& 2N N a A 72(2In2+1) B 4mA cEina —-0.0387
3m 12 ™ \? 3\ T
AL 4m2 D(i” 0.000 1@
2 o -h T
+2m '”( VAR (82) Total 7989.617 8(2) 0.000 1D
Th i ED ion i
e corresponding QED version is where
0 |2 a\?[72(2In2+1) 6572
Moeo=Va) 1+ I~ AN | +| = N2 By, =Byt - +272IN2-5124333. (89

2
+ TA(>\)—27r2 IN\+B,

. (82)  As noted in the Introduction, this is consistent with the CMY
result. Inclusion of all known contributions leads to

Matching at the one-looforder «) level yields o a\2 343
I para-ps 1+A——2a?Ina+B —) - 2—|n2a
_2A +A(N m 83 " " !
el—3m ( ) 12 ° ( ) L‘(3 o 3

+C?Ina+D ; Iy, (87)
To orderal’, this value ofe; used in Eq.31) cancels the
ultraviolet divergent term and reproduces the Harris-Brownyhere A= 72/4—5,
result[19] after taking the limit\—0. Matching at the two-
loop (order«?) level gives B=B,,+B,,=5.398§33), (89

5 A 2 C=7.9189, and is uncalculated. Our final numerical result
82:_2’# |n(ﬁ)—€+82. (84) is
[ para-ps 7989.617 82) us t. (89)

Care is required with the photon massn this evaluation.

While it is ultimately taken to vanish, we keep it & be-  The uncalculated D term makes a contribution of
cause that factor enters as a factor of #¢rms. However, g o01® us~ L. Numerical contributions of the various
while e, also has terms proportional to the photon mass, theYerms inT" . psare detailed in Table VIII. While the experi-
can be dropped because we do not need the next renormaental precision is relatively high for a decay measurement,
ization constanes, which enters in higher order. We note it js far too low to be sensitive to the precise valueBobnly
that the uncalculate@(\) part of A(A) cancels from the gisfavoring a very large value of the order of 50 or more. The
calculation. very short lifetime of the state makes it unlikely that signifi-

With e; ande, now determined from the matching calcu- cant improvements in the experimental precision can be
lation, we return to the bound-state NRQED calculation andychieved in the near future.

use these values in E¢31). Taking the limitA—0 then We consider one of the most important aspects of the
gives our final result for the two-photon decay rate throughpresent calculation to be its impact on the decay rate of
two-loop order: ortho-Ps. We have applied exactly the same methods to both

decay rates. In the ortho-Ps case, while no independent check
of our calculation was then, or is now, available, we did use
the same implementation of NRQED to calculate a contribu-
(85  tion to the ground-state hyperfine splitting of positronium

2
FNRQED:

[_2772|n a+Bz.y]]Fo,

a7 o
1+— ——5)4—(—
7T\ 4 T
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that had been determined using Coulomb ‘gauge Bethe- rgéﬁépggﬂzlogg 8§29) us (90)
Salpeter methodd33] and additionally an independent

NRQED approacti34], finding good agreement. This indi- remains in an unreso_lved state, and strongly indicates the
rect confirmation of the validity of our methods has now need for further experimental work. _

been further buttressed by the fact that we have agreement Note added in proofRecently a paper addressing the or-
for the decay rate of para-Ps with CMY, who, as we haveNOPOsitronium decay rate discrepancy was publisfes,
emphasized above, use an entirely different implementatioA"d theory and experiment are now in agreement.

of NRQEI_D. T_herefore, the confr_ontatlon of QED with ex- ACKNOWLEDGMENTS
periment in this system, summarized as
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