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Entanglement and correlation in anisotropic quantum spin systems
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Analytical expressions for the entanglement measures concuriecmegurrence, and 3-tangle in terms of
spin correlation functions are derived using general symmetries of the quantum spin system. These relations
are exploited for the one-dimension€XZ model, in particular the concurrence and the critical temperature for
disentanglement are calculated for finite systems with up to six qubits. A recent NMR quantum error correction
experiment is analyzed within the framework of the proposed theoretical approach.
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[. INTRODUCTION systems. Finally, the entanglement of a quantum system with
N=5 qubits in a NMR quantum error correction experiment
Quantum entanglement was already pointed out by Schrd26] is discussed and partly quantified in terms of the en-
dinger[1] to be a crucial element of quantum mechanicstanglement measures in Sec. V.
Research was refocused on quantum entanglement in the last
15 years because the field of quantum information thécfty Il BASIC NOTATIONS
[2,3]) developed rather quickly. Recent papers concerning
entanglement in quantum spin systems address questions Consider a quantum system consisting dfqubits on
about the maximum entanglement of nearest-neighbor qubitsumbered sites. The basis of the state of one qubit is given
belonging to a ring oN qubits in a translationally invariant by |0), |1), which are the eigenstates of (¢, ¢, o* de-
guantum statg¢4], the dependence of entanglement betweemote the Pauli spin operatgrwith eigenvalues-1, +1, re-
two spins on temperature, external magnetic field strengtspectively. An unentangled state bf qubits is the direct
and/or anisotropy for the one-dimensional isotropic Heisenproduct of the single qubits, €.d#)1»..y=[0)1®|0),®- -
berg model[5-10], the Ising model[11], the three-qubits ®|0)y=:/00 --0);,..y. If unambiguous then indices indicat-
XXZmodel[6], the XXZmodel with defect§12], and theXY ing site numbers will be omitted in the following because the
model[13]. Further topics are entanglement close to quanqubits are arranged with increasing site number. Thus site
tum phase transition$6,14—-1§ and global entanglement information is contained in the ordering of the qubits. The
with an application to quantum error correction codeHamiltonianH and the density operatgr describing such
subspacef19]. guantum spin systems are usually expressed in terms of the
In the present paper several new aspects of quantum efdentity operator, the Pauli spin operators, and/or the op-
tanglement are discussed, in particular how the various mearatorso = :=3(c*+id").
sures of entanglement can be related to correlation functions. The state of the spin system becomes mixed at finite tem-
The importance of the relation between entanglement angeratures. The operator representing this state is frequently
correlations has been emphasized very recd@y21. Af-  called the thermal density operator. In thermodynamical
ter introducing briefly the basic notations and definitions inequilibrium, it is given by the operatgs=Z"1exd —BH],
Sec. II, the functional dependences of the entanglement megrmere=(kgT) "1, kg denotes the Boltzmann constafitis
sures concurrende22,23, i-concurrencg24] (in small sys-  the temperature of the system, afe- Trexy{—BH] is the
tems, and 3-tanglg25] on spin correlation function§in-  partition function.
cluding spin expectation valueare established in Sec. Ill.  Spin expectation values and correlation functions are de-
Necessary and sufficient conditions for a positive concurfined as
rence are found. In Sec. IV the expectation values, correla-
tion functions, and concurrence of both the ground and the
excited states of the one-dimensiox&{Z model, as well as
the mixed state of the quantum system at finite temperature,
are calculated analytically in terms of the eigenenergies. Theheren,....me{1,..N} andv,...,u e{X,y,z,+,—} specify
concurrence of ahl=4 quantum spin system and the critical the qubit and the operator, respectively. Furthermore, in what
temperature where the concurrence vanishes are examinedfillows, the z component of the total spin operat®
detail. Results are also presented fbr 2, 3, 5, and 6 qubit :=3N_,02, the spin-flip operatoF:=®N_, 0%, and assum-

Kp be=(alaty=Tr(pop - ok), (1)
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ing periodic boundary conditiondNHI1—1), the translation
operatorT, defined byT||¢/)12.n=|¥)1+1 241
used occasionally.

.....

IIl. ENTANGLEMENT AND CORRELATION FUNCTIONS

The functional dependence of entanglem@neasured in
terms of the concurrencé;concurrence, and 3-tangl®n
correlation functions of the operatoss, ¢¥, 0%, o= is now
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PG =51+ KE—KE—KE), (30)
P =2(1+KE+KE+KZ), (3d)
P = (P =Kim = (Kpm)*, (3¢

and all other coefficients are equal zero.
The concurrence ®Gas been introduced by Woottd23]

discussed as far as possible without an explicit specificatioas a measure to quantify entanglement. p&ie the density

of the model Hamiltonian. Using the bad® and |1), the

expansion coefficients of the@educed density operator of
one qubitn (1=n=<N) are given by spin expectation values

only,
piT=3(1-K}), (2a)
p5y=3(1+Kp), (2b)
piE=(ps)* =Ky =(K;)*. (20

In the same manner, tieeduced density operator of two
qubitsn andm (1=n<m=N) can be expressed in the basis
|00y, |01), |10), and|11). If the Hamiltonian commutes with

operator representing a pure or mixed state of two qubits
andm. Then

Chm= ma)(o’énm)v (4)
4
Chm= 2N max— jzl )\j ) 5

where N\ pa¢=max(\i,\2,\3,N4) and Ny, No, A3, A4 are
the non-negative, real eigenvalues of the matifik
=\p(a'® ") p*(V® ).

For a density operator with the coefficiert®, one has

the z component of the total spin operator, the corresponding Np=N,=1&, (63)
expressions can be simplified, yielding
— 1| +=
PiT= 3 (1= KA— KL+ KR, (3a Naq=lé" = 4lKanll (6b)
P53 =1(1-Ki+KE—KGD), (3b) £ = VAEKT)? = (KiEKR)?, (60
|
LK~ =€) if Ap=Ay<\z and & >4[K} ],
2 HE—¢h) if Np=No<Az and & <4[K |, @
S S if N\;=A,=\3,\, and & >4|K |,
—2|K if Ni=N,=\3,\, and & <4|K; |

Thus Egs(4) and(7) yield the functional dependence of the

Equations(8) and(9) can be interpreted in the following

concurrence on correlation functions usil®j symmetry  way: If the state of two qubits in a system witf=0 and/or

only.

Cases 3 and 4 of Eq7) are not interesting becaug®, ,

Kf =0 is entangled then thecomponents of the spins must
be correlated antiferromagnetically. The maximal entangled

<0 and thusC,,=0. With the help of cases 1 and 2, it is States are the two Bell statgg™)=(1n2)(|01)*[10)). If
straightforward to find the following necessary and sufficientK,K,>0, e.g., if an appropriate external magnetic field is

conditions for entanglement:
KE2 —KZKZ <O,

K22 —KZK2<0 and £ <4|K/ |,

applied, entanglement of qubits with ferromagnetically cor-
relatedz components of the spins is possible. The sufficient

(8) condition requires, moreover, that the correlations of the two

qubits need to be greater than a minimum value to create
entanglement. Again an appropriate external magnetic field

(9 reduces this demand.

If the system exhibits additional spin-flip symmety;,

respectively. These results are similar to the conjecture that KZ=0 andKrTn:= K;nj result. Then Eqs(3), (6), and(7)

the ground state of the transverse Ising model andX¥fe simplify and case 1 of Eq(7) coincides to the result pub-

model is entangled if and only if, according [&5], K47
—KHK L #0.

lished in[8]. Necessary and sufficient conditions for en-
tanglement are now
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K%z <0, (10
Kim<0 and I=<|KGG|+[Kenl + KR (1D
respectively. Here the relatidt)x,=KY%.=2K_ —, which is

correct because & andF symmetry, was used.
The i-concurrence has been proposed by Rungthal.
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IV. XXZ MODEL

The HamiltoniarH(J,A) of the one-dimensiondkpatia)
homogeneouXXZ model read<cf. [27])
N

1 _ _ 1
H=§anl O',T(Tn+l+0n0':+1+§Aa'rz10'ﬁ+l . (18

[24] as an entanglement measure. A@&be a quantum sys- The coupling constand specifies the strength of nearest-

tem consisting of two subsystemdsand B with dimensions

neighbor spin interaction. Anisotropy in spin space is quan-

d, anddg, respectively. The density operators representingified by A. Periodic boundary conditions are assumed. In

the state of these systems are dengigd, ps, andpg,

what follows, all energies are measured in unitsl.of

respectively. Ifpopg represents a pure state then the entangle- The XXZ model possesses some interesting symmetries.

ment of this state with respect to the two subsystémsdB
is quantified by

Ca_s=2[1-Tr(p3)],

12

The Hamiltonian(16) commutes with the component of the
total spin operato&?, the spin-flip operatoF, and the trans-
lation operatoiT, . UnfortunatelyS* andF do not commute,
but of course it is possible to classify eigenstateHoby
eigenvalues of $* and eigenvaluek of (iN/27)In[T,]. Be-

wherep,=Trg(pag) is the reduced density operator of sub- cause ofF symmetry, it is sufficient to solve the eigenvalue

system A. It is known from [24] that 0<C,_g
<.2[(d—1)/d], whered=min(d,,dg). A different notation
is occasionally used for qubits: For examply,_3,denotes
the entanglement of the state where subsysténend B
consist of qubits 1,2 and 3,4, respectively. Note tBat,
=C,_n, if the state of qubit$r andmis pure.

From Egs.(2) and(12), it follows that

Enfrest: \/l—(Kﬁ)2—4K;K;. (13

If the Hamiltonian commutes witB?, Egs.(3) and(12) yield

Comres™ J%—%[(Kﬁfn)2+(Kﬁ>2+<Kﬁ1)2]—4|K:n:|? )
14

problem ofH in subspace witls<0.

For evenN, it was shown in[28] that H(J,A) and
H(—J,—A) possess a spectrum of identical eigenvalues in
each subspace of because the operatok:=®)\_1; 0%
commutes with S and AH(J,A)A 1=H(-J,—A)
=—H(@J,—A).

Some correlation functions of the€XZ model are interde-
pendent. If only eigenstates with equaparticipate in the
thermal density operator then it is straightforward to show
that

z-z 12)— s 22

Kmimmil_(_l)(N 2) SKm;---miz’ (17)
wherem}, ... m{* andm3, ... mS2 are the elements of
M, and M,, respectively, &+&=N, M;UM,

In an analogous way theconcurrence of three and more ={1,2,..N}, andM;NM,=0. i ]
qubits can be expressed in terms of correlation functions. _ If H hasS* andF symmetry, onlyK, andK ., appearin

Two highly entangled qubits cannot be much entangledd- (7). These correlation functions can be expressed in
with the remaining system and vice versa. This property igerms of the partition function. For example, ., and
ensured in Egs(13) and (14). They indicate high entangle- K,T(;H) read(cf. [29])

ment in the system if the absolute values of expectation val-

ues and correlation functions are as small as possjikS- 2z 4 d Inz 18
erable zerp This is contrary to the requirements for a high nn+HT T NJB dA ne, (18)
concurrence.

The 3-tangler has been suggested by Coffmetnal.[25] L 1/d A d
to quantify the entanglement of a pure state of three qubits 1, Knntn="— N_,B (m_ 3 ﬁ) InZ. (19

2, and 3 in the following way:

Using these relations, the correlation functions and concur-
rences of the eigenstates and the thermal state of nearest-
neighbor qubits can be calculated by knowing only the ei-
where C§_23=4 det(ol)zaf_23 and p;=Tr,y(p129). Note  genvalues of the Hamiltonian. It is straightforward to express
that 71,5 does not contain the entanglement of two out of thefurther expectation values and correlation functions in terms
three qubits and,3 does not depend on the arbitrary choice of the partition function using the same method. Possibly, the
of qubit 1 as the “central” qubit. Hamiltonian has to be supplementélg., adding taH ap-

The 3-tangler;,; can be expressed in terms of correlation propriate external magnetic field terms yield§ again as
functions if the Hamiltonian of the system commutes withderivatives of IrZ).
7. This is achieved by expressing the right-hand side of Eq. As another application of Eq(7), the concurrence of
(15) in terms of correlation functions with the help of Egs. nearest-neighbor qubits of the ground state in the anisotropic
(4), (7), and(13). XXZ model withJ=—1, A=—1%, and an odd number of

T105= Ci_55~ Ci,—Ci, (15
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TABLE |. Classification of the eigenstates of tKXZmodel (N=4) and the concurrence of nearest- and next-to-nearest neighbor qubits.
Normalization factors are given ag ,:=\4+2(uy )%, whereu; y=—3AF3/A?+8.

S k E |¢> Cn(nJr:I.) Cn(n+2)
-2 0 A |0000
-1 0 1 1(11000 +|0100 +|0010 + |0001)) 3 3
-1 1 0 (11000 +i|0100 — |0010 —i|0001)) 3 3
-1 2 -1 (/1000|0100 +|0010 —|0001)) 3 3
-1 3 0 (/11000 —i|0100 — |0010 +i|0001)) 3 3
0 0 e (1/71)(]1100 +|0110 +|0011) + |1002) + 4]1010 —2u, 2—(y)?
+#a|0103) "0 2 () 2 ()?
0 0 o (1/7,)(]1100 +|0110 +|0011) + |1002) + 1,/ 1010 2u,—1 2— (y)?
+12/0109) "2 (w? NERIPRL
0 1 0 3(]1100+i]/0110 —|0011) —i|1001)) 0 1
0 2 0 (]1100 —|0110 +]0011) —|1001)) 0 1
0 2 -A (172)(]1010 —|0101) 0 0
0 3 0 3(]1100-i]/0110 —|0011) +i]|1001)) 0 1
qublts is considered. It is known froff80] that K{(,, 1 2uq u
- Dy G L
14 (3/2N%) and Kn(m) IKS )= 3KV, 1) =5/16 Chneny=max 0, |7 (a2t
+(3/16N2) Therefore Ki,,1)<0 and I<|K}i .,y
+ K+ ol K Gl ;or N=3. Thus the concurrence is n 2142 | B P Y W s N ’
Ch(n+1)= (3/8) 1—(1/N?)]. Concurrence is increasing with 2+ (u2) 2
oddN whereas the concurrence of nearest-neighbor qubits of 1 1
the ground state in the isotropic antiferromagnetic Heisen- bRt —2§M2> . (23
berg model decreases with increasing eMen all cases that 2+ (p1) (m2)
have been calculated by O’Conner al. [4].
Now the XXZ model is considered on a finite chain. Of 22 _ (oA A (n1)?-2 e
course, the calculation of eigenstates and eigenvalues is get- Kn<n+2>_2 ¢oH-3s 2+ (u )2 -
ting more involved with increasindyl in general. Therefore, )
in what follows, only small spin chains with<2N<6 are n (n2)=2 ) (24)
considered. 2+(,u2)2§ '
For the casé\ =4, the eigenstatgg) are given in Table |
together withC,,, 4 1) andCy,(n 4 2), i.€., the entanglement of L 1,1 B
nearest- and next-to-nearest neighbor qubits in these eigen- Kn(n+2)zz 55 + 55— §+ Wé“ 1
states measured in terms of concurre@eEigenstates with !
s>0 are obtained by applying on eigenstates wite<<0. 1 N
The partition function, correlation functions, and concur- + W( B2, (29
rences at finite temperatures are calculated as
1 2
Z=20"A 42420 Y20+ TH T M4 T2, (20) Chin+2)= max{ 0,—( Y3+ —— M
z 2+ (p1)
I Py (o) [ PRI —’24—A+gﬁ+g—1+g+2
nn+1) 7 2+ (pq)? 2+ (u2)
2
()2 (r)* (p2)? )}
B _ + M1 M2 , 26
2t ) @y 22t Tt @9
where{:=e? and u, =—3AF3JA?+8.
Kt z_(_gl_ iy e The concurrenceC, ;1) of the state of two nearest-
nnth -z 12 2 2+(,u 2+ (pu1)? neighbor qubits as a function of anisotropyand tempera-
ture T is depicted in Fig. 1. The energies together with the
+ Lz é“—,u2> , (220 concurrences of thiadividual eigenstates are responsible for
2+ (p2) all described features. AT=0, the change of the ground
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FIG. 1. The 3D plot shows the concurrerCg, 1) of the state
of two nearest-neighbor qubits in th&XZmodel N=4,J>0) as a
function of anisotropyA and temperatur&. The 2D plot shows the
projection of the critical temperatuiie, (— — —) and lines of equal
Cn(n+1) (7)

state fromE=A (s=*2k=0) to E=pu; (s=0k=0)
causes the discontinuity At= — 1. The position of the maxi-
mum inC, 4 1)(A,T=0) is atA =A,=1. With increasing
temperatureA ., increases buC,n+1)(Anax,T) decreases
monotonously. For fixed\, the concurrence, 41 is a

monotonously decreasing function of temperature. This i
caused by the inclusion of excited states. The plateau regi

in the dependence &,,,,1) onT for A=4 stems from the

with increasingA increasing gap between the energies of th
lowest and the other excited states. Of course, if the therm
energy is high enough to provide the further excited stateg,, qubits forN=5 (J<0:

(0]

e
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FIG. 2. Critical temperatur&. of the concurrence of the state of
two qubits in theXXZ model @=0) for 2<N=<6 as a function of

S’misotropyA. Panel(a) shows nearest-neighbor qubits fiir=2

%—-——), N=4 (—--—--), andN=6 (—-—-—-—); next-to-nearest
neighbor qubits foN=4 (— — —) andN=6 (- - - -); next-to-
next-to-nearest neighbor qubits fir=6 (——). Panel(b) displays
earest-neighbor qubits fdf=3 (J<0: —--—--; J>0: identical
erg andN=5 (J<0: — — —; J>0: —); next-to-nearest neigh-
- +; J>0: identical zerp. The

with significant weights, the concurrence decreases fastgligets give the dependence of these functions at larger values of
again. The critical temperaturg, is defined as the lowest (j|3))A. Of course, the entanglement vanishes in the Ising model

temperature above which the entanglement medbere the
concurrencgindicates an unentanglégart of the state(cf.

limit of Eq. (16), i.e., for|A|—oo.

[[31], p. 159). Itis easily identified as the intersection of the try exists for oddN. Actually, for the states of nearest-

zero surface and the surface of the funct@y, , ;) in Fig. 1.
The projection of the critical temperatufe and the lines of

neighbor qubits l=3) and next-to-nearest neighbor qubits
(N=5) entanglement is only possible fdx0. In all con-

equalC,, 1) are depicted in the lower part of Fig. 1. In this sidered cases the inequaliff/.(N,J<0)=T.(N,J>0) is
way it is easy to identify parameter regions of states with avalid.

certain minimal entanglement. Note that lines of finite equal One observes in Fig. 2 thal,=0 for (J/|J|)A<—1 in-
concurrence are not increasing monotonously with increasdependently ofN and the choice of the two qubits. It is

ing A but T, does.

In Fig. 2 the critical temperatur@. of the entanglement
(measured in terms of concurrencd the state of two qubits
in the XXZ model g=0) for 2<N<6 as a function of an-
isotropy A is shown.

The transformatiold— —J andA— — A leaves the criti-
cal temperature invariant for evéh If | is an eigenstate of
H(J,A) with eigenvalueE then |¢)=A|y) is the corre-
sponding eigenstate dfi(—J,—A) with the same eigen-
value and identical entanglement becafss a local unitary

known from [27] that for all N, J<0 andA=1 the two
eigenstates of the Hamiltoniafl6) with s==*=N/2 are
ground states. These ground states are not entangled and they
cause the thermal state to be unentangled for all tempera-
tures. The same reasoning applies for edenJ>0 andA
<—1 because of the symmetries of th&XZ model with
periodic boundary conditions. The ground state may change
at differentA for odd N andJ>0 (e.g., atA~—0.809015
considering theXxXZ model withN=5 andJ>0).

Furthermore, critical temperature of geometrically equiva-

transformation and entanglement is invariant under local unitent aligned qubits is decreasing with increasikdor even
tary transformations. Thus the thermal density operators oN. This tendency is consistent with the dependence of con-
both Hamiltonians are unitary equivalent and possess identeurrence onN in the isotropic Heisenberg model with an
cal entanglement and critical temperatures. No such symmepplied external magnetic fiel@f. [5]).
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encoding and chemical shifte}, for each individual qubitdata are in
[26,32). Of course, now open boundary conditions are
applied.

The five-qubit code for quantum error correction is used
to encode qubit 2 in the experiment. The encoding is shown
in Fig. 3. The quantum system is in a highly mixed state, i.e.,
the coefficients of the density operator are close to the coef-
I corresponds to 160°030} ficients of the identity operator because the experiment is

performed at room temperature. In the beginning, the quan-

FIG. 3. Encoding of qubit 2 based on the five-qubit code. Thetm system is prepared in a way that only molecules in the
horizontal lines represent the qubits. Th? Zgates dendteland  hitial state [1111% give a signal on NMR measurements.
180° oo, implemente~ /2972 ande~ (7727, respectively. Here  Then one says that the quantum system is inpeudopure

a
b

ae{xy,z} anda,be{1,2,3,45. state|11112 (Ref.[33]). The pseudopure staj#1111 is an
eigenstate of the Hamiltonig®7) as well as the Hamiltonian
V. ANALYSIS OF AN EXPERIMENT including all interactions of qubits and the applied external

inallv. th | fh fth magnetic field described ifi26,32. Furthermore, it is an
Finally, the entanglement of the state of the quantum sysg;yonqtate ofs?. Thus going to a frame of reference that

tem .in a NMfR e'xperimentf about quantum error correction, oates around theaxis does not change the density operator
[26] is quantified in terms of concurrendeconcurrence, and ¢ 1o initial state(see[[34], p. 287).

3-tangle. Five qubit.s are providgd by different. atoms i@ The pseudopure state of the quantum system at several
Iabeled.transcrotomc acidynthesis and properties, 4&2]) stages(A, B, C, D, and E, cf. Fig. Bduring encoding was
solved in deuterated acetone. calculated by the product-operator formalisisee [[34],

_ One molecule can be approximately described by the on€span 19). Therefore, the conservation of the pseudopurity
dimensional spatial inhomogeneaxixZmodel, including an ¢ the state of the quantum system is assumed, i.e., there is
external magnetic field, because the coupling constants f, interaction among different molecules and encoding is
non-neighboring qubits are much smaller than the coupling, ;1o mented so quickly that no decoherence occurs. The re-
constants of nearest-ne|ghpor qubitsee [26,32). The sults are given in Table Il together with the expectation val-
HamiltonianH (J,,A, w,) of this model reads uesk? andK. = (K7)* (with n=1,2,...,5).

It is straightforward to calculate the entanglement of one

4 qubit with the remaining qubits by inserting these expecta-
H=3 > Jor o to,on  +3A0%ah,, tion vglues into Eq(13). In_this way it is easy togeta quick
n=1 overview about the possible entanglement in the quantum
5 system. Note that it is not appropriate to use Edsand(7)
_1 z or (14) here because the pseudopure state does not comply
32 oo, @n _
n=1 with the necessar$* symmetry in general.

The pseudopure state at the various stages is now dis-
cussed in detail: The initial state is not entangled. At pos-
where the coupling constandlg (n=1,...,4) specify the in- jtion A, the state is not entangled as well. So far only local
homogeneous strength of nearest-neighbor interacNaie-  operations have been performed and these cannot create
termines the anisotropy in spin space, and the effect of thentanglement.
external magnetic field is included im,=wh+w; (n At position B, qubits 1, 2, and 5 are not entangled but
=1,...,5), which are the sums of precession frequenefes Cg,=1. Actually, the state of qubits 3 and 4 at position B

TABLE Il. Pseudopure statéy) of the quantum system at several stages during encoding. The expectation K3leesl K,
=(K,)* (with n=1, 2, ..., 9 are given for each state. Notatioft,):=(1/2)(|1)+]0)), [0,):=(1W2)(|1)—[0)), |1,):=(INV2)(|1)
+i|0)), |0y):=(12)(|1)—i[0)), [1,):=|1), and|0,):=|0).

Position i) K K5 Ki Ki KZ KI Kj K3 Kij K
A 1,1,1,0,1,) o 1 0 0 1 3 0 3 -3 O
B (1V2)[1,1,)®(]1,1,) —10,0,))®|1,) 0 1 0 O 1 3 0 0 0 0
C (1~2)|1,)®(|041,0,) +]1,0,1,)) ®|1,) 0O 0 0 o0 1 3 0 0 0 0
D 211810, @ (11,00 +10,1,0) ~ 1,0 ©(|1,0,) o 0o 0 0 0 3z 0 0 0 O
=011
E @W22){|1,)®[]0,1,)®(]1,1,)+|0,0,)—[1,0)®(]1,1y 0 0 0 0 0 O 0 0 0 0
-10,0,)1+
[ |Ox>®[|0yoz>® (| 1zoz> + |Ozlz>) - |1ylz>® (| 1zoz>
- |Ozlz>)]}
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reads|#)s,=3(|11)+]10)—|01)+|00)) and it conforms to Thus it is a reasonable conjecture that an entanglement of
the Bell stategy*) and|¢$=)=(172)(]00)=|11)) up to a four or less qubits does not exist there because entanglement
local unitary transformation. cannot be shared arbitrarilgf. [25]).

At position C, only qubits 2, 3, and 4 are entangled:
Cy.37~=C3.04=C,4.o3= 723~ 1, wWhere the state of these qu-
bits reads|#),3,=3(]110+|101)—|010+|001)). It con- The entanglement measures concurrenesgncurrence
forms to the cat state (2Z)(|000)+|111)) up to a local (for one or two qubits in one subsystgnand 3-tangle have
unitary transformation. Two out of these three qubits are nobeen successfully expressed in terms of correlation functions.
entangled as usual for a cat state. In addition, necessary and sufficient conditions for a positive

At position D, only qubit 1 is not entangled. The state of concurrence have_ t_)een formulated. These results haye been
the remaining qubits conforms to}(|0110 +|0101) used in the remaining paper because they can simplify cal-
—i|1010+i|1001)) up to a local unitary transformation. culations: The concurrence of eigenstates or the thermal state
The analysis of qubits 2, 3, 4, and 5 shows no entanglemert2Ve bgen calculated ana]y'ucally knowing only the energies
of the state of two of these qubits. The entanglement of f the eigenstates and their dependences on the parameters of

state of three qubits cannot be calculated because tracing | efgﬁfﬁm'SFlégahnfr?;;ege%(ﬁegé'gcﬁéﬂtuEfgﬁ;ﬂﬁgﬁgﬁ 'Qf
a qubit generates in general a mixed state iacohcurrence 9 Y y

) i — spin expectation values.

can only be applied to pure states. But itGs_345=C3.245 A detailed analysis of concurrence and critical tempera-

:C4_23r_C5_234:1, C23_45:l, andC24_3r_Cz5_34: \/gZ ture in the XXZ model with 2<N<6 qubItS has been
At the end of the encoding sequen@msition B, all qu-  accomplished.

bits are entangled: C,.s=1 if Aindicates one arbitrary qu-  Finally, the entanglement of the state in a NMR experi-

bit and B the remaining four qubitsC =372 if A indi- ment has been discussed quantitatively. Different kinds of

cates two arbitrary qubits ar the remaining three qubits. entanglement have been identified. This calculation shows

Again there is no entanglement of the state of two qubits an(Bhe relevance of entanglement measures in actual experi-

the entanglement of a state of three or four qubits cannot b@etnts Ibecauts? trlﬁy aIIowt an a?aly?;]s of g‘e |rqpc1rr:ar!c? of
guantified so far. These results coincide with the on¢4 9 entangiement for the quantum aigorithms. LUespite the infor-
ifnation, which is obtained with the available measures, fur-

mer measures are needed for a complete insight.
The entanglement measures might be useful designing
gew experimentgpossibly utilizing advanced types of qu-

VI. SUMMARY

five-qubit error correction code subspace possess maxim
global entanglement but vanishing concurrences.

Clearly, in this experiment, entanglement is created durin
encoding and it expands in a geometrical sense, i.e., th
number of qubits involved in the entanglement increase
with the progressing encoding sequence.

Unfortunately, it is not possible to quantify the entangle- ACKNOWLEDGMENT
ment of the state at positions D and E completely because of
the lack of suitable measures. But all calculated One of us(H.F) thanks John Schliemann for useful
i-concurrences exhibit their maximal values at position Ediscussions.

its, e.g., spin cluster qubifd5]) that set up states with
ifferent entanglement and prove or disprove the benefit of
entanglement in different quantum algorithms.
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