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Trapped planar three-boson system with spin 1 and with hard-core interactions

C. G. Bao and T. Y. Shi
State Key Laboratory of Optoelectronic Materials and Technologies, and Department of Physics, Zhongshan University

Guangzhou 510275, People’s Republic of China
~Received 25 May 2003; published 24 September 2003!

A two-dimensional spin 1 three-boson system trapped by a parabolic confinement and interacting with
hard-core repulsion has been investigated. The spectrum has been analyzed in detail, in particular, the existence
of breathing bands has been confirmed. Two density functions associated with the oscillations of breathing and
deformation, respectively, have been defined to study the structure of low-lying states. The inherent nodal
structure of wave functions is found to play a decisive role. The effect of rotation on the ground-state property
has also been studied. Not only the angular momentum, the permutation symmetry will also transit in accord
with the increase of the speed of rotation.
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I. INTRODUCTION

The achievement of Bose-Einstein condensates~BECs! in
trapped atomic gas has stimulated explosively growing in
est in the systems of interacting bosons@1,2#. In recent years,
much attention has been devoted to BECs in lower dim
sions. It is expected that the character and spectrum of
collective excitation of the BECs in lower dimensions wou
exhibit a qualitative change compared to their thre
dimensional counterpart. More stable topological excitatio
such as solitons~in one dimension! and vortices~in two di-
mension! would be achieved@3,4#. The experimental realiza
tion of BEC in quasi-two-dimension and in quasi-on
dimension has been reported by several groups@5–8#.
Theoretical studies for interacting bosons in two dimens
are mainly focused on the rotating properties and the vo
structures of systems in the Thomas-Fermi limit of stro
interactions@9–11# as well as in the limit of weak interac
tions @12–20#. The former limit case is closely related to th
current experiments. Moreover, in this limit case the pred
tions of the mean-field theory take a rather simple anal
form. The latter limit case is also of great theoretical inter
due to the mesoscopic nature of system, originating from
fact that the coherence length in the atomic cloud beco
larger than the size of the system, and also due to the a
able analytic solution of many-body wave functions, whi
is analagous to the well-known Laughlin wave functions
the quantum Hall regime in two-dimensional electron g
@21–24#. Also, in this limit exact diagonalization method fo
few boson systems is performed in the framework of low
Landau level approximation. Besides, the ground-state p
erties in the transition regime of middle interaction are a
discussed by several authors@25,26#.

While the ground-state properties of the interacting bo
systems have been studied extensively, the low-lying exc
states have also attracted a lot of attention due to their cru
roles in determining the thermodynamic behavior of the s
tems and in understanding the stability of the ground sta
under external perturbations@13,17,20#. It is shown that the
low-lying excited states in the case of weak-interaction lim
are dominant by the collective multipole excitation asso
ated with the multipole deformations of systems. Howev
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for the higher-lying states, there is monopole excitation~or
breathing mode which is associated with the collective rad
excitation! in the two-dimensional Bose systems with conta
interaction. Pitaevskii and Rosch have pointed out tha
two-dimensional harmonically trapped Bose system w
contact interaction displays breathing modes, and that
corresponding states have energies that differ by exactly
oscillator spacings@27#. This property, which is independen
of the strength of interaction, can be related to the existe
of a hidden symmetry of the problem described by tw
dimensional Lorentz group SO~2,1!. The breathing modes in
the case of none-contact interaction are also discussed
Bao et al. @28#. Very recently, such a breathing mode h
been observed experimentally@29#.

In this paper, we would extend our study on three spin
bosonic system@28# to the case that bosons have intern
degree of freedom, hyperfine spin. The study of such a th
boson system with internal degree of freedom is import
for several reasons. First, the energy spectrum of such a
body system can be obtained by exact diagonaliza
method. The correlation between particles which is discar
in mean-field approximation can be fully taken into accou
Second, the recent experimental observation of quan
phase transition from a superfluid to a Mott insulator in a g
of ultracold atoms provide a novel possibility for explorin
the properties of few-body systems@30#. In the experiment
described in Ref.@30# up to 200 00087Rb atoms were dis-
tributed over more than 15 000 lattice sites, thereby crea
a large number of few-body system with up to 2.5 ato
each on average. Third, the spinor BEC is also an active fi
in BEC physics@31–35#. The introduction of internal degre
of freedom would enrich physics. Our main interest in th
paper is the whole energy spectrum structure of three sp
boson system, especially the band structure of the breat
mode. Emphasis is placed on the study of symmetry effe

II. SPIN STATES, HAMILTONIAN,
AND DIAGONALIZATION

Let three identical bosons be trapped in a plane by a p
bolic confinement with a strength\v0 . Each boson has a
massm and a spin equal to 1. We use\v0 andA\/mv0 as
©2003 The American Physical Society09-1
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units of energy and length, respectively, throughout the
per. It is assumed, as in our previous paper on a three-b
system with spin 0@28#, that the bosons interact with eac
other via a spin-independent hard-core repulsive poten
UQ(b2r i j ), whereU andb are positive constants,r i j is the
interparticle distance, andQ(x)51 if x>0 or Q(x)50 if
x,0. Let r i be the position vector of thei th boson. A set of
Jacobi coordinatesr and R is adopted,r5r22r1 and R
5r32 1

2 (r11r2). In the center-of-mass frame the intern
Hamiltonian reads

HI52¹ r
21

1

4
r 22

3

4
¹R

21
1

3
R21(

i , j
UQ~b2r i j !. ~1!

In order to diagonalizeHI , let us first introduce a virtua
adjustable single-particle Hamiltonian of harmonic oscil
tion 2(1/2m)¹s

21 1
2 mv2s2. Here, sW is a two-dimensional

vector,m is related to the reduced mass, andv is an adjust-
able parameter. Letwmk(AmvsW) be an eigenstate of this ha
monic oscillation with an eigenenergy (m1k11)v and an
angular momentum (m2k). These single-particle states wi
be used to compose the basis functions to expand the e
states ofHI .

Let a spin state of a single boson be denoted asx and a
spin state of the three-boson system be denoted as

us,S&5@„x~1!x~2!…sx~3!#S , ~2!

where the spins of the particles 1 and 2 are coupled tos, then
s and the spin of the third are coupled to the total spinS. In
what followsus,S& are combined to form the basis stateshS

l,i

of the representationl of the permutation group,l
5$3%,$2,1%, or $1,1,1%. hS

l,i are related tous,S& as follows
@36#.

~i! When S53, the spin stateu2,3& belongs to the one
dimensional representationl5$3%, we have

h3
$3%,15u2,3&.

~ii ! WhenS52, l5$2,1%, we have

h2
$2,1%,15u1,2& and h2

$2,1%,25u2,2&.

~iii ! When S51, the three spin-statesu0,1&, u1,1&, and
u2,1& belong to two representationsl5$3% and $2,1%, we
have

h1
$3%,15

A5

3
u0,1&1

2

3
u2,1&,

h1
$2,1%,15u1,1&,

h1
$2,1%,25

2

3
u0,1&2

A5

3
u2,1&.

~iv! WhenS50, l5$1,1,1%, we have

h0
$1,1,1%,15u1,0&.
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Now a totally symmetric eigenstate ofHI with a given
angular momentumL, a spatial permutation symmetryl,
and a total spinS can be expanded as

CLlS5(
i

FLl i hS
l,i , ~3!

whereFLl i is a spatial function which can be expanded a

FLl i5(
Q

CQPl iFwmkSAv
2

r DwMKSA2v
3

RD G . ~4!

Here,Q denotes the set (mkMK), Pl i is the projection op-
erator onto the space of representationl, m2k1M2K
5L is assumed, andv serves as a variational paramete
With this expansion the Schro¨dinger equation can be writte
in a matrix form and the matrix elements can be calculat
The eigenstatesCLlS and the eigenenergies can be obtain
after the diagonalization ofHI . It turns out that, whenv is
given at its optimal value, less than 2000 independent b
functions included in the expansion are sufficient to prov
solutions accurate enough for our purpose.

III. SPECTRUM

As in the Ref.@28#, let us first make the choice thatU
5200 andb50.1. The other choices of parameters will b
discussed later. Since the Hamiltonian is spin independ
the eigenenergies do not depend directly onS, but depend on
L andl. It is noted that whenl5$3%, Scan be equal to 3 or
1. Thus the levels are degenerate with respect toS. When
l5$2,1%, S can be equal to 2 or 1. However, whenl
5$1,1,1%, S can be only equal to zero. Incidentally, there
also a degeneracy with respect to the interchange ofL and
2L. In what follows, it is sufficient to discuss only theL
>0 states.

The states having the samel andL constitute a series. Le
Li

l denotes thei th state of this series with an energyEi
L,l .

The first stateL1
l is the lowest of the series. The energi

E1
L,l of the first states are plotted in Fig. 1. To explain t

spectrum we have to mention the following points.
~i! If the hard-core repulsion is removed, the three bos

would all stay in the lowest harmonic oscillation level

FIG. 1. The energiesEi
L,l of the first states, where the triangle

for l5$3%, the circle for l5$2,1%, and the square forl
5$1,1,1%.
9-2
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TRAPPED PLANAR THREE-BOSON SYSTEM WITH SPIN . . . PHYSICAL REVIEW A68, 032509 ~2003!
namely, the levels havingk5K50. However, due to the
effect of the permutation symmetry, these favorable ba
functions might not be allowed for a state with specifiedl
andL. The number of the allowed favorable basis functio
can be easily evaluated from the basics of group theory
shown in Table I.

For example, ifl5$2,1% and whenL56 the number of
favorable basis functions is 2, and whenL>8 the number is
>3.

Obviously, once the favorable basis functions are proh
ited, the prohibition will lead to an increase in energy. F
example, forL50 states, favorable basis functions are
lowed only in l5$3% states, thusE1

0,$3% should be remark-
ably lower thanE1

0,$2,1% andE1
0,$111% , just as shown in Fig. 1

Similarly, for L51, E1
1,$2,1% should be lower thanE1

1,$3% and
E1

1,$111% , for L52, E1
2,$111% should be explicitly higher than

the other two, and so on. WhenL is not large the number o
favorable basis functions depends strongly onl, therefore
E1

L,l depends also strongly onl as shown in Fig. 1.
~ii ! In the $1,1,1% symmetry any particle is scarcely to b

close to another particle because the wave function has t
zero if they overlap. Furthermore, the range of hard-c
repulsionb is small. Thus, the probability of a pair of pa
ticles staying insideb is very small resulting in a very wea
repulsion. For all thel5$1,1,1% states, due to the very wea
repulsion, the energy levels are found to be very close
those of pure harmonic oscillation. In fact, the levels w
l5$1,1,1% in Fig. 1 lie either very close to the straight line
E1

L,l5L12 or E1
L,l5L14.

~iii ! It is shown in Table I that more than one favorab
basis function~i.e., k5K50) would be contained ifL is
larger, e.g., the 4i

$2,1% states have two favorable basis fun
tions. It was found that these basis functions can mixed u
such a way that one of the eigenstate can be nearly free
the hard-core repulsion. For example,E1

4,$2,1% and E2
4,$2,1%

states are 6.003 and 6.304, respectively, the former is clos
the pure harmonic oscillation energy 6. For another exam
E1

6,$3% andE2
6,$3% states are 8.000 and 8.338, respectively,

former does not have hard-core repulsion. Since more t
one favorable basis function is contained ifL is larger,E1

L,l

will tend to L12 disregardingl, namely, tend to the energ
of harmonic oscillation. This is the reason that the curves
Fig. 1 converge to a straight line. This feature is common
the systems with short-range repulsion. Incidentally, wheL
is larger, the level of theL1

l state is highly degenerate be
cause it has four choices inS.

~iv! The last factor affecting energies is the nodal str
ture of wave functions. It is well known that if a wave fun
tion contains nodal surfaces, the kinetic energy would

TABLE I. The number of favorable basis functions allowed in
state with givenL andl.

L 0 1 2 3 4 5 6 7 >8

$3% 1 0 1 1 1 1 2 1 >2
$2,1% 0 1 1 1 2 2 2 3 >3
$1,1,1% 0 0 0 1 0 1 1 1 >1
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crease. The more nodal surfaces are contained, the highe
energy. Since a first-stateL1

l is the lowest of a series, i
would do its best to lower the energy. Therefore, it wou
contain nodal surfaces as least as possible. However, w
functions may contain inherently a kind of nodal surfac
imposed by symmetry@37–39#, this is explained as follows

When the three bosons turn out to form an equilate
triangle ~ET!, then a rotation about the c.m. by 120°
equivalent to a cyclic permutation of particles. Thus, w
have

expS i
2p

3
L DFLl i~123!5FLl i~231!5PcFLl i~123!

5(
j

M i j
l ~Pc!FLl j~123!, ~5!

where Pc is the operator of the cyclic permutation an
Mi j

l (Pc) is the associated matrix element of thel represen-
tation. It is emphasized that this equation holds only if t
coordinates form an ET. Let us discuss in detail the m
complicated case ofl5$2,1%. When i 51 and 2, using the
knowledge of the theory of representation, the above eq
tion can be rewritten, respectively, as

expS i
2p

3
L DFLl1~n !52

1

2
FLl1~n !1

A3

2
FLl2~n !,

~6!

expS i
2p

3
L DFLl2~n !52

A3

2
FLl1~n !2

1

2
FLl2~n !,

~7!

where (n) denotes that the coordinates form an ET. This
a set of homogeneous linear equations; the determinan
this set Det52 cos@(2p/3)L#11. Evidently, this set would
have a nonzero solution only if Det50 or LÞ3I , here I
50,1,2, . . . . It implies that bothFLl i would be zero at any
ET if L53I . In this case an inherent nodal surface emer
at the ETs, and this shape is therefore inaccessible to
(L,l)5(3I ,$2,1%) states.

When the three bosons turn out to form a cigar shape w
two at the two ends and one at the middle~denoted as CG1!,
then a rotation about the c.m. by 180° is equivalent to
interchange of the pair of particles at the two ends. T
equivalence leads also to a constraint and inherent nodal
faces might also occur at the CG1. Therefore, the CG1 m
also be inaccessible to certain states. The accessibility
shapes are listed in Table II.

It is recalled that the spectrum in Fig. 1 has been
plained based on Table I. However, it can also be equ
lently explained based on Table II. For this purpose, letHI be
exactly rewritten in a new form as

HI5T1U, ~8!

T52¹ r
22 3

4 ¹R
2 , ~9!
9-3
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TABLE II. The accessibility of regular shapes, where a block with an ‘‘a’’ implies that the shape is
accessible to the associated state; e.g., the CG1 is accessible to thel5$111% andL odd states. A cross implies
inaccessible.

L5 0 1 2 3 4 5 6

$3% ET a 3 3 a 3 3 a

$3% CG1 a 3 a 3 a 3 a

$2,1% ET 3 a a 3 a a 3

$2,1% CG1 a a a a a a a

$111% ET a 3 3 a 3 3 a

$111% CG1 3 a 3 a 3 a 3
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@ 1
6 r i j

2 1UQ~b2r i j !#. ~10!

In this form the parabolic confinement is replaced by
quadratic terms in the pairwise interaction. From this fo
we see that the distance between any pair of particles sh
neither be too large nor too small. If it is too large, t
quadratic term inU would cause a remarkable increase
energy. If it is too small, the hard core would cause als
great increase of energy. Thus, there is an optimal domai
separation between the particles. If the bosons form an
then the interparticle distances can be simultaneously o
mized. Therefore this shape would be favorable to bindi
Whereas only two distances can be simultaneously optim
if a CG1 is formed, thus the CG1 is not as favorable as
ET.

It is recalled that all the first states will do their best
lower the energy; for this purpose the distributions of wa
function in coordinate space are optimized. However,
optimization will be affected by the accessibility of regul
shapes. Therefore, it would be useful to classify the sta
according to their ability to get access to regular shap
There are four types of states. The first type can get acce
both the ET and CG1, the second can only get access to
ET but not the CG1, the third can only get access to the C
but not the ET, the fourth cannot get access to both the
and CG1. Based on Table II, the types of states are liste
Table III.

Since the prohibition of shapes would affect the optim
zation of wave functions, in particular, the prohibition
favorable shapes would cause a severe effect, it is reason
to assume that, for a givenL, the energy of the first state o
the first type is the lowest, the second type is the sec
lowest, while the fourth type is the highest. If this is true, t
energies for theL50 first states in ascending order would
E1

0,$3% , E1
0,$111% , and E1

0,$2,1% having the types I, II, and III,
respectively, as shown in Table III, the energies forL51
03250
e

ld

f
a
of
T,
ti-
.
d
e

e
e

s
s.
to

he
1
T
in

-

ble

d

would beE1
1,$2,1% , E1

1,$111% , andE1
1,$3% having the types I, III,

and IV, respectively. It turns out that these suggested
quences are just the same as in Fig. 1. In fact, for each of
L under consideration, the sequence according to the typ
just the sequence from numerical calculation, no exceptio
found. E.g., the energies of 61

$3% , 61
$111% , and 61

$2,1% associated
with the types I, II, and III are 8.0000, 8.0013, and 8.002
respectively. Although these three levels are too close to e
other to be distinguished in Fig. 1, they are still order
exactly according to the types. Thus the effect of access
ity on the level ordering is undoubted and the classification
reasonable. Incidentally, the explanation based on Table I
better than the explanation based on Table I in explaining
details of the spectrum. For example, whyE1

2,$2,1% is lower
than E1

2,$3% , why E1
3,$3% is lower thanE1

3,$2,1% , etc., can be
explained now but not earlier.

IV. DENSITY FUNCTIONS

In order to understand the particle correlation, in wh
follows a detailed analysis of wave functions will be mad
First, we introduce the hyperradius

j5A1

2
r 21

2

3
R2 ~11!

and a new argument

b5
2

3 S R

j D 2

. ~12!

Hereb is related to the usually defined hyperanglea by b
5sin2a . The domain ofb is from 0 to 1, whilea is from 0
to p/2. The correlated densities extracted below usingb as
argument is invariant under particle permutations; this is
TABLE III. Four types of states.

L 0 1 2 3 4 5 6

$3% I IV III II III IV I
$2,1% III I I III I I III
$111% II III IV I IV III II
9-4
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FIG. 2. r(u,b) of the L1
$2,1% andL1

$111% first states. The darker area has a smallerr(u,b).
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reason why we useb to replacea. Let the azimuthal angles
of r and R be f r and fR . The volume element can b
written as

drdR5rRdrdRdf rdfR5 3
2 j3djdbdf rdfR . ~13!

We thus can define the density function associated with
size of the system

r~j!5(
i
E uFLl i u2

3

2
j3dbdf rdfR ~14!

fulfilling

E r~j!dj51. ~15!

Instead of usingf r andfR , we useu5f r2fR andfR as
arguments, whereu is the angle betweenr andR. Then we
define the correlated density function associated with de
mation

r~u,b!5(
i
E uFLl i u2

3

2
j3djdfR ~16!

fulfilling

E r~u,b!dudb51. ~17!

We shall see that the feature of geometric structure and
ternal motion can be well understood via the above den
functions. Obviously, for the one-dimensional representa
l5$3% or l5$1,1,1%, the summation overi in Eqs.~14! and
~16! is not necessary.
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V. PARTICLE CORRELATION

Let us make use of the density functions to extract inf
mation on particle correlation. We would like to clarify th
following points.

~i! As a quantum-mechanic system, the character of
system depends decisively on how the wave function is
tributed in coordinate space. In the case of spin-0 system
distribution has been found to depend strongly on the ac
sibility of regular shapes@28#, this is true, in particular, for
the first states. For the present system of spin 1, let us in
tigate r(u,b) of the first states withL50 to 3 . Since the
symmetry$3% is just the symmetry of spin-0 systems, whic
has already been discussed in Ref.@28#, we shall concentrate
on the$2,1% and $111% symmetry, the associatedr(u,b) are
plotted in Fig. 2.

It is noted thatb50, 1/4, 1/2, 3/4, and 1 correspond
R/r 50, 1/2, A3/2, 3/2, and`, respectively. Thus, in the
u-b plane, the point (u,b)5(p/2,1/2) is associated with an
ET, the points~0, 3/4! and (u,0) are both associated with
CG1, the points~0, 1/4! and (u,1) are both associated wit
another cigar shape with two particles located at the sa
end while the other one at the opposite end~denoted as
CG2!. With this in mind let us observe the contour diagram
of r(u,b) . Figures 2~b!, 2~c!, and 2~h! belong to type I, they
are similar with each other, all peaked at the ET and spr
to the CG1. Hence, just as the 01

$3% state of the spin-0 system
@28#, they are a mixture of the ET and the CG1, but t
former is more important due to being lower in potent
energy. Figure 2~e! belongs to type II, there is a peak at th
ET, the distribution does not extend to the CG1. Figures 2~a!,
2~d!, and 2~f! belong to type III, they are similar, there is
peak at the CG1 but a well at the ET and a well at the CG
thus they are mainly a collinear structure. Figure 2~g! be-
longs to type IV, there are no peaks at the ET nor at the C
The most probable distribution is associated with irregu
triangles. Thus, these figures demonstrate clearly that, jus
9-5
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FIG. 3. r(j) of the selectedLi
l states. The

thick solid line is for the i 51 state ~the first
state!, the thin solid line for i 52, the thick
dashed line fori 53, the thin dashed line fori
54, and the dashed-dotted line fori 55. The
densities of 121

111 and 122
111 in Fig. 3~d! are al-

most same.
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in the case of spin-0 systems@28#, the structures of the firs
states depend decisively on their types or on their ability
get access to regular shapes. States having differentL andl
would have similar structure if they belong to the same ty

It is emphasized that, if the interparticle interaction is n
negligible, the total potential energy depends on the sh
Thus the accessibility of shapes affects not only the str
tures of wave function, but also the eigenenergies as
cussed in Sec. III. Therefore, when the interaction is
weak, the analysis of the accessibility is an important ste
understand the spectra.

~ii ! Let us go beyond the first states and look at the mo
of excitation. A detailed discussion on this subject has b
given in Ref. @28#. Here, we shall focus on the breathin
mode predicted by Pitaevskii and Rosch@27# based on the
systems with zero-range interaction. For this purpose,r(j)
03250
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of selected states with$2,1% and$111% symmetry are given in
Fig. 3. It was shown in Fig. 3~a! thatr(j) of the 0 4

$2,1% state
has two peaks and a well, it implies that the oscillation
sociated with the variation ofj, namely, the variation of the
size, contains a node. In other words, the breathing mode
been excited. The calculated energy difference between 04

$2,1%

and 01
$2,1% turns out to be 2.03, very close to the value of 2 f

the excitation of the breathing mode given in Ref.@27#. The
r(u,b) diagram of 04

$2,1% is given in Fig. 4~a!, which is
nearly the same as Fig. 2~a!. These facts implies that th
04

$2,1% and 01
$2,1% states have nearly the same internal str

tures, except their sizes. They belong to the same breat
band. Thus the Pitaevskii-Rosch oscillation predicted ba
on the zero-range interaction was found not only in the s
tems with the symmetry$3%, but also in the systems with
other symmetries.
FIG. 4. r(u,b) of selected
Li

$2,1% andLi
$111% states.
9-6
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Similarly, in Fig. 3~b! both the curves for the 44
$2,1% and

45
$2,1% states have two peaks. The calculated energy differe

of the 44
$2,1% and 41

$2,1% states turns out to be 2.001, the
r(u,b) are very similar to each other as shown in Figs. 4~b!
and 4~d!. The energy difference of the 45

$2,1% and 42
$2,1% states

turns out to be 2.009, theirr(u,b) are also very similar as
shown in Figs. 4~c! and 4~e!. Thus, the existence of th
Pitaevskii-Rosch oscillation inl5$2,1% states is further con
firmed.

In Fig. 3~c! the curve for 22
$111% has two peaks while the

curve for 25
$111% has three peaks.r(u,b) of these two states

are shown in Fig. 4~f! and 4~g!, they are very similar with
each other and are more or less similar to that of the 21

$111%

state shown in Fig. 2~g!. The calculated energy of the 21
$111% ,

22
$111% , and 25

$111% states turns out to be 6.005, 8.007, a
10.008, respectively, the separations are very close to 2. T
the breathing band found in the spin-0 system@28# emerges
again.

Examples for the states with a largerL are shown in Fig.
3~d!, where both 123

$111% and 125
$111% have two peaks. 121

$111%

and 123
$111% are the members of a breathing band, the simi

ity of their r(u,b) is shown in Figs. 4~h! and 4~j!, they are
both peaked at an ET. 122

$111% and 125
$111% are the members o

another higher breathing band,r(u,b) of this band is shown
in Fig. 4~i!, where the wells originate from the nodal stru
ture of wave function.

~iii ! It has been mentioned earlier that, if two or mo
favorable basis functions withk5K50 are contained in a
Li

l series, the first state would be nearly free from the ha
core repulsion. Now, let us see how this happens. For
example, the 6i

$3% series contains two favorable basis fun
tions ~cf. Table I!. On the other hand, this series belongs
the type I~cf. Table III!. Thus, it is expected that the firs
state 61

$3% would have the same structure as 01
$3% , 11

$21% , and
21

$21% , all of them belongs to the type I. Comparing Fig. 4~k!
with Fig. 1~a! of Ref. @28#, or with Figs. 2~b! and 2~c! of this
paper, one can see that theu-b diagram of 61

$3% is more
concentrated surrounding the ET at (u,b)5„(p/2),1/2….
Furthermore, it is recalled that the overlapping of two boso

is associated with the points (0,1
4 ) or (u,1). The density

function of 61
$3% shown in Fig. 4~k! keeps itself farther away

from the above points, it implies that the two favorable ba
functions have been coherently mixed up in such a way
the hard-core repulsion has been minimized. On the o
hand, since the second state has to be orthogonal to the
state, 62

$3% has a completely different structure as shown
Fig. 4~l!.

VI. ROTATING SYSTEMS

Recently, rotating Bose-Einstein condensates have b
studied by some authors@19,21,22#. This is a very interesting
subject because the rotation plays a role close to the
played by the magnetic field in quantum dots. Thus,
bosonic condensates and the electronic quantum dots
some features in common, e.g., the existence of magic a
lar momenta. Let the system be rotating with a uniform a
03250
ce
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n
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s
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en

le
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gular velocityV. We are interested in the lowest states wh
V is given. However, these lowest states might have the c
motion excited. Therefore, we shall take the c.m. motion i
account in this section. For a givenV, the series of eigenen
ergies readsEV, j

l 5E0,j
l 2(V/v0)L , whereE0,j

l is the energy
of the system~including the energy of the c.m. motion! if
V50, andL is the total orbital angular momentum~includ-
ing the contribution from the c.m. motion!. WhenV andl
are given,EV,1

l is the energy of the lowest state disregardi
L . These energies as a function ofV are plotted in Fig. 5. It
was found thatL andl of the ground state would jump ifV
varies. WhenV/v0 is changed from 0 to 1, (L ,l) would
jump from ~0,$3%! to ~1,$2,1%!, ~2,$2,1%!, and ~3,$111%!. The
transition of l is a noticeable feature of the systems w
nonzero spins.

VII. EFFECT OF THE DETAILS OF INTERACTION

In the above calculation, the parametersU5200 andb
50.1 have been adopted. To see the effect of the detail
interaction, two more cases are considered. One is a h
core interaction with a longer range (U520 and b
50.316), the other one is a zero-range interactionhd(r i
2r j ) with h56.8. The magnitudes of the new paramete
are so chosen that the eigenenergies of the 01

$3% states in the
above three cases are close to each other. The calcu
results are given in Fig. 6, where the internal eigenenerg
Ei

L,$3% (L50 –8, i 51,2) are plotted. The three curves for th
first states are very similar, those for the second states
also similar. Besides, the qualitative features of the ass
ated density functions are also similar. Thus the qualitat
features in the above three cases are similar. This fact imp
that once the interaction remains to be repulsive and s
range, the details of interaction does not seriously affect
feature of the system.

VIII. SUMMARY

We have presented numerical results of the low-lyi
states of an interacting two-dimension three-boson sys

FIG. 5. EV,1
l as a function ofV/v0 . A piece of straight line is

associated with the energy of a state with a given set ofL andl. L
is marked at the line. The state withl5$3% is marked by a solid
line, $2,1% by a dashed line, and$111% by a dashed-dotted line.
9-7
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with spin 1 and with hard-core interaction. The followin
points are noticeable.

~i! The densities functionsr(u,b) andr(j) together can
demonstrate very clearly the structures of states. When
the first states are concerned, there are only four kinds ofu-b
diagram~cf. Figure 2! associated with four types of state
~cf. Table III!. The details of interaction affects the syste
only slightly ~cf. Figure 6!, if the repulsion remains to be o
short range. This leads to a conclusion that the inherent n
structure of wave functions plays a decisive role. The sta

FIG. 6. Ei
L,$3% ( i 51 and 2, marked by a square and a triang

respectively! with three kinds of interaction.~a! Repulsive hard-
core with U5200 andb50.1, ~b! repulsive hard core withU
520 andb50.316, ~c! zero-range interaction withh56.8.
v.

. A

rin

03250
ly

al
s

with differentL andl might have similar structures, or eve
the states belonging to different bosonic systems~spin 0 or
spin 1! might have similar structures if they belong to th
same type, i.e., they have the same inherent nodal surfa
Thus the analysis of the inherent nodal structures is a clu
understand these few-body systems.

~ii ! When higher states are taken into account, the bre
ing mode of oscillation is important. This mode was fir
found by Pitaevskii and Rosch@27# in the bosonic systems
with spin 0 and with zero-range interaction. However, in th
paper, this mode is also found in our bosonic systems w
spin 1 and with hard-core interaction. Due to the oscillatio
the bands of breathing are formed. The members of the b
can be well defined, they have nearly the sameu-b diagram
but have distinct numbers of peak inr(j).

In addition to breathing, the oscillation associated w
the deformation of triangle is also found@cf. Figure 4~c!#.
The two kinds of oscillations, breathing and deformatio
can be excited simultaneously@cf. Fig. 4~e! and 3~b! for the
45

$21% state#.
~iii ! It is interesting to see that some states in the spect

can avoid the hard-core repulsion nearly completely~e.g.,
61

$3% has an energy 8.0000! via a coherent mixing of basis
functions so that the distribution of the wave function c
avoid the domain where overlap of particles occurs.

~iv! For rotating bosonic systems, the magic angular m
menta and their transitions in a spin-1 system are very
ferent from a spin-0 system, this is due to the transition ol
~cf. Fig. 5!.
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