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Relative likelihood of encountering conical intersections and avoided intersections on the potential
energy surfaces of polyatomic molecules
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We prove that conical intersections are much more likely than local minima of the electronic energy gap.
Therefore, if one encounters a very small electronic energy gap along a path through configuration space, it is
much more likely to be associated with the neighborhood of a conical intersection than with an avoided

intersection.
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[. INTRODUCTION this will be because one has passed near a conical intersec-

tion, rather than a true avoided crossing corresponding to a

Our understanding of molecular phenomena is sometimegue minimum in the ga.
based on sharp selection rules and theorems, such as the
noncrossing rule, the conservation of total angular momen-
tum and parity, the Jahn-Teller theorem, and the nonexist- Il. THEORY
ence of strictly diabatic electronic states. More often, though, _ .
it is guided by fuzzier principles such as the Franck-Condon Assume that one has found a point at which the Gap
principle or the tendency of energy transfer processes tBetween two electronic states has the very low valuee.,
minimize Changes in translational energy and Spin quanturﬁ<1. (Note: all quantities are in atomic UnitS, where the unit
numbers. Complicated phenomena such as electrically non&f energy is the hartree, 27.2 ¢\The question we have
diabatic processes are especially in need of guiding prinPosed is the following: Is it more likely that the point is
ciples, even fuzzy ones. closer to a conical intersectidi€l) or to a minimum(min)?

One way to establish such principles is by expanding Llearly, the probability of each will be proportional to the
coupling term in powers of a small parameter. Using thisvolume of nuclear configuration space that ks e due to
approach, Born and Oppenheimer showed that the couplingach effect.
of adiabatic electronic wave functions by nuclear kinetic en- Let the dimension of the space ble=3n—6, wheren is
ergy is usually smalf1]. More recently, using the same ap- the number of atomé&ssumed to be greater than or equal to
proach, it was shown that, although one cannot in genera}). Consider a region of dimensidnin all directions, with
find strictly diabatic electronic statéstates for which the VvolumeV=L¢ For a Cl, we must have two conditions sat-
coupling due to nuclear momentum and kinetic energy vanisfied, u=v=0[4,5] If u andv are chosen as two of the
ishes in any finite region one can find electronic represen- coordinates in the neighborhood of the CI, then we will have
tations that reduce the coupling everywhere to a level of thé&<e for a distances in the u andv directions(since G
same order as the nonadiabatic coupling of adiabatic states waries linearly withu andv), independent of the othed(

regions where the Born-Oppenheimer principle is viliii ~ —2) coordinates, so the volume WCl)=L%"2¢2,
This principle gives useful guidance in the development of A minimum of G requires that all components of gr&d
algorithms for calculating quasidiabatic staf8$ vanish, and this amounts t conditions, so we will have

In the present article, we propose and prove another suchinima only at isolated points. We also note ti@tvaries
principle, one that should prove useful in computations ofquadratically in the distance from a minimum, so the volume
coupled potential energy surfaces. In particular, we prove this V(min)=¢%2 Furthermore, only a fractiors of the
following theorem. Let minima will have the anomalously low valueof the gap, as

addressed in the next paragraph.
Next consider the question of how many Cl and minima
G=U,—-U,, (1)  there are. Assuming a densipy/for the zeros of a typical
electronic matrix element in the problem, the numBNéCI)
of CI's in the region is on the order gf2L2. Similarly, the
whereU; andU, are adiabatic electronic energy levels, with numberN(min) of minima isp?L%. But most minima will
U, the higher level by convention, so th@tis never nega- have gaps larger than Only a fractione of them will have
tive. Suppose that one calculatds andU, along a path and the anomalously low value. So the number of minima of
encounters what looks like an avoided crossing, thaGis, interest to us isN(min)=gp?LY
exhibits a local minimum where it has a very small value in  We can now estimate the order of magnitude of the total
atomic units. In this article, we show that, almost always,volumes ¥, in the two cases. We obtain
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Viol(Cl)= N(C|)V(C|)=p2Ld82 2 We note that spin-orbit coupling is neglected in the
present treatment. Including spin-orbit coupling would have
and no effect on the discussion for a system with an even number
of electrong(in the absence of external fieljgd®ut for an odd
Vgl Min) =N(min)V(min) = p9L% 4+ 272, (3 number of electrons, spin-orbit coupling lowers the dimen-

o sionality of the intersection.
The ratio is

I1l. DISCUSSION
Viol(MiN)/Vyo(Cl) = (p?e )@~ 2)72, (4)

The theorem we have just proved is a corollary of sorts to
Recall thate is small by definition, andl is at least 3, since another fuzzy theorem, namely, conical intersections are not
n=3 by definition of the problem under consideration. Next,rare. That theorem seems “obvious” from a certain point of
we considelp. The density of zeros of the electronic matrix view/[6,7] but the literature now contains expressions of sur-
elements should be of the order of the density of zeros of thgrise at the nonrareness of conical intersections in numerical
orbitals in the valence region, and this densityG¢l) in  computations. So maybe it would have been worthwhile to
atomic units because the spaciing bohrg between nodes is  publish a principle of the nonrareness of conical intersections
O(1). Therefore the ratio in Eq(4) is a normally small to guide computational work before the nonrareness became
number, and it rapidly becomes smaller as the size of thelear by the experience of conical intersections showing up
system(number of atomsn) becomes large, and asbe-  in more and more computations. It is in this spirit that we
comes small. have submitted the present more detailed theorem for publi-

It follows that the principle is true: Almost always, if, cation.

along a path, there occurs a minimwmin the electronic
energy gapG, and it is much less than 1 hartree, then the IV. SUMMARY

minimum is near a Cl. Exceptions can occur onlypibe- We h dath hich. in olain |
comes very large, or if the density of zeros is much larger for, € have proved a theorem which, in plain language, says

the components of gra@ than foru andv, which are un- that when one encounters a local minimaong a pathof

likely scenarios since these densities do not depend on a € gap _between two potential energy surfacgs, aImos:t al-
large or small parameter. Even in these cases, the probabili ays it IS the shoulder _Of a con.|cal !ntersect!on. Conical
of having discovered an exception becomes smak: &g- Intersections are not rare; true avoided intersections are much
comes small. This principle is similar in rigor to the Born- less likely.

Oppenheimer principle; it follows from general consider- ACKNOWLEDGMENT
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