PHYSICAL REVIEW A 68, 032310 (2003
Measurement-induced nonlinearity in linear optics

Stefan Scheél* Kae Nemotd® William J. Munro>! and Peter L. Knight
'Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, Prince Consort Road,
London SW7 2BW, United Kingdom
2School of Informatics, Dean Street, Bangor University, Bangor LL57 1UT, United Kingdom
SHewlett Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ, United Kingdom
(Received 15 May 2003; published 22 September 2003

We investigate the generation of nonlinear operators with single-photon sources, linear optical elements, and
appropriate measurements of auxiliary modes. We provide a framework for the construction of useful single-
mode and two-mode quantum gates necessary for all-optical quantum information processing. We focus our
attention generally on using minimal physical resources while providing a transparent and algorithmic way of
constructing these operators.
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[. INTRODUCTION only works when the appropriate measurement results are
obtained at the ancilla detectors. While this would seem to
In recent years we have the seen signs of a new techndimit the viability of the information processing, it is straight-
logical revolution in information processing, a revolution forward however by using a teleportation-based protocol to
caused by a paradigm shift to information processing usingurn such nondeterministic operations into deterministic ones
the laws of quantum physid4]. Since the pioneering work [9,15].
of Feymanr{ 2], DeutscH 3], and Shof4] a significant effort There have been a number of key experiments demon-
has occurred worldwide to develop the tools necessary tetrating elements of linear optical information processing
realize such a revolution. There are many possible routes add6-18. These have generally focused on the technology
architecture$5,6] available to develop these quantum infor- necessary to perform single-qubit rotations and controlled-
mation processing devices. It has long been thought that phasoT (CNOT) gates. Such gates are well known to be sufficient
tons would be an extremely strong contender for realizingo perform universal computatioithey are the minimum set
some quantum information processing circjitd Many of  required. From these primitive elements, interesting devices
the photon’s properties, for instance easy manipulation, haveuch as quantum repeat¢d®] and single-photon quantum
made them ideal for this. However, for scalable quantunmondemolition detectorgl3] can be created. In this paper,
information processing we require photons to interact withwe wish to shift the focus slightly. Instead of using only
one another. To achieve such interactions it was known thahese primitive gates, we will investigate what operations can
massive reversible nonlinearities would be requ{@dMa-  be constructed from linear elements, single-photon sources,
terials giving such large nonlinearities were thought to beand detectors. This shift is analogous to the shift in classical
(and are still well beyond our ability to manufacture. Knill, computing from a RISGreduced instruction set computing
Laflamme, and Milbur{KLM ) however found a way to cre- architecture to the CIS@omplex instruction set computing
ate such nonlinearities using only linear optical elementsarchitecture. The RISC-based architecture in quantum com-
single-photon sources, and deteci@}k More precisely they puting terms could be thought of as a device built only from
showed how it is possible using such elements to perfornthe minimum set of gates, while the CISC-based machine

conditionally the nonlinear transformation, would be built from a much larger set, a natural set of gates
allowed by the fundamental resources.
| hin) = Co|0) + Cq| 1)+ C5]2) — €0 0) + 1| 1) — Co|2) = | houp) - Our primary focus in this paper will be on the operations

1) that can be constructed from the linear optics set. We show

how to construct general operators that can be applied to the

The optical circuitdepicted in Fig. 1creating this nonlinear required input states. We further indicate what operations are
transformation uses ancilla modes, one prepared with gasilyconstructed and what are potentially difficult, illustrat-

single photon present and the other empty. The nonlinearity

was induced by definite measurements of the presence of the

single photon and the vacuum state in the appropriate ancillalV¥in> . [Wour>
modes. This insight has reopened the door to all-optical
quantum information processing. Other optical schefhé% 1> — 0 1>

have been proposed along the KLM line to generate such T—
sign shifts[11-14. These operations are generally condi- ' 0
tional in nature. By this we mean that the transformation —

FIG. 1. Schematic setup of the KLM circuit for generating a
nonlinear sign shift using three beam splitters, a single-photon
*Electronic address: s.scheel@imperial.ac.uk source, and single-photon resolving detectors.
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ing our constructive procedure with examples from one-\oting that the input density operatgy, can be written as a
mode and two-mode situations. Our constructive procedurgnctional of photonic creation and annihilation operators,

can easily be applied to multiple modes. The inputs to the, = 0,[A,a'], the quantum-state transformation can be rep-
computational modes do not need to be restricted to qubItS,coiad as

only: the operations can be applied onto qudits and continu-
ous variables just as easily. . A N o
This paper is organized as follows. In Sec. II, we will Qou=0in[Ual",Ua’0" =0 [A"a,ATa"], )
derive some general expressions necessary for the construc-
tion of useful nonlinear operations. In Sec. Ill, we will be that js, the state transforms with theverseoperatof21,22.

concerned with single-mode operations, followed by two-op the level of quantum states, we thus have to perform the
mode operations in Sec. IV. Until then, we assume perfecfeplacements

beam splitters and detections which is an oversimplification,
indeed. We will therefore focus on the effects of absorption

and nonunit detection efficiencies in Sec. VI before drawing a—>A"a, 8
some conclusions in Sec. VII. Some useful formulas regard-

ing permanents of unitary matrices can be found in the Ap- At ATal 9)
pendix. '

We will use Eq.(9) extensively throughout the paper.
Il. GENERAL BEAM-SPLITTER TRANSFORMATION Let us suppose that we were given an input state With

In order to introduce the notation we will be using modes with the associated creation and annihilation opera-

throughout the paper, we will briefly review the most basictors labeled bya("”, i=1,... N. Additionally, we have a
features of quantum-state transformation by a lossless beagupply of M auxiliary modes labeled byéj(”, ji=N
splitter. We refer the reader to the extensive literature fory 1 . N+ M. Then, a general unitary transformation on
details[20]. Every (lossless beam splitter can be thought of Il the modes mapa'—ATal, AeSUN+M). What we

Z‘:’m?hﬁ;t';[g;yo()perator ofn rt1he_ Ievel_of fc)_h?tomc creaU(c;rl]) aNGhean precisely by SUIN+ M) is a unitary operator on the
. ) operators of the incoming fie dxepre_sentg Y level of photonic creation and annihilation operatorsNn
their amplitude_operators;, i=1,2) andoutgoing fields + M dimensions. In what follows, we will only make use of
(represented bp;, i=1,2),ie., the unitarity of the corresponding matrices and will not fur-
R ther elaborate on the actual underlying group structure. In
A U V] . [ b order to construct our quantum operations, we will use the
b=U'aU=Aa, a=( - ) , b= ( - ) : (20 decomposition of an arbitrary element of the group BY(
a2 b into at mostN(N—1)/2 U(2) group elements, i.e., beam
R splitters[23].
whereU is a unitary operator and is the associated unitary First, let us define our notation. BY)“N we mean the
matrix [Ae SU(2)]. The transformation matriA consists  tensor product stat¢0);|0),---|0)y. Let the input state
of the transmission and reflection coefficiefitand R and  now be given in a functional form as
can be given in the form

TR lym =11, ... aho) (10
A=(_R* T*). ©)
and the auxiliary state in product form as
Unitarity of A requires|T|?+|R|?=1 which leads to the NAM A im
usual definition of the beam-splitter “anglep by writing | o) = I1 (@) '|0>®M (11)
|T|=cose, |R|=sine. The unitary operatot) can be given N m;!

in several equivalent forms, two of which are the following:
. e _ Herem,; is a non-negative integer that represents the number
U=e @®a A=g I® (4)  of photons initially in the modg. Finally, the state we
project on shall be denoted by

0 =The R*aagRajar—n,, (5)
N+M 2 4\n:
=TT 2 oy 12
The effect of the beam splitter cannot only be described by T ] ~/nj! '

transforming the photonic operators, but equivalently by

transforming the quantum stageas wheren; represents the number of photons in the projected

R o modej. The output state after mixing at the beam-splitter
Oou=U0iUT. (6)  network and projecting ontbj,) looks then as
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U M® 0 Nf[M (a)n NéMA mj" NiMA At NéMA At 0 ®N+M
|¢out> <¢prOJ| |¢aux>®|¢|n> < | N+1\/m e kJ “ 114y , ’I:1 ING| | > .

(13

What we see here is that the effect of the beam-splitter network is to generate the desired mixing of the photonic creation
operators of signal and auxiliary modes. Now we make use of the ordering formula well known from bosonic operator algebras
(see, e.g., Ref§24,25),

[4,F(a,a")]=—F(aa"), (14)
Ja
to rewrite the output state as
a \M
N+M (%f) N-+M m; N+M N+M
[ o= (0] ILW( 2, Aa ) (E Al 2 A [[0)NM. (15
|
Furthermore, we expand the functidifal, ... al) in a number of interesting results. Let us first start with a very
Taylor series as simple (and in fact well-knowh example, a single beam
splitter. Feeding a single photon in one input arm of the
beam splitter and measuring a single photon leaving one out-
- : 2’\‘: (éI)pl (aL)pN put port of the beam splitter, we have in fact created the
f(a;,...ay= Cp, . , conditional nonunitary operatdusing Eq.(5)] [26]
1 N by, g1 ProP /—pl! /—pN! y op g Eq
(16)
where c, ., is constrained in such a way that \?=<12|0|12>=TF‘1*1[|T|2—ﬁl|R|2] (19

Py, py=1 |cpl _____ |2— In that way we obtain the ac-

tion of a SUN+M) network in a quite general way. In acting on some signal stafé;,) (see Fig. 2 This is a very
general, this can be a laborious task. In order to see thePecial result and probably the simplest nonunitary operator
structure behind it, let us focus first onto single-mode signaPne can actually generate. This conditional operator has al-
states. That is, the input state will be ready been realized in an experlméﬁﬂ where it is called
“quantum-optical catalysis.”
In the following, we will present some results on the gen-
|y =F(al)|0) (17)  eral structure of conditional nonunitary operators.
Proposition 1 Let us suppose alN auxiliary modes are
prepared in single-photon states, and\atletectors measure
vacuum. This is equivalent to acting with an operator

=3 ahmo) (18~ (&))" on the signal statéeft figure in Fig. 3.
m \/_ Proof. The auxiliary and detected states are
and the network will represent an element of the group N+1
SU(N+1) — éT 0 ®N =0 ®N. 20
In what follows we will restrict ourselves to the important [aw) |:Hz 0" [4aed=10) 20

special case when our resources consist of single photons
and single-photon detectors. In this case, we can derive i

I‘l’in >

11>

[Wour>
11>

|‘Voul> I‘l’in >

SUN+D) 10> 10>

SU(N+1)
N’in > |W0ut>

SU2)
11> ' 11>

11> 10> 10> 11>
FIG. 2. Schematic setup for generating the simplest nonunitary FIG. 3. Adding(subtracting photons to(from) the signal mode
conditional operator with a single-photon input and a single-photorby subtractingadding the corresponding number of photons from

detection. (to) the auxiliary modes.
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The conditional(un-normalized output state is therefore

N+1 N+1 )

oS J1N®<o|(n S A

N+1

m
E Akla) |0>®N+l

N+1

I1 All)A EH )

il

N+1
:<H )(al)NE \/—Alml a})"o)
N+1 .
=< I Ali)(éI)NAZiI Win)- (21

Apart from normalizatior{or success probabilitywhich de-
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|‘|’in> |\|’0ut>
1> SRR >
11> 11>

FIG. 4. Generating polynomials of photon-number operators by
single-photon inputs and detections.

which immediately follows from the commutation relations
of the photonic operators. This proves that, indeed, measur-
ing N photons from arN-mode auxiliary vacuum input is
equivalent to actingy times with the annihilation operator on
the signal state. |
Propositions 1 and 2 show how to generate arbitrary pow-
ers of creation and annihilation operators. In fact, one could
have already guessed the general form of these operators by
recalling that the network is represented by an element of the

pends on the chosen input state, the output state is propatempact group SN+ 1). Compactness of the group trans-

tional to theN-fold application of the creation operatorll

lates into photon-number conservation which is why adding

In complete analogy, we can prove the following propo-(subtractingg N photons from the auxiliary modes must end

sition.

up as subtractingadding photons from(to) the signal mode.

Proposition 2 Let us suppose alN auxiliary modes are Note that in both cases only the matrix elemefits or A y;

prepared in the vacuum state and each of khdetectors

(i= . N+1), respectively, appear. This means that the

measures a single photon. Then, this is equivalent to aCtlngetwork decouples into a sequenceNbtlisconnected beam

with &) on the input statéright figure in Fig. 3.

splitters. That is already the minimal number of beam split-

Proof Again, let us first write down the auxiliary and the ters necessary for the generation of the wanted operators.

detected state:

N+1
|¢aux>:|0>®Ny |¢de>: II:IZ éiT|O>®N- (22
Acting on the input state gives
+1 N+1 m
=S 2o T a3, aval] oy
c N-+1 N+1 m
-3 J—yw(g 23, et 1o

m_ N)' ( 1:[ Ail) AT N@)™ N o)

(
)A“ aY| i), (23

where in the last line we have repeatedly made use of the

formula

a"?lo)= pié(?f)"“lo), (24

+1

The next step consists of showing how powers of the
number operator can be realized. In fact, an obvious way
would be to combine the results from Propositions 1 and 2
and to construct an alternating network producing sufficient
numbers of creation and annihilation operators. This might
not be the most sensible way to do. In fact, as we will see
later, the following result has much stronger implications for
the construction of interesting quantum operations.

Proposition 3 Measuring single photons in &l detectors
from a supply ofN single-photon auxiliary state amounts to
multiplying the input state with a polynomial &ith degree

in the number operatoPy(n,) (Fig. 4).

Proof. We will only sketch this proof and calculate the
highest power ofﬁ1 and leave the remaining terms for an
interested reader to calculate. Given that we choose the aux-
iliary and detected states of the form

N+1

|¢aux>: |1:[2 éiT|O>®N1

N+1

| aed = kljz afjoyen, (25)

the output state can be written in the following way:
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N+1 N+1 /N+1 N+1 m
e — Ayal Amaj| 0°N*1
|mzrumﬂgguﬂgm
N+1 N+1 ~ N+1 .
=( I Al,-)( 1 Anl) ERY A M)+t 3 TT Ajip)Aiﬂ in)- (26)
= 1 = €
|
In the first term the factoriah,!/(n;—N)! is a polynomial We can derive some interesting results about these unitary

operators. For example, let us suppose our input state is a

of orderN in n; and thus the desired result. All other terms °! A :
single-mode state consisting only of elements in the zeroth

(not written except for the last, in lowest ordemp) contain . . ; '

lower-degree polynomial28]. This proves the assertiolll anedtggsé Fock layer. Itis clear thall operations orhyy) of
The simplest example of this proposition is a single beam

splitter, the result of which we have already seen in &. | i) = Co|0) +C4| 1) — Co| 0) + €'¥C4 | 1) (28)

However, with the above propositions, we can immediately

generalize our considerations to obtain the following resultsean be realized with a probability gf=1, since unitary
(1) Given that the following for ancilla and detected gperations simply consist of phase shifts of th state. A

modes: special example withp= 1 is the Paulio,. Going one step
| o) = 1) ENTM, fur.ther, we may ask wh_at the conditions are for generation of
unitary operations on single-mode states with up to two pho-
|¢det>:|1>®N®|o>®M, tons. It is reasonable t(_) assume th_at we would need at least
an SU3) network, that is, two auxiliary modes. In fact, we
the output state will be find that every unitary single-mode operator acting on states
with up to two photons, separately in each Fock layer, can be
|¢out>°<(éI)MPN(ﬁl)|¢m>- generated by an SB) network with two single-photon in-

puts and two single-photon detections. In order to show that,
We immediately see that this procedure has allowed us to aét us first calculate the conditional operator for the(3U

on the input state with the creation operataf)™. network with| a0 = eed =|11). We get
(2) Analogously, with

|¢aux>:|1>®N®|o>®Mv

|‘/’de>:|1>®N+M-

Y| hin) = coper A(1]1)|0)+cqperA|1) +c (2A 14 perA
— AT perA(1|1) +2A 1A A 13A3)[2),  (29)

where per denotes the permanent. It is known that the range

the output state will be of perA (as a function of all its relevant parameteis the
o unit disk in the complex plang29] (see the Appendjx In
| o) = Pn(n) ()M i) - fact, so is the range of any principal subpermanent

perA(i|i). This can be seen from the decomposition of an
In both situations we have, with the aid of linear optics, SU(3) matrix in terms of a product of three $2) matrices
single-photon sources, and detectors, been able to operate @8] which themselves have a range spanning the unit disk.
the input statd ¢;,) with both a)' and @])M. Let us now Therefore, it is immediately clear that we can again generate
turn our attention to single-mode operations that are of interany phasee'¢1 between the state®) and |1). As for the
est in connection with quantum information processing.  two-photon Fock layer, we can rewrite the coefficient in Eq.
(29) to obtain a condition on the matrix as

Ill. SINGLE-MODE OPERATIONS

perA(1|1)[e'?2+ Af;—2A 1€/ 1] =2A 1A A 15A 5,
From now on we will focus onto the generationuwfitary
operators which are of utmost importance for most quantum (30)
information processing tasks. For all unitary operators it iswheree'¢2 is the phase shift betweéf) and|2). The modu-
easy to define the success probability, since unitary operatotss of the right-hand side of Eq30) can be shown to be
leave the norm of a quantum state unchanged. Since thes®unded from above by 8/(2¥,,|%) by noting thatll;A ; is

operatorsY are prepared conditionally, the success probabilthe product of the elements of a unit vector. Noting also that

ity is just the principal subpermanent p&(1|1) can take any value
across the unit disk, we can conclude that EBf) has al-
Psuccess || Y| )12 (270 ways a solution. This in turn means that every unitary single-
mode operator acting within Fock layers on states with up to
for any (normalized state vectot ). two photons can be generated by an($uhetwork with two
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single-photon inputs and two single-photon detections which 1> SU@)_.& 1>
was to be proven. The probability of success is = =
|perA(1|1)|. It is also possible, however to create certain > —Isue) __J U D- 1>
phase shifts with the necessity for two ancilla photons. For
. . . . . SU(Q2)| N —_J SU?2)
instance, in Ref{9] it was shown that a sign shift on th2) Win> = = [Wou>
Fock state only is possible with the ancilla st§t6). SUQ) SUQ)

|1>—=

J SUR) __J D7 [
IV. TWO-MODE OPERATIONS |1>4L_/__D_ 1>

In order to do something useful in terms of quantum in-
formation processing, we have to operate on two modes si- FIG. 5. Controlled-phase gate with single-photon detectors only.
multaneously. This can be done in more than one way. For . ) )
example, one can simply generalize the theory presenteﬂ.ngle-photon detectors. The generic network is shown in
above for a single signal mode to more than one signafigd- 5. The detector; all measure single photons. We can
mode. It turns out that this is not a very transparent way. WeVrite down the conditional operator as
will follow another route instead and decompose the two- .
mode operation into three subsequent stépscombine the Y| #in) =PerA(1|1)co|0)+perAcy|1)+[2A 154 1A 1A 51
two modes at a beam splittg2) act on both modesepa- 2
rately, (3) and recombinepthe modes at another beamr')splitter. +2 perA— Ay perA(1[1)]c,|2). (39
The effect of the beam splitters is to mix the modes and t
make them accessible forsingle-modeoperation in such a
way that we can apply the result in Sec. Ill.

®rhe success probability iperA(1]1)|2. Numerically, we
find values up t@g,ccesa0-24 in each interferometer arm.
However, it turns out that there is an even simpler net-
work with only six beam splitters and two single-photon
sourceg12]. It has the disadvantage, though, that one needs
We will illustrate this statement with an example. Con-two vacuum detectors which are hard to méhed which are

sider the two-mode operatcﬁq, acting on qubits. Its truth pretty inefficienj. The corresponding network is shown in

A. The controlled-phase gate

table is Fig. 6. The set of beam splitters fed with vacuum states act as
conditional phase shifts. In summary, we find that the beam
|00)—|00), splitters must satisfy
|01)—101), argT|;y=—argT)o), (36)
[10)—|10), |T|1y|=0.476, (37
|11)—e'¢|11). (3D |T|0y|=0.87, (39
In termsAof photon creation and annihilation operators, theévhich gives a success probability pf,.e<=0.23 in each
operatorC,, can be represented as arm, hence a total success probability=00.05.
. o Let us remark that the controlles, investigated by Ralph
Co=1-(1—-€"*)n1n,. (32)  etal.[12] falls into the same category as that described in

) , Fig. 5. The difference is that one of the single photons in
Now let us assume that we mix the signal modes at & SyMgach arm of the interferometer is replaced by the vacuum
metric beam splitter. The operat@r, acts only in the two- state and the single-photon detector by a vacuum detector
photon Fock layer. Then it is very easy to see that with[30], respectively. This network corresponds to the following
(nonlineaj single-mode operator®\;=1—3(1—e'¥)n;(n,  conditional operator:
—1), i=1,2, we achieve a transformation of an input state R

Y| hin) = A 25€0|0) + per A(3[3)cy|1) +(2A 1,A 1A 14
|#in) = Cod 00) + C0|01) + €19 10) + 14| 11)  (33)

+A5A%)C52). (39
into
- - e T D | e A e e
Col Yin) = Co0l 00) + o/ O1) + €1 10) +C1:€°¢] 11). (34 > sve V1 i) g
The nonlinear operator needed on both modes are polynomit¥i> s — — \Sﬂ:woup
als of second degree in the number operatpr@nd can thus SU@ SUQ)
be prepared conditionally with two auxiliary modes prepared [1>—~ —-D [1> 10>— —-& 10>

in single-photon Fock states on each side followed by double

single-photon detection. Hence, the overall requirements are FIG. 6. Controllede, gate with single-photon and vacuum de-
four single-photon sources, eight beam splitters, and foutectors.
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The probability of success & ,,|2. One needs to satisfy the C. General considerations
set of conditions A general conclusion can be drawn from the results on
one- and two-qubit operators: It is highly desirable to rewrite
perA(3[3)=Az, (400 the quantum information network in such a way that the
actual computation can be made as long as possible in the
2A12A21A11+A22A51= — Ay, (41) same Fock layers. Every crossing to another lagérthe

Pauli operatorssr, and fry) requires additional resources,
which might not be necessary. This leads us to state our main
result of this paper.

Theorem The generic operations that can be done easily
and effectively with linear optics are operations within the
same Fock layers. Léfl be the number of signal modes we
want to operate on. Anyl-qubit gate acting within Fock
B. The swap gate layers can be constructed with the help of generalized Mach-

A somewhat more interesting operator is the swap operg&€nnder interferometers witkl input and output ports (¥
o ' orts for short and at mosM conditional operators generat-
tor Sin the sense that here we encounter the first example

olynomials in the number operator of at mbkth order
an operator that needs fewer resources than one would e g poly P

ect when considerin@NOT and single-qubit rotations as f(équivalent 0 SUK+ 1) networks.
pect g nd single-q ; Proof. The proof of this assertion is now straightforward.
building blocks for quantum circuits. It is known that it can

- . Any operator acting within Fock layers can be written as a
be made from threecNOT operators € (equivalent to  polynomial of at mosMth order in all photon-number op-
controlleds, gates with attached Hadamard gatescting  erators. The ®1 port mixes all theV input modes in such a
on qubits, one can write the photonic-operator version of itvay that we are left with a tensor product Mf operators in

from which it immediately follows thatAM:l—\/E. The
maximal valug A ,,|? can take under constraint40) is then
indeed 0.25 which is why the gate in R¢f.2] is indeed
optimal.

as between the Bl ports, conditionally generating polynomials
A . - A U of at mostMth order in the individual photon-number opera-
S=nin+ (N —1)(Np— 1) —aja(hi -1 —aza(n—1). tors. ]
(42) This result shows how to construct these operations in an

algorithmic fashion. That is what we mean with “easy.”

Let us see how the single-mode versiorSafan be derived. Since there is no inherent exponential scaling of the success
It is immediately clear that we have to act on the single-Probability with respect to the number of modegibits we

photon Fock layer only. It turns out that the nonlinear single-act on, there is a good reason to call them also “effective.”
mode operators are Unfortunately, not all two-qubit gates can be written in

terms of a Mach-Zehnder interferometer and appropriate
single-mode operations. Perhaps the most notorious example

is thecNoT gate. Although similar to the controlles, , there

is no way to find an interferometric setup that “disentangles”
sz 1, (44) the two modes in such a way that there existed single-mode
operators that performed the sought task. The proof of this

which means that we do nothing on mode 2, and we act witi$tatement goes along the following lines: Let us ¢afk)

a polynomial of second degree m on mode 1. Therefore, the lbeam-splgterso.peratorhthzathroéate_s tth? qub|ttaxes b)l/dan

we would need only two single-photon sources, four beanf"9 (?Qi [?ee a.5); a a?t- € Pther Inter erotme er_zlr\:ou

splitters, and two single-photon detectors. However, the o cONSISt of a succession of two of these operators with oppo-
- . . ) site angle$ Here, we seek a transformation of the following

eratorN;, when acting on Fock stat¢s), is nothing but a

type:

single-mode phase shift{1)"1. That is, the whole network yP
collapses into a single-phase plate in one arm of the Mach- [0 =U(@)(N1@N)U(@")|thin) :=C| i),  (45)
Zehnder interferometer, leaving us with just two beam split- A .
ters and one phase plate. This gate is remarkable in the sens&h the two(conditiona) nonlinear operatordl; andN,. A
that it is alsounconditiona) that is, it worksdeterministically  lengthy but straightforward calculation shows that the opera-
with unit probability which makes it rather special. tor sandwiched between the beam splitters does not have

These two simple examples show a general principle ofensor-product structure and thus cannot be regarded as
constructing these networks. Both operators have in commosingle-mode operators. In order to show that, we use a matrix
that they act only within a specific Fock laye®:(one pho-  technique. Let us define a basis veder as
ton; 64,: two photon$. One then projects out all those Fock le"y=(]00),|10),|01),|11),|20),|02)). (46)
layers which are not affected by the operator. This leads to
the polynomials in the number operators. The design of thdhen, the input statpy;,) can be written ag;,) =cpl€). In
polynomial coefficients in each case depends on the specifibis basis, the vectocl;(coo,clo,c(,l,cll,0,0) transforms
operation one wants to achieve. as

N1:1+Zﬁl(ﬁl_2), (43)
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Cou=U(@" ) (N;@N,)U( )G, (47 to be confused with the beam splitter or transformation ma-
trices used earlier gnFor example, a beam splitter is repre-
where the matricel(¢), etc., are the matrices correspond- sented in this basis by the matrix

ing to the operatorﬁl(go), etc., in the basige) (these are not

1 0 0 0 0 0
0o T R 0 0 0
0 —R* T* 0 0 0

YelZlo o o [TP-IRE -y2R*T (ZRT | 49
0 0 O V2RT T R
0 0 0 —\2RT* R*2 T*2

with | T|=cos¢ and |R|=sin¢. The tensor product of the The construction of the corresponding photonic operators is
two single-mode operators looks in this basis like almost obvious, once one takes care of the fact that one must
not leave the Hilbert space of the qubits. Then it is clear that

we have to choose
(N1)oo(N2)go  (N1)0a(N2)go

(N1)1o(N2)oo  (N1)12(N2)go - -+ o,=a—af(n—-1), (52)
N ©Np= . (4
1o (Np)oo(N2)1og (Np)oa(N2)1g - - (49)

A~ 1
ay=i—[a+a (n—=1)]. (53

It is then relatively straightforward to show that there existsIn order to proceed further, we need a well-known result
no solution to Eq(47) with a matrix of form(49) that pro-  from quantum-state engineering.
duces an output vectag,=(Cop,C10,C11,C01,0,0). Proposition 4 Suppose one wants to generate the quan-
Therefore, in order to build anoT gate, we would have tum state
either to refine our approach to include more general inter-
ferometric setupgfor which the original Knill-Laflamme- ! . itk
Milburn proposal is an exampler sandwich a controlled-, |"/l”>_k20 dk|k>_k20 \/ﬁ(a )10). (54
gate between two Hadamard gates, which we will show in
the following section to be rather expensive. then one needs single-photon sources, at mastoherent-
state sources, and at most Beam splitters and detectors.
Proof. The proof of this proposition follows closely the
V. CROSSING FOCK LAYERS result in Ref.[31], where it has been shown that the state

Equipped with the knowledge about generating annihilal %) can be generated by successive single-photon additions
tion and creation operators, we can start working on realiza@nd coherent shifts. The trick is to rewrite the state as
tions of other operations that are harder to do but neverthe- N
less needed to construct general quantum networks. By our B Stk
Theorem, the “easy” operations are those that act within the |'z”n>_k1;[l (@' af)|0), (59
same Fock layers. It is much harder to find suitable networks
for operators that enable us to cross Fock layés3. The \yhich is nothing but a decomposition of the polynomial in
obvious choice consists of looking at single-qubit rotations~y . . . *
first, i.e., the representations of the Pauli operators in thd Mt its root factors, wherey, are the roots of the poly-

) nomial. u
Fock basis, Having generated the stalé,), one can go ahead and

imprint it onto another state by mixing at a beam splitter.
(}x:|0><1|+|1><0|1 (50) Thgt Ieadg'neatly to the follow[ng proposition.
roposition 4a The polynomial

dk

.1 L ow
ay=7(|0)(1]=[1)(0]). (51) Po= 2, di(@h (56)
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can be made to act upon a signal state by mixing the statend perform a Procrusted82,33 entanglement concentra-

7‘>n|o> and the signal state at a single beam splitter. tion by acting on one mode of it with a fir_st-order polynomial
Proof. Let us assume that the signal state is again of th@f the number operator as explained in exam(8g For
form appropriately chosen transmission coefficignaf the beam
splitter, we can generate in the lingt—0 the state
Cm ~
o) =2 —=(a))"0). (57) 1
m! O(N))=—=[|0,0+\|1,1 (63
W mi P00} =100+ AI1.2)

Mixing |¢i,) andP,|0) at a beam splitter, conditional on the g arbitrary accuracy in the trace norm and for arbitrarily
second output being found in the vacuum state, we obtaighosen) (details of this procedure can be found in Ref.
after a short calculation [34]). Using this state as the auxiliary-state source in an
n SU(3) network that projects ontd,,0), we derive the follow-
o) E dkAliz(éDkAiﬂ b, (58) ing operation after applying the KILL operator:

= Col0)+Ca|1)— A 21€1[0) + X perA(3[1)ce|1).  (64)

from which we see that the coefficients have to be SUfﬁ'Choosing|A21|=|)\ perA(3|1)| with an appropriate phase

C|e|ntl¥hrescaled to achieve the desired %oal. | . I. f relation immediately leads to the desired Pauli operators.
n the Ssame manner, one can generate polynomials or an- o g point, a remark about the use of continuous-

n|h|Iat|_o_n operators by projecting onto an engmee_red Stal§;ariable states as a resource is appropriate. In the described
Comblnln_g both processes opens up the opportunity t0 genz, gion of the Pauli operators, we inject a two-mode
erate arbitrary polynomials of creation and annihilation Op'squeezed vacuum state into ofjr network. This seems a
erators. However, this m_|ght not be t_he best choice S'm’fgimple and elegant method for getting the desired result. In
domg quantum-state engineering Qf higher-order po'y.”o”." ct, we cannot see a way around the usage of continuous-
als is, as we have seen, an expensive task. Therefore, it mig riable states at all, since even for the creation of the super-

be advantageous to circumvent the proble_m (.)f leaving th osition|0)+|1), by Proposition 4, a coherent-state source
Fock layers of zero and one photon by projecting back ont ) ) ~ .
i ; ds needed to displace the photon creation opeitoA simi-

lar conclusion was reached by Lund and Ralfph].
Another very important single-qubit operation is the Had-
amard gate, defined by

desired quantum operation. For this, we introduce khe
operatork as

. 1. .
K=1—=n(n—1), (59 1
2 0)— —(|0)+1(1)), (65)
|0) ﬁ(l )+11))
which, being a second-order polynomial in the number op-
erator, requires two single-photon sources, two beam split- |1)Hi(|0>—|1>) (66)
ters, and two detectors. The Pauli operators can then be writ- J2 ’
ten as
This can also be written in operator form as
o=K(a+ah, (60) .
A=-—=(0)+(—1)"1)), 6
o \/§(|>()|>) (67)
oy= Ki—(a—aT). (61)

where the number operator is the one from the signal state!
n'&hat is, we swap signal and auxiliary states in the sense that
generate superposition stat¢8)+|1) with the help of we first produce a superposition (&) and|1>'and act con-
Proposition 4a, superpose them onto the signal mode, arFatlonally on it with the signal s'Eate. Effe_ctlvely, the Had-
perform a projection measurement onto a similar state. How@mard gate becomes(eontrolled o, operation on théaux-
ever, we will present a slightly different and more elegantiliary) superposition state|@)+|1))/y2. In fact, one can
method of achieving this purpose. Instead of preparing twagewrite the operatoﬂ as

copies of the superposition of vacuum and a single photon,

we could prepare a Bell-type state|0,0)+\[1,1) by the .1 .

following method. Let us take a two-mode squeezed vacuum H= EOOH (1-2n5ny)[1)), (68)
(TMSV) state of the form

With the theory presented above, we could go ahead a

which is effectively a two-mode operator. This is precisely

| TMSV) = \/1_—(122 q"/n,n) (62) the controlle(_jfrZ where we the second output is left unmea-
n=0 sured(sometimes called theump “gate”). However, leav-

032310-9



SCHEELet al. PHYSICAL REVIEW A 68, 032310 (2003

ing something unmeasured usually means to trace over the Taf(eM—1)am

possible outcomes which will destroy the purity and coher- gd'Ma_ E | , (74)
ence of our desired operation. The way around this problem n=0 n:
is to act on the resulting signal-mode output with an operatoB writin
1+a' (which can be prepared according to Proposition 4a y g
and then to project onto the single-photon Fock state. "
= : - , (@3, a4|U[03,04)
rom this rather complicated construction, we observe
that the Hadamard gate and consequently also its multimode =(az,as)exd —i(a") ®a]|03,0,)
extension, the quantum Fourier transform, are the hardest of
all gates under investigation so far. This result impacts the “ laf(A-1)a]™
generation of gates that actually make use of similar layer :<a3'0¢4|2 n—||03’04>
crossings as theNoT gate. For these type of operations, it n=0 '
seems that the constructive algorithm we have presented in “ [AN(T-1)a—a'SCiTal™ N
this paper is not immediately applicable and this problem => g (12"«
requires further investigation. n=0 n!
— g 1a'®rag—a’SC 'Tag—(112)a* a (75)
VI. LOSSY BEAM SPLITTERS AND NONPERFECT
DETECTORS where we have used the definitions
So far, we have restricted ourselves to perfect linear op- T A
tics, i.e., nonabsorbing beam splitters and detectors with unit A= - . =g i® (76)
efficiency. In practice, to achieve this situation is a hopeless -SC T CS A
task. Instead, we have to make do with absorbing linear op-
tical elements and nonperfect detectors. What this amounts C=VTT", (77
to in terms of constructing our gates will be described in the
following section. S=VAAT, (78)
A. Kraus decomposition T=e ', (79
We derive the Kraus decomposition of a lossy beam split- Ol gy as) =l g, as). (80)

ter. It is known that an absorbing beam splitter represents a

unitary evolution in the extended Hilbert space of field andrperefore, we obtain the result that the Kraus operators for
device modes. The unitary operator can be writtefi38$ the absorbing beam splitter are

O= exfg —i (a")Tda], (69 £ — g ia'®rag—a’SC Tag—(112)a" @ (81)
ag,ay .

where we use the notation We can easily check that these operators become unitary

when absorption can be disregardedTakecomes unitary
~ (70) (and thereforeb; Hermitian, and S vanishes. The integra-
0 tion over (a3,a4) can then be performed and gives unity.
What we also see is that these Kraus operators indeed corre-
Assume now the device to be initially in its vacuum stateSpond to an absorption process for which the factor
|05,0,). Then we can write the density operator of the out-exd —a*SC 1Ta] is responsible.
put field as
B. Nonperfect detectors

NGBS SO ITIG) Nt
our=Tr[U(Qin”|03,04)(03,04)U ] 7D Second, we model a nonunit detector efficiengypy re-
. . lacing th ject b iat iti -
and evaluate the trace in the coherent-state basis as grztt::)r:gvalSegrgggsolj?g’gl\'/Mgl [a;ré]approprla € Posiiive op
~(F) 1 2 2 F NS 3 k n k—n
06— | PasPaib,, o 20, (72 m¢nl=Tm=3 | 7= k. 2

This method does not take care of possible dark counts, but
reflects the fact that direct photon counting may give values
for the photon numben which actually came from higher

where we have defined the Kraus operaﬁ)gg,% as

Ea3,a4:<a31a4|0|03104>' (73 Fock statesk), k>n. This POVM is sometimes modeled by
a perfect detector preceded by a beam splitter with appropri-
They can be further simplified by using the relati@®] ately chosen transmissivifyl|2= 7.
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Example: A single beam splitter The success probability for perfect operation ps,ccess

T2 S : -
Let us consider a somewhat artificial example which nev-=|T22"- A note of caution is appropriate here. Since we

ertheless shows what happens when absorption and/or noff@ve fixed T, already, by reciprocity we have also fixed

perfect detectors are present. Let us suppose that we were fa1= T22=T. For single-slab beam splitters that fix@g,

implement the Paulix, gate with a single beam splitter, a _ 121~ R 100, SO that we are left with essentially a single
single-photon source, and a single-photon detegtote that number determining Fhe fidelity ofzour d2e3|re<12 gate opera-
this could have been done deterministically with a phas%!on' Tozbe morze prec'ie’ notethénj +2|R| +IAIF=1 (set-

plate. We start off with a signal mode in a statg|0) ing [A]”=[Ay| HA12| .:|A21| +|A22lmz)’ and suppose that
+c4|1) and mix it with a single photon. The effect of the TeR. Then we immediately have th&'< |, and choosing

absorbing beam splitter is to produce a mixed state that ca?\rgR:Tr/2 we arrive at
be written in the form [3—2[A[2-1
T= —

- (89)
eSR= (MY Win(MI+SA(BA), (83

where| i,(T)) is the state transformed with tiironunitary With this choice forTz,=T, we finally get

transmission matrixT and |¢(A)) is a contribution that o = (2—IAIP= B3=2IAD) ol s e

solely comes from the absorption matAx We do not give Qour=7(2 |A| A ol i) inl 72

the rather lengthy expression here. Instead, we immediately + 71— n)|cq|2(|A*—3+2y3—-2|A|?)|0)

give the result for the non-normalized density matrix after oA l2 5

applying the POVM(82) as X(0[+ nlcy|?[A[*(1—|A[%)|0)(0], (89

which now only depends on two parameters: the absorption

- _ _ 2 2 2
Qous= 7| ou)(Woul = 47(1= m)[Ce] " T12l" T2I%|0) coefficient|A| of the beam splitter and the detector efficiency

X (0|4 5]C1|?(| T2oM 11+ T1oM 5|2 7. Again, the first line is the desired result, the second is due
to the nonperfect detector, and the last line is the contribution
+[TaM 1o+ T12M55%)[0)(0], (84 of the absorption. Following two special cases are notable
. here: (1) without absorption |A|=0), the third line in Eq.
with the wanted output state (89) vanishes and the numerical coefficient in the second line

takes the value of 23— 3~0.464;(2) with perfect detectors
| houd =CoT220) +Co(T1aTot TeaT20)[1) (89 (,— 1) the second line vanishes and we are left with a
o . ~contribution|A|?(1—|A|?) to the vacuum from the last line.
and the matrixM =SC™"T. Equation(84) has three parts: In principle, one could define @tate-dependengate fidel-

The first line is the wanted outcome in which the transmls—lty or use some more elaborate definition such as an average

sion matrix can be chosen to give the desired answer. Thgyo i integrated over all possible input statesith respect

second_ line comes from the inefficient detector, hence th some Haar measUrebut this is beyond the scope of this
POVM introduced in Eq(82), whereas the last two lines are rﬁ)aper.

the contributions due to the lossy beam splitter, reflected i
the appearance of the matifi that contains the absorption

matrix. The last expression can be simplified using the fact VII. CONCLUSIONS

thatMM *=1-TT" to obtain In this paper, we have shown a constructive mechanism
R for generating arbitrary operators using only linear optics,
O out.1= 7| YoudWoud + 41(1— n)|c1|?| T14%| T24?]0) single-photon sources, and single-photon detectors. We have

) ) 5 ) 5 focused our attention primarily on one-mode and two-mode

X(O]+ 7l Ccq| [ Taal *+ | T1a* = 4 T12*| T2 situations, though the approach is easily extended to multi-

— | T1aToo+ T15T21?110)(0]. (86) mode situations. We_have _shown what o_perations are easy
and what are potentially difficult. Operations that cause a

This expression shows that it is only necessary to know th&€hange in the Fock layetéor instance, the Hadamard opera-
experimentally accessible transmission and reflection coefffor) are generally difficult but not impossible. While the gen-
cients of the beam splitter that make up the maTrixNow  €ration of the operators is generally conditional on certain

we make use of the fact that we actually wanted to generat@€asurement results in the ancilla modes, the operators can
a Paulier, gate, meaning that we set in EB5) TyT be made deterministic using various teleportation protocols.
z ’ 11122

- : . . : Finally, we hope this paper shows the power in building the
:nTégﬁglizeTszgu:NSP dt(;]:stitwﬁng?r?ﬂy obtain for thestil required operations from the fundamental resources rather
P y than fundamental gates. TtssvApP operation illustrates this
point extremely well. From fundamental gates, thceeTs

- — 2" - 2 2
Couta= 7| ool *a| in) (Winl 02+ 41(1— 7)|C4|*| T13) are required to build such an operation, however from fun-
S Ta-12105¢0| + 2l e 127 | Tol2— 4] T2 damental resources, only two beam splitters and a phase
IT2d"|0X 01+ 7lcal T[T ITd shifter are necessary. This approach open a new way to think
X | T552— 3| T2521/0)(0]. (87)  about operation generation.
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APPENDIX: PERMANENTS OF UNITARY MATRICES perU|<1. (A3)

Here we recall some elementary properties of permanentdlote that this condition also follows immediately from the
mainly taken from the only available monograph on this sub-robabilistic interpretation given above. Equati#8) tells

ject [29] The permanent of am(x n) matrix A is a gener- us that the range of the permanent ofa Unitary matrix lies in
alized matrix function, defined as the unit disk in the complex plane. In fact, the same conclu-

sion can be drawn for the permanents of principal submatri-

n ces of unitary matrices by recalling that a unitary matrix
perA= ES ,Hl Ai”i' (A1) consists of rowsgor columns of orthogonal unit vectors. For
toifesy 1= example, let us consider p&(1|1) of Ae SU(3). We have
where S, is the symmetric group of cyclic permutations. IPErA(L|1)|=|A ppA 55+ Apzh s (A4)

Note that the determinant of a matrix is similarly defined

with the only difference of a factor of{1) appearing in all  Since|A i< 1—[A,J? and|Az]<1—[AzJ% we know
terms depending on the characteven or oddl of the per-  that
mutation. The permanent of a matrix generically appears in
counting problems, i.e., combinatorics and graph theory. In |perA(1|1)|<|A A3 +|V(1—]|Ax?)(1—]A3d?)|
our case, it is the probability amplitude of detecting the state
|1)®N after an input state of the exactly the same form has
been transformed by an SNJ network. In that sense, it <1 (A5)
naturally appears here as well since the combinatorial prob-

lem is here to(re)distribute N single photons amondgN  Similar relations hold for peA(2|2) and peA(3|3) and

=|cose cosO |+ |sing sin®|=|cog ¢+ O)]

single-photon detectors. indeed for all permanents of submatrices of unitary matrices.
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