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Trapped planar three-boson system with spin 1 and with hard-core interactions
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A two-dimensional spin 1 three-boson system trapped by a parabolic confinement and interacting with
hard-core repulsion has been investigated. The spectrum has been analyzed in detalil, in particular, the existence
of breathing bands has been confirmed. Two density functions associated with the oscillations of breathing and
deformation, respectively, have been defined to study the structure of low-lying states. The inherent nodal
structure of wave functions is found to play a decisive role. The effect of rotation on the ground-state property
has also been studied. Not only the angular momentum, the permutation symmetry will also transit in accord
with the increase of the speed of rotation.
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[. INTRODUCTION for the higher-lying states, there is monopole excitation
breathing mode which is associated with the collective radial

The achievement of Bose-Einstein condenséB&Cg in  excitatior in the two-dimensional Bose systems with contact
trapped atomic gas has stimulated explosively growing interinteraction. Pitaevskii and Rosch have pointed out that a
est in the systems of interacting bos¢hs?]. In recent years, two-dimensional harmonically trapped Bose system with
much attention has been devoted to BECs in lower dimencontact interaction displays breathing modes, and that the
sions. It is expected that the character and spectrum of thgorresponding states have energies that differ by exactly two
collective excitation of the BECs in lower dimensions would 0scillator spacing$27]. This property, which is independent
exhibit a qualitative change compared to their three-Of the strength of interaction, can be related to the existence
dimensional counterpart. More stable topological excitation®f @ hidden symmetry of the problem described by two-
such as solitongin one dimensiopand vortices(in two di-  dimensional Lorentz group $@,1). The breathing modes in
mension would be achievef3,4]. The experimental realiza- the case of none-contact interaction are algo discussed by
tion of BEC in quasi-two-dimension and in quasi-one- Bao et al. [28]. Very recently, such a breathing mode has
dimension has been reported by several gro{sg]. been observed experimentall9].
Theoretical studies for interacting bosons in two dimension [N this paper, we would extend our study on three spin 0
are mainly focused on the rotating properties and the vorteRosonic systenj28] to the case that bosons have internal
structures of systems in the Thomas-Fermi limit of strongdegree of freedom, hyperfine spin. The study of such a three-
interactions[9—11] as well as in the limit of weak interac- Poson system with internal degree of freedom is important
tions[12—20. The former limit case is closely related to the for several reasons. First, the energy spectrum of such a few-
current experiments. Moreover, in this limit case the predicPody system can be obtained by exact diagonalization
tions of the mean-field theory take a rather Simp]e ana|ytid'neth0d. The correlation between partiCles which is discarded
form. The latter limit case is also of great theoretical interesin mean-field approximation can be fully taken into account.
due to the mesoscopic nature of system, originating from théecond, the recent experimental observation of quantum
fact that the coherence length in the atomic cloud becomeBhase transition from a superfluid to a Mott insulator in a gas
larger than the size of the system, and also due to the avaiff ultracold atoms provide a novel possibility for exploring
able analytic solution of many-body wave functions, whichthe properties of few-body systerfi30]. In the experiment
is analagous to the well-known Laughlin wave functions indescribed in Ref[30] up to 200 000°'Rb atoms were dis-
the quantum Hall regime in two-dimensional electron gastributed over more than 15000 lattice sites, thereby creating
[21—24. Also, in this limit exact diagonalization method for @ large number of few-body system with up to 2.5 atoms
few boson systems is performed in the framework of lowesgach on average. Third, the spinor BEC is also an active field
Landau level approximation. Besides, the ground-state progh BEC physic§31-33. The introduction of internal degree
erties in the transition regime of middle interaction are alsoPf freedom would enrich physics. Our main interest in this
discussed by several authd@5,26]. paper is the whole energy spectrum structure of three spin-1

While the ground-state properties of the interacting boso?0son system, especially the band structure of the breathing
systems have been studied extensively, the low-lying exciteflode. Emphasis is placed on the study of symmetry effects.
states have also attracted a lot of attention due to their crucial
roles in de_termining the Fhermodynarqic behavior of the sys- Il. SPIN STATES, HAMILTONIAN,
tems and in understanding the stability of the ground states AND DIAGONALIZATION
under external perturbatio43,17,2Q. It is shown that the
low-lying excited states in the case of weak-interaction limit ~ Let three identical bosons be trapped in a plane by a para-
are dominant by the collective multipole excitation associ-bolic confinement with a strengthw,. Each boson has a
ated with the multipole deformations of systems. Howevermassm and a spin equal to 1. We udevy and VAi/mwg as
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units of energy and length, respectively, throughout the pa-

. . - 144
per. It is assumed, as in our previous paper on a three-boson /./.
system with spin 28], that the bosons interact with each 12+ M -
other via a spin-independent hard-core repulsive potential M

10+ -
U®(b—rj;), whereU andb are positive constants;; is the
interparticle distance, an@®(x)=1 if x=0 or ©(x)=0 if L 8- .

x<0. Letr; be the position vector of thigh boson. A set of 6- i
Jacobi coordinates and R is adopted,r=r,—r; and R
=rz—3(r,+r,). In the center-of-mass frame the internal e i
Hamiltonian reads 2.‘ .
1 3 1 0 2 4 6 8 10 12
Hy=—VZ+-r2— —VZ+ —R?+ >, UB(b—ryj). (1) L
4 4 3 i<

FIG. 1. The energieEiL'” of the first states, where the triangle is

In order to diagonalizeH,, let us first introduce a virtual for A={3}, the circle for x\={2,3}, and the square fon
adjustable single-particle Hamiltonian of harmonic oscilla-=11.1.1-

tion —(1/2u)Vi+3uv?s®. Here,s is a two-dimensional Now a totally symmetric eigenstate &f, with a given
vector, u is related to the reduced mass, ané an adjust-  angular momentuni, a spatial permutation symmetiy,
able parameter. Lap \/ﬁ§) be an eigenstate of this har- and a total spirS can be expanded as

monic oscillation with an eigenenergyn(-k+1)v and an

angular momentumni—k). These single-particle states will Vo= 2 Fiu ng,i &)
be used to compose the basis functions to expand the eigen- i '
states ofH, .

Let a spin state of a single boson be denotegy @nd a whereF | ,; is a spatial function which can be expanded as
spin state of the three-boson system be denoted as

v 2v
= —R].
15,9 =[((L)x(2)x(3)]s, @ \[zr)"’““ V3 )

where the spins of the particles 1 and 2 are couplesitioen ~ Here,Q denotes the seintkMK), P,; is the projection op-
sand the spin of the third are coupled to the total spiln ~ €rator onto the space of representation m—k+M—K
what follows|s,S) are combined to form the basis statds ~ =L is assumed, and serves as a variational parameter.
of the representation\ of the permutation group)  With this expansion the Schdqwger equation can be written
—{3}.{2,1}, or {1,1,1}. ng,i are related tds,S) as follows 1N @ matrix form and the matrix elementg can be calculgted.
[36]. The elgens'tateﬂfL'xs qnd the eigenenergies can be obt'alned
(i) When S=3, the spin staté2,3 belongs to the one- after the_dlagopallzanon dfl,. It turns out t_hat, whemw is _
dimensional representation={3}, we have given at its optlmal_ value, less than 2000 m_d_ependent b_aS|s
functions included in the expansion are sufficient to provide
7]{33},1: 12,3). solutions accurate enough for our purpose.

4

Pmk

Fiai= % CoPai

(i) WhenS=2, A={2,1}, we have lll. SPECTRUM

As in the Ref.[28], let us first make the choice that
=200 andb=0.1. The other choices of parameters will be
discussed later. Since the Hamiltonian is spin independent,
the eigenenergies do not depend directlyShbut depend on
L andX. Itis noted that whem ={3}, Scan be equal to 3 or

7 9i=|12 and p¥?=[2,2).

(i) When S=1, the three spin-statg$,1), |1,1), and
|2,2) belong to two representations={3} and{2,1}, we

have 1. Thus the levels are degenerate with respecs tdvhen
J5 2 A={2,1}, S can be equal to 2 or 1. However, when
7S =—-10,+2,1), ={1,1,1}, Scan be only equal to zero. Incidentally, there is
3 3 also a degeneracy with respect to the interchange afd
. —L. In what follows, it is sufficient to discuss only the
7 H=]1,9), =0 states.
The states having the sarheandL constitute a series. Let
{2,1},2:E|0 1>_\/_§|2 B L} denotes théth state of this series with an energy™ .
n 3 3 The first statel} is the lowest of the series. The energies
Ei'” of the first states are plotted in Fig. 1. To explain the
(iv) WhenS=0, A={1,1,1}, we have spectrum we have to mention the following points.
1111 (i) If the hard-core repulsion is removed, the three bosons
o =110 would all stay in the lowest harmonic oscillation levels,
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TABLE I. The number of favorable basis functions allowed in a crease. The more nodal surfaces are contained, the higher the
state with giverL andA\. energy. Since a first-state} is the lowest of a series, it
would do its best to lower the energy. Therefore, it would

L o 1 2 3 4 5 6 7 =8 contain nodal surfaces as least as possible. However, wave
(3 1 0 1 1 1 1 2 1 =2 functions may contain inherent!y a kind pf nodal surfaces
2.1 o 1 1 1 2 2 2 3 =3 imposed by symmetr{37-39, this is explained as foII(_)ws.
(11,1 o o o 1 o0 1 1 1 =1 When the three bosons turn out to form an equilateral

triangle (ET), then a rotation about the c.m. by 120° is
equivalent to a cyclic permutation of particles. Thus, we
namely, the levels havingg=K=0. However, due to the have
effect of the permutation symmetry, these favorable basis
functions might not be allowed for a state with specified
andL. The number of the allowed favorable basis functions
can be easily evaluated from the basics of group theory as
shown in Table I.

For example, ilN={2,1} and whenL=6 the number of
favorable basis functions is 2, and whiee 8 the number is

=3. ) . _ where P, is the operator of the cyclic permutation and
~ Obviously, once the favorable basis functions are prOh'bM?j(PC) is the associated matrix element of theepresen-
ited, the prohibition will lead to an increase in energy. Foration. It is emphasized that this equation holds only if the
example, forL=0 states, favorable basis functions are al-coordinates form an ET. Let us discuss in detail the more
lowed only in\={3} states, thu€3*® should be remark- complicated case of ={2,1}. Wheni=1 and 2, using the
ably lower thanE?'*% andEJ!**¥  just as shown in Fig. 1. knowledge of the theory of representation, the above equa-
Similarly, for L=1, EX2% should be lower thaIE%'B} and tion can be rewritten, respectively, as

EMIY for L=2, Ef%l“} should be explicitly higher than

the other two, and so on. Whénis not large the number of 2 1 3

favorable basis functions depends strongly \antherefore ex[{i?L)FL)\l(A): —SFua(B8)+ SFoa(d),

EL* depends also strongly onas shown in Fig. 1. ©®)

(i) In the{1,1,1} symmetry any particle is scarcely to be
close to another particle because the wave function has to be o /3 1
zero if they overlap. Furthermore, the range of hard-core eXF{i—L)Fsz(A)Z——FLu(A)——Fsz(A),
repulsionb is small. Thus, the probability of a pair of par- 3 2 2
ticles staying insidé is very small resulting in a very weak )
repulsion. For all the.={1,1,1} states, due to the very weak ) o
repulsion, the energy levels are found to be very close tdvhere (A) denotes that the coordinates form an ET. This is
those of pure harmonic oscillation. In fact, the levels with@ Set of homogeneous linear equations; the determinant of
A={1,1,1} in Fig. 1 lie either very close to the straight lines this set Det2 cog(2m/3)L]+1. Evidently, this set would
EL =42 orE- =L +4. have a nonzero solution only if De0 or L#3l, herel

1 1 . .

(iii) It is shown in Table | that more than one favorable =0:1,2 .. .. Itimplies that bothF,; would be zero at any
basis function(i.e., k=K=0) would be contained iL is ET if L=3l. In this case an |_nherent nodal surface_ emerges
larger, e.g., the I@J} states have two favorable basis func- &t the ETs, and this shape is therefore inaccessible to the
tions. It was found that these basis functions can mixed up if:2)=(31,{2,1}) states. _ ,
such a way that one of the eigenstate can be nearly free from When the three bosons turn out to form a cigar shape with
the hard-core repulsion. For exampléf{z']} and Ezzl,{Z,l} two at the two ends and one at the mid¢enoted as CG1

states are 6.003 and 6.304, respectively, the former is close {Bten ?\ rotat|orf1 f;]bout _the fc.m. tb>ll 180: t'ﬁ‘ et(\qullealegt tc_)”?n
the pure harmonic oscillation energy 6. For another exampléén erc lange IO d € Ipalrt of par '(; es ta d? h 0 etn Sa | IS
Eels,{s} and Eg,{s} states are 8.000 and 8.338, respectively, th quivalence leads also to a constraint and inherent nodal sur-

former does not have hard-core repulsion. Since more thaefr‘?lCeS might also occur at the CG1. Therefore, the CG1 may

) T . . Lx also be inaccessible to certain states. The accessibility of

one favorable basis function is contained.ifs larger,E7’ . ;

il tend toL +2 di di | dto th shapes are listed in Table II.
V\? hten oL+ .”|s_rega_rrh|_ng\, rrllame Y, tenhto the eNergy |t is recalled that the spectrum in Fig. 1 has been ex-
g. alrmomc osc:|t atlont. : ;?III'St eTrhe_asfontt at the curvestl lained based on Table I. However, it can also be equiva-
thlg. ctonvergiho r? stralg Ine. | IS ela U{je Ii (i?mvr\?lfn ently explained based on Table II. For this purposeHgbe
the systems with shor -rarlge repulsion. Incidentally, when o, - rewritten in a new form as
is larger, the level of the.] state is highly degenerate be-
cause it has four choices B o H=T+U, (8

(iv) The last factor affecting energies is the nodal struc-
ture of wave functions. It is well known that if a wave func- 5 3o
tion contains nodal surfaces, the kinetic energy would in- T=-Vi—2Vg, (€)

2
ex;{ i ?L) Fi(123=F|,i(23) =PF|,i(123

=Ej M} (PoF,j(123),  (5)
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TABLE Il. The accessibility of regular shapes, where a block with ai implies that the shape is
accessible to the associated state; e.g., the CG1 is accessiblete {h&1} andL odd states. A cross implies

inaccessible.

L= 0 1 2 3 4 5 6
{3} ET a X X a X X a
{3} CG1 a X a X a X a
{2,1 ET X a a X a a X
{2,1 CG1 a a a a a a a
{111 ET a X X a X X a
{111 CG1 X a X a X a X

" would beEM2¥ g andEIMS having the types I, Il
U=i§<:j [srij+UO(b—rj)]. (10) and 1V, respectively. It turns out that these suggested se-
guences are just the same as in Fig. 1. In fact, for each of the
In this form the parabolic confinement is replaced by the!— under consideration, the sequence accqrding to the ty.pes. is
quadratic terms in the pairwise interaction. From this formiUst the sequence from numerlcallcalculanozn, no exception is
we see that the distance between any pair of particles shouf@und. E.g., the energies of%, 6{**¥, and 6>¥ associated
neither be too large nor too small. If it is too large, the With the types |, I, and Il are 8.0000, 8.0013, and 8.0029,
quadratic term inU would cause a remarkable increase offespectively. Although these three levels are too close to each
energy. If it is too small, the hard core would cause also #ther to be distinguished in Fig. 1, they are still ordered
great increase of energy. Thus, there is an optimal domain dgixactly according to the types. Thus the effect of accessibil-
Separation between the particles_ If the bosons form an E'ﬁ,:y on the level Ordering is undoubted and the classification is
then the interparticle distances can be simultaneously opti€@sonable. Incidentally, the explanation based on Table Il is
mized. Therefore this shape would be favorable to bindingPetter than the explanation based on Table | in explaining the
Whereas only two distances can be simultaneously optimize@letails of the spectrum. For example, wag'>% is lower
if a CG1 is formed, thus the CG1 is not as favorable as théhan EZ® | why E3'® is lower thanE3?¥, etc., can be
ET. explained now but not earlier.

It is recalled that all the first states will do their best to
lower the energy; for this purpose the distributions of wave
function in coordinate space are optimized. However, the
optimization will be affected by the accessibility of regular  In order to understand the particle correlation, in what
shapes. Therefore, it would be useful to classify the statefollows a detailed analysis of wave functions will be made.
according to their ability to get access to regular shapesrirst, we introduce the hyperradius
There are four types of states. The first type can get access to
both the ET and CG1, the second can only get access to the 1 5
ET but not the CG1, the third can only get access to the CG1 £= [Zr24 ZR2 (1)
but not the ET, the fourth cannot get access to both the ET 23
and CG1. Based on Table Il, the types of states are listed in

IV. DENSITY FUNCTIONS

Table Il and a new argument
Since the prohibition of shapes would affect the optimi-
zation of wave functions, in particular, the prohibition of 2 /R\2
favorable shapes would cause a severe effect, it is reasonable B== _> ) (12
to assume that, for a givdn the energy of the first state of 3¢

the first type is the lowest, the second type is the second

lowest, while the fourth type is the highest. If this is true, theHere 3 is related to the usually defined hyperangleoy S8
energies for thé = 0 first states in ascending order would be =sir’a . The domain ofg is from 0 to 1, whilea is from 0
EXS ) EXMY and E92Y having the types I, II, and lll, to =/2. The correlated densities extracted below ugings
respectively, as shown in Table Ill, the energies for1  argument is invariant under particle permutations; this is the

TABLE lll. Four types of states.

L 0 1 2 3 4 5 6
{3 | \ Il I 1 \% I
2,1 Il | | Il I I 1
{111 Il Il \Y | \Y 1 Il
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30 60 800 30

0 (deg)

FIG. 2. p(6,B) of the L{2¥ andL{*¥ first states. The darker area has a smallgt,3).

reason why we usg to replacex. Let the azimuthal angles V. PARTICLE CORRELATION
\(/)Jritrte?\ngsR be ¢ and ¢g. The volume element can be Let us make use of the density functions to extract infor-

mation on particle correlation. We would like to clarify the

drdR=rRdrdRd,dgp=$£2dedBdpdgps. (13  fOllowing points.
' rRArdRdp dgp=2¢"dEdpddrdde. (13 (i) As a quantum-mechanic system, the character of the

We thus can define the density function associated with th@YStem <_jepend§ decisively on how the wave _funct|on Is dis-
size of the system tr_|bu_ted in coordinate space. In the case of spin-0 system, the
distribution has been found to depend strongly on the acces-
3 sibility of regular shape$28], this is true, in particular, for
p(&)=2, f |FL)\i|2§§3dﬁd¢rd¢R (14)  the first states. For the present system of spin 1, let us inves-
! tigate p(6,B) of the first states with.=0 to 3 . Since the
symmetry{3} is just the symmetry of spin-0 systems, which
fulfilling has already been discussed in R&B], we shall concentrate
on the{2,1} and{111} symmetry, the associatgd 6,3) are
plotted in Fig. 2.
f p(£)dé=1. (19 It is noted thatB=0, 1/4, 1/2, 3/4, and 1 correspond to
R/r=0, 1/2,yJ3/2, 3/2, andx, respectively. Thus, in the
Instead of usingp, and ¢g, we used=¢,— pr and g as -6 plane, the point §, ) = (7/2,1/2) is associated with an
arguments, wheré is the angle betweenandR. Then we  ET, the points(0, 3/4 and (¢,0) are both associated with a
define the correlated density function associated with deforCG1, the point40, 1/4 and (9,1) are both associated with
mation another cigar shape with two particles located at the same
end while the other one at the opposite efulénoted as
3 CG2). With this in mind let us observe the contour diagrams
p(6,8)=>, f |FLM|2§§3d§d¢R (16)  of p(6,B) . Figures 2b), 2(c), and Zh) belong to type I, they
' are similar with each other, all peaked at the ET and spread
- to the CG1. Hence, just as théSbstate of the spin-0 system
fulfilling [28], they are a mixture of the ET and the CG1, but the
former is more important due to being lower in potential
_ energy. Figure @) belongs to type Il, there is a peak at the
f p(6,5)d6dB=1. 17 ET, the distribution does not extend to the CGL1. Figui@s, 2
2(d), and Zf) belong to type lll, they are similar, there is a
We shall see that the feature of geometric structure and inpeak at the CG1 but a well at the ET and a well at the CG2,
ternal motion can be well understood via the above densityhus they are mainly a collinear structure. Figuig)2oe-
functions. Obviously, for the one-dimensional representatioiongs to type IV, there are no peaks at the ET nor at the CG1.
N={3} ora={1,1,1}, the summation overin Egs.(14) and  The most probable distribution is associated with irregular
(16) is not necessary. triangles. Thus, these figures demonstrate clearly that, just as
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0.8
(2) 0% states — = (b) 47" states -
0.6 =2 -
---- =4
—-— i=5
0.4
0.24 FIG. 3. p(¢) of the selected.! states. The
. thick solid line is for thei=1 state(the first
% 83 statg, the thin solid line fori=2, the thick
(d) 12" states dashed line foii =3, the thin dashed line for
0.6 =4, and the dashed-dotted line for5. The
— densities of 12** and 12 in Fig. 3d) are al-
0.4 fiz most same.
Mg
0.2
0.0 =

in the case of spin-0 system28|, the structures of the first of selected states witf2,1} and{111} symmetry are given in
states depend decisively on their types or on their ability td=ig. 3. It was shown in Fig. @) thatp(¢) of the 052'1 state

get access to regular shapes. States having differand\ has two peaks and a well, it implies that the oscillation as-
would have similar structure if they belong to the same typesociated with the variation of, namely, the variation of the

It is emphasized that, if the interparticle interaction is notsize, contains a node. In other words, the breathing mode has

negligible, the total potential energy depends on the shapdeen excited. The calculated energy difference betwé%’r}m 0
Thus the accessibility of shapes affects not only the strucand dﬁl} turns out to be 2.03, very close to the value of 2 for
tures of wave function, but also the eigenenergies as dighe excitation of the breathing mode given in R&7]. The

cussed in Sec. lll. Therefore, when the interaction is nop(6,8) diagram of 2% is given in Fig. 4a), which is
weak, the analysis of the accessibility is an important step tmearly the same as Fig(&. These facts implies that the
understand the spectra. 0{>Y and g*¥ states have nearly the same internal struc-

(i) Let us go beyond the first states and look at the modegures, except their sizes. They belong to the same breathing
of excitation. A detailed discussion on this subject has beeband. Thus the Pitaevskii-Rosch oscillation predicted based
given in Ref.[28]. Here, we shall focus on the breathing on the zero-range interaction was found not only in the sys-
mode predicted by Pitaevskii and Rod@V] based on the tems with the symmetry3}, but also in the systems with
systems with zero-range interaction. For this purpege) other symmetries.

)6, ? e
€
$7 =
30 60 90

60 92 0 0 30

0 (deg)

{11
(h) 12,

(C

FIG. 4. p(6,B8) of selected
L{2% andL{*¥ states.
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Similarly, in Fig. 3b) both the curves for the & and 44
412¥ states have two peaks. The calculated energy difference a2
of the 4% and 42 states turns out to be 2.001, their S
p(6,B) are very similar to each other as shown in Fig)4 4'0'_ 3‘-\_\
and 4d). The energy difference of thel#” and 42% states 3_8-*9.1—'_;—\;\0\
turns out to be 2.009, thep(6,B) are also very similar as w 361 "\.:\ 3
shown in Figs. &) and 4e). Thus, the existence of the ' '\-‘Zj -
Pitaevskii-Rosch oscillation in={2,1} states is further con- 3.44 Sagn,
firmed. 32] L6
In Fig. 3(c) the curve for 3% has two peaks while the ' “\\\\\
curve for 21 has three peaksi(6,5) of these two states 3.01
are shown in Fig. 4) and 4g), they are very similar with 06 07 08 09 10
each other and are more or less similar to that of tié%2 Qla,

state shown in Fig. (®). The calculated energy of théllij},
2{2111}' and %111} states turns out to be 6.005, 8.007, and FIG. 5. E.1 as a function of}/w,. A piece of straight line is
10.008, respectively, the separations are very close to 2. Thiggsociated with the energy of a state with a given séf ahd. L
the breathing band found in the spin-0 syste28] emerges S marked at the line. The state with={3} is marked by a solid
again. line, {2,1} by a dashed line, anfl11} by a dashed-dotted line.

Examples for the states with a larderare shown in Fig.
3(d), where both 18% and 12™% have two peaks. 12%
and 13'? are the members of a breathing band, the similar
ity of their p(6,8) is shown in Figs. ¢) and 4j), they are
both peaked at an ET. 2% and 12''% are the members of
another higher breathing banal,8, 8) of this band is shown
in Fig. 4(i), where the wells originate from the nodal struc-
ture of wave function.

(iii) It has been mentioned earlier that, if two or more
favorable basis functions witk=K=0 are contained in a

)\ . «
L series, the first state would be nearly free from the hardWas found that. and\ of the ground state would jump @

core repulsion.}Novv_, let us see how this happens_. For af), ies. WhenQ/w, is changed from 0 to 1,L(,\) would
gxamplf,_l}htc)el 5 serlei con;amﬁ twdo fz;yorab!e bgslls func—jump from (0{3)) to (1/2,1)), (242,1), and (3{111). The
tions (cf. Table ). On the other hand, this series belongs t0y4nsition of \ is a noticeable feature of the systems with
the type I(cf. Table Il). Thus, it is expected that the first- o -arq spins.

state 6% would have the same structure d§'0 1{2¥, and

gular velocityQ). We are interested in the lowest states when
Q) is given. However, these lowest states might have the c.m.
‘motion excited. Therefore, we shall take the c.m. motion into
account in this section. For a givéh, the series of eigenen-
ergies read€y, ;= Ep;— (Q/wo)L, whereEg; is the energy

of the system(including the energy of the c.m. motipif
=0, andL is the total orbital angular momentu¢mclud-

ing the contribution from the c.m. motipnWhen ) and\

are given,Eﬁ'1 is the energy of the lowest state disregarding
L. These energies as a function(@fare plotted in Fig. 5. It

2§, all of them belongs to the type I. Comparing Figk# VIl. EFFECT OF THE DETAILS OF INTERACTION

with Fig. 1(a) of Ref.[28], or with Figs. Zb) and Zc) of this

paper, one can see that ties diagram of q3} is more In the above calculation, the parametéis-200 andb
concentrated surrounding the ET a#,8)=((7/2),1/2). =0.1 have been adopted. To see the effect of the details of

Furthermore, it is recalled that the overlapping of two bosondnteraction, two more cases are considered. One is a hard-
is associated with the points 0, or (#,1). The density core interaction with a longer rangeU&20 and b

. 3) L . =0.316), the other one is a zero-range interactip(r;
function of él shown in Fig. 4k) keeps itself farther away —r}) with 7=6.8. The magnitudes of the new parameters

from the above points, it implies that the two favorable basis e so chosen that the eigenenergies of ﬁﬁéilates in the

functions have been coherently mixed up in such a way thal
the hard-core repulsion has been minimized. On the othe;?bove three.case_s are close to each other. The calculgted
sults are given in Fig. 6, where the internal eigenenergies

hand, since the second state has to be orthogonal to the firs .
: g ! i A3} (L=0-8,i=1,2) are plotted. The three curves for the

state, §3} has a completely different structure as shown in_ L
Fig. 4(). first states are very similar, those for the second states are

also similar. Besides, the qualitative features of the associ-
ated density functions are also similar. Thus the qualitative
VI. ROTATING SYSTEMS features in the above three cases are similar. This fact implies

that once the interaction remains to be repulsive and short

Recently, rotating Bose-Einstein condensates have beggnge, the details of interaction does not seriously affect the
studied by some authof$9,21,23. This is a very interesting  feature of the system.

subject because the rotation plays a role close to the role
played by the magnetic field in quantum dots. Thus, the
bosonic condensates and the electronic quantum dots have
some features in common, e.g., the existence of magic angu- We have presented numerical results of the low-lying
lar momenta. Let the system be rotating with a uniform an-states of an interacting two-dimension three-boson system

VIlIl. SUMMARY

032509-7



C. G. BAOANDT. Y. SHI

PHYSICAL REVIEW A68, 032509 (2003

10] @ U200, b=01 /> with differentLL and)\ mlght have S|m|Iar.structures_, or even
A the states belonging to different bosonic systdegsn O or
8+ . /A/‘/./‘ 1 spin 1) might have similar structures if they belong to the
6-/ 4 — same type, i.e., they have the same inherent nodal surfaces.
4_/\-/ Thus the analysis of the inherent nodal structures is a clue to
2 understand these few-body systems.
B 10] &) u=20,b=0316 ‘> (il) When higher states are taken into account, the breath-
2 /‘\‘/' ing mode of oscillation is important. This mode was first
o 8 \‘/A//l/ ) found by Pitaevskii and Rosd27] in the bosonic systems
g 6-‘7:\ /_/' with spin 0 and with zero-range interaction. However, in this
o2 4-/ " paper, this mode is also found in our bosonic systems with
£, . . . spin 1 and with hard-core interaction. Due to the oscillation,
10] (0 zerorange interaction with 1=6.8 /‘/1 the bands of breathing are formed. The members of the band
8] /‘/‘\‘/' ] can be well defined, they have nearly the safv@ diagram
/‘\A/‘ " but have distinct numbers of peak @if¢).
s‘k — e In addition to breathing, the oscillation associated with
4-/ . the deformation of triangle is also fourndf. Figure 4c)].
2 y r The two kinds of oscillations, breathing and deformation,
) 2 : 6 c?zrl}be excited simultaneoudlyf. Fig. 4e) and 3b) for the
477 statd.

(i) It is interesting to see that some states in the spectrum
can avoid the hard-core repulsion nearly completeyg.,
61> has an energy 8.00p@ia a coherent mixing of basis
functions so that the distribution of the wave function can
avoid the domain where overlap of particles occurs.
with spin 1 and with hard-core interaction. The following (iv) For rotating bosonic systems, the magic angular mo-
points are noticeable. menta and their transitions in a spin-1 system are very dif-
(i) The densities functiong(6,3) andp(£) together can  ferent from a spin-0 system, this is due to the transition of
demonstrate very clearly the structures of states. When onlgtf. Fig. 5).
the first states are concerned, there are only four kinds®f
diagram(cf. Figure 2 associated with four types of states
(cf. Table Ill). The details of interaction affects the system
only slightly (cf. Figure 6, if the repulsion remains to be of This work was supported by the NSFC of China under
short range. This leads to a conclusion that the inherent nod&@rant Nos. 90103028 and 10174098, and by a fund from the
structure of wave functions plays a decisive role. The stateMinistry of Education.

FIG. 6. E-® (i=1 and 2, marked by a square and a triangle,
respectively with three kinds of interaction(a) Repulsive hard-
core with U=200 andb=0.1, (b) repulsive hard core withJ
=20 andb=0.316, (c) zero-range interaction witly=6.8.
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