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Quantum walks based on an interferometric analogy
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There are presently two models for quantum walks on graphs. The ‘‘coined’’ walk uses discrete-time steps,
and contains, besides the particle making the walk, a second quantum system, the coin, that determines the
direction in which the particle will move. The continuous walk operates with continuous time. Here a third
model for quantum walks is proposed, which is based on an analogy to optical interferometers. It is a discrete-
time model, and the unitary operator that advances the walk one step depends only on the local structure of the
graph on which the walk is taking place. This type of walk also allows us to introduce elements, such as phase
shifters, that have no counterpart in classical random walks. Several examples are discussed.
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I. INTRODUCTION

Random walks on graphs are the basis of a numbe
classical algorithms. Examples include 2-SAT~satisfiability
for certain types of Boolean formulas!, graph connectivity,
and finding satisfying assignments for Boolean formulas.
a result, it is natural to explore the quantum counterpart o
random walk, in the hope that it will be useful in the deve
opment of quantum algorithms. This has led to a numbe
studies. Quantum walks on the line were examined by Na
and Vishwanath@1#, and on the cycle by Aharonovet al. @2#.
The latter study also considered a number of properties
quantum walks on general graphs. Numerical simulation
walks in two and three dimensions were performed
Mackayet al. @3#. Absorbing times and probabilities of quan
tum walks on the line were studied by several authors@4,5#.
One of the main results to come from this work is that qu
tum walks spread faster than do classical ones. In partic
on the line, the standard deviation of the position of t
particle making the walk increases linearly with the numb
of steps rather than with its square root as in the class
case. Walks on the hypercube have also been considered
here the results are even more dramatic@6,7#. Kempe has
shown that the hitting time for the walk from one corner
an n-bit hypercube to the opposite corner is polynomial inn
for a quantum walk, but exponential for a classical one. T
quantum walk on the hypercube was subsequently use
the basis of a quantum search algorithm@8#. The effect of
decoherence on these walks has also been studied.
et al. showed how increasing decoherence turns a quan
walk into a classical random walk@9#. Kendon and Treganna
found that small amounts of decoherence can actu
speed the convergence of the time-averaged probab
distribution of a particle in a quantum walk to a unifor
distribution @10#.

The time steps in the quantum walks considered in th
works are discrete. Continuous-time quantum walks h
also been proposed@11#. It was shown that on a particula
graph, the propagation between two properly chosen nod
exponentially faster in the quantum case.

There is, at the moment, only one algorithm based
quantum walks on graphs, and it was proposed very rece
1050-2947/2003/68~3!/032314~10!/$20.00 68 0323
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by Childs et al. @12#. They constructed an oracle proble
that can be solved by exponentially faster on a quant
computer than on a classical one by utilizing continuo
quantum walks. The vertices of the graph are numbe
~named!, and there are two special vertices called the
trance and the exit. The problem is, given the name of
entrance, and the oracle, to find the name of the exit. T
oracle specifies the graph, which belongs to a particular
of possible graphs, by taking a binary number as its inp
and either telling you that this number does not corresp
to a vertex or if it does, telling you the names of the adjac
vertices.

All of the discrete-time quantum walks are based on
particular model, the, ‘‘coined quantum walk,’’ due to Wa
trous@13#. In trying to formulate a quantum walk on a grap
the most natural thing to do is to let a set of orthonorm
basis states correspond to the vertices of the graph. If a
ticle is in the stateun& that corresponds to its being locate
on vertexn. Trying to define a unitary evolution using thi
scheme soon leads to serious problems, as was first note
Meyer @14#. Watrous solved this problem by enlarging th
Hilbert space in which the quantum walk takes place. H
this scheme works is most easily seen by considering
quantum walk on a line. The vertices are labeled by integ
and, in addition, there is a quantum coin, which has t
states,uL& and uR&, corresponding to left and right, respe
tively. A basis for the Hilbert space describing this system
given by the statesun& ^ ua&, wheren is an integer anda is
either L or R. A step in this walk consists of applying th
Hadamard operatorH to the coin,

HuL&5
1

A2
~ uL&1uR&),

HuR&5
1

A2
~ uL&2uR&). ~1!

and then the operator

VH5S^ uR&^Ru1S†
^ uL&^Lu, ~2!
©2003 The American Physical Society14-1
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whereS is the shift operator, whose action is given by

Sun&5un11&, S†un&5un21&. ~3!

Methods for the implementation of the coined quantum w
on a number of different physical systems have recently b
suggested. These include ion traps@15#, neutral atoms
trapped in an optical lattice@16#, and cavity QED, in which it
is the phase of the field that undergoes the walk@17#.

The coined quantum walk can be extended in a sim
way to regular graphs, i.e., those in which all vertices ha
the same number of edges emanating from them. When
is not true, things become more complicated, and it seem
be necessary to consider the global structure of the grap
defining the walk. So far, no studies of discrete-time qu
tum walks on graphs that are not regular have appeared

What we wish to propose here is a different type
discrete-time quantum walk. It is based on thinking about
graph as an interferometer. The vertices are optical elem
known as 2N ports, whereN is the number of edges meetin
at the vertex, and the edges correspond to paths a photon
take through the interferometer. There is no quantum coi
these walks. The states are labeled by the edges rather
the vertices in the graph, and each edge has two states.
edge is labeledab, a corresponding to one end andb to the
other, then one state isab, corresponding to a photon goin
from a to b, and the other isba, corresponding to a photo
going fromb to a. This approach is easily extended to arb
trary graphs; one simply writes down the transition rules
each vertex, and all of them taken together define a uni
operator that advances the walk one step. In addition, we
add elements to this walk that correspond to the addition
phase shifters to paths in an interferometer.

This model of a quantum walk on a graph is closely
lated to the optical networks considered by To¨rmä and Jex
@18#. They considered two-dimensional arrays of beam sp
ters and the propagation of photons through them. The h
zontal motion of the photon in these networks correspond
the time steps in a quantum walk, and the vertical position
the photon is just the position of the particle in the quant
walk. Note that these networks provide one with the opp
tunity to simulate the model of quantum walks proposed h
with linear optics.

II. WALK ON THE CYCLE

Perhaps the simplest walk is that on a cycle or ring. Le
label the vertices by the numbers 0 throughN21, where the
vertex N is identical to 0. That is, if we move one ste
forward from the vertexN21, we end up at vertex 0. Th
states of the system areu j ,k&, wherek5 j 61, which can be
thought of as a photon on the edge between verticesj andk
going from j to k. Because each edge has two states,
there areN edges, the dimension of this space is 2N.

The vertices can be thought of as beam splitters. Cons
what happens when a photon traveling in the horizontal
rection hits a vertical beam splitter. The photon has a cer
amplitude to continue in the direction it was going, i.e., to
transmitted, and an amplitude to change its direction, i.e
03231
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be reflected. The beam splitter has two input modes, the p
ton can enter from either the right or the left, and two outp
modes, the photon can leave heading either right or left.
beam splitter defines a unitary transformation between
input and output modes.

We now need to translate this analogy into transition ru
for our quantum walk. Suppose we are in the st
u j 21,j &. If the photon is transmitted it will be in the stat
u j , j 11& and if reflected in the stateu j , j 21&. Let the trans-
mission amplitude bet and the reflection amplitude ber. We
then have the transition rule

u j 21,j &→tu j , j 11&1r u j , j 21&, ~4!

where unitarity implies thatutu21ur u251. The other possi-
bility is that the photon is incident on vertexj from the right,
that is, it is in the stateu j 11,j &. If it is transmitted it is in
the stateu j , j 21& and if it is reflected it is in the state
u j , j 11&. Unitarity of the beam splitter transformation the
gives us that

u j 11,j &→t* u j , j 21&2r * u j , j 11&. ~5!

These rules specify our walk.
The caset51 and r 50 corresponds to free particl

propagation; a ‘‘photon’’ in the stateu j , j 11& simply moves
one step to the right with each time step in the walk. Ifr
Þ0, then there is some amplitude to move both to the ri
and to the left. A physical system to which this is analogo
is the motion of a particle in a periodic potential. The bea
splitters can be thought of as scattering centers with the s
tering resulting from a localized potential. As is well know
this leads to energy bands, and, as we shall soon see, a
lar structure emerges in quantum walks on the cycle.

One way of approaching the study of the dynamics g
erated by this walk is to find the eigenvalues and eigenst
of the unitary transformationU that moves the system
single step. In order to do this, we first note thatU commutes
with the translation operatorT where

Tu j , j 11&5u j 11,j 12&, Tu j 11,j &5u j 12,j 11&. ~6!

This implies that these operators can be simultaneously
agonalized. The eigenvalues ofT are eiuk, where uk
52pk/N, andk50,1, . . . ,N21. Each of these eigenvalue
is doubly degenerate, and the two-dimensional space
eigenvectors corresponding toeiuk is spanned by

uuk1&5
1

AN
(
j 50

N21

ei j uku j , j 11&,

uuk2&5
1

AN
(
j 50

N21

ei j uku j 11,j &. ~7!

The eigenstates ofU are just linear combinations ofuuk1&
and uuk2&. Defining

uck&5ak1uuk1&1ak2uuk2&, ~8!

we find that the equationUuck&5luck& becomes
4-2
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S te2 iuk 2r *

r t * eiuk
D S ak1

ak2
D 5lS ak1

ak2
D . ~9!

Expressingt as t5utueih, we find that the eigenvalues are

lk65utucos~uk2h!6 i @12utu2cos2~uk2h!#1/2, ~10!

and the corresponding eigenfunctions are given by

ak1
(1)5

r *

@2Ck~Ck1Sk!#
1/2

,

ak2
(1)5

2 i ~Sk1Ck!

@2Ck~Ck1Sk!#
1/2

, ~11!

for lk1 , and

ak1
(2)5

r *

@2Ck~Ck2Sk!#
1/2

,

ak2
(2)5

i ~Ck2Sk!

@2Ck~Ck2Sk!#
1/2

, ~12!

for lk2 . Here we have defined

Ck5@12utu2cos2~uk2h!#1/2,

Sk5utusin~uk2h!. ~13!

One thing we notice immediately, is that for all of the
eigenstates, the probability to be located on an edge, is
same for all edges, just 1/N. That means that for any initia
stateuC in&, the average probability distribution

pj
(m)5

1

m (
k50

m21

~ u^ j , j 11uUkuC in&u21u^ j 11,j uUkuC in&u2,

~14!

wherepj
(m) is the average probability of being on the ed

betweenj and j 11 after m steps, goes to a constant asm
→`, if all of the eigenvalues in Eq.~10! are distinct@2#.
This will be the case if (Nh)/p is not an integer.

III. WALK ON THE LINE

The quantum walk on the infinite line can be approach
directly or as the limit of the walk on the cycle asN goes to
infinity. Because we have just found the eigenstates and
genvalues for the walk on the cycle in the preceding sect
we shall adopt the latter course here. In particular, we w
to examine what happens when we start the walk in the s
u0,1&. We shall present numerical results and then follow
approach developed by Nayak and Vishwanath to study
long-time limit of the probability of being on the edge b
tween the verticesj and j 11.
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The probability distribution for the particle aftern steps
can be computed in a straightforward manner. We display
results for the caset5r 51/A2 and the initial stateu0,1&. In
Fig. 1 we haven550 and in Fig. 2,n51000. Note that, as
with the coined quantum walk, these probability distributio
are not normal distributions. In addition, the region in whi
the probability of finding the particle is large is, roughly,
the case ofn550, between235 and 35, and in the casen
51000, between2700 and 700. In both cases this corr
sponds to the high probability region lying between2utun
and utun. This feature of the dynamics will be confirmed b
our asymptotic analysis.

The asymptotic probabilities can be calculated as follow
Denoting the eigenstates corresponding to the eigenva
lk1 andlk2 as uck1& and uck2&, respectively, we find tha
the wave function of the particle executing the walk,uC(t)&
is, aftert steps,

uC~t!&5 (
k50

N21

(
s56

lk,s
t uck,s&^ck,su0,1&

5
1

AN
(
k50

N21

~ak1
(1)* lk1

t uck1&1ak1
(2)* lk2

t uck2&),

~15!

where, as mentioned in the previous paragraph, the in
state is taken to beu0,1&. The amplitudes to be in the state
u j , j 11& and u j 11,j & at timet are given by

FIG. 1. Probability distribution for quantum walk after 50 step

FIG. 2. Probability distribution for quantum walk after 100
steps.
4-3
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^ j , j 11uC~t!&5
1

N (
k50

N21

ei j uk~lk1
t uak1

(1)u21lk2
t uak1

(2)u2!,

^ j 11,j uC~t!&5
1

N (
k50

N21

ei j uk~lk1
t ak1

(1)* ak2
(1)

1lk2
t ak1

(2)* ak2
(2)!. ~16!

The probability of being on the edge between verticesj and
j 11 at timet, p( j , j 11;t), is

p~ j , j 11;t!5u^ j , j 11uC~t!&u21u^ j 11,j uC~t!&u2.
~17!

In order to go the theN→` limit, we need to define a
number of functions of the continuous variableu rather than
expressing them as functions of the discrete variableuk . We
first define

C~u!5@12utu2cos2~u2h!#1/2,

S~u!5utusin~u2h!. ~18!

The eigenvalues also become functions ofu, and we shall
express them as

l6~u!5eiv6(u), ~19!

where 0<v1(u)<p and

v1~u!5tan21S utucos~u2h!

C~u! D , ~20!

and2p<v2(u)<0 and

v2~u!5tan21S 2
utucos~u2h!

C~u! D . ~21!

We can now proceed to take theN→` limit of the sums
appearing in Eqs.~16!. For the sums appearing in the first
these equations we have

1

N (
k50

N21

ei j uklk1
t uak1

(1)u2→E
0

2p

duei [ j u1tv1(u)]

3
ur u2

4pC~u!@C~u!1S~u!#
,

1

N (
k50

N21

ei j uklk2
t uak1

(2)u2→E
0

2p

duei [ j u1tv2(u)]

3
ur u2

4pC~u!@C~u!2S~u!#
.

~22!

The sums in the second equation become
03231
1

N (
k50

N21

ei j uklk1
t ak1

(1)* ak2
(1)

→2E
0

2p

duei [ j u1tv1(u)]
ir

4pC~u!
,

1

N (
k50

N21

ei j uklk2
t ak1

(2)* ak2
(2)→E

0

2p

duei [ j u1tv2(u)]
ir

4pC~u!
.

~23!

We are now going to analyze these integrals in the largt
limit by using the method of stationary phase. This will b
done in two different ways. In the first,j will be fixed andt
will go to infinity. In the second, we shall setj 5at, and
then lett go to infinity. Some of the details of this analys
are given in the Appendix. Here we shall just present
results. In the case of fixedj we have that

p~ j , j 11;t!;
ur u

ptutu $@11~21! j 1t#cos2~tm1p/4!

1@12~21! j 1t#sin2~tm1p/4!%, ~24!

where 0<m<p/2, and

m5tan21S ur u
utu D . ~25!

We note that this implies that for any interval located sy
metrically about the origin, the probability of being in th
interval goes like 1/t, whereas for a classical random wa
starting at the origin, it would go like 1/At. This implies
that, as with the coined quantum walk, this quantum w
spreads faster than a classical one. In the case whej
5at, we find that there are stationary phase points only
a<utu. That means that fora.utu, p( j , j 11;t)5p(at,at
11;t) decreases faster than any inverse power oft. For a
,utu we have thatp( j , j 11;t) goes like 1/t. Therefore, it is
most probable that the particle is located in the regionu j u
<utut, and we can say that the allowed region for the p
ticle expands with speedutu.

IV. RELATION BETWEEN QUANTUM WALKS

We now have two different quantum walks on the line, t
coined walk, where one moves between vertices, and w
we shall call the edge walk, where the quantum particle m
ing the walk resides on the edges between the vertice
would be useful to know if the two different walks are r
lated. In this section we shall show that they are unitar
equivalent. It should be emphasized that this result will o
be demonstrated for the line, whether it holds for more g
eral graphs is not known. Presently, no description o
coined walk for a general graph has appeared.

Let us begin by examining the Hilbert spaces for the t
different quantum walks. The canonical orthonormal ba
states of the Hilbert space for the coined walk on the line
given by $u j & ^ uR&,u j & ^ uL&u j PZ%, where the stateu j & cor-
4-4
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responds to thej th vertex, anduR& and uL& are the coin
states. The Hilbert space in which this walk takes place
just L2(Z) ^ L2(Z2). The canonical orthonormal basis of th
Hilbert space for the edge walk is$u j , j 11&,u j 11,j &u j PZ%
and the Hilbert space itself isL2(Z3Z2), which is identical
to L2(Z) ^ L2(Z2).

Let us now move to the dynamics. The unitary operatoV
that advances the coined walk one step is given by

V5~S^ uR&^Ru1S†
^ uL&^Lu!~ I ^ G!, ~26!

whereGPU(2) is a generalized ‘‘coin-flip’’ operator, and i
given by

GuR&5tuR&1r uL&,

GuL&52r * uR&1t* uL&. ~27!

The unitary operatorU that advances the edge walk one st
was given in Sec. II, and is

Uu j 21,j &5tu j , j 11&1r u j , j 21&,

Uu j 11,j &5t* u j , j 21&2r * u j , j 11&. ~28!

Define the unitary operatorÊ, which takesL2(Z3Z2) into
itself, and is given explicitly by

Êu j 21,j &5u j & ^ uR&,

Êu j 11,j &5u j & ^ uL&. ~29!

We find that

VÊ5ÊU, ~30!

so that at the level of amplitudes, the two walks are unita
equivalent.

There is, however, a difference in the probabilities. In t
coined walk, the probability to be on vertexj is given by
combining~taking the squares of the magnitudes and addi!
the amplitudes for the statesu j & ^ uR& and u j & ^ uL&. Under
the mappingÊ21, these states correspond to states on dif
ent edges,u j 21,j & and u j 11,j &, respectively. However, the
probabilities in the edge walk are computed by combin
the amplitudes for being on the same edge, e.g., those
u j 21,j & andu j , j 21&. Therefore, there will be a difference i
the probabilities for the two walks. This can be seen exp
itly if we examine the probability distribution for the caset
5r 51/A2. We again start in the stateu1,0&, let the walk go
for 50 steps, but now compute the probability that the p
ticle is on a vertex, instead of computing the probability th
it is on an edge. The result is shown in Fig. 3. By compar
this figure to Fig. 1, we see that the overall shape
the probability distributions is similar, but the details a
different.
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V. PHASE SHIFTERS

Going back to the interferometer analogy, we note that
can add a new element to quantum walks that has no an
in classical random walks. Interferometers are made up
multiports and phase shifters; a phase shifter imparts a c
stant phase to a photon that passes through it. Suppos
were to put a phase shifter that imparts a phase shift off just
before thej th vertex. The transition rules for the states ad
cent to this vertex are modified, while the rules for all oth
states are unaffected. In particular, we now have

u j 21,j &→teifu j , j 11&1re2ifu j , j 21&,

u j 11,j &→2r * u j , j 11&1t* eifu j , j 21&. ~31!

Insertion of a phase shifter into an edge can change the p
erties of a quantum walk, because it changes how differ
paths interfere.

One system that allows us to see their effect on the a
age probability distribution is a modified walk on a cycl
Suppose that the number of vertices is even, and that we
a phase shifter in all of the edges whose left end is an e
numbered vertex, i.e., every second edge has a phase s
in it. This system is exactly solvable, and by examining
eigenstates, we shall see how the average probability di
butions it gives rise to depend on the value off.

The unitary operator that advances this walk one step
in the following way if j is even:

U2u j , j 11&5teifu j 11,j 12&1re2ifu j 11,j &

U2u j 11,j &5t* u j , j 21&2r * u j , j 11&, ~32!

and if j is odd, then

U2u j , j 11&5tu j 11,j 12&1r u j 11,j &,

U2u j 11,j &5t* eifu j , j 21&2r * u j , j 11&. ~33!

This operator commutes with translations by two steps,
with the operatorT2. The eigenstates ofT2 are given by

FIG. 3. Probability distribution forn550, and particle on ver-
tices instead of edges.
4-5
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uuk1
(e) &5A2

N (
j 50,even

N21

ei j uku j , j 11&,

uuk1
(o)&5A2

N (
j 50,odd

N21

ei j uku j , j 11&,

uuk2
(e) &5A2

N (
j 50,even

N21

ei j uku j 11,j &,

uuk2
(o)&5A2

N (
j 50,odd

N21

ei j uku j 11,j &. ~34!

Each of these states has the eigenvalue exp(22iuk). Eigen-
states ofU2 are just linear combinations of the above stat
In particular, expressing the eigenstate ofU2 , uck

(2)&, as

uck
(2)&5ak1uuk1

(e) &1ak2uuk2
(e) &1bk1uuk1

(o)&1bk2uuk2
(o)&,

~35!

the eigenvalue equationU2uck
(2)&5luck

(2)& becomes

S 0 0 2r * te2 iuk

0 0 t* eiuk r

re2if t* ei (uk1f) 0 0

tei (f2uk) 2r * 0 0

D S ak1

bk2

ak2

bk1

D
5lS ak1

bk2

ak2

bk1

D . ~36!

The eigenvalues satisfy the equation

l41l2@ ur u2~11e2if!2eif~ t* 2e2iuk1t2e22iuk!#1e2if50.

~37!

The eigenstates of this system no longer give rise to c
stant probability distributions; the probabilities of being
an even edge~an edge whose leftmost vertex is even! and an
odd edge~an edge whose leftmost vertex is odd! are, in
general, different. Iff50, these probabilities are the sam
but if f5p/2, then this is no longer the case. In the lat
case we find that

l25 i utu2 cos~2uk22h!6@12utu4 cos2~2uk22h!#1/2.
~38!

Choosing the plus sign in the above equation, we find t
for an eigenfunction corresponding touk2h5p/4, we have
for the ratio of the probability of being on an even edge
being on an odd one

peven

podd
5

11ur u2

12ur u2
. ~39!
03231
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If uk2h cannot be exactly equal top/4 because of the val
ues of N or h, then for uk2h close to p/4 the ratio of
even-edge to odd-edge probabilities will be approximat
given by the above equation. This ratio is not generally eq
to 1, which means that the average probability distribution
which a given initial state converges will not be consta
The introduction of the phase shifters has changed the c
acter of the quantum walk.

These changes can also be seen by calculating the p
ability distributions after a finite number of steps. This
done for 50 steps and for the caset5r 51/A2 and f
5p/2,p/3 in the following figures~Figs. 4 and 5!. The initial
state is, as before,u0,1&. These can be compared to Fig.
which corresponds to the casef50. It can be seen that th
introduction of the phase shifter greatly changes the cha
ter of the probability distribution. Note that particularly fo
the case off5p/2, the size of the region in which it is ver
likely that the particle will be found is smaller than whe
f50. For a small number of steps, it is easy to verify
hand that destructive interference in thef5p/2 case makes
the walk spread more slowly than whenf50, and the nu-
merical results indicate that this feature persists for at le
50 steps.

If we extend this walk to the infinite line, the differenc
caused by the phase shifters can be seen in the asymp
behavior. For bothf50 andf5p/2 the size of the region
in which it is most likely to find the particle grows linearl
with the number of steps, but the ‘‘speed’’ is different. W
saw that in the casef50 the probability distributionp( j , j
11:t) falls off rapidly for u j u.utut. If f5p/2, it falls off

FIG. 4. Probability distribution forn550 andf5p/2.

FIG. 5. Probability distribution forn550 andf5p/3.
4-6
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rapidly for u j u.utu2t, which means that the size of the hig
probability region is smaller in this case. We see yet ag
that phase effects, which do not exist in classical rand
walks, can significantly influence the behavior of quantu
walks.

VI. PROBABILITY CURRENT

In standard quantum mechanics, it is possible to defin
probability current density. In one dimension, if the wa
function of the particle isc(x,t), then the probability curren
density is given by

j ~x,t !5
1

2im Fc* ~x,t !
d

dx
c~x,t !2c~x,t !

d

dx
c* ~x,t !G ,

~40!

wherem is the mass of the particle, and we are using units
which \51. This current has the property that

]

]tEx1

x2
uc~x,t !u252@ j ~x2 ,t !2 j ~x1 ,t !#, ~41!

that is, the change in the probability of the particle being i
particular region is given by the net flow of probability in
the region. For an eigenstate of the Hamiltonian, the pr
ability density uc(x,t)u2 is independent of time, so that th
probability current density is a constant. We would like
show that there is a quantity similar to the probability curre
density for quantum walks.

Suppose that the state of the walk on the cycle is given

uC&5 (
j 50

N21

~cj , j 11u j , j 11&1cj 11,j u j 11,j &). ~42!

Define the probability current at thekth vertex to be

Jk5~ck11,k* ck21,k* !S utu2 tr

t* r * 2utu2D S ck11,k

ck21,k
D . ~43!

We find that, ifDPk,k11 is the change in the probability o
being on the edge between verticesk andk11 in one step of
the walk, then

DPk,k115Jk112Jk , ~44!

which is the discrete analog of Eq.~41!. For an eigenstate o
the walk, this currentJk must be independent ofk. The above
equation holds even if the transmission and reflection am
tudes are different for each beam splitter, i.e., they depen
k, and also if phase shifters are present. In that case, iftk is
the transmission amplitude at vertexk, r k is the reflection
amplitude, andfk is the phase shift of the phase shifter ju
to the left of vertexk, the current at this vertex is given by

Jk5~ck11,k* ck21,k* !S utku2 treifk

t* r * e2 ifk 2utku2D S ck11,k

ck21,k
D .

~45!
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We can use this fact to demonstrate a general propert
eigenstates of certain kinds of walks on a line. Suppose
all of the beam splitters located at verticesk,0 andk.N
have transmission amplitudet51 and reflection amplitude
r 50. The beam splitters for 0<k<N can have any value o
transmission amplitude and reflection amplitude, and th
values can vary from vertex to vertex. We shall refer to t
vertices between 0 andN as the scattering region. The prob
lem we are considering is analogous to the scattering o
particle, moving in one dimension, off of a potential, whic
is nonzero only in a bounded interval. From the point
view of a walk, we may be interested in a walk that starts
the left of the scattering region in a right-moving state, a
finding out how long it takes to get through the scatteri
region.

The eigenstates of this type of walk are of two types. T
first consists of a particle coming in from the left, its r
flected amplitude, and a transmitted amplitude to the righ
the scattering region. The second consists of a particle c
ing in from the right, its reflected amplitude, and a transm
ted amplitude to the left of the scattering region. We sh
consider the first type, which can be expressed as

uC&5 (
j 52`

N21

~cj , j 11u j , j 11&1cj 11,j u j 11,j &)

1 (
j 5N

`

cj , j 11u j , j 11&. ~46!

Setting the eigenvaluel equal to exp(2iu), the equation
UuC&5luC& gives us that

cj , j 115ei ( j 11)uc21,0 for j <21,

cj 11,j5e2 i ( j 11)uc0,21 for j <21,

cj , j 115ei ( j 2N)ucN,N11 for j >N. ~47!

The amplitudec21,0 can be thought of as the amplitude
the incoming wave,c0,21 is the amplitude of the reflecte
wave, andcN,N11 is the amplitude of the transmitted wav
We can find a condition that these quantities must satisfy
we make use of the fact thatJ215JN11. This gives us that

uc0,21u21ucN,N11u25uc21,0u2, ~48!

where we have used the fact thatuc22,21u25uc21,0u2. Defin-
ing the reflection coefficient of the scattering region to
R5uc0,21u2/uc21,0u2 and the transmission coefficient to b
T5ucN,N11u2/uc21,0u2, then the above equation can be e
pressed asR1T51.

VII. VERTICES WITH MORE THAN TWO EDGES

So far we have only considered vertices at which t
edges meet, but if we are to construct graphs more com
cated than lines, we need to see how a vertex with more t
two edges emanating from it behaves. We shall look at t
examples, one with three edges and another with an arbit
number.
4-7
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A vertex with three edges emanating from it, which
inspired by the optical multiport known as the tritter@19#,
can be described as follows. Let us label the vertex w
three edges meeting at it byO, and the opposite ends of th
edges byA, B, andC. The ingoing states for this vertex ar
uAO&, uBO&, and uCO& and the outgoing states areuOA&,
uOB&, and uOC&. Setting z5exp(2pi/3), we have for the
transition rules

uAO&→
1

A3
~ uOA&1uOB&1uOC&),

uBO&→
1

A3
~z* uOA&1uOB&1zuOC&),

uCO&→
1

A3
~z* uOA&1zuOB&1uOC&). ~49!

This vertex has the property that an incoming particle
equally likely to exit through each edge. However, note t
because the incoming states from different edges behave
ferently with regard to their phases, the use of this ver
requires the labelling of edges. In this particular case, o
one of the edges needs to be labeled. If we attach a lab
AO, we interpret it to mean that if the input state is alo
either of the other two edges, then the output with a ph
factor of z* is along the labeled edge. For any edge, if t
input state is along this edge, the part of the output s
along the same edge has a phase factor of 1.

It is possible to define vertices that do not require
labeling of edges, though the cost is that the probabilities
exiting through each of the edges are no longer the sa
This particular kind of vertex is very closely related to t
quantum coin used in the walk on the hypercube@6,7#. Let
the vertex at which all of the edges meet be labeled byO and
the opposite ends of the edges be labeled by the numbe
through n. For any input stateukO& where k is an integer
between 1 andn, the transition rule is that the amplitude
go to the output stateuOk& is r and the amplitude to go to
any other output state ist. That is, the amplitude to be re
flected isr and the amplitude to be transmitted through a
of the other edges ist. Unitarity places two conditions on
these amplitudes

~n21!utu21ur u251,

~n22!utu21r * t1t* r 50. ~50!

As an example, for the casen53, possible values ofr andt
are r 521/3 andt52/3. Because each of the edges in th
vertex behaves in the same way, they are equivalent to e
other and no labeling is necessary.

In order to construct a walk for a general graph, o
chooses a unitary operator for each vertex, i.e., one that m
the states coming into a vertex to states leaving the s
vertex. One step of the walk consists of the combined ef
of all of these operations; the overall unitary operatorU that
advances the walk one step is constructed from the lo
03231
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operators for each vertex. Explicitly, the edge stateuab&,
which can be interpreted as going from vertexa to vertexb,
will go to the stateUbuab& after one step, whereUb is the
operator corresponding to vertexb. This prescription guaran
tees that the overall operation is unitary, in particular,U act-
ing on any other edge stateucd& will give a state orthogona
to Uuab&. If d5b, thenuab& and ucd& will be mapped onto
the same set of states~the states leaving vertexb), but the
unitarity of Ub will ensure thatUuab& and Uucd& are or-
thogonal. IfdÞb, thenU mapsuab& anducd& onto different
sets of states, and the so results are then orthogonal. Th
fore, as the edge states make up an orthonormal basis o
Hilbert space in which the walk occurs, andU maps this
basis to another orthonormal basis, it is unitary.

Let us consider a short example. Start with a half line w
vertices located at the non-negative integers, with the rig
most vertex being at 0. The vertex 0 is also a vertex of
equilateral triangle, whose other vertices are labeled 1 an
That is our graph. All of the vertices in this graph have tw
edges meeting at them, except for 0, which has three. Al
the vertices with two edges are taken to havet51 and r
50. Vertex 0 has the same behavior for all of its edges
particular, an incoming state at each edge has an ampli
of 21/3 of being reflected and an amplitude of 2/3 of bei
transmitted through each of the other two edges. The eig
state of this graph with eigenvaluee2 iu can be expressed a

uC~u!&5 (
j 52`

21

~ei ( j 11)uu j , j 11&1r ~u!e2 i ( j 11)uu j 11,j &)

1(
j 50

1

~aj u j , j 11&1bj u j 11,j &)1a2u2,0&

1b2u0,2&. ~51!

Substituting this expression into the equation

UuC~u!&5e2 iuuC~u!&, ~52!

we find that

r ~u!5eiu
32e23iu

3e23iu21
. ~53!

This quantity can be thought of as the reflection coeffici
of the equilateral triangle. We note thatur (u)u51, which
means that the probability that flows into the triangle is b
anced by that which flows out.

VIII. CONCLUSION

Quantum walks on graphs seem promising for the dev
opment of algorithms, because they spread over a gr
faster than does a classical walk, and can thereby explore
structure of the graph faster than can a classical rand
walk. Here we have discussed a discrete quantum walk
is based on an analogy to optical interferometers. The ve
ces act as optical multiports and phase shifters can be
serted into the edges. As we have seen, the behavior of
4-8
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type of walk depends on both types of elements. The adv
tage of this type of quantum walk is that it can easily
defined for any graph.

In this paper, we have, for the most part, confined o
attention to the quantum walk on the line. We found that
probability distribution of the particle making the wa
spreads linearly with the number of steps and with a ‘‘spe
given byutu. In addition, there is a probability current whos
1‘‘divergence’’ gives the probability flowing into an edge
This allowed us to define reflection and transmission coe
cients for one-dimensional graphs.

The extension of these results to more general graph
clearly the next step. It has been shown how to defin
quantum walk for any graph, but the properties of the
walks have yet to be explored.
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APPENDIX

Here we want to explicitly show how to do the asympto
analysis on the integrals in Sec. III. We shall show how to
the analysis for the first integral in Eq.~22!, and the proce-
dure for the others is similar.

We shall first consider the case whenj is fixed. Then the
stationary phase points are the solutions of the equa
v18 (u)50, and we find the two solutionsu5h and u5h
1p. We also find thatv19 (h)5utu/ur u and v19 (h1p)5
2utu/ur u. In addition, v1(h)5m and v1(h1p)5p2m.
Inserting these values into the standard formula for stat
ary phase@20#, we find that

E
0

2p

duei [ j u1tv1(u)]
ur u2

4pC~u!@C~u!1S~u!#

;
1

2 S ur u
2ptutu D

1/2

ei j h@ei (tm1p/4)1~21! j 1te2 i (tm1p/4)#.

~A1!

Let us now consider the case whenj 5at. The stationary
phase points are now given by the solutions of

v18 ~u!5
utusin~u2h!

@12utu2cos2~u2h!#1/2
52a. ~A2!
int

nd
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For this equation to have any solutions, we find thata
<utu. If this condition is not satisfied, there are no stationa
phase points, and the integral decreases faster than an
verse power oft. If a,utu, then there are two solutions, an
they satisfy the conditionsp<u2h<2p and

sin2~u2h!5
~autu!2

~12a2!utu2
. ~A3!

Explicitly, if g lies between 0 andp/2 and satisfies

sin2~g!5
~autu!2

~12a2!utu2
, ~A4!

then the two solutions to Eq.~A2! are u15h1g1p and
u25h12p2g. We find that

v19 ~u1!52
1

ur u ~ utu22a2!1/2~12a2!,

v19 ~u2!5
1

ur u ~ utu22a2!1/2~12a2!, ~A5!

andv1(u1)5p2n andv1(u2)5n, where 0<n<p/2 and

n5tan21S ur u

~ utu22a2!1/2D . ~A6!

Finally for the integral we find that

E
0

2p

duei t[au1v1(u)]
ur u2

4pC~u!@C~u!1S~u!#

;
1

2~12a! F ur u~12a2!

2pt~ utu22a2!1/2G 1/2

eiath@~21!t

3ei t[a(p1g)2n] 2 ip/41ei t[a(2p2g)1n] 1 ip/4#.

~A7!

Finding the asymptotic form of the other integrals in a sim
lar fashion, we have forj 5at anda,utu

p~ j , j 11;t!;
ur u

pt~ utu22a2!1/2~12a!
@11a~21!t

3cos~pat!#$11~21!t

3sin@2t~ag2n!2pat#%. ~A8!
t

d J.
@1# A. Nayak and A. Vishwanath, e-print quant-ph/0010117.
@2# D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, e-pr

quant-ph/0012090.
@3# T.D. Mackay, S.D. Bartlett, L.T. Stephenson, and B.C. Sa

ers, J. Phys. A35, 2745~2002!.

-

@4# T. Yamasaki, H. Kobayashi, and H. Imai, e-prin
quant-ph/0205045.

@5# E. Bach, S. Coppersmith, M. Paz Goldschen, R. Joynt, an
Watrous, e-print quant-ph/0207003.

@6# C. Moore and A. Russell, e-print quant-ph/0104137.
4-9



nt

t

D

he

76

l,

ht,

e,

s

HILLERY, BERGOU, AND FELDMAN PHYSICAL REVIEW A 68, 032314 ~2003!
@7# J. Kempe, e-print quant-ph/0205083.
@8# N. Shenvi, J. Kempe, and K.B. Whaley, e-pri

quant-ph/0210064.
@9# T.A. Brun, H.A. Carteret, and A. Ambainis, e-prin

quant-ph/0208195.
@10# V. Kendon and B. Treganna, e-print quant-ph/0209005.
@11# E. Farhi and S. Gutmann, Phys. Rev. A58, 915 ~1998!.
@12# A. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and

Spielman, e-print quant-ph/0209131.
@13# J. Watrous, inProceedings of the 33rd Symposium on t

Theory of Computing~ACM Press, New York, 2001!, p. 60.
@14# D. Meyer, J. Stat. Phys.85, 551 ~1996!.
@15# B.C. Travaglione and G.J. Milburn, e-print quant-ph/01090
03231
.

.

@16# W. Dür, R. Rausendorf, V.M. Kendon, and H.-J. Briege
e-print quant-ph/0203037.

@17# B.C. Sanders, S.D. Bartlett, B. Treganna, and P.L. Knig
e-print quant-ph/0207028.
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