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Measurement-induced nonlinearity in linear optics
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We investigate the generation of nonlinear operators with single-photon sources, linear optical elements, and
appropriate measurements of auxiliary modes. We provide a framework for the construction of useful single-
mode and two-mode quantum gates necessary for all-optical quantum information processing. We focus our
attention generally on using minimal physical resources while providing a transparent and algorithmic way of
constructing these operators.
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I. INTRODUCTION

In recent years we have the seen signs of a new tec
logical revolution in information processing, a revolutio
caused by a paradigm shift to information processing us
the laws of quantum physics@1#. Since the pioneering work
of Feymann@2#, Deutsch@3#, and Shor@4# a significant effort
has occurred worldwide to develop the tools necessar
realize such a revolution. There are many possible routes
architectures@5,6# available to develop these quantum info
mation processing devices. It has long been thought that p
tons would be an extremely strong contender for realiz
some quantum information processing circuits@7#. Many of
the photon’s properties, for instance easy manipulation, h
made them ideal for this. However, for scalable quant
information processing we require photons to interact w
one another. To achieve such interactions it was known
massive reversible nonlinearities would be required@8#. Ma-
terials giving such large nonlinearities were thought to
~and are still! well beyond our ability to manufacture. Knill
Laflamme, and Milburn~KLM ! however found a way to cre
ate such nonlinearities using only linear optical elemen
single-photon sources, and detectors@9#. More precisely they
showed how it is possible using such elements to perfo
conditionally the nonlinear transformation,

uc in&5c0u0&1c1u1&1c2u2&→c0u0&1c1u1&2c2u2&5ucout&.
~1!

The optical circuit~depicted in Fig. 1! creating this nonlinear
transformation uses ancilla modes, one prepared wit
single photon present and the other empty. The nonlinea
was induced by definite measurements of the presence o
single photon and the vacuum state in the appropriate an
modes. This insight has reopened the door to all-opt
quantum information processing. Other optical schemes@10#
have been proposed along the KLM line to generate s
sign shifts @11–14#. These operations are generally con
tional in nature. By this we mean that the transformat
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only works when the appropriate measurement results
obtained at the ancilla detectors. While this would seem
limit the viability of the information processing, it is straigh
forward however by using a teleportation-based protoco
turn such nondeterministic operations into deterministic o
@9,15#.

There have been a number of key experiments dem
strating elements of linear optical information process
@16–18#. These have generally focused on the technolo
necessary to perform single-qubit rotations and controll
NOT ~CNOT! gates. Such gates are well known to be sufficie
to perform universal computation~they are the minimum se
required!. From these primitive elements, interesting devic
such as quantum repeaters@19# and single-photon quantum
nondemolition detectors@13# can be created. In this pape
we wish to shift the focus slightly. Instead of using on
these primitive gates, we will investigate what operations c
be constructed from linear elements, single-photon sour
and detectors. This shift is analogous to the shift in class
computing from a RISC~reduced instruction set computing!
architecture to the CISC~complex instruction set computing!
architecture. The RISC-based architecture in quantum c
puting terms could be thought of as a device built only fro
the minimum set of gates, while the CISC-based mach
would be built from a much larger set, a natural set of ga
allowed by the fundamental resources.

Our primary focus in this paper will be on the operatio
that can be constructed from the linear optics set. We sh
how to construct general operators that can be applied to
required input states. We further indicate what operations
easilyconstructed and what are potentially difficult, illustra

FIG. 1. Schematic setup of the KLM circuit for generating
nonlinear sign shift using three beam splitters, a single-pho
source, and single-photon resolving detectors.
©2003 The American Physical Society10-1



e
u
th
b
in

ill
tr
e
o

fe
on
io
in
rd
p

g
sic
ea
fo
f
n

y

g:

b
b

rs,
p-

the

era-

n

f
r-

. In
the

ber

ted
ter

SCHEELet al. PHYSICAL REVIEW A 68, 032310 ~2003!
ing our constructive procedure with examples from on
mode and two-mode situations. Our constructive proced
can easily be applied to multiple modes. The inputs to
computational modes do not need to be restricted to qu
only: the operations can be applied onto qudits and cont
ous variables just as easily.

This paper is organized as follows. In Sec. II, we w
derive some general expressions necessary for the cons
tion of useful nonlinear operations. In Sec. III, we will b
concerned with single-mode operations, followed by tw
mode operations in Sec. IV. Until then, we assume per
beam splitters and detections which is an oversimplificati
indeed. We will therefore focus on the effects of absorpt
and nonunit detection efficiencies in Sec. VI before draw
some conclusions in Sec. VII. Some useful formulas rega
ing permanents of unitary matrices can be found in the A
pendix.

II. GENERAL BEAM-SPLITTER TRANSFORMATION

In order to introduce the notation we will be usin
throughout the paper, we will briefly review the most ba
features of quantum-state transformation by a lossless b
splitter. We refer the reader to the extensive literature
details@20#. Every ~lossless! beam splitter can be thought o
as a unitary operator on the level of photonic creation a
annihilation operators of the incoming fields~represented by
their amplitude operatorsaW i , i 51,2) andoutgoing fields
~represented bybW i , i 51,2), i.e.,

b̂5Û†âÛ5Lâ, â5S â1

â2
D , b̂5S b̂1

b̂2
D , ~2!

whereÛ is a unitary operator andL is the associated unitar
matrix @LP SU(2)#. The transformation matrixL consists
of the transmission and reflection coefficientsT and R and
can be given in the form

L5S T R

2R* T* D . ~3!

Unitarity of L requires uTu21uRu251 which leads to the
usual definition of the beam-splitter ‘‘angle’’w by writing
uTu5cosw, uRu5sinw. The unitary operatorÛ can be given
in several equivalent forms, two of which are the followin

Û5e2 i â†Fâ, L5e2 i F, ~4!

Û5Tn̂1e2R* â2
†â1eRâ1

†â2T2n̂2. ~5!

The effect of the beam splitter cannot only be described
transforming the photonic operators, but equivalently
transforming the quantum state%̂ as

%̂out5Û%̂ inÛ
†. ~6!
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Noting that the input density operator%̂ in can be written as a
functional of photonic creation and annihilation operato
%̂ in5%̂ in@ â,â†#, the quantum-state transformation can be re
resented as

%̂out5%̂ in@ÛâÛ†,Ûâ†Û†#5%̂ in@L1â,LTâ†#, ~7!

that is, the state transforms with theinverseoperator@21,22#.
On the level of quantum states, we thus have to perform
replacements

â°L1â, ~8!

â†°LTâ†. ~9!

We will use Eq.~9! extensively throughout the paper.
Let us suppose that we were given an input state withN

modes with the associated creation and annihilation op
tors labeled byâi

(†) , i 51, . . . ,N. Additionally, we have a

supply of M auxiliary modes labeled byâ j
(†) , j 5N

11, . . . ,N1M . Then, a general unitary transformation o
all the modes mapsâ†°LTâ†, LPSU(N1M ). What we
mean precisely by SU(N1M ) is a unitary operator on the
level of photonic creation and annihilation operators inN
1M dimensions. In what follows, we will only make use o
the unitarity of the corresponding matrices and will not fu
ther elaborate on the actual underlying group structure
order to construct our quantum operations, we will use
decomposition of an arbitrary element of the group SU(N)
into at mostN(N21)/2 U~2! group elements, i.e., beam
splitters@23#.

First, let us define our notation. Byu0& ^ N we mean the
tensor product stateu0&1u0&2•••u0&N . Let the input state
now be given in a functional form as

uc in&5 f̂ ~ â1
† , . . . ,âN

† !u0& ^ N ~10!

and the auxiliary state in product form as

ucaux&5 )
j 5N11

N1M
~ â j

†!mj

Amj !
u0& ^ M. ~11!

Heremj is a non-negative integer that represents the num
of photons initially in the modej. Finally, the state we
project on shall be denoted by

ucproj&5 )
j 5N11

N1M
~ â j

†!nj

Anj !
u0& ^ M, ~12!

wherenj represents the number of photons in the projec
mode j. The output state after mixing at the beam-split
network and projecting ontoucproj& looks then as
0-2



uc &}^c uÛuc & ^ uc &5M ^^0u
N1M

~ âi !
ni

N1M

L â†
mj

f̂

N1M

L â† , . . . ,

N1M

L â† u0& ^ N1M.

creation
lgebras
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out proj aux in )
i , j 5N11 Ani !mj !

S (
k51

k j kD S (
l 51

l1 l (
l 51

lN l D
~13!

What we see here is that the effect of the beam-splitter network is to generate the desired mixing of the photonic
operators of signal and auxiliary modes. Now we make use of the ordering formula well known from bosonic operator a
~see, e.g., Refs.@24,25#!,

@ â,F~ â,â†!#5
]

]â†
F~ â,â†!, ~14!

to rewrite the output state as

ucout&}
M ^^0u )

i , j 5N11

N1M S ]

]âi
†D ni

Ani !mj !
S (

k51

N1M

Lk jâk
†D mj

f̂ S (
l 51

N1M

L l1âl
† , . . . , (

l 51

N1M

L lNâl
†D u0& ^ N1M. ~15!
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Furthermore, we expand the functionf̂ (â1
† , . . . ,âN

† ) in a
Taylor series as

f̂ ~ â1
† , . . . ,âN

† !5 (
p1 , . . . ,pN51

N

cp1 , . . . ,pN

~ â1
†!p1

Ap1!
•••

~ âN
† !pN

ApN!
,

~16!

where cp1 , . . . ,pN
is constrained in such a way tha

(p1 , . . . ,pN51
Nucp1 , . . . ,pN

u251. In that way we obtain the ac

tion of a SU(N1M ) network in a quite general way. In
general, this can be a laborious task. In order to see
structure behind it, let us focus first onto single-mode sig
states. That is, the input state will be

uc in&5 f̂ ~ â1
†!u0& ~17!

5(
m

cm

Am!
~ â1

†!mu0& ~18!

and the network will represent an element of the gro
SU(N11).

In what follows we will restrict ourselves to the importa
special case when our resources consist of single pho
and single-photon detectors. In this case, we can deriv

FIG. 2. Schematic setup for generating the simplest nonuni
conditional operator with a single-photon input and a single-pho
detection.
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number of interesting results. Let us first start with a ve
simple ~and in fact well-known! example, a single beam
splitter. Feeding a single photon in one input arm of t
beam splitter and measuring a single photon leaving one
put port of the beam splitter, we have in fact created
conditional nonunitary operator@using Eq.~5!# @26#

Ŷ5^12uÛu12&5Tn̂121@ uTu22n̂1uRu2# ~19!

acting on some signal stateuc in& ~see Fig. 2!. This is a very
special result and probably the simplest nonunitary oper
one can actually generate. This conditional operator has
ready been realized in an experiment@27# where it is called
‘‘quantum-optical catalysis.’’

In the following, we will present some results on the ge
eral structure of conditional nonunitary operators.

Proposition 1: Let us suppose allN auxiliary modes are
prepared in single-photon states, and allN detectors measure
vacuum. This is equivalent to acting with an opera
;(â1

†)N on the signal state~left figure in Fig. 3!.
Proof: The auxiliary and detected states are

ucaux&5 )
i 52

N11

âi
†u0& ^ N, ucdet&5u0& ^ N. ~20!

ry
n

FIG. 3. Adding~subtracting! photons to~from! the signal mode
by subtracting~adding! the corresponding number of photons fro
~to! the auxiliary modes.
0-3
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The conditional~un-normalized! output state is therefore

ucout&}(
m

cm

Am!
N^^0uS )

i 52

N11

(
j 51

N11

L j i â j
†D

3S (
k51

N11

Lk1âk
†D m

u0& ^ N11

5(
m

cm

Am!
S )

i 52

N11

L1i DL11
m ~ â1

†!m1Nu0&

5S )
i 52

N11

L1i D ~ â1
†!N(

m

cm

Am!
L11

m ~ â1
†!mu0&

5S )
i 52

N11

L1i D ~ â1
†!NL11

n̂1uc in&. ~21!

Apart from normalization~or success probability!, which de-
pends on the chosen input state, the output state is pro
tional to theN-fold application of the creation operator.j

In complete analogy, we can prove the following prop
sition.

Proposition 2: Let us suppose allN auxiliary modes are
prepared in the vacuum state and each of theN detectors
measures a single photon. Then, this is equivalent to ac
with â1

N on the input state~right figure in Fig. 3!.
Proof. Again, let us first write down the auxiliary and th

detected state:

ucaux&5u0& ^ N, ucdet&5 )
i 52

N11

âi
†u0& ^ N. ~22!

Acting on the input state gives

ucout&}(
m

cm

Am!
N^^0uS )

i 52

N11

âi D S (
k51

N11

Lk1âk
†D m

u0& ^ N11

5(
m

cm

Am!
^ N^0uS )

i 52

N11
]

]âi
†D S (

k51

N11

Lk1âk
†D m

u0& ^ N11

5(
m

cm

Am!

m!

~m2N!! S )
i 52

N11

L i1DL11
m2N~ â1

†!m2Nu0&

5S )
i 52

N11

L i1DL11
n̂1â1

Nuc in&, ~23!

where in the last line we have repeatedly made use of
formula

~ â†!pu0&5
1

p11
â~ â†!p11u0&, ~24!
03231
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which immediately follows from the commutation relation
of the photonic operators. This proves that, indeed, mea
ing N photons from anN-mode auxiliary vacuum input is
equivalent to actingN times with the annihilation operator o
the signal state. j

Propositions 1 and 2 show how to generate arbitrary po
ers of creation and annihilation operators. In fact, one co
have already guessed the general form of these operato
recalling that the network is represented by an element of
compact group SU(N11). Compactness of the group tran
lates into photon-number conservation which is why add
~subtracting! N photons from the auxiliary modes must en
up as subtracting~adding! photons from~to! the signal mode.
Note that in both cases only the matrix elementsL i1 or L1i
( i 52, . . . ,N11), respectively, appear. This means that t
network decouples into a sequence ofN disconnected beam
splitters. That is already the minimal number of beam sp
ters necessary for the generation of the wanted operator

The next step consists of showing how powers of
number operator can be realized. In fact, an obvious w
would be to combine the results from Propositions 1 an
and to construct an alternating network producing suffici
numbers of creation and annihilation operators. This mi
not be the most sensible way to do. In fact, as we will s
later, the following result has much stronger implications
the construction of interesting quantum operations.

Proposition 3. Measuring single photons in allN detectors
from a supply ofN single-photon auxiliary state amounts
multiplying the input state with a polynomial ofNth degree
in the number operator,PN(n̂1) ~Fig. 4!.

Proof. We will only sketch this proof and calculate th
highest power ofn̂1 and leave the remaining terms for a
interested reader to calculate. Given that we choose the
iliary and detected states of the form

ucaux&5 )
i 52

N11

âi
†u0& ^ N,

ucdet&5 )
k52

N11

â j
†u0& ^ N, ~25!

the output state can be written in the following way:

FIG. 4. Generating polynomials of photon-number operators
single-photon inputs and detections.
0-4
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ucout&}(
m

cm

Am!
N^^0uS )

k52

N11
]

]âk
†D F )j 52

N11 S (
i 51

N11

L i j âi
†D G S (

n51

N11

Ln1ân
†D m

0^ N11

5S )
j 52

N11

L1 j D S )
n52

N11

Ln1D n̂1!

~ n̂12N!!
L11

n̂12Nuc in&1•••1S (
j 52

N11

)
i PP

L j i PDL11
n̂1uc in&. ~26!
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In the first term the factorialn̂1!/( n̂12N)! is a polynomial
of orderN in n̂1 and thus the desired result. All other term
~not written except for the last, in lowest order inn̂1) contain
lower-degree polynomials@28#. This proves the assertion.j

The simplest example of this proposition is a single be
splitter, the result of which we have already seen in Eq.~5!.
However, with the above propositions, we can immediat
generalize our considerations to obtain the following resu

~1! Given that the following for ancilla and detecte
modes:

ucaux&5u1& ^ N1M,

ucdet&5u1& ^ N
^ u0& ^ M,

the output state will be

ucout&}~ â1
†!MPN~ n̂1!uc in&.

We immediately see that this procedure has allowed us to
on the input state with the creation operator (â1

†)M.
~2! Analogously, with

ucaux&5u1& ^ N
^ u0& ^ M,

ucdet&5u1& ^ N1M,

the output state will be

ucout&}PN~ n̂1!~ â1!Muc in&.

In both situations we have, with the aid of linear optic
single-photon sources, and detectors, been able to opera
the input stateuc in& with both â1

M and (â1
†)M. Let us now

turn our attention to single-mode operations that are of in
est in connection with quantum information processing.

III. SINGLE-MODE OPERATIONS

From now on we will focus onto the generation ofunitary
operators which are of utmost importance for most quan
information processing tasks. For all unitary operators i
easy to define the success probability, since unitary opera
leave the norm of a quantum state unchanged. Since t
operatorsŶ are prepared conditionally, the success proba
ity is just

psuccess5iŶuc&i2 ~27!

for any ~normalized! state vectoruc&.
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We can derive some interesting results about these un
operators. For example, let us suppose our input state
single-mode state consisting only of elements in the zer
and first Fock layer. It is clear thatall operations onuc in& of
the type

uc in&5c0u0&1c1u1&→c0u0&1eiwc1u1& ~28!

can be realized with a probability ofp51, since unitary
operations simply consist of phase shifts of theu1& state. A
special example withw5p is the Pauliŝz . Going one step
further, we may ask what the conditions are for generation
unitary operations on single-mode states with up to two p
tons. It is reasonable to assume that we would need at l
an SU~3! network, that is, two auxiliary modes. In fact, w
find that every unitary single-mode operator acting on sta
with up to two photons, separately in each Fock layer, can
generated by an SU~3! network with two single-photon in-
puts and two single-photon detections. In order to show t
let us first calculate the conditional operator for the SU~3!
network with ucaux&5ucdet&5u11&. We get

Ŷuc in&5c0perL~1u1!u0&1c1perLu1&1c2~2L11perL

2L11
2 perL~1u1!12L12L21L13L31!u2&, ~29!

where per denotes the permanent. It is known that the ra
of perL ~as a function of all its relevant parameters! is the
unit disk in the complex plane@29# ~see the Appendix!. In
fact, so is the range of any principal subperman
perL( i u i ). This can be seen from the decomposition of
SU~3! matrix in terms of a product of three SU~2! matrices
@23# which themselves have a range spanning the unit d
Therefore, it is immediately clear that we can again gene
any phaseeiw1 between the statesu0& and u1&. As for the
two-photon Fock layer, we can rewrite the coefficient in E
~29! to obtain a condition on the matrixL as

perL~1u1!@eiw21L11
2 22L11e

iw1#52L12L21L13L31,

~30!

whereeiw2 is the phase shift betweenu0& andu2&. The modu-
lus of the right-hand side of Eq.~30! can be shown to be
bounded from above by 8/(27uL11u2) by noting that) iL1i is
the product of the elements of a unit vector. Noting also t
the principal subpermanent perL(1u1) can take any value
across the unit disk, we can conclude that Eq.~30! has al-
ways a solution. This in turn means that every unitary sing
mode operator acting within Fock layers on states with up
two photons can be generated by an SU~3! network with two
0-5
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single-photon inputs and two single-photon detections wh
was to be proven. The probability of success
uperL(1u1)u2. It is also possible, however to create certa
phase shifts with the necessity for two ancilla photons.
instance, in Ref.@9# it was shown that a sign shift on theu2&
Fock state only is possible with the ancilla stateu10&.

IV. TWO-MODE OPERATIONS

In order to do something useful in terms of quantum
formation processing, we have to operate on two modes
multaneously. This can be done in more than one way.
example, one can simply generalize the theory prese
above for a single signal mode to more than one sig
mode. It turns out that this is not a very transparent way.
will follow another route instead and decompose the tw
mode operation into three subsequent steps:~1! combine the
two modes at a beam splitter,~2! act on both modessepa-
rately, ~3! and recombine the modes at another beam spli
The effect of the beam splitters is to mix the modes and
make them accessible for asingle-modeoperation in such a
way that we can apply the result in Sec. III.

A. The controlled-phase gate

We will illustrate this statement with an example. Co
sider the two-mode operatorĈw acting on qubits. Its truth
table is

u00&→u00&,

u01&→u01&,

u10&→u10&,

u11&→eiwu11&. ~31!

In terms of photon creation and annihilation operators,
operatorĈw can be represented as

Ĉw512~12eiw!n̂1n̂2 . ~32!

Now let us assume that we mix the signal modes at a s
metric beam splitter. The operatorĈw acts only in the two-
photon Fock layer. Then it is very easy to see that w
~nonlinear! single-mode operatorsN̂i512 1

2 (12eiw)n̂i(n̂i
21), i 51,2, we achieve a transformation of an input sta

uc in&5c00u00&1c01u01&1c10u10&1c11u11& ~33!

into

Ĉwuc in&5c00u00&1c01u01&1c10u10&1c11e
iwu11&. ~34!

The nonlinear operator needed on both modes are polyn
als of second degree in the number operatorsn̂i and can thus
be prepared conditionally with two auxiliary modes prepa
in single-photon Fock states on each side followed by dou
single-photon detection. Hence, the overall requirements
four single-photon sources, eight beam splitters, and f
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single-photon detectors. The generic network is shown
Fig. 5. The detectors all measure single photons. We
write down the conditional operator as

Ŷuc in&5perL~1u1!c0u0&1perLc1u1&1@2L12L21L13L31

12 perL2L11
2 perL~1u1!#c2u2&. ~35!

The success probability isuperL(1u1)u2. Numerically, we
find values up topsuccess'0.24 in each interferometer arm.

However, it turns out that there is an even simpler n
work with only six beam splitters and two single-photo
sources@12#. It has the disadvantage, though, that one ne
two vacuum detectors which are hard to make~and which are
pretty inefficient!. The corresponding network is shown
Fig. 6. The set of beam splitters fed with vacuum states ac
conditional phase shifts. In summary, we find that the be
splitters must satisfy

argTu1&52argTu0& , ~36!

uTu1&u50.476, ~37!

uTu0&u50.87, ~38!

which gives a success probability ofpsuccess'0.23 in each
arm, hence a total success probability of'0.05.

Let us remark that the controlledŝz investigated by Ralph
et al. @12# falls into the same category as that described
Fig. 5. The difference is that one of the single photons
each arm of the interferometer is replaced by the vacu
state and the single-photon detector by a vacuum dete
@30#, respectively. This network corresponds to the followi
conditional operator:

Ŷuc in&5L22c0u0&1perL~3u3!c1u1&1~2L12L21L11

1L22L11
2 !c2u2&. ~39!

FIG. 5. Controlled-phase gate with single-photon detectors o

FIG. 6. Controlled-ŝz gate with single-photon and vacuum d
tectors.
0-6
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The probability of success isuL22u2. One needs to satisfy th
set of conditions

perL~3u3!5L22, ~40!

2L12L21L111L22L11
2 52L22, ~41!

from which it immediately follows thatL11512A2. The
maximal valueuL22u2 can take under constraints~40! is then
indeed 0.25 which is why the gate in Ref.@12# is indeed
optimal.

B. The SWAP gate

A somewhat more interesting operator is the swap op
tor Ŝ in the sense that here we encounter the first exampl
an operator that needs fewer resources than one would
pect when consideringCNOT and single-qubit rotations a
building blocks for quantum circuits. It is known that it ca
be made from threeCNOT operators C”̂ ~equivalent to
controlled-ŝz gates with attached Hadamard gates!. Acting
on qubits, one can write the photonic-operator version o
as

Ŝ5n̂1n̂21~ n̂121!~ n̂221!2â1
†â2~ n̂121!2â2

†â1~ n̂221!.

~42!

Let us see how the single-mode version ofŜ can be derived.
It is immediately clear that we have to act on the sing
photon Fock layer only. It turns out that the nonlinear sing
mode operators are

N̂15112n̂1~ n̂122!, ~43!

N̂251, ~44!

which means that we do nothing on mode 2, and we act w
a polynomial of second degree inn̂1 on mode 1. Therefore
we would need only two single-photon sources, four be
splitters, and two single-photon detectors. However, the
eratorN̂1, when acting on Fock statesun&, is nothing but a
single-mode phase shift (21)n̂1. That is, the whole network
collapses into a singlep-phase plate in one arm of the Mac
Zehnder interferometer, leaving us with just two beam sp
ters and one phase plate. This gate is remarkable in the s
that it is alsounconditional, that is, it worksdeterministically
with unit probability which makes it rather special.

These two simple examples show a general principle
constructing these networks. Both operators have in comm
that they act only within a specific Fock layer (Ŝ: one pho-
ton; Ĉw : two photons!. One then projects out all those Foc
layers which are not affected by the operator. This lead
the polynomials in the number operators. The design of
polynomial coefficients in each case depends on the spe
operation one wants to achieve.
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C. General considerations

A general conclusion can be drawn from the results
one- and two-qubit operators: It is highly desirable to rewr
the quantum information network in such a way that t
actual computation can be made as long as possible in
same Fock layers. Every crossing to another layer~cf. the
Pauli operatorsŝx and ŝy) requires additional resources
which might not be necessary. This leads us to state our m
result of this paper.

Theorem. The generic operations that can be done ea
and effectively with linear optics are operations within t
same Fock layers. LetM be the number of signal modes w
want to operate on. AnyM-qubit gate acting within Fock
layers can be constructed with the help of generalized Ma
Zehnder interferometers withM input and output ports (2M
ports for short! and at mostM conditional operators genera
ing polynomials in the number operator of at mostM th order
@equivalent to SU(M11) networks#.

Proof. The proof of this assertion is now straightforwar
Any operator acting within Fock layers can be written as
polynomial of at mostM th order in all photon-number op
erators. The 2M port mixes all theM input modes in such a
way that we are left with a tensor product ofM operators in
between the 2M ports, conditionally generating polynomia
of at mostM th order in the individual photon-number oper
tors. j

This result shows how to construct these operations in
algorithmic fashion. That is what we mean with ‘‘easy
Since there is no inherent exponential scaling of the succ
probability with respect to the number of modes~qubits! we
act on, there is a good reason to call them also ‘‘effective

Unfortunately, not all two-qubit gates can be written
terms of a Mach-Zehnder interferometer and appropr
single-mode operations. Perhaps the most notorious exam
is theCNOT gate. Although similar to the controlledŝz , there
is no way to find an interferometric setup that ‘‘disentangle
the two modes in such a way that there existed single-m
operators that performed the sought task. The proof of
statement goes along the following lines: Let us callÛ(w)
the beam-splitter operator that rotates the qubit axes by
anglew @see Eq.~5!; a Mach-Zehnder interferometer woul
consist of a succession of two of these operators with op
site angles#. Here, we seek a transformation of the followin
type:

ucout&5Û~w!~N̂1^ N̂2!Û~w8!uc in&ªC”̂ uc in&, ~45!

with the two~conditional! nonlinear operatorsN̂1 andN̂2. A
lengthy but straightforward calculation shows that the ope
tor sandwiched between the beam splitters does not h
tensor-product structure and thus cannot be regarded
single-mode operators. In order to show that, we use a ma
technique. Let us define a basis vectorue& as

ueT&5~ u00&,u10&,u01&,u11&,u20&,u02&). ~46!

Then, the input stateuc in& can be written asuc in&5cin
T ue&. In

this basis, the vectorcin
T 5(c00,c10,c01,c11,0,0) transforms

as
0-7
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cout5U~w8!~N1^ N2!U~w!cin , ~47!

where the matricesU(w), etc., are the matrices correspon
ing to the operatorsÛ(w), etc., in the basisue& ~these are not
st

te

i

ila
iz
th
o

th
rk

n
th

03231
to be confused with the beam splitter or transformation m
trices used earlier on!. For example, a beam splitter is repr
sented in this basis by the matrix
U~w!5S 1 0 0 0 0 0

0 T R 0 0 0

0 2R* T* 0 0 0

0 0 0 uTu22uRu2 2A2R* T A2RT*

0 0 0 A2RT T R2

0 0 0 2A2R* T* R* 2 T* 2

D , ~48!
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ust
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with uTu5cosw and uRu5sinw. The tensor product of the
two single-mode operators looks in this basis like

N1^ N25S ~N1!00~N2!00 ~N1!01~N2!00 •••

~N1!10~N2!00 ~N1!11~N2!00 •••

~N1!00~N2!10 ~N1!01~N2!10 •••

A A �

D . ~49!

It is then relatively straightforward to show that there exi
no solution to Eq.~47! with a matrix of form~49! that pro-
duces an output vectorcout

T 5(c00,c10,c11,c01,0,0).
Therefore, in order to build aCNOT gate, we would have

either to refine our approach to include more general in
ferometric setups~for which the original Knill-Laflamme-
Milburn proposal is an example! or sandwich a controlled-ŝz
gate between two Hadamard gates, which we will show
the following section to be rather expensive.

V. CROSSING FOCK LAYERS

Equipped with the knowledge about generating annih
tion and creation operators, we can start working on real
tions of other operations that are harder to do but never
less needed to construct general quantum networks. By
Theorem, the ‘‘easy’’ operations are those that act within
same Fock layers. It is much harder to find suitable netwo
for operators that enable us to cross Fock layers@11#. The
obvious choice consists of looking at single-qubit rotatio
first, i.e., the representations of the Pauli operators in
Fock basis,

ŝx5u0&^1u1u1&^0u, ~50!

ŝy5
1

i
~ u0&^1u2u1&^0u!. ~51!
s
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The construction of the corresponding photonic operator
almost obvious, once one takes care of the fact that one m
not leave the Hilbert space of the qubits. Then it is clear t
we have to choose

ŝx5â2â†~ n̂21!, ~52!

ŝy5
1

i
@ â1â†~ n̂21!#. ~53!

In order to proceed further, we need a well-known res
from quantum-state engineering.

Proposition 4. Suppose one wants to generate the qu
tum state

ucn&5 (
k50

n

dkuk&5 (
k50

n
dk

Ak!
~ â†!ku0&, ~54!

then one needsn single-photon sources, at mostn coherent-
state sources, and at most 2n beam splitters and detectors.

Proof. The proof of this proposition follows closely th
result in Ref.@31#, where it has been shown that the sta
ucn& can be generated by successive single-photon addit
and coherent shifts. The trick is to rewrite the state as

ucn&5)
k51

n

~ â†2ak* !u0&, ~55!

which is nothing but a decomposition of the polynomial
â† into its root factors, whereak* are the roots of the poly-
nomial. j

Having generated the stateucn&, one can go ahead an
imprint it onto another state by mixing at a beam splitt
That leads neatly to the following proposition.

Proposition 4a. The polynomial

P̂n5 (
k50

n

dk~ â†!k ~56!
0-8
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MEASUREMENT-INDUCED NONLINEARITY IN LINEAR OPTICS PHYSICAL REVIEW A68, 032310 ~2003!
can be made to act upon a signal state by mixing the s
P̂nu0& and the signal state at a single beam splitter.

Proof. Let us assume that the signal state is again of
form

uc in&5(
m

cm

Am!
~ â1

†!mu0&. ~57!

Mixing uc in& andP̂nu0& at a beam splitter, conditional on th
second output being found in the vacuum state, we ob
after a short calculation

ucout&}(
k50

n

dkL12
k ~ â1

†!kL11
n̂1uc in&, ~58!

from which we see that the coefficients have to be su
ciently rescaled to achieve the desired goal. j

In the same manner, one can generate polynomials of
nihilation operators by projecting onto an engineered st
Combining both processes opens up the opportunity to g
erate arbitrary polynomials of creation and annihilation o
erators. However, this might not be the best choice si
doing quantum-state engineering of higher-order polyno
als is, as we have seen, an expensive task. Therefore, it m
be advantageous to circumvent the problem of leaving
Fock layers of zero and one photon by projecting back o
this subspace after performing a simplified version of
desired quantum operation. For this, we introduce theKILL

operatorK̂ as

K̂512
1

2
n̂~ n̂21!, ~59!

which, being a second-order polynomial in the number
erator, requires two single-photon sources, two beam s
ters, and two detectors. The Pauli operators can then be
ten as

ŝx5K̂~ â1â†!, ~60!

ŝy5K̂
1

i
~ â2â†!. ~61!

With the theory presented above, we could go ahead
generate superposition statesu0&1u1& with the help of
Proposition 4a, superpose them onto the signal mode,
perform a projection measurement onto a similar state. H
ever, we will present a slightly different and more elega
method of achieving this purpose. Instead of preparing
copies of the superposition of vacuum and a single pho
we could prepare a Bell-type state;u0,0&1lu1,1& by the
following method. Let us take a two-mode squeezed vacu
~TMSV! state of the form

uTMSV&5A12q2(
n50

`

qnun,n& ~62!
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and perform a Procrustean@32,33# entanglement concentra
tion by acting on one mode of it with a first-order polynomi
of the number operator as explained in example~5!. For
appropriately chosen transmission coefficientT of the beam
splitter, we can generate in the limitq→0 the state

uF~l!&5
1

A11ulu2
@ u0,0&1lu1,1&] ~63!

to arbitrary accuracy in the trace norm and for arbitrar
chosenl ~details of this procedure can be found in Re
@34#!. Using this state as the auxiliary-state source in
SU~3! network that projects ontou1,0&, we derive the follow-
ing operation after applying the KILL operator:

c0u0&1c1u1&→L21c1u0&1l perL~3u1!c0u1&. ~64!

ChoosinguL21u5ul perL(3u1)u with an appropriate phas
relation immediately leads to the desired Pauli operators

At this point, a remark about the use of continuou
variable states as a resource is appropriate. In the desc
version of the Pauli operators, we inject a two-mo
squeezed vacuum state into our network. This seem
simple and elegant method for getting the desired result
fact, we cannot see a way around the usage of continu
variable states at all, since even for the creation of the su
position u0&1u1&, by Proposition 4, a coherent-state sour
is needed to displace the photon creation operatorâ†. A simi-
lar conclusion was reached by Lund and Ralph@11#.

Another very important single-qubit operation is the Ha
amard gate, defined by

u0&→
1

A2
~ u0&1u1&), ~65!

u1&→
1

A2
~ u0&2u1&). ~66!

This can also be written in operator form as

Ĥ5
1

A2
„u0&1~21! n̂u1&…, ~67!

where the number operator is the one from the signal st
That is, we swap signal and auxiliary states in the sense
we first produce a superposition ofu0& and u1& and act con-
ditionally on it with the signal state. Effectively, the Had
amard gate becomes a~controlled! ŝz operation on the~aux-
iliary! superposition state (u0&1u1&)/A2. In fact, one can
rewrite the operatorĤ as

Ĥ5
1

A2
~ u0&1~122n̂1n̂2!u1&), ~68!

which is effectively a two-mode operator. This is precise
the controlledŝz where we the second output is left unme
sured~sometimes called theDUMP ‘‘gate’’ !. However, leav-
0-9
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SCHEELet al. PHYSICAL REVIEW A 68, 032310 ~2003!
ing something unmeasured usually means to trace over
possible outcomes which will destroy the purity and coh
ence of our desired operation. The way around this prob
is to act on the resulting signal-mode output with an opera
11â† ~which can be prepared according to Proposition!
and then to project onto the single-photon Fock state.

From this rather complicated construction, we obse
that the Hadamard gate and consequently also its multim
extension, the quantum Fourier transform, are the harde
all gates under investigation so far. This result impacts
generation of gates that actually make use of similar la
crossings as theCNOT gate. For these type of operations,
seems that the constructive algorithm we have presente
this paper is not immediately applicable and this probl
requires further investigation.

VI. LOSSY BEAM SPLITTERS AND NONPERFECT
DETECTORS

So far, we have restricted ourselves to perfect linear
tics, i.e., nonabsorbing beam splitters and detectors with
efficiency. In practice, to achieve this situation is a hopel
task. Instead, we have to make do with absorbing linear
tical elements and nonperfect detectors. What this amo
to in terms of constructing our gates will be described in
following section.

A. Kraus decomposition

We derive the Kraus decomposition of a lossy beam sp
ter. It is known that an absorbing beam splitter represen
unitary evolution in the extended Hilbert space of field a
device modes. The unitary operator can be written as@35#

Û5exp@2 i ~â†!TFâ#, ~69!

where we use the notation

â5S â

ĝ
D . ~70!

Assume now the device to be initially in its vacuum sta
u03 ,04&. Then we can write the density operator of the o
put field as

%̂out
(F)5Tr(D)@Û~ %̂ in

(F)u03,04&^03,04u!Û†# ~71!

and evaluate the trace in the coherent-state basis as

%̂out
(F)5

1

p2E d2a3 d2a4Êa3 ,a4
%̂ in

(F)Êa3 ,a4

† , ~72!

where we have defined the Kraus operatorsÊa3 ,a4
as

Êa3 ,a4
5^a3 ,a4uÛu03,04&. ~73!

They can be further simplified by using the relation@36#
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eâ†Mâ5 (
n50

`
:@ â†~eM21!â#n:

n!
, ~74!

by writing

^a3 ,a4uÛu03,04&

5^a3 ,a4uexp@2 i ~â†!TFâ#u03,04&

5^a3 ,a4u (
n50

`
:@â†~L21!â#n:

n!
u03,04&

5 (
n50

`
:@ â†~T21!â2a1SC21Tâ#n:

n!
e2(1/2)a1a

5e2 i â†FTâe2a1SC21Tâe2(1/2)a1a, ~75!

where we have used the definitions

L5S T A

2SC21T CS21AD 5e2 i F, ~76!

C5ATT1, ~77!

S5AAA1, ~78!

T5e2 i FT, ~79!

ĝua3 ,a4&5aua3 ,a4&. ~80!

Therefore, we obtain the result that the Kraus operators
the absorbing beam splitter are

Êa3 ,a4
5e2 i â†FTâe2a1SC21Tâe2(1/2)a1a. ~81!

We can easily check that these operators become un
when absorption can be disregarded asT becomes unitary
~and thereforeFT Hermitian!, andS vanishes. The integra
tion over (a3 ,a4) can then be performed and gives unit
What we also see is that these Kraus operators indeed c
spond to an absorption process for which the fac
exp@2a1SC21Tâ# is responsible.

B. Nonperfect detectors

Second, we model a nonunit detector efficiencyh by re-
placing the projectorun&^nu by an appropriate positive op
erator valued measure~POVM! @26#,

un&^nu→P̂~n!5(
k

S k

nDhn~12h!k2nuk&^ku. ~82!

This method does not take care of possible dark counts,
reflects the fact that direct photon counting may give valu
for the photon numbern which actually came from highe
Fock statesuk&, k.n. This POVM is sometimes modeled b
a perfect detector preceded by a beam splitter with appro
ately chosen transmissivityuTu25h.
0-10
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Example: A single beam splitter

Let us consider a somewhat artificial example which n
ertheless shows what happens when absorption and/or
perfect detectors are present. Let us suppose that we we
implement the Pauli-ŝz gate with a single beam splitter,
single-photon source, and a single-photon detector~note that
this could have been done deterministically with a ph
plate!. We start off with a signal mode in a statec0u0&
1c1u1& and mix it with a single photon. The effect of th
absorbing beam splitter is to produce a mixed state that
be written in the form

%̂out
(F)5uc in~T!&^c in~T!u1uf~A!&^f~A!u, ~83!

whereuc in(T)& is the state transformed with the~nonunitary!
transmission matrixT and uf(A)& is a contribution that
solely comes from the absorption matrixA. We do not give
the rather lengthy expression here. Instead, we immedia
give the result for the non-normalized density matrix af
applying the POVM~82! as

%̂out,15hucout&^coutu14h~12h!uc1u2uT12u2uT22u2u0&

3^0u1huc1u2~ uT22M111T12M21u2

1uT22M121T12M22u2!u0&^0u, ~84!

with the wanted output state

ucout&5c0T22u0&1c1~T11T221T12T21!u1& ~85!

and the matrixM5SC21T. Equation~84! has three parts
The first line is the wanted outcome in which the transm
sion matrix can be chosen to give the desired answer.
second line comes from the inefficient detector, hence
POVM introduced in Eq.~82!, whereas the last two lines ar
the contributions due to the lossy beam splitter, reflected
the appearance of the matrixM that contains the absorptio
matrix. The last expression can be simplified using the f
that MM 1512TT1 to obtain

%̂out,15hucout&^coutu14h~12h!uc1u2uT12u2uT22u2u0&

3^0u1huc1u2@ uT22u21uT12u224uT12u2uT22u2

2uT11T221T12T21u2#u0&^0u. ~86!

This expression shows that it is only necessary to know
experimentally accessible transmission and reflection co
cients of the beam splitter that make up the matrixT. Now
we make use of the fact that we actually wanted to gene
a Pauli-ŝz gate, meaning that we set in Eq.~85! T11T22
1T12T2152T22. With that we finally obtain for the~still
un-normalized! output density matrix

%̂out,15huT22u2ŝzuc in&^c inuŝz14h~12h!uc1u2uT12u2

3uT22u2u0&^0u1huc1u2@ uT12u224uT12u2

3uT22u223uT22u2#u0&^0u. ~87!
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The success probability for perfect operation ispsuccess
5uT22u2. A note of caution is appropriate here. Since w
have fixedT22 already, by reciprocity we have also fixe
T115T225T. For single-slab beam splitters that fixesT12
5T215R, too, so that we are left with essentially a sing
number determining the fidelity of our desired gate ope
tion. To be more precise, note thatuTu21uRu21uAu251 ~set-
ting uAu25uA11u21uA12u25uA21u21uA22u2), and suppose tha
TPR. Then we immediately have thatR2PR, and choosing
argR5p/2 we arrive at

T5
A322uAu221

2
. ~88!

With this choice forT22[T, we finally get

%̂out,15h~22uAu22A322uAu2!ŝzuc in&^c inuŝz

1h~12h!uc1u2~ uAu42312A322uAu2!u0&

3^0u1huc1u2uAu2~12uAu2!u0&^0u, ~89!

which now only depends on two parameters: the absorp
coefficientuAu of the beam splitter and the detector efficien
h. Again, the first line is the desired result, the second is d
to the nonperfect detector, and the last line is the contribu
of the absorption. Following two special cases are nota
here: ~1! without absorption (uAu50), the third line in Eq.
~89! vanishes and the numerical coefficient in the second
takes the value of 2A323'0.464;~2! with perfect detectors
(h51), the second line vanishes and we are left with
contributionuAu2(12uAu2) to the vacuum from the last line
In principle, one could define a~state-dependent! gate fidel-
ity or use some more elaborate definition such as an ave
fidelity integrated over all possible input states~with respect
to some Haar measure!, but this is beyond the scope of th
paper.

VII. CONCLUSIONS

In this paper, we have shown a constructive mechan
for generating arbitrary operators using only linear opti
single-photon sources, and single-photon detectors. We h
focused our attention primarily on one-mode and two-mo
situations, though the approach is easily extended to m
mode situations. We have shown what operations are e
and what are potentially difficult. Operations that cause
change in the Fock layers~for instance, the Hadamard oper
tor! are generally difficult but not impossible. While the ge
eration of the operators is generally conditional on cert
measurement results in the ancilla modes, the operators
be made deterministic using various teleportation protoc
Finally, we hope this paper shows the power in building t
required operations from the fundamental resources ra
than fundamental gates. TheSWAP operation illustrates this
point extremely well. From fundamental gates, threeCNOTS

are required to build such an operation, however from fu
damental resources, only two beam splitters and a ph
shifter are necessary. This approach open a new way to t
about operation generation.
0-11
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APPENDIX: PERMANENTS OF UNITARY MATRICES

Here we recall some elementary properties of permane
mainly taken from the only available monograph on this s
ject @29#. The permanent of an (n3n) matrix A is a gener-
alized matrix function, defined as

perA5 (
$s i %PSn

)
i 51

n

Ais i
, ~A1!

where Sn is the symmetric group of cyclic permutation
Note that the determinant of a matrix is similarly defin
with the only difference of a factor of (21) appearing in all
terms depending on the character~even or odd! of the per-
mutation. The permanent of a matrix generically appear
counting problems, i.e., combinatorics and graph theory
our case, it is the probability amplitude of detecting the st
u1& ^ N after an input state of the exactly the same form h
been transformed by an SU(N) network. In that sense, i
naturally appears here as well since the combinatorial p
lem is here to~re!distribute N single photons amongN
single-photon detectors.
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The Marcus-Newman theorem states that the follow
inequality holds for all (m3n) matricesA and (n3m) ma-
tricesB:

uperABu2<perAA* perBB* . ~A2!

An immediate consequence is that~setting B51), if U is
unitary, then

uperUu<1. ~A3!

Note that this condition also follows immediately from th
probabilistic interpretation given above. Equation~A3! tells
us that the range of the permanent of a unitary matrix lies
the unit disk in the complex plane. In fact, the same conc
sion can be drawn for the permanents of principal subma
ces of unitary matrices by recalling that a unitary mat
consists of rows~or columns! of orthogonal unit vectors. Fo
example, let us consider perL(1u1) of LP SU~3!. We have

uperL~1u1!u5uL22L331L23L32u. ~A4!

Since uL23u<A12uL22u2 and uL32u<A12uL33u2, we know
that

uperL~1u1!u<uL22L33u1uA~12uL22u2!~12uL33u2!u

5ucosw cosQu1usinw sinQu5ucos~w6Q!u

<1. ~A5!

Similar relations hold for perL(2u2) and perL(3u3) and
indeed for all permanents of submatrices of unitary matric
.J.

s.
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