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Quantum walks based on an interferometric analogy
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There are presently two models for quantum walks on graphs. The “coined” walk uses discrete-time steps,
and contains, besides the particle making the walk, a second quantum system, the coin, that determines the
direction in which the particle will move. The continuous walk operates with continuous time. Here a third
model for quantum walks is proposed, which is based on an analogy to optical interferometers. It is a discrete-
time model, and the unitary operator that advances the walk one step depends only on the local structure of the
graph on which the walk is taking place. This type of walk also allows us to introduce elements, such as phase
shifters, that have no counterpart in classical random walks. Several examples are discussed.
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[. INTRODUCTION by Childs et al. [12]. They constructed an oracle problem
that can be solved by exponentially faster on a quantum
Random walks on graphs are the basis of a number ofomputer than on a classical one by utilizing continuous
classical algorithms. Examples include 2-Sfsatisfiability ~ quantum walks. The vertices of the graph are numbered
for certain types of Boolean formulasgraph connectivity, (named, and there are two special vertices called the en-
and finding satisfying assignments for Boolean formulas. Adrance and the exit. The problem is, given the name of the
a result, it is natural to explore the quantum counterpart of £ntrance, and the oracle, to find the name of the exit. The
random walk, in the hope that it will be useful in the devel- oracle specifies the graph, which belongs to a particular set
opment of quantum algorithms. This has led to a number oPf possible graphs, by taking a binary number as its input,
studies. Quantum walks on the line were examined by NayaRnd either telling you that this number does not correspond
and Vishwanatt1], and on the cycle by Aharonat al.[2]. to a_vertex or if it does, telling you the names of the adjacent
The latter study also considered a number of properties ofertices. _ _
quantum walks on general graphs. Numerical simulations of All of the discrete-time quantum walks are based on a
walks in two and three dimensions were performed byParticular model, the, “coined quantum walk,” due to Wa-
Mackayet al.[3]. Absorbing times and probabilities of quan- trous[13]. In trying to formulate a quantum walk on a graph,
tum walks on the line were studied by several authdrs]. the most natural thing to do is to let a set of orthonormal
One of the main results to come from this work is that quanpasis states correspond to the vertices of the graph. If a par-
tum walks spread faster than do classical ones. In particulaficle is in the statgn) that corresponds to its being located
on the line, the standard deviation of the position of theOn vertexn. Trying to define a unitary evolution using this
particle making the walk increases linearly with the numberscheme soon leads to serious problems, as was first noted by
of steps rather than with its square root as in the classicdyleyer [14]. Watrous solved this problem by enlarging the
case. Walks on the hypercube have also been considered, afdbert space in which the quantum walk takes place. How
here the results are even more dram#€ic7]. Kempe has this scheme works is most easily seen by considering the
shown that the hitting time for the walk from one corner of quantum walk on a line. The vertices are labeled by integers,
an n-bit hypercube to the opposite corner is polynomiahin and, in addition, there is a quantum coin, which has two
for a quantum walk, but exponential for a classical one. Theéstates|L) and|R), corresponding to left and right, respec-
guantum walk on the hypercube was Subsequenﬂy used élyEly A basis for the Hilbert space describing this system is
the basis of a quantum search algorith@). The effect of ~ given by the statefn)®|a), wheren is an integer and is
decoherence on these walks has also been studied. Br&fherL or R. A step in this walk consists of applying the
et al. showed how increasing decoherence turns a quantuffadamard operatd to the coin,
walk into a classical random wall®]. Kendon and Treganna

found that small amounts of decoherence can actually 1
speed the convergence of the time-averaged probability HIL)=—(|L)+[R)),
distribution of a particle in a quantum walk to a uniform V2
distribution[10].
The time steps in the quantum walks considered in these 1
works are discrete. Continuous-time quantum walks have H|R>:T(|L>—|R>)- 1)
also been proposedl]. It was shown that on a particular 2
graph, the propagation between two properly chosen nodes is
exponentially faster in the quantum case. and then the operator
There is, at the moment, only one algorithm based on
guantum walks on graphs, and it was proposed very recently Vi =S®|R){R|+ST®@|L){(L], (2
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whereS s the shift operator, whose action is given by be reflected. The beam splitter has two input modes, the pho-
ton can enter from either the right or the left, and two output
Sin)=|n+1), S'Iny=|n—1). (3) modes, the photon can leave heading either right or left. The

beam splitter defines a unitary transformation between the

Methods for the implementation of the coined quantum walkinput and output modes.

on a number of different physical systems have recently been We now need to translate this analogy into transition rules

suggested. These include ion traps5], neutral atoms for our quantum walk. Suppose we are in the state

trapped in an optical lattieL6], and cavity QED, in which it |j—1.j). If the photon is transmitted it will be in the state

is the phase of the field that undergoes the WalK. lj,j+1) and if reflected in the staté,j—1). Let the trans-
The coined quantum walk can be extended in a simplégnission amplitude beand the reflection amplitude veWe

way to regular graphs, i.e., those in which all vertices havéhen have the transition rule

the same number of edges emanating from them. When this . . . .

is not true, things become more complicated, and it seems to i=1j)—=tlj,j+1)+rlj,i—1), (4)

be necessary to consider the global structure of the graph

defining the walk. So far, no studies of discrete-time quan

tum walks on graphs that are not regular have appeared. that is, it is in the statéj+1,j). If it is transmitted it is in

o s e 4 s o s o 7 Sl 1) and 1 eflectd i 15 o he e

. : ) . lgj +1). Unitarity of the beam splitter transformation then
graph as an interferometer. The vertices are optical elemen

. . ives us that

known as A ports, whereN is the number of edges meeting
at the vertex, and the edges correspond to paths a photon can [j+1j)—t*]j,j—1)—r*|j,j+1). (5)
take through the interferometer. There is no quantum coin in
these walks. The states are labeled by the edges rather th&hese rules specify our walk.
the vertices in the graph, and each edge has two states. If the The caset=1 and r=0 corresponds to free particle
edge is labelea@b, a corresponding to one end abdo the  propagation; a “photon” in the statg,j+1) simply moves
other, then one state &b, corresponding to a photon going one step to the right with each time step in the walkr If
from a to b, and the other i®a, corresponding to a photon +#0, then there is some amplitude to move both to the right
going fromb to a. This approach is easily extended to arbi- and to the left. A physical system to which this is analogous
trary graphs; one simply writes down the transition rules foris the motion of a particle in a periodic potential. The beam
each vertex, and all of them taken together define a unitargplitters can be thought of as scattering centers with the scat-
operator that advances the walk one step. In addition, we catering resulting from a localized potential. As is well known,
add elements to this walk that correspond to the addition ofhis leads to energy bands, and, as we shall soon see, a simi-
phase shifters to paths in an interferometer. lar structure emerges in quantum walks on the cycle.

This model of a quantum walk on a graph is closely re- One way of approaching the study of the dynamics gen-
lated to the optical networks considered byrfia and Jex erated by this walk is to find the eigenvalues and eigenstates
[18]. They considered two-dimensional arrays of beam splitof the unitary transformatiotd that moves the system a
ters and the propagation of photons through them. The horisingle step. In order to do this, we first note thetommutes
zontal motion of the photon in these networks corresponds twith the translation operator where
the time steps in a quantum walk, and the vertical position of
the photon is just the position of the particle in the quantum T
walk. Note that these networks provide one with the OPPOr=r . Llies that th ¢ be simult v di-
tunity to simulate the model of quantum walks proposed here IS Implies that Ihese operators can ei85|mu aneously di
with linear optics. agonalized. The eigenvalues dof are €', W_here O

=2wk/N, andk=0,1, ... N—1. Each of these eigenvalues
is doubly degenerate, and the two-dimensional space of
ll. WALK ON THE CYCLE eigenvectors corresponding &'« is spanned by

Where unitarity implies thaft|?+|r|?>=1. The other possi-
bility is that the photon is incident on vertg¢xfrom the right,

Li+L=]j+1j+2), T|j+1j)=|j+2j+1). (6

Perhaps the simplest walk is that on a cycle or ring. Let us 1 N1
label the vertices by the numbers O throdghk 1, where the lugsy=— >, el®j,j+1),
vertex N is identical to 0. That is, if we move one step VN =0
forward from the verteXN—1, we end up at vertex 0. The

states of the system afgk), wherek=j=1, which can be 1 'St ot

thought of as a photon on the edge between verfieeslk luk-)= \/_N ZO el %j+1,). (7)
going fromj to k. Because each edge has two states, and =

there areN edges, the dimension of this space 8.2 The eigenstates dff are just linear combinations dfi. )

The vertices can be thought of as pea_m splitter;. Consid_%{nd |uy._). Defining
what happens when a photon traveling in the horizontal di-
rection hits a vertical beam splitter. The photon has a certain [ =ay [ue ) +a |u), (8)
amplitude to continue in the direction it was going, i.e., to be
transmitted, and an amplitude to change its direction, i.e., tove find that the equatiobd| )=\ |¢) becomes

032314-2



QUANTUM WALKS BASED ON AN INTERFEROMETRIC ANALOGY PHYSICAL REVIEW A68, 032314 (2003

te % —r*\la, ay P
( gt o =x( ) (©)
r SRS s 0.15
Expressing ast=|t|e'”, we find that the eigenvalues are 0.125
0.1
A= =|t|cog 6= n) =i[1-t|’coS(6,— )% (10 0.075
and the corresponding eigenfunctions are given by 0.05
0.025
a(k:): r 20 20 20 20 Position
12’
[2C(CtS0] FIG. 1. Probability distribution for quantum walk after 50 steps.
alt) = —1(Sc+Cy) (11) The probability distribution for the particle after steps
~ [2C(Cy+ sk)]ﬂ?' can be computed in a straightforward manner. We display the
results for the case=r=1/y2 and the initial stat¢0,1). In
for Ny, and Fig. 1 we haven=50 and in Fig. 2n=1000. Note that, as
with the coined quantum walk, these probability distributions
r* are not normal distributions. In addition, the region in which
af;)= 7 the probability of finding the particle is large is, roughly, in
[2C(Ck=S] the case oh=50, between—35 and 35, and in the case
=1000, between-700 and 700. In both cases this corre-
. i(Ck—Sy) sponds to the high probability region lying betweerit|n
= (12)  and|t|n. This feature of the dynamics will be confirmed by

[2C(Cx—S) 1Y%

for A_ . Here we have defined

our asymptotic analysis.

The asymptotic probabilities can be calculated as follows.
Denoting the eigenstates corresponding to the eigenvalues
Nks and\y_ as|i, ) and|y, ), respectively, we find that
the wave function of the particle executing the watk,(7))
is, afterr steps,

Cv=[1-t|?co(6— n)]"?

Sc=t|sin(6— 7). 13

One thing we notice immediately, is that for all of these i ,
eigenstates, the probability to be located on an edge, is the (W (n)= kzo & N sl ¥k s) (s 0D
same for all edges, justM/ That means that for any initial

I+

state|V;,), the average probability distribution 1ot (+)% (—)%
= \/_N P (@ Nee [ e H " N ),
1 m—1 . . .
P =1 2 (G LU W) 241G+ LUK Win) 2, (15
(14

where, as mentioned in the previous paragraph, the initial
where pj(m) is the average probability of being on the edgestate is taken to bf0,1). The amplitudes to be in the states
betweenj andj+1 afterm steps, goes to a constant@s |j,j+1) and|j+1,j) at time 7 are given by
—oo, if all of the eigenvalues in Eq(10) are distinct[2].

This will be the case if l#)/# is not an integer. P
1Il. WALK ON THE LINE 0.025
The quantum walk on the infinite line can be approached 0.02

directly or as the limit of the walk on the cycle Akgoes to
infinity. Because we have just found the eigenstates and ei-
genvalues for the walk on the cycle in the preceding section, 0.01
we shall adopt the latter course here. In particular, we want
to examine what happens when we start the walk in the state
|0,1). We shall present numerical results and then follow the _1000 =00 500 T TogPosition
approach developed by Nayak and Vishwanath to study the

long-time limit of the probability of being on the edge be-  FIG. 2. Probability distribution for quantum walk after 1000
tween the verticepandj+ 1. steps.

0.015

0.005
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N—-1

(Li+1w(n)= E SO ESRIEES W ENRID )
1 N—-1
(+1ilw(n)=5 2 el alall

+ap_al*all). (16)

The probability of being on the edge between verticasd
j+1 attimer, p(j,j+1;7), is

IO(J',J'+1;T)=|<J',j+1I‘P(T)>|2+|<j+1,1'|‘I’(T)>|2-(1
In order to go the theN—< limit, we need to define a
number of functions of the continuous variall@ather than

expressing them as functions of the discrete varigpleWe
first define

C(9)=[1—]|t|*cog(6— ]2
S(0)=|t|sin(0— 7). (18)

The eigenvalues also become functionsépfand we shall
express them as

N (0)=e=%, (19

where O<w, (f)<w and
w,(0)=ta ‘1(““:(5—2)”)), (20)

and— 7<w_(#)<0 and
w_(0)=tan ! —MC(Z:SE—Z)_U)). (22)

We can now proceed to take tid—oo limit of the sums
appearing in Eq9.16). For the sums appearing in the first of
these equations we have

1 27
N 2: |J(9k)\lz+|a(ki)|2 J' dee|[]9+rw+(ﬁ)]
k=0 0

r|?

X amC(O[C(0)+S(0)]’

1 N-1
— E e'Jak)\T |a( )| _)f dee [j60+70_(0)]

rf®
4mC(O)[C(0)—S(0)]’
(22)

X

The sums in the second equation become
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1

E Ijﬁk}\T a(*)*a(Jr)

N—-1
k=0

2

i[jo+ 70, (6)]
e f doe ' 47TC(9)

1

NE

ir
47C(0)°
(23

Ij0k)\’r a( )*a *)J‘ dael[]0+'rm (0)]

We are now going to analyze these integrals in the large
limit by using the method of stationary phase. This will be
done in two different ways. In the firgtwill be fixed andr
will go to infinity. In the second, we shall s¢t=a7, and
then letr go to infinity. Some of the details of this analysis
are given in the Appendix. Here we shall just present the
results. In the case of fixgdwe have that

p(j,j+1;7)~ |t|{[1+( 1)1 *"JcoS( T+ wl4)
+[1— (= 1) Tsirt(ru+ wld)Y,  (24)
where 0<u<w/2, and
pw=tan ! %) (25)

We note that this implies that for any interval located sym-
metrically about the origin, the probability of being in that
interval goes like 1, whereas for a classical random walk
starting at the origin, it would go like /. This implies
that, as with the coined quantum walk, this quantum walk
spreads faster than a classical one. In the case where
=ar, we find that there are stationary phase points only if
a<|t|. That means that fov>|t|, p(j,j+1;7)=p(aT,at
+1;7) decreases faster than any inverse power.dfor «
<|t| we have thap(j,j+1;7) goes like 1f. Therefore, it is
most probable that the particle is located in the redidn
<|t|r, and we can say that the allowed region for the par-
ticle expands with speefd|.

IV. RELATION BETWEEN QUANTUM WALKS

We now have two different quantum walks on the line, the
coined walk, where one moves between vertices, and what
we shall call the edge walk, where the quantum particle mak-
ing the walk resides on the edges between the vertices. It
would be useful to know if the two different walks are re-
lated. In this section we shall show that they are unitarily
equivalent. It should be emphasized that this result will only
be demonstrated for the line, whether it holds for more gen-
eral graphs is not known. Presently, no description of a
coined walk for a general graph has appeared.

Let us begin by examining the Hilbert spaces for the two
different quantum walks. The canonical orthonormal basis
states of the Hilbert space for the coined walk on the line are
given by{|j)®|R),|j)®|L)|j € Z}, where the stat¢j) cor-
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responds to thdgth vertex, and/R) and |L) are the coin P
states. The Hilbert space in which this walk takes place is
justL2(Z)®L?(Z,). The canonical orthonormal basis of the 0.15
Hilbert space for the edge walk {$j,j+1),|j+1,j)|j e Z} 0. 125
and the Hilbert space itself Is>(Zx Z,), which is identical '
to L2(Z)®L%(Z,). 0.1
Let us now move to the dynamics. The unitary operator 0.075
that advances the coined walk one step is given by 0.05
V=(S&|R}(R|+S'®|L)}L)(1®G), (26) W N\
Position

whereG e U(2) is a generalized “coin-flip” operator, and is 40 -20 20040

given by FIG. 3. Probability distribution fon=50, and particle on ver-
tices instead of edges.
G|R)=t|R)+r|L),
V. PHASE SHIFTERS

GlL)=—r*[R)+t*|L). (27) Going back to the interferometer analogy, we note that we
_ can add a new element to quantum walks that has no analog
The unitary operatod that advances the edge walk one stepin classical random walks. Interferometers are made up of

was given in Sec. Il, and is multiports and phase shifters; a phase shifter imparts a con-
stant phase to a photon that passes through it. Suppose we
Ulj=1i)=tlj.j+1)+rlj,j—-1), were to put a phase shifter that imparts a phase shift jofst

before thejth vertex. The transition rules for the states adja-
cent to this vertex are modified, while the rules for all other

. ekl Akl
Uli+Lp)=trlj.j—1)=r*[i.j+1). (28 states are unaffected. In particular, we now have

Define the unitary operatcﬁ, which takesL?(Zx Z,) into

. _ . N |(/) . . 2|¢ . . _
itself, and is given explicitly by i=1j)—te'lj,j+1)+re??j,j—1),

A i+1j)——r*j,j +1)+t*e'?j,j—1). 31
Eli-1i)=1j)®|R), lj j)— lj,j+1) li,j—1) (31

Insertion of a phase shifter into an edge can change the prop-

Elj+1j)=]j)®|L). (29)  erties of a quantum walk, because it changes how different
paths interfere.
We find that One system that allows us to see their effect on the aver-
age probability distribution is a modified walk on a cycle.
VE=EU, (30) Suppose that the number of vertices is even, and that we put

a phase shifter in all of the edges whose left end is an even
so that at the level of amplitudes, the two walks are unitarily?umbPered vertex, i.e., every second edge has a phase shifter
equivalent. in it. This system is exactly solvable, and by examining its

There is, however, a difference in the probabilities. In theSl9enstates, we shall see how the average probability distri-
coined walk, the probability to be on vertgxis given by ~ Putions it gives rise to depend on the valuedof
combining(taking the squares of the magnitudes and adding, | "€ unitary operator that advances this walk one step acts
the amplitudes for the statég)®|R) and|j)®|L). Under N the following way ifj is even:

the mappinge_‘l, these states correspond to states on differ-
ent edges|j—1,j) and|j+1,j), respectively. However, the
probabilities in the edge walk are computed by combining
the amplitudes for being on the same edge, e.g., those for Uolj+1j)=t*]j,j—1)—r*|j,j+1), (32
|j—1,) and|j,j —1). Therefore, there will be a difference in

the probabilities for the two walks. This can be seen explicand ifj is odd, then

itly if we examine the probability distribution for the caste

=r=1/\/2. We again start in the stal#,0), Ie't.the walk go Ulj,j+1)=t]j+1j+2)+r|j+1,),

for 50 steps, but now compute the probability that the par-

ticle is on a vertex, instead of computing the probability that ) ) —_— o

it is on an edge. The result is shown in Fig. 3. By comparing Uglj+1j)=t*e[j,j—1)—r*[j,j+1). (33

this figure to Fig. 1, we see that the overall shape of

the probability distributions is similar, but the details are This operator commutes with translations by two steps, i.e.,
different. with the operatoiT?. The eigenstates df? are given by

Uylj,j+1)=te'?|j+1,j+2)+re??¢|j+1})
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2 N—-1 B P
=2 S i,

=0,even 0.2
N-1
2 . 0.15
(0) :\ﬁ 10 i
u e J+1),
U= VR, 2 I+ D) -

(& 2 G e
u@y=1/< X €iNj+1,), 0.05 LA‘
Nj=0,even

Position

N—-1 -40 -20 20 40
|ui®) = \E > elnj+1) (34
k= N;j =G.odd e FIG. 4. Probability distribution fon=50 and¢= /2.

Each of these states has the eigenvalue €2). Eigen-  |f g, — 5 cannot be exactly equal te/4 because of the val-
states ofU, are just linear combinations of the above statesyes of N or 7, then for 6,— 7 close tow/4 the ratio of

In particular, expressing the eigenstatelbf, |¢”), as even-edge to odd-edge probabilities will be approximately
@) © © © ) given by the above equation. This ratio is not generally equal
[y = ae [ui) + - [u®) + by U ) + by [u), to 1, which means that the average probability distribution to

(35) which a given initial state converges will not be constant.
The introduction of the phase shifters has changed the char-
acter of the quantum walk.

These changes can also be seen by calculating the prob-

0 0 —r*  te %\ a, ability distributions after a finite number of steps. This is

done for 50 steps and for the caser=1/\2 and ¢

the eigenvalue equatiad,| (%)= \|4{?)) becomes

0 0 el By = /2,73 in the following figuregFigs. 4 and & The initial
re?é  trel%ted) 0 ay_ state is, as beforg0,1). These can be compared to Fig. 1,
tel (6= 6 —r* 0 0 bis which corresponds to the cage=0. It can be seen that the
introduction of the phase shifter greatly changes the charac-
Ay ter of the probability distribution. Note that particularly for
by the case ofp= /2, the size of the region in which it is very
=\ . (36) likely that the particle will be found is smaller than when
- ¢=0. For a small number of steps, it is easy to verify by
bys hand that destructive interference in tthe- 7/2 case makes
the walk spread more slowly than when=0, and the nu-
The eigenvalues satisfy the equation merical results indicate that this feature persists for at least
) ) ) ) _ 50 steps.
NN |r|2(1+e?'?)— e ¢(t* 2e? %+ t2e 7 21%) |+ e21¢=0. If we extend this walk to the infinite line, the difference

37) caused by the phase shifters can be seen in the asymptotic
behavior. For bothp=0 and ¢ = n/2 the size of the region

The eigenstates of this system no longer give rise to coni-”_ which it is most likely to find the particle grows linearly
stant probability distributions: the probabilities of being on With the number of steps, but the “speed” is different. We
an even edgéan edge whose leftmost vertex is eyand an ~ SaW that in the case=0 the probability distributiorp(j,
odd edge(an edge whose leftmost vertex is gdare, in +1:7) falls off rapidly for |j|>|t|7. If ¢=/2, it falls off
general, different. Ifip=0, these probabilities are the same,

but if = /2, then this is no longer the case. In the latter P
case we find that 0.175
N2=i|t|2cog26—275) +[1—|t|* co(26,— 27) ]2 0.15
(39 0.125
Choosing the plus sign in the above equation, we find that 0.1
for an eigenfunction corresponding &Q— = m/4, we have 0.075
for the ratio of the probability of being on an even edge to 0.05
being on an odd one WWM
2 Position
Peven  1+]|r| 39 -40 -20 20 40
Podd  1—|r|?® FIG. 5. Probability distribution fon=50 and¢= /3.
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rapidly for |j|>|t|?7, which means that the size of the high  We can use this fact to demonstrate a general property of
probability region is smaller in this case. We see yet againgigenstates of certain kinds of walks on a line. Suppose that
that phase effects, which do not exist in classical randonall of the beam splitters located at vertides0 andk>N
walks, can significantly influence the behavior of quantumhave transmission amplitude=1 and reflection amplitude
walks. r=0. The beam splitters for9k=<N can have any value of
transmission amplitude and reflection amplitude, and these
VI. PROBABILITY CURRENT values can vary from vertex to vertex. We shall refer to the
vertices between 0 and as the scattering region. The prob-
In standard quantum mechanics, it is possible to define em we are considering is analogous to the scattering of a
probability current density. In one dimension, if the wave particle, moving in one dimension, off of a potential, which
function of the particle ig/(x,t), then the probability current js nonzero only in a bounded interval. From the point of

density is given by view of a walk, we may be interested in a walk that starts to

1 q q the left of the scattering region in a right-moving state, and

; R R el _ Rl finding out how long it takes to get through the scattering
J000) = g | 97 060 i) = w O g vt (v B

(40) The eigenstates of this type of walk are of two types. The

first consists of a particle coming in from the left, its re-
r{Iected amplitude, and a transmitted amplitude to the right of
the scattering region. The second consists of a particle com-
ing in from the right, its reflected amplitude, and a transmit-

wheremis the mass of the particle, and we are using units i
which #=1. This current has the property that

9 (% ted amplitude to the left of the scattering region. We shall
= [p(x,0)|2= =[] (X2,1) =] (X, )], (41) consider the first type, which can be expressed as
“ N—1
that_is, the chgnge in.the probability of the particle bging ina W)= > (Cjj+aliJ+1y+cjrqyli+1j))
particular region is given by the net flow of probability into J===
the region. For an eigenstate of the Hamiltonian, the prob- o
ability density|¢(x,t)|? is independent of time, so that the + > Coipalij+ 1) (46)
probability current density is a constant. We would like to =

show that there is a quantity similar to the probability current . ) .
density for quantum walks. Setting the eigenvalua equal to expfi6), the equation

Suppose that the state of the walk on the cycle is given by | ¥)=\|¥) gives us that

N-1 cjjr1=€0 M 1o for j=-1,
)= Ciirgll Tt +ciqilj+1j)). 42 - .
| > 120( j,j+1|J] > ]+1,]|J J>) ( ) Cj+1,j:e_|(1+1)oco,—1 for j$—1,
Define the probability current at theh vertex to be cj+1=€0 " N%y\,y for j=N. (47)
. |t|2 tr Ch+ 1k The amplitudec_; ; can be thought of as the amplitude of
k= (Cicr 14Ch-100)| e 4 112 e 1) (43 the incoming waveg,_ is the amplitude of the reflected

wave, andcy n-1 iS the amplitude of the transmitted wave.

We find that, if APy .. 1 is the change in the probability of We can find a condition that these quantities must satisfy, if

being on the edge between vertideandk+ 1 in one step of W€ make use of the fact thdt ; =Jy, ;. This gives us that

the walk, then
co—1l*+lenn+1l?=lc_1d?, (48

APt 1= 1= ks 449 \where we have used the fact that , ;|?=|c_1 2. Defin-

ing the reflection coefficient of the scattering region to be

_ 2 2 . . . .
the walk, this currend, must be independent &f The above R=|Coil /LC—1,0| 2and the transmission coefficient to be
T=|cnn+1l?/|C-14% then the above equation can be ex-

equation holds even if the transmission and reflection ampli

tudes are different for each beam splitter, i.e., they depend Oﬂressed aR+T=1.
k, and also if phase shifters are present. In that cage,isf

the transmission amplitude at vertéxr, is the reflection VIl. VERTICES WITH MORE THAN TWO EDGES

amplitude, andp, is the phase shift of the phase shifter just  gq far we have only considered vertices at which two

to the left of vertexk, the current at this vertex is given by edges meet, but if we are to construct graphs more compli-
cated than lines, we need to see how a vertex with more than

which is the discrete analog of E@1). For an eigenstate of

2 i _ :
Je= (CE L CE ) [td® tref®) (e two edges emanating from it behaves. We shall look at two
KL L e e — 102 | gy examples, one with three edges and another with an arbitrary
number.

032314-7



HILLERY, BERGOU, AND FELDMAN PHYSICAL REVIEW A 68, 032314 (2003

A vertex with three edges emanating from it, which is operators for each vertex. Explicitly, the edge sta®),
inspired by the optical multiport known as the trit§el9],  which can be interpreted as going from verteto vertexb,
can be described as follows. Let us label the vertex withwill go to the stateUy|ab) after one step, wherd,, is the
three edges meeting at it I§y, and the opposite ends of the operator corresponding to vertexThis prescription guaran-
edges byA, B, andC. The ingoing states for this vertex are tees that the overall operation is unitary, in particulauigact-
|AO), |BO), and|CO) and the outgoing states af®A),  ing on any other edge stated) will give a state orthogonal
|OB), and |OC). Settingz=exp(27i/3), we have for the to U|ab). If d=b, then|ab) and|cd) will be mapped onto
transition rules the same set of statéthe states leaving vertdx), but the
unitarity of U, will ensure thatU|ab) and U|cd) are or-
thogonal. Ifd# b, thenU maps|ab) and|cd) onto different
sets of states, and the so results are then orthogonal. There-
fore, as the edge states make up an orthonormal basis of the
1 Hilbert space in which the walk occurs, ahd maps this
|BO)— ——=(z*|OA)+|0OB)+2|OC)), basis to another orthonormal basis, it is unitary. _
V3 Let us consider a short example. Start with a half line with
vertices located at the non-negative integers, with the right-
1 most vertex being at 0. The vertex 0 is also a vertex of an
|[CO)— T(Z* |OA)+2|0OB)+|0C)). (49 equilateral triangle, whose other vertices are labeled 1 and 2.
3 That is our graph. All of the vertices in this graph have two

|AO>—>i3(|OA)+|OB)+|OC)),

=

This vertex has the property that an incoming particle i<edges meeting at them, except for 0, which has three. All of

equally likely to exit through each edge. However, note thalthe vertices with two edges are ta}ken to havgl andr .
because the incoming states from different edges behave dif- O Vertex 0 has the same behavior for all of its edges, in
ferently with regard to their phases, the use of this verteParticular, an incoming state at each edge has an amplitude
requires the labelling of edges. In this particular case, onhPf —1/3 of being reflected and an amplitude of 2/3 of being
one of the edges needs to be labeled. If we attach a label f2nsmitted through each of the other two edges. The eigen-

AO, we interpret it to mean that if the input state is alongState of this graph with eigenvales'” can be expressed as
either of the other two edges, then the output with a phase 1

factor of z* is along the labeled edge. For any edge, if the _ i(G+1)6); —i(j+1)0]; ;
input state is along this edge, the part of the output statem’(e)> j;oc (e irrr(oe I+L0)
along the same edge has a phase factor of 1.

It is possible to define vertices that do not require the
labeling of edges, though the cost is that the probabilities of
exiting through each of the edges are no longer the same.
This particular kind of vertex is very closely related to the +b,]0,2). (51)
quantum coin used in the walk on the hypercyiBg]. Let o } o )
the vertex at which all of the edges meet be labele@and ~ Substituting this expression into the equation

the opposite ends of the edges be labeled by the numbers 1

1
+2 (@llJ+ D+l 10) +azl20

—a i
throughn. For any input statékO) wherek is an integer W (6))=e""1¥(6)), (52
between 1 anah, the transition rule is that the amplitude to we find that
go to the output statgOKk) is r and the amplitude to go to
any other output state is That is, the amplitude to be re- 300
flected isr and the amplitude to be transmitted through any r(g)=e’ : i (53
of the other edges is Unitarity places two conditions on e -1

these amplitudes
This quantity can be thought of as the reflection coefficient

(n—1)|t|%+]|r|?=1, of the equilateral triangle. We note thfat(8)|=1, which
means that the probability that flows into the triangle is bal-
(n—=2)[t|>+r*t+t*r=0. (500  anced by that which flows out.
As an example, for the case=3, possible values af andt VIIl. CONCLUSION

arer=—1/3 andt=2/3. Because each of the edges in this
vertex behaves in the same way, they are equivalent to each Quantum walks on graphs seem promising for the devel-
other and no labeling is necessary. opment of algorithms, because they spread over a graph
In order to construct a walk for a general graph, onefaster than does a classical walk, and can thereby explore the
chooses a unitary operator for each vertex, i.e., one that majséructure of the graph faster than can a classical random
the states coming into a vertex to states leaving the samealk. Here we have discussed a discrete quantum walk that
vertex. One step of the walk consists of the combined effecis based on an analogy to optical interferometers. The verti-
of all of these operations; the overall unitary operdtiothat ~ ces act as optical multiports and phase shifters can be in-
advances the walk one step is constructed from the localerted into the edges. As we have seen, the behavior of this
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type of walk depends on both types of elements. The advarfor this equation to have any solutions, we find tlhat

tage of this type of quantum walk is that it can easily be<|t|. If this condition is not satisfied, there are no stationary

defined for any graph. phase points, and the integral decreases faster than any in-
In this paper, we have, for the most part, confined ouwverse power of. If «<|t|, then there are two solutions, and

attention to the quantum walk on the line. We found that thethey satisfy the conditiong< 6— »<2# and

probability distribution of the particle making the walk

spreads linearly with the number of steps and with a “speed” . (alt])?
given by|t|. In addition, there is a probability current whose Si?(6— 1) = (1- [ (A3)
1“divergence” gives the probability flowing into an edge.
This allowed us to define reflection and transmission CoefﬁExplicitly, if y lies between 0 and/2 and satisfies
cients for one-dimensional graphs.

The extension of these results to more general graphs is (a|t))?
clearly the next step. It has been shown how to define a Siré(y)= ENITL (A4)
guantum walk for any graph, but the properties of these (1—a?)|t|

walks have yet to be explored. ,
then the two solutions to EqA2) are ;= 5+ y+ = and
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APPENDIX andw, (0,)=m7—v andw,(6,)=v, where G<sv<=/2 and

Here we want to explicitly show how to do the asymptotic

analysis on the integrals in Sec. lll. We shall show how to do a1 Ir|
the analysis for the first integral in E€R2), and the proce- v=tan (|t]2— a?) 12 ' (AB)
dure for the others is similar.
We shall first consider the case whgis fixed. Then the  Einajly for the integral we find that
stationary phase points are the solutions of the equation
o' (6)=0, and we find the two solution8=» and 6= 7 27 et o (0)] Ir|?
+ . We also find thatw, () =|t|/|r] and o’ (n+ )= fo doe i 47C(0)[C(0)+S(0)]
—[t|/|r]. In addition, w,(7)=w and w,(n+7)=7—u.
Inserting these values into the standard formula for station- 1 Ir|(1-a?) vz
ary phasd?20], we find that ~2i—a) PPRERpET: e (—1)7
J’Zﬂ-deei[j0+rw+(0)] |r|2 ><eiﬂr[a(ﬂ”r'y)*u]7i11'/4+eiT[a(way)+v]+iﬂ'/4]'
0 4mC(0)[C(6)+S(0)]
(A7)

1 ] \¥2 o
( ) el el (rut a4 (— 1)l * g i(ut wi)], Finding the asymptotic form of the other integrals in a simi-

2 2mlt] . .
lar fashion, we have foj=ar and a<|t|
(A1)
i : | . r]
Let us now consider t.he case whin ar. The stationary p(j,j+1:7)~ — [1+a(-1)7
phase points are now given by the solutions of mr(|t|]*—a®) V41— a)
, |t|sin(6— ) xXcogmar) {1+(—=1)"
0} ()= — = (A2 .
[1—]|t|?cog(6— )] xsi27(ay—v)—mwar]}. (A8)
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