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Relative likelihood of encountering conical intersections and avoided intersections on the potentia
energy surfaces of polyatomic molecules
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We prove that conical intersections are much more likely than local minima of the electronic energy gap.
Therefore, if one encounters a very small electronic energy gap along a path through configuration space, it is
much more likely to be associated with the neighborhood of a conical intersection than with an avoided
intersection.
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I. INTRODUCTION

Our understanding of molecular phenomena is someti
based on sharp selection rules and theorems, such a
noncrossing rule, the conservation of total angular mom
tum and parity, the Jahn-Teller theorem, and the nonex
ence of strictly diabatic electronic states. More often, thou
it is guided by fuzzier principles such as the Franck-Cond
principle or the tendency of energy transfer processes
minimize changes in translational energy and spin quan
numbers. Complicated phenomena such as electrically n
diabatic processes are especially in need of guiding p
ciples, even fuzzy ones.

One way to establish such principles is by expandin
coupling term in powers of a small parameter. Using t
approach, Born and Oppenheimer showed that the coup
of adiabatic electronic wave functions by nuclear kinetic e
ergy is usually small@1#. More recently, using the same a
proach, it was shown that, although one cannot in gen
find strictly diabatic electronic states~states for which the
coupling due to nuclear momentum and kinetic energy v
ishes in any finite region!, one can find electronic represe
tations that reduce the coupling everywhere to a level of
same order as the nonadiabatic coupling of adiabatic stat
regions where the Born-Oppenheimer principle is valid@2#.
This principle gives useful guidance in the development
algorithms for calculating quasidiabatic states@3#.

In the present article, we propose and prove another s
principle, one that should prove useful in computations
coupled potential energy surfaces. In particular, we prove
following theorem. Let

G[U22U1 , ~1!

whereU1 andU2 are adiabatic electronic energy levels, wi
U2 the higher level by convention, so thatG is never nega-
tive. Suppose that one calculatesU1 andU2 along a path and
encounters what looks like an avoided crossing, that isG
exhibits a local minimum where it has a very small value
atomic units. In this article, we show that, almost alwa
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this will be because one has passed near a conical inte
tion, rather than a true avoided crossing corresponding
true minimum in the gapG.

II. THEORY

Assume that one has found a point at which the gapG
between two electronic states has the very low value«, i.e.,
«!1. ~Note: all quantities are in atomic units, where the u
of energy is the hartree, 27.2 eV.! The question we have
posed is the following: Is it more likely that the point
closer to a conical intersection~CI! or to a minimum~min!?
Clearly, the probability of each will be proportional to th
volume of nuclear configuration space that hasG<« due to
each effect.

Let the dimension of the space bed53n26, wheren is
the number of atoms~assumed to be greater than or equal
3!. Consider a region of dimensionL in all directions, with
volumeV5Ld. For a CI, we must have two conditions sa
isfied, u5v50.@4,5# If u and v are chosen as two of th
coordinates in the neighborhood of the CI, then we will ha
G<« for a distance« in the u and v directions ~since G
varies linearly withu and v), independent of the other (d
22) coordinates, so the volume isV(CI)5Ld22«2.

A minimum of G requires that all components of gradG
vanish, and this amounts tod conditions, so we will have
minima only at isolated points. We also note thatG varies
quadratically in the distance from a minimum, so the volum
is V(min)5«d/2. Furthermore, only a fraction« of the
minima will have the anomalously low value« of the gap, as
addressed in the next paragraph.

Next consider the question of how many CI and minim
there are. Assuming a densityr for the zeros of a typical
electronic matrix element in the problem, the numberN(CI)
of CI’s in the region is on the order ofr2L2. Similarly, the
numberN(min) of minima isrdLd. But most minima will
have gaps larger than«. Only a fraction« of them will have
the anomalously low value. So the number of minima
interest to us isN(min)5«rdLd.

We can now estimate the order of magnitude of the to
volumes (Vtot) in the two cases. We obtain
©2003 The American Physical Society01-1
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Vtot~CI!5N~CI!V~CI!5r2Ld«2 ~2!

and

Vtot~min!5N~min!V~min!5rdLd«~d12!/2. ~3!

The ratio is

Vtot~min!/Vtot~CI!5~r2«!~d22!/2. ~4!

Recall that« is small by definition, andd is at least 3, since
n>3 by definition of the problem under consideration. Ne
we considerr. The density of zeros of the electronic matr
elements should be of the order of the density of zeros of
orbitals in the valence region, and this density isO(1) in
atomic units because the spacing~in bohrs! between nodes is
O(1). Therefore the ratio in Eq.~4! is a normally small
number, and it rapidly becomes smaller as the size of
system~number of atomsn! becomes large, and as« be-
comes small.

It follows that the principle is true: Almost always, i
along a path, there occurs a minimum« in the electronic
energy gapG, and it is much less than 1 hartree, then t
minimum is near a CI. Exceptions can occur only ifr be-
comes very large, or if the density of zeros is much larger
the components of gradG than for u and v, which are un-
likely scenarios since these densities do not depend on
large or small parameter. Even in these cases, the proba
of having discovered an exception becomes small as« be-
comes small. This principle is similar in rigor to the Bor
Oppenheimer principle; it follows from general conside
ations about the magnitudes of matrix elements and does
require a specific calculation of the matrix elements for e
molecular system.
s.
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We note that spin-orbit coupling is neglected in t
present treatment. Including spin-orbit coupling would ha
no effect on the discussion for a system with an even num
of electrons~in the absence of external fields!, but for an odd
number of electrons, spin-orbit coupling lowers the dime
sionality of the intersection.

III. DISCUSSION

The theorem we have just proved is a corollary of sorts
another fuzzy theorem, namely, conical intersections are
rare. That theorem seems ‘‘obvious’’ from a certain point
view,@6,7# but the literature now contains expressions of s
prise at the nonrareness of conical intersections in nume
computations. So maybe it would have been worthwhile
publish a principle of the nonrareness of conical intersecti
to guide computational work before the nonrareness bec
clear by the experience of conical intersections showing
in more and more computations. It is in this spirit that w
have submitted the present more detailed theorem for pu
cation.

IV. SUMMARY

We have proved a theorem which, in plain language, s
that when one encounters a local minimum~along a path! of
the gap between two potential energy surfaces, almost
ways it is the shoulder of a conical intersection. Conic
intersections are not rare; true avoided intersections are m
less likely.
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