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Generalizations of entanglement based on coherent states and convex sets
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Unentangled pure states on a bipartite system are exactly the coherent states with respect to the group of
local transformations. What aspects of the study of entanglement are applicable to generalized coherent states?
Conversely, what can be learned about entanglement from the well-studied theory of coherent states? With
these questions in mind, we characterize unentangled pure states as extremal states when considered as linear
functionals on the local Lie algebra. As a result, a relativized notion of purity emerges, showing that there is a
close relationship between purity, coherence, and~non!entanglement. To a large extent, these concepts can be
defined and studied in the even more general setting of convex cones of states. Based on the idea that
entanglement is relative, we suggest considering these notions in the context of partially ordered families of Lie
algebras or convex cones, such as those that arise naturally for multipartite systems. The study of entanglement
includes notions of local operations and, for information-theoretic purposes, entanglement measures and ways
of scaling systems to enable asymptotic developments. We propose ways in which these may be generalized to
the Lie-algebraic setting and, to a lesser extent, to the convex-cones setting. One of our motivations for this
program is to understand the role of entanglementlike concepts in condensed matter. We discuss how our work
provides tools for analyzing the correlations involved in quantum phase transitions and other aspects of
condensed-matter systems.
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I. INTRODUCTION

Entangled states are joint states of two or more dis
guishable quantum systems that cannot be expressed
mixture of products of states of each system. Entang
states can exhibit quantum correlations between the two
tems that have no local classical interpretation. One of
most important developments in the study of quantum m
chanics was the characterization of these correlations by
@1,2#, whose many experimental verifications@3,4# ~see also
Ref. @5# and the references therein! have given further sup
port to the validity of quantum mechanics. Entangled sta
are now widely considered to be the defining resource
quantum communication, enabling protocols such as qu
tum teleportation@6# and leading to great improvements
the communication efficiency of certain multiparty tas
@7,8#. As a result, entanglement is being actively investiga
both from a physical and from an information-theoretic p
spective.

So far, nearly all studies of entanglement involved two
more distinguishable quantum subsystems. As a result, in
tigations of entanglement have focused on understan
how quantum systems are made up from subsystems
how this differs from classical systems. However, there a
number of signs that the assumption of distinguishable qu
tum subsystems is too narrow to capture all the propertie
states that one might like to ascribe to entanglement. Sev
authors@9–18# have considered entanglement-related noti
for bosons and fermions. For example, consider the stat
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one photon in two coupled cavities. Being the state of o
particle, there is a tendency to expect that there is no
tanglement because one particle cannot be entangled. O
other hand, each cavity is a quantum system. From the p
of view of these two quantum systems, the state where
photon is in an equal superposition of being in either cav
can be represented as (u10&1u01&)/A2 and is clearly en-
tangled. Another example involving photons is provided
optical ‘‘cat states’’@19,20#. In this case, cat states are qua
tum superpositions of sufficiently distinct coherent states i
mode. As the name suggests, such states are thought t
volve entanglement. They certainly have distinctive noncl
sical behavior, but since they exist in a single system~the
mode! the strict interpretation of entanglement based on s
systems would indicate that no entanglement is presen
third example is that of a system consisting of a number
fermions in a lattice. The ‘‘simple’’ states for such a syste
are described by the so-called Slater determinants~see, for
example, Ref.@21#, p. 7, Ref.@22#!, which describe the wave
function of noninteracting fermions. Because the fermions
such a wave function are independent, one expects tha
entanglement is present in such a state. However, from
point of view of the lattice modes, most Slater determina
exhibit entanglement@23#. The three examples make it clea
that the presence or absence of entanglement depends o
physically relevant point of view. Here we propose that th
point of view depends on the relationships between differ
spaces of observables that determine the dynamics and
ability to control the system of interest. In particular, th
extent to which entanglement is present depends on the
servables used to measure a system and describe its sta

One of our goals is to show that the relationships betw
product states, separable states, and entangled states
least Lie-algebraic in nature, and to some extent even m
©2003 The American Physical Society08-1
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general. This makes it possible to study the salient featu
of entanglement without reference to subsystems, using
stead whatever Lie algebras are physically relevant. For
case of bipartite quantum systems, the relevant Lie algebh
consists of the unilocal operators~operators of the form
A^ I or I ^ B). To show that the ideas of entanglement, se
rability and product states do not critically depend on the t
subsystems, we provide several ways in which product st
can be characterized in terms ofh alone. All of these ways
lead to the same concept for general semisimple Lie a
bras, namely that of generalized coherent states@24–26#. It is
therefore natural to consider product states to be spe
kinds of coherent states. From this perspective, separ
states are mixtures of coherent states, and pure entan
states are incoherent pure states. Another way to think a
these structures is to realize that the coherent states ar
actly those states which are relatively pure, that is, extre
with respect to the set of expectations of observables in
Lie algebra. Thus, pure states are entangled if they appe
be mixed with respect to the Lie algebra’s expectations
the case of bipartite quantum systems, this is an aspec
entanglement that has long been considered a key noncl
cal property of quantum mechanics: Pure entangled st
have mixed reduced density operators whereas, for exam
in classical probability no pure state can have a mixed m
ginal ~see, for example, Ref.@27#, p. 298, Ref.@28#, p. 116;
and Ref.@29#, p. 306!. This fact was noted by Schro¨dinger in
the papers where he introduced the notion of entanglem
and the example of his cat@30,31#. Schrödinger writes: ‘‘The
best possible knowledge of awholedoes not necessarily in
clude the best possible knowledge of all itsparts.’’ Here,
having best possible knowledge of a system requires tha
system be in a known pure state.

The recognition that incoherence naturally generalizes
tanglement makes explicit the dependence of the notion
entanglement on the relevant Lie algebra and makes a
able the tools of the theory of generalized coherent st
@25,26# for investigating aspects of entanglement. To exte
the power of this perspective to the information-theore
applications of entanglement requires introducing meas
of entanglement, generalizing the ways in which entang
ment can be manipulated, and providing a means for us
states as a resource. In bipartite systems, there is an a
dance of measures of entanglement, many of which gene
ize naturally. Further measures arise naturally in the gen
context and specialize to potentially interesting measures
multipartite systems that have not yet been considered
bipartite systems, a key role is played by LOCC~local quan-
tum operations and classical communication! maps. We pro-
pose several classes of maps for general semisimple Li
gebras that, in the case of bipartite systems, are relate
LOCC. A desirable property of entanglement measures
that they are nonincreasing under LOCC. We can sh
monotonicity properties for some classes of maps in the g
eral setting. To introduce the notion of states as a reso
and enable asymptotic analysis, we consider schemes fo
sociating Lie algebras with tensor products of systems
fined by a given representation of a semisimple Lie algeb
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For the purpose of determining what are the essen
properties of states needed to study entanglement, we in
duce a setting even more general than Lie algebras. Sinc
states when viewed as linear functionals on observables f
a convex cone, we generalize the definitions to the set
where we have two or more convex cones related by posi
maps. The cones represent the family of states as linear f
tionals on the Lie algebras. In the case of bipartite syste
these are the local Lie algebra and the Lie algebra of
operators. The map relating the two state spaces is the
striction map of linear functionals. The definitions relating
separability and entanglement only require this structure.
tanglement measures can also be defined based only on
vexity, and so can various notions of local maps. This is
interest because convex cones of states and observable
the associated ordered linear spaces have been used
general framework for investigating the foundations of qua
tum mechanics, classical mechanics, and other physica
probabilistic theories@32,33#. Our work can therefore be
used to generalize some aspects of entanglement to
framework, even though the notion of composite system
not uniquely defined in this case@34,35#.

In taking seriously the idea that entanglement is a rela
notion, one finds that in many cases there are many m
than two relevant Lie algebras. In the bipartite case, we
consider the hierarchy of algebras consisting of the triv
Lie algebra, the algebra of operators acting on the first s
tem, that acting on the second system, the sum of these,
the algebra of all operators. When there are more than
systems, the number of different ways of combining loc
Lie algebras multiplies. For photons, there is the Lie alge
of passive linear operations, of active linear operations,
that of all linear and nonlinear operations. To these one m
add the Lie algebras acting locally on the modes, etc. It is
the increasing amount of information that is available ab
states as more operators are added that crucial quantum
erties emerge. We believe that in studying a given system
is beneficial to consider coherence and entanglement pro
ties at multiple levels.

Independently of the work reported here, Klyachko@36#
has recently proposed a generalization of entanglement
representations of semisimple Lie groups. His starting po
is an extremality property that we use as one of the equ
lent characterizations of product~in general, coherent! states.
Klyachko’s work is focused on the geometric invaria
theory approach for investigating states with respect to
Lie group of operators. This approach leads to useful cla
fications of the orbits of states under the Lie group’s acti
In this context, he discusses how the notions of class
realism that lead to Bell’s inequalities@1# generalize to the
Lie-algebraic setting. He also introduces notions of maxim
entanglement and another interesting entanglement mea

In Sec. II, we introduce the basic notions required
generalizing separability and entanglement by reviewing
example of bipartite systems from the point of view of L
algebras and coherence. The generalization to semisim
Lie algebras is explained in Sec. III, and the extent to wh
the generalization depends only on the relationships betw
convex cones is discussed in Sec. IV. For reference, the
8-2
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GENERALIZATIONS OF ENTANGLEMENT BASED ON . . . PHYSICAL REVIEW A68, 032308 ~2003!
ferent settings for studying entanglement are compared
Table I. The paper concludes with a discussion of other
evant examples and the potential applications to conden
matter. We assume familiarity with the basic concepts
quantum information and entanglement. A good reference
quantum information theory is Ref.@37#. For reviews of en-
tanglement, see Refs.@38–40#. We also use results from th
basic theory of Lie algebras. Details can be found in bo
such as Refs.@41–44#. For physically motivated treatment
of Lie algebras, see Refs.@45–49#. References for convexity
and convex cones include Refs.@50,51#.

II. ENTANGLEMENT FOR BIPARTITE QUANTUM
SYSTEMS

The standard setting for studying entanglement invol
two ~or more! distinguishable quantum subsystems formin
bipartite system. The properties of entanglement are m
salient if the quantum subsystems are spatially well se
rated, with communication between the sites restricted
classical signals subject to speed-of-light limitations. Let
state space of two such quantum subsystems be given b
Hilbert spacesHa andHb of dimensionNa andNb , respec-
tively. The joint state space of the bipartite system isHab
5Ha^ Hb . All state spaces and operator algebras are
sumed to be finite dimensional. See Sec. V A for a br
discussion of the need and possibilities for extensions
infinite-dimensional systems. Product states are pure s
of Hab of the formuc& ^ uf&. Entangled pure states are stat
of Hab that are not expressible as a product state. It is n
essary to generalize the state space to mixtures of pure s
which are probability distributions over pure states. For t
purpose, one uses density matrices to represent states. A
sity matrix r is pure if r5uc&^cu for some uc&. Equiva-
lently, it is pure if tr(r2)51, or if r is extremal in the set o
density matrices~see below!. A separable state is a mixtur
of product states. Its density matrix is therefore aconvex
combinationof product states, which is a sum of the for
(kpkuck&^cku ^ ufk&^fku, where (pk)k is a probability distri-
bution @52#. We will use the expressions ‘‘convex combin
tion’’ and ‘‘mixture’’ interchangeably. A nonseparable state
said to be entangled. It is worth recalling that separable st
can have nonclassical features. For example, see R
@53,54#.

A. Characterizing product states

In our approach, the key distinction between entang
and separable states is the difference between the way th
look locally and globally. The local observables are operat
of the form A^ I and I ^ B. For our purposes, it is conve
nient to allow arbitrary operators as observables, not o
Hermitian ones. Since non-Hermitian operators can be
pressed as complex linear combinations of hermitian op
tors, expectations of such operators are readily compu
from expectations of Hermitian operators.

If a pure state of the two systems is unentangled, then
completely determined by the expectation values of the lo
observables. To specify a pure entangled state requ
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knowledge of the correlations, which are expectations of
erators of the formA^ B. Note that this method for distin
guishing between unentangled and entangled states doe
extend to mixtures. A generic separable state can con
nontrivial correlations. An example is (u0&^0u ^ u0&^0u
1u1&^1u ^ u1&^1u)/2. Here the two subsystems are classica
correlated. Nevertheless, it is possible to characterize s
rability by investigating the structure of states in terms
their expectations of local versus global observables.

There are four nontrivial Lie algebras of observables t
determine the structure of the bipartite system. Letha (hb) be
the Lie algebra of operators of the formA^ I
(I ^ B) acting on systema (b). We call these theunilocal
algebras because they consist of operators acting on one
system only. Thelocal Lie algebra is given byhl5ha1hb .
Let g be the Lie algebra of all operators onHab . As defined,
these four Lie algebras are complex. However, as familie
operators they are †-closed, that is, closed under Hermitia
conjugation. Let Re(h) be the set of Hermitian operators i
h. For a Hermitian-closed space of operatorsh, h5Re(h)
1 i Re(h), wherei 5A21. Using complex Lie algebras sim
plifies the representation theory and is useful for defin
generalizations of local quantum maps~see Sec. II B!. Al-
though exponentialseA for non-skew-Hermitian operator
are not unitary, they can be interpreted as Lie-algebraic
definable operators associated with postselected outcom
an implementation of a quantum map.

A simple way of characterizing product states without
ferring to the underlying partition into two subsystems c
be based on unique ground states. Aunique ground stateof a
Hermitian operator is a unique minimum-eigenvalue eig
state. Operators with degenerate minimum-eigenva
eigenspaces do not have a unique ground state. In gen
we call the minimum-eigenvalue eigenspace of an oper
the ground space.

Theorem 1. uc&PHab is a product state iff it is the unique
ground state of an operator in Re(hl).

Proof. Suppose thatuc& is the unique ground state ofH
5A^ I 1I ^ BPRe(hl). The ground space ofH is the inter-
section of the ground spaces ofA^ I and I ^ B, which are
product subspaces. Thus, a unique ground state is a pro
state. Conversely, letuc&5ufa& ^ ufb&. Choose an operato
A~B! on Ha(Hb) such thatufa&(ufb&) is the unique ground
state of A(B). Then uc& is the unique ground state o
A^ I 1I ^ BPRe(hl). j

We can use Theorem 1 to define a generalization o
product state for any Hermitian-closed Lie algebra of ope
tors. As we will see in Sec. III, this generalization agre
with the notion of generalized coherent states.

The distinction between product and entangled states
also be viewed in terms of purity with respect to the relev
algebra of operators. It can be seen that product states
exactly the states whose reduced density matrices on ea
the two subsystems are pure. The two reduced density
trices for a state completely determine the expectations of
observables in the local Lie algebra. To prepare for gene
izing these observations, consider states as linear functio
on the Lie algebras in question. We define anh-stateto be a
8-3
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linear functionall on the operators ofh inducedby a density
matrix r according tol(C)5tr(rC). The set ofh-states is
denoted byh1. In the present setting, states are complet
determined by the linear functional on the Lie algebra of
operatorsg induced by their density matrix. Ag-statel can
be restricted to each of the Lie algebrasha , hb andhl . For
example, the restrictionl�ha of l to ha determines the ex
pectations of observables on the first subsystem, and th
fore the reduced density matrix associated with the state

Consider the sethl
1 of hl-states. This set is closed und

convex~or probabilistic! combination. That is, if thelk are
hl-states, then so is(kpklk for any probability distribution
(pk)k . By compactness, all states inhl

1 can be obtained a
convex combinations ofextremalstates~or extreme pointsof
hl

1). Extremal states are states not expressible as a co
combination of other states. If the only information availab
about a state are the expectations of observables inhl , then
states that induce extremal expectations, that is, extrema
ements ofhl

1 , are those about which there is the least u
certainty. It therefore makes sense to call such statespure, or
hl pure, to be specific.

Theorem 2. An hl-state is pure iff it is induced by a pur
product state.

Proof. Consider a density matrixr inducing thehl-state
l. The statel is determined by the reduced density matric
of r. It is possible to find a probabilistic combination of pu
product states with the same reduced density matrices, w
therefore also inducesl. This implies that everyhl-state is
expressible as a probabilistic combination ofhl-states in-
duced by pure product states. Consequently, the purehl-
states are among those induced by pure product states.
versely, ifl is not pure, thenl can be nontrivially expresse
in the form pl11(12p)l2, wherelk are hl-states. It fol-
lows that the two reduced density matrices that can be
duced froml are not both pure: they are mixtures of th
reduced density matrices deduced fromlk , and, sincel1
Þl2, at least one of these mixtures is nontrivial. j

The previous theorem shows that the difference betw
pure unentangled states and pure entangled states is th
expectations ofhl , the latter are not extremal. If the onl
information that is available are expectations ofCPhl , it is
not possible to distinguish between entangled states and
entangled mixed~that is, separable! states. To distinguish, we
need expectations of other operators. It is worth noting w
it means to have access only to expectations of sets of
servables. Given only a single instance of a quantum sys
the expectations cannot be inferred. On the other hand,
sufficiently powerful control, it is possible to realize a pr
jective measurement of the eigenvalues of observable
process that gives information not just about the expecta
of an observable, but also about the expectations of its p
ers. One situation where access to expectations only is
istic is when the quantum system can only be accessed
lectively in large ensembles involving mostly identical stat
In an appropriate weak interaction and large ensemble li
the effect on other large systems reveals the expectation
observables involved in the interaction, whereas the effec
the systems in the ensemble tends to a unitary evolution
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the observable as a Hamiltonian. The weak interaction th
fore naturally limits the available control to Lie algebras ge
erated by a small number of observables. An example wh
this situation occurs for systems that are best modeled
being quantum is nuclear magnetic resonance of molec
in the liquid state@55#.

B. Local quantum maps

One can compare states in the context of information p
cessing resources by considering families of ‘‘local’’ qua
tum maps that can be used to convert states. For bipa
systems, as well as for multipartite systems in general,
most important such family, LOCC, consists of maps th
can be implemented with local quantum maps with acces
ancillas and classical communication~see Ref.@37#, Sec.
12.5!. A larger family, the separable quantum maps, have
operator-sum representation consisting of operators of
form A^ B. Separable quantum maps are readily generali
to the Lie-algebraic setting, whereas we have not yet fou
an equally convincing generalization of LOCC.

A quantum mapis a trace-preserving completely positiv
linear transformation of density operators. Rather than de
ing these terms, we use the fact that every quantum map
be written in the operator-sum representation asr
→(kCkrCk

† , with (kCk
†Ck5I . We will also considercom-

pletely positive mapswhich have the same form, but do no
require the constraint onCk . To define LOCC, we make the
sequenceC5(Ck)k explicit and defineC(r)5(kCkrCk

† .
Note that the sequenceC is not uniquely determined by th
map. We callC an explicit map. See Ref.@37#, p. 372 for
how to determine when two explicit maps act the same.
avoid trivial degeneracies, we assume that the operators
define an explicit map are always nonzero. If (Dk)k is a
sequence of explicit quantum maps, then the conditio
composition ofC and (Dk)k is the quantum map with opera

tor sequence (DklCk)kl and actionr→(klDklCkrCk
†Dkl

† . A
unilocal quantum mapis a map of the form (Ak^ I )k or (I
^ Bk)k . LOCC is the set of quantum maps obtained as c
ditional compositions of unilocal maps. The length of t
composition is associated with the number of rounds of c
sical communication. Aseparable mapis a completely posi-
tive map with an explicit form given by (Ak^ Bk)k . Note
that all LOCC maps are necessarily separable. The se
separable maps has been called SLOCC@56–58# and can be
viewed as maps that can be implemented with LOCC a
postselection based on the communication record.

Quantum maps as defined here are often called ‘‘quan
operations’’ @37#, though the latter term is sometimes e
tended to include non-trace-preserving completely posi
maps. In this paper, we use the word ‘‘map’’ to refer to line
functions of spaces other than the Hilbert space of the qu
tum system under consideration. We use the word ‘‘ope
tor’’ to refer to linear functions from the Hilbert space t
itself. An important role in defining various notions of loc
maps is played by explicit maps, which in the bipartite and
the Lie-algebraic setting are completely positive by defi
tion. There is the potential for confusion in referring to e
plicit maps. For example, an explicit map can be separa
8-4



in
we
ll
an
h
o

it

ll

u

o
-
T

C
r-
t

er
le

ith
, b
on
C

pa
h
a

g

he
on

-

r
set

e

ma-
on

s

all
p

not
-
t

s
tions
ble

t for
tum
ble

t

p

t

GENERALIZATIONS OF ENTANGLEMENT BASED ON . . . PHYSICAL REVIEW A68, 032308 ~2003!
without the operators in the explicit representation hav
the necessary product form. To simplify the terminology,
position the adjective ‘‘explicit’’ such that it applies to a
modifiers between it and the word ‘‘map.’’ For example,
explicit separable mapC5(Ck)k satisfies the fact that eac
Ck is a product operator, whereas this is not required
separable explicit maps.

Separable maps can be defined fromhl without reference
to the two-component subsystems.

Theorem 3.A completely positive map is separable iff
has an explicit representation (Ck)k with CkPehl.

By definition,ehl is the topological closure of the set of a
exponentials of operators inhl . The notion of closure may
be based on the norm induced by the matrix inner prod
tr(A†B).

Proof. ehl consists of all nonzero determinant operators
the formA^ B. Thusehl contains all invertible product op
erators which are dense in the set of product operators.
set of product operators is closed. j

There are separable quantum maps that are not LO
@54#. The goal is to define or construct, with minimal refe
ence to the two subsystems, quantum maps that respec
cality better than the separable ones. For example, in ord
construct the family of LOCC maps, it is sufficient to be ab
to determine when an operator inhl is unilocal, and when a
family of unilocal operators all act on the same side. W
this ability, one can construct LOCC as was done above
conditional composition. If the ability does not depend
the bipartite nature of the system, there is hope that LO
has a nontrivial generalization.

We have two approaches to obtaining families of se
rable quantum maps with stronger locality properties. T
first approach is based on the observation that unilocal m
induce well-defined transformations ofha -, hb -, and
hl-states. To formally define what this means, letC be an
explicit map. ThenC acts on the set of linear functionalsg*
of g according toC(l)(X)5l((kCk

†XCk). It will be clear
from this context whether we are applyingC to operators or
to linear functionals. The mapC, but not its explicit form, is
determined by the action ong-states. Note also thatg-states
linearly span all linear functionals ong, and similarly forh-
states withh one ofha , hb , or hl . C induces a well-defined
transformation ofh-states if we can complete the followin
commutative diagram with a mapC8 of h* :

g* →
C

g*

restrict ↓ ↓ restrict,

h* →
C8

h* ~1!

whereh* is the set of linear functionals onh. Equivalently,
wheneverl1 andl2 areg-states that agree onh, that is, for
which l1�h5l2�h, it is the case thatC(l1)�h5C(l2)�h.
Equivalently, if l is a linear functional ong such thatl�h
50, thenC(l)�h50. The last statement is equivalent to t
statement thatC preserves the nullspace of the restricti
map. If any of the above properties hold, we say thatC can
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be lifted to h. Its lifting is the mapC8 induced onh-states.
~Technically,C8 is a lifting along the restriction map ofC
composed with the restriction map.!

In the present setting, the notion of liftability can be sim
plified by using the canonical~via the trace inner product!
isomorphismm betweenh* andh. Because the trace inne
product is nondegenerate when restricted to the †-closed
of operatorsh, the isomorphismm is uniquely determined by
the identityl(C)5tr@m(l)†C# for all CPh. In particular,
for the algebrag of all operators onHab , if lPg* is induced
by the operatorX, thenm(l)5X. In general, we say that th
linear functionall is inducedby m(l). Let tra (trb) denote
the partial trace mapping operators onHab to operators on
Hb (Ha , respectively!. We have the following identities:

m~l�ha!5trb@m~l!# ^ I /Nb ,

m~l�hb!5I /Na^ tra@m~l!#,

m~l�hl !5trb@m~l!# ^ I /Nb1I /Na^ tra@m~l!#2tr@m~l!#

3~ I ^ I !/~NaNb!.

These identities witness the fact that the reduced density
trices of a state determine the induced linear functionals
the local Lie algebras. In the range ofm, the nullspaces of
the restriction maps toha ,hb, and hl are the three space
spanned byA^ B with B traceless~restriction toha), A trace-
less~restriction tohb), and bothA andB traceless~restriction
to hl). Using the fact that product operators are a basis of
operators onHa^ Hb , it can be seen that the explicit ma
C lifts to ha iff tr b(kCk(A^ B)Ck

†5C8(A)tr(B) for some
map C8. Equivalently, it lifts iff whenever tr(B)50,
then trb(kCk(A^ B)Ck

†50. Similar statements can
be made abouthb . C lifts to hl iff whenever both tr(A)50
and tr(B)50, then trb(kCk(A^ B)Ck

†50 and
tra(kCk(A^ B)Ck

†50.
Most completely positive maps, even LOCC ones, can

be lifted. An example for two qubits is the ‘‘conditional re
set’’ map that first measures qubita and, if the measuremen
outcome isu1&, it resets qubitb to u0&. However, the unilocal
maps are liftable. In fact, they are liftable to bothha andhb ,
as are~unconditional! compositions of unilocal maps. This i
the case because such maps are determined by their ac
on the reduced density matrices. This suggests that lifta
explicit quantum maps could be used as a generating se
quantum maps with more locality than separable quan
maps. We next discuss some of the properties of lifta
separable maps and their relationship to LOCC.

Theorem 4. Let C5(C1^ C2) be a one-operator, explici
separable map liftable tohl . ThenC5aU ^ V with U andV
unitary andaPC.

Proof. Liftability implies that if A andB are traceless, then
C1AC1

† andC2BC2
† are traceless. This implies that the ma

f : A→C1AC1
† satisfies that tr@ f (A)#5a1 tr(A) for somea1.

Thus f /a1 is trace preserving from which it follows tha
8-5
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C1
†C15a1I . For the same reason,C2

†C25a2I . The conclu-
sion of the theorem now follows, witha5Aua1a2u. j

Theorem 5. Let C be an explicit separable map that lifts
the identity map onhb . ThenC is unilocal, acting on system
a only.

Proof. Write C5(Dk^ Ek)k , whereDk^ Ek5” 0 for all k.
By assumption and applying the map toI ^ B,

(
k

tr~DkDk
†!EkBEk

†5NaB. ~2!

If for some k, Ek}” I , we can find uc&^cu such that
Ekuc&^cuEk

†’s one-dimensional range does not containuc&.
Because for alll, tr(DlDl

†).0, the left side of Eq.~2! also
has this property, contradicting the identity. HenceEk5akI
for eachk and the result follows. j

Theorem 5 characterizes the unilocal maps but has
disadvantage that we have to refer explicitly to the unilo
Lie algebras, thus requiring more information about loca
than that provided byhl alone. This suggests the followin
problem.

Problem 6. Are separable quantum maps that lift tohl
LOCC? Are they LOCC if they lift to bothha andhb?

If the answer to this problem is ‘‘no,’’ then we are inte
ested in the question of whether the explicit separable qu
tum maps that are liftable tohl generate all separable qua
tum maps by conditional composition.

In order to be able to conditionally compose explicit sep
rable quantum maps that are LOCC without departing fr
LOCC, we need the explicit representations to have the
ditional property that they can be LOCC implemented
such a way that the communication record reveals which
the operators in the sequence occurred. Following our c
vention for using the adjective ‘‘explicit,’’ we call an explici
quantum map with this property anexplicit LOCC map.

Problem 7. Are there explicit separable quantum ma
that are LOCC but not explicit LOCC?
03230
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If the answers to this problem and to Problem 6 a
‘‘yes,’’ then one has to consider the strengthening of t
questions in Problem 6 where ‘‘separable’’ is replaced
‘‘explicit separable’’ and ‘‘LOCC’’ by ‘‘explicit LOCC.’’
This is required so that conditional composition can be u
without leaving LOCC. Here is one case where we can pr
that a family of quantum maps is explicit LOCC.

Theorem 8. Let C5(Dk^ Ek) be an explicit separable
quantum map that lifts tohl with the additional property tha
(Dk

†Dk)k is linearly independent. ThenEk5gkUk with Uk

unitary. In particular,C is an explicit LOCC map.
Proof. Using the identification of linear functionals wit

operators, consider linear functionalsl of g induced by
A^ B with tr(B)50. The restriction ofl to hl is induced by
tr(A)I ^ BPhl . The restriction has only scalar dependen
on A. Restricting after applyingC gives the linear functiona
induced by

(
k

tr~DkADk
†!I /Na^ EkBEk

†

1(
k

DkADk
†

^ tr~EkBEk
†!I /Nb . ~3!

Note that because tr(B)50, and the assumption that the ma
is trace preserving, the contribution toI ^ I vanishes. Be-
cause of liftability, the same scalar dependence applies to
expression. By cyclicity of the trace, tr(DkADk

†)
5tr(ADk

†Dk). BecauseDk
†Dk are independent, we ca

chooseAl such that tr(AlDk
†Dk)5d lk . Hence the following

are all scalar multiples of the same operator, where the sc
is independent ofB:

Ol5I /Na^ ElBEl
†1(

k
DkAlDk

†
^ tr~EkBEk

†!I /Nb . ~4!

Computing the partial trace over the first system, we get
tra~Ol !55
ElBEl

†1(
k

tr~AlDk
†Dk!tr~BEk

†Ek!/Nb , by cyclicity of the trace

ElBEl
†1(

k
tr@~Al ^ B!~Dk

†Dk^ Ek
†Ek!#/Nb , because the trace is multiplicative for̂

ElBEl
†1tr~Al ^ B!/Nb , becauseC is a quantum map

ElBEl
† , because tr~B!50.
Consequently, the operatorsElBEl
† are all proportional with

constant of proportionality independent ofB. ConsiderE
5Er . We have

ElBEl
†5a lEBE† ~5!
for all tracelessB, wherea l tr(Ar)5tr(Al). Reformulating,
we get that for all tracelessB, tr(BEl

†El)5a l tr(BE†E).
Hence El

†El5a lE
†E1b l I for some b l . The trace-

preserving condition requires that
8-6
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I ^ I 5(
k

Dk
†Dk^ Ek

†Ek5(
k

Dk
†Dk^ ~akE

†E1bkI !

~6!

5S (
k

akDk
†DkD ^ E†E1S (

k
bkDk

†DkD ^ I . ~7!

Suppose that the traceless part ofE†E is not zero, then
(kakDk

†Dk50, which is possible only ifak50 for all k ~by
independence!. But by constructiona r51, soE†E is a mul-
tiple of the identity, henceE5Er is a multiple of a unitary
operator, sayEr5g rUr . Returning to the trace-preservin
condition@Eq. ~6!# and using the fact thatr was arbitrary, we
find that (kgkDk

†Dkḡk5I . This makesD5(gkDk^ I )k a
unilocal quantum map.Uk can be implemented conditionall
on which Dk occurs in a unilocal implementation ofD,
henceC is LOCC. j

Corollary 9. Let C5(D1^ E1 ,D2^ E2) be an explicit
separable quantum map that lifts tohl . Then C is explicit
LOCC.

Proof. The result follows by Theorem 8 unlessD2
†D2

5a8D1
†D1 and E2

†E25b8E1
†E1 for somea and b. In this

case, using the trace-preserving condition,D1
†D1^ E1

†E1}I
^ I making all operators proportional to unitaries. Such
map can be realized explicitly with LOCC by first creating
shared random variable, then implementing local unita
conditional on the random variable. j

Every explicit unilocal quantum map can be obtained a
composition of binary unilocal quantum maps, where abi-
nary quantum map is an explicit quantum map consisting
two operators. The modifier ‘‘explicit’’ is assumed when u
ing the modifier ‘‘binary.’’ We can therefore use the corolla
to characterize LOCC as the quantum maps obtained by
ditional composition of binary separable quantum maps
lift to hl .

Instead of using liftability as the basis for generalizi
LOCC and other classes of local maps, one can use the s
tral properties of the constituent operators of an expl
quantum map. This idea is motivated by the following res

Theorem 10. An operator in Re(hl) that has a maxima
ground space is unilocal.

Maximal means maximal among ground spaces differ
from H of operators in Re(hl).

Proof. An operator in Re(hl) is of the formA^ I 1I ^ B.
By subtracting a multiple of the identity, we can assume t
A andB are traceless, not both zero. If they are both nonze
then the operator’s ground space is strictly contained in
of A^ I , hence not maximal. j

For future reference, an operator whose traceless pa
zero or satisfies the condition of Theorem 10 is said to
maximally unilocal. Note that except forNa5Nb52, not all
unilocal operators in Re(hl) are maximally unilocal. How-
ever, two maximally unilocal operatorsC1 and C2 with
ground spacesH1 andH2 such thatH25eDH1 for someD
Phl act on the same side. Also, ifC1 is maximally unilocal
andC25eDC1e2D with DPhl , thenC2 is unilocal and acts
on the same side. We call a family of operators containe
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the span of$eDCe2DuDPhl% with C maximally unilocal an
m-compatibleunilocal family. With this definition, we have
the following theoerem.

Theorem 11. An explicit unilocal quantum map consists o
an m-compatible unilocal family of operators.

Proof. Every unilocal one-dimensional projector is max
mally unilocal, and the span of the conjugates underehl of
one such projector consists of all operators acting on
same side. j

Using this theorem, we can characterize LOCC as the
of quantum maps obtained by conditional composition
explicit m-compatible quantum maps. However, this char
terization is not directly related to the definition of separa
maps. To do so requires introducing explicit quantum ma
whose operators are exponentials of members of
m-compatible family. Also note that in addition to using lin
ear closure in the definition ofm-compatibility, we could
have used closure under commutators~Lie bracket!. In the
bipartite setting, this makes no difference. Alternatively, w
could have left out linear closure and just used conjugat
underehl. We do not know whether conditional compositio
of the resulting quantum maps yields LOCC. See the disc
sion of this topic in Sec. III B.

C. Communication complexity

In the study of multiparty protocols, an important issue
the communication complexity of converting one state
another using LOCC maps. The communication complex
is defined as the number of classical bits that need to
communicated. The communication complexity of a partic
lar LOCC map to a given state can be determined from
representation as a conditional composition. This can
done by adding the resources used in each round. The
tribution from a round depends on the previous map in
sequence of conditional compositions, as we now expl
Suppose that the initial-state density matrix is given byr,
the total explicit quantum map before the round under c
sideration isC, and this is then conditionally composed wi
the family of unilocal explicit quantum mapsBk . In general,
given an explicit quantum mapD applied to the density ma
trix r, the average number of bits needed to communic
the outcomes is given byH(D,r)52(kpk log2 pk , where
pk5tr(rDk

†Dk) is the probability of outcomeDk . This is, of
course, an asymptotic expression assuming knowledge or.
In other cases, one might prefer to just use log2uDu as the
number of bits required. In any case, the contribution to
communication complexity of the current round is the av
age communication complexity for transmitting the inform
tion in the outcomes of the conditionally applied maps. T
quantity is given by

(
k

tr~rCk
†Ck!H„Bk ,CkrCk

†/tr~rCk
†Ck!…. ~8!

The contributions from each round are added up to obtain
communication complexity of the sequence of condition
compositions. Depending on the application, the contribut
of the last round can be omitted as its outcomes need no
8-7
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communicated to implement the quantum map. Note tha
the detailed outcomes in one round are not required for c
ditioning in the next rounds, then the explicit maps can
modified to defer these outcomes until the last round, wh
is one reason to omit the contribution of the last round.

In general, the goal is to implement a given communi
tion task with ~near! minimum communication complexity
By determining the complexity according to Eq.~8!, we can
generalize communication complexity to any scheme for
fining a family of quantum maps by conditional compositio
including the generalized local maps to be introduced for
Lie-algebraic setting in Sec. III.

D. Resource scaling

An important aspect of information theory involve
asymptotic characterizations of the relationships between
formation resources and of the complexity of tasks. To
ymptotically scale up a problem, one usually creates ten
copies of the bipartite states involved and then investiga
their relationships in the context of the now much larg
bipartite system. The relationship between the local Lie
gebras of the individual bipartite subsystems and the
obtained after forming the tensor products requires a c
struction other than the usual products. We did not find
obvious way of implementing such a construction that d
not rely on the knowledge of additional structure. It may
the case that one must have knowledge of how the repre
tation of hl was constructed. Nevertheless, there are a
things we can say that may help in better understanding
resources can be scaled and how to implement asymp
analyses.

We construct the spaceH5Hab^ •••^ Hab as ann-fold
tensor product of copies ofHab . Let hl ,k be the local Lie
algebra acting on thek8th factor. LethL be the local Lie
algebra forH, whereH is bipartitioned intoHa^ •••^ Ha
andHb^ •••^ Hb . Defineha,k , hA , hb,k , andhB likewise.
The group of permutations onn elements acts onH by per-
muting the tensor factors. The goal is to establish howhL
relates tohl ,k . It suffices to consider the casen52, because
we can viewhL as the smallest Lie algebra that contains
appropriate Lie algebras obtained for each pair of factors

Let G2(hx) (xP$a,b,l %) be the set of operatorsC on
Hab^ Hab such that for all operatorsX on Hab ,
tr1@C(X†

^ I )#Phx,2 and tr2@C(I ^ X†)#Phx,1 . Here, tri is
tracing out thei 8th factor with respect to the tensor produ
Hab^ Hab . In words,G2(hx) is the set of operators whic
look locally like operators inhx .

Theorem 12. G2(ha)5hA , G2(hb)5hB , but G2(hl)
strictly containshL .

Proof. The definition ensures thathA#G2(ha). Let C
PG2(ha). We can writeC5(klrsaklrs(Ak^ Bl) ^ (Ar ^ Bs)
with (Ak)k and (Bl) l the orthonormal bases of operators i
cluding the identity. The ordering of the tensor product
according to (Ha^ Hb) ^ (Ha^ Hb). Suppose thatakl0rs is

nonzero for somel 0 with Bl 0
5” I , then usingX5Ar ^ Bs in

the definition of G2 and tracing out, we ge
(klaklrsAk^ Bl , which is not inha due to the termBl 0

. By
symmetry, this establishes the first two identities. The th
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statement follows from the observation that any operator
the form (A^ I ) ^ (I ^ B) is in G2(hl). If A andB are trace-
less, this operator is not inhL . j

The above theorem provides ways of constructinghA and
hB but not hL . However, one can constructhL as the Lie
algebra generated byhA andhB . This depends on the bipar
tition only through its emergence from having the two unil
cal Lie algebras.

Another way in which one can attempt to constructhX
involves using a group of unitary operators that extends
permutations groupSn acting on the factors.Sn by itself is
insufficient, in the sense that the Lie algebra generated
gCg† for g a permutation operator andCPhx,k is just
% khx,k . A sufficiently large extension suffices. An examp
is the groupU ^ V, with U andV acting on the tensor prod
ucts of theHa andHb factors, respectively, which generate
hX from hx,1 by conjugation. The problem is whether such
extension can be chosen naturally. An idea that does
work but might have some independent interest is to cons
the Lie algebrahX8 generated bygCg† with CPhx,1 andg as
a unitary operator in the group algebra generated by the
mutation operators. To see that this does not yield the des
Lie algebras, lets be the swap operator. Theng5(I
1 is)/A2 is unitary, butg„(A^ I ) ^ (I ^ I )…g† is not in hA .

E. Measures of entanglement

For pure statesuc& of a bipartite system, the generall
accepted and information-theoretically meaningful meas
of entanglement is given by the von Neumann entropy
either one of the reduced density matrices foruc& @59#. Thus,
the entanglement ofuc& can be computed as the Shann
entropy of the spectrum of the reduced density matrix on
first ~or, equivalently, the second! system. Forhl states, the
underlying Hilbert space is not directly accessible. Howev
there are natural complexity measures associated with
convex structure of these states. To define such measure
S be a Schur-concave function of probability distribution
By definition, Schur-concave functions are permutation
variant and concave~see, for example Ref.@60#, p. 40!. That
is, if p and q are two probability distributions of the sam
length where the probabilities ofq are a permutation of thos
of p, thenS(p)5S(q); and if p5rp11(12r )p2 for r>0,
then S(p)>rS(p1)1(12r )S(p2). An example of a Schur-
concave function is the Shannon entropy. For a pure s
uc&, we defineS(uc&) to beS evaluated on the spectrum o
the reduced density matrices. For anhl-statel, we define

S~l!5 infH S~p!ul5(
k

pklk with lk hl-pureJ . ~9!

We will routinely overload the functionS. Which definition
is intended is communicated through the argument. So
the argument type can be a probability distribution, a state
Hab or anhl-state.

Theorem 13. If the hl-statel is induced by a pure stat
uc& on the bipartite system, thenS(l)5S(uc&).

Proof. Using the Schmidt decomposition, we can wr
uc&5(kApkufk& ^ uwk& with (ufk&)k and (uwk&)k orthonor-
8-8
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GENERALIZATIONS OF ENTANGLEMENT BASED ON . . . PHYSICAL REVIEW A68, 032308 ~2003!
mal bases andS(uc&)5S(p). If lk are the purehl states
induced by ufk& ^ uwk&, then l5(kpklk . It follows that
S(l)<S(uc&).

To prove that S(l)>S(uc&), write l5(kpklk , with
lk hl-pure and S(p) arbitrarily close to S(l). To be
specific,S(p)<S(l)1e. By Theorem 2,lk are pure prod-
uct states. Letlk be induced byufk& ^ uwk&. Define r
5(kpkufk&^fku ^ uwk&^wku. Then trb(r)5(kpkufk&^fku
and is equal to the corresponding reduced density matrix
uc&. It therefore suffices to prove thatS(p) is at leastS
evaluated on the spectrum ofra . One way to see this is to
write ra5APA†, whereA consists of unit-length column
~the ufk&) andP is the diagonal matrix with thepk’s on the
diagonal. The eigenvalues ofra are the same as those
P1/2A†AP1/2. This matrix haspk on the diagonal. The resu
now follows from the fact thatp is a transformation of the
spectrum by a doubly stochastic matrix~see, for example
Ref. @37#, page 513!. Doubly stochastic matrices are conve
combinations of permutation matrices~see, for example, Ref
@61#, page 36; Ref.@37#, p. 574! and concavity ofS. j

Theorem 13 makes it possible to introduce entanglem
measures without reference to the underlying pair of s
tems, while being faithful to the known measures for su
systems. We extend the entanglement measureS to mixed
states by a second minimization over convex representat
as pure states@62#. To do so, consider ag-statel induced by
the density matrixr. With respect to the convex set ofg-
states,l is pure iff r is pure. The distinction between sep
rability and entanglement can be seen to be associated
the purity of a state from the points of view ofg and hl .
Thus, we define

S~l;hl !5 infH(
k

pkS~lk�hl !ul

5(
k

pklk with lk g-pureJ . ~10!

Because of the isomorphism between density matricesr and
g-states, this expression defines an entanglement measu
arbitrary bipartite density matrices. In anticipation of t
generalizations to come, we explicitly introduce the Lie
gebrahl as a parameter.

Suppose thatS(p)50 iff p is pure, that is,pk5d jk for
somej. We call such anS proper. Then ag-statel satisfies
S(l;hl)50 iff it is a mixture of product states, which just
fies thinking ofSas an entanglement measure. Several pr
erties are desirable of an entanglement measure@59#. For
example, the measure should be convex and it should
nonincreasing under LOCC maps. Both of these proper
are satisfied byS as defined above@56#.

Entanglement measures can be based on asymptotic
vertibility of states with respect to a family of local map
For example, one can defineR(r,s) as the asymptotic su
premum of r /s, where r is the number of asymptotically
good copies ofr which can be constructed froms copies of
s given any number of additional product states and us
separable quantum maps. For more precise definitions of
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sort, see Ref.@63#. If there is a reasonable choices of a
maximally entangled state, thenR(r,s) can be considered to
be an entropy of formation andR(s,r) an entropy of distil-
lation. By varying the constraints on the quantum maps,
ferent measures are obtained.

III. THE LIE-ALGEBRAIC SETTING

To generalize the notions introduced in the preceding s
tion requires not much more than removing the connect
between the local Lie algebra and the bipartite system. A
consequence, we will learn that product states are gene
ized coherent states.

We fix a finite-dimensional Hilbert spaceH (Hab in the
bipartite setting! and consider states from the point of vie
of various †-closed, complex Lie algebras of operators ac
on H. Ultimately, we consider families of Lie algebras (hx)x
acting onH and ordered by inclusion. But first we consid
one †-closed Lie algebrah. By default we assume thatI is a
member of our operator Lie algebras. The set of trace
operators ofh is denoted byh0. The abstract Lie algebra
faithfully represented byh is denoted byȟ. The assumption
that h is †-closed implies thatȟ is reductive~see, for ex-
ample, Ref.@64#, Sec. 1.7!. A reductiveLie algebrar consists
of the direct product of an Abeliana and a semisimple Lie
algebras ~see, for example, Ref.@64#, Sec. 1.7 or Ref.@41#,
p. 102!. Thedirect productis in the category of Lie algebra
and homomorphisms of Lie algebras and corresponds, a
exponentiation, to the direct product of groups. In this ca
it means that as vector spaces,r5a% s, wherea commutes
with s. For Lie algebras,x and y commuteiff @x,y#50. A
semisimpleLie algebra is a direct product of simple Lie a
gebras, where asimpleLie algebra is not Abelian and has n
proper ideals. Reductiveness of our Lie algebras is us
because the finite-dimensional semisimple Lie algebras
their representations have been completely classified~see, for
example, Ref.@41#!. If h is irreducible as a set of operator
then the Abelian part consists only of multiples of the ide
tity operator and the semisimple part consists of the trace
operators.

The two examples forh to keep in mind arehl in the
bipartite setting and the set of generators of the spatial r
tions of a spin-1 particle. In the second example, the Hilb
space is three dimensional with basisu21&, u0&, and u1&
corresponding to the three states with definite spin alonz.
The Lie algebrah is spanned by the identity together with th
spin operatorsJz , Jx , and Jy . The corresponding abstrac
Lie algebra is13sl2C, where1 is the one-dimensional Lie
algebra. As linear spaces, this is the same as1% sl2C, the
operator3 emphasizes the fact that the construction is
direct product, so that the two Lie algebras commute.
this example, we takeg to consist of all operators.

Before proceeding, we recall the basic properties of se
simple Lie algebras that are needed to define general
coherent states and relate them with our characterization
product states in the bipartite setting.

A Cartan subalgebrac of h0 is a maximal Abelian subal-
gebra whose elements are diagonalizable~that is, semi-
8-9
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simple!. According to a fundamental result for Lie algebra
Cartan subalgebras exist and are conjugate~hence isomor-
phic! with respect to an operator ineh0 ~see Ref.@41#, pp.
81–87; Ref.@43#, Theorem D.22, p. 492; Ref.@42#, Theorem
4.1.2, p. 263!. Every diagonalizable operator inh is con-
tained in some Cartan subalgebra. If the operator is Her
ian, the Cartan subalgebra can be chosen to be †-closeH
can be decomposed into the joint eigenspaces forc, H5

% aHa , wherea are distinct linear functionals onc such that
for uc&PHa and APc, Auc&5a(A)uc& @see Ref.@41#, p.
107; Ref.@43#, p. 199, Eq.~14.4!#. Ha are called theweight
spacesfor the representationH of c and thea are called the
weights. In general, a weight for a Cartan subalgebra is
linear functional for which there exists a finite-dimension
representation with a nonempty corresponding weight sp
The abstract Lie algebraȟ0 can be represented on itself b
the Lie bracket. This is called theadjoint representation of
ȟ0. The weights for this representation are calledroots. It
turns out that the geometrical properties of the roots de
mine the Lie algebra. The roots are in effect also linear fu
tionals onc. There are special sets of roots calledsimple root
systems~or bases! that span the linear functionals onc and
have the property that every root is either a positive o
negative integral combination of simple roots. The form
are called positive roots. The definition depends on th
choice of simple roots, but not in a crucial way, because
simple root systems are isomorphic via a special kind
isomorphism~a member of the so-called Weyl group, s
Ref. @41#, p. 51; Ref.@43#, Proposition D.29, p. 494!. The
weights can be partially ordered by defininga<a8 if a8
2a is a positive integral sum of simple roots. With th
ordering, in an irreducible representation, there is a uni
minimum weight, whose weight space is one dimensio
~see Ref.@41#, pp. 108–109; Ref.@43#, Proposition 14.13,
pp. 202–203!. The minimum-weight state depends on t
choice of Cartan subalgebra and simple roots. Howe
ei Re(h0) acts transitively on the set of minimum-weight ve
tors. Furthermore, every minimum-weight vector can be
tained by means of a †-closed Cartan subalgebra ofh. The
minimum-weight space has the property that it is annihila
by operators inh0 which are in root spaces associated w
negative roots. In fact, this is another characterization of
minimum-weight space~see the definition and theorem
Ref. @41#, p. 108!. Usually, treatments of semisimple Li
algebras focus on the maximum weights of a representa
Here we choose to use the equivalent minimum-weights
cause of the relationship to ground states of Hamiltonia
The basic properties of Cartan subalgebras and the notion
roots and weights extend from semisimple to reductive
algebras by adjoining the Abelian part.

A family of generalized coherent states consists of an
bit of a dynamical group acting on a state space@25,26#.
According to this definition, every state is in a family o
generalized coherent states. As a result, an important pa
the theory of generalized coherent states is to choose t
orbits that best generalize the properties of the cohe
states familiar in optics. In our case, the dynamical gro
are Lie groups generated by semisimple Lie algebras. If
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goal is to choose states that are in a sense the most clas
then there are strong arguments for choosing the minim
weight states of a representation of the Lie group. Theor
14 below provides some of these arguments. We there
use the termgeneralized coherentstate, or simplycoherent
state, to refer specifically to minimum-weight states of a L
algebra. Because we only consider the finite-dimensio
representations, our treatment does not directly apply to
conventional coherent states of optics, for example. In
case, the relevant Lie algebra is the Heisenberg alge
which is not semisimple~or reductive!. The standard
†-closed representation is therefore necessarily infinite.
theory of coherent states suggests that extensions to suc
algebras and representations are possible@25#.

A. Purity, coherence, and entanglement

For a †-closed Lie algebra of operatorsh on H, we define
h-states as before as linear functionals onh induced by a
state’s density matrixr according tol(A)5tr(rA). Observe
again that the seth1 of h-states is convex closed.Pure h-
states are extreme points ofh1. Suppose that theh-statel is
induced by the density matrixr. We can projectr onto h
with respect to the trace inner product. Denote the projec
map ontoh by Ph . Becauseh is †-closed, the projection
Ph(r) is a Hermitian operator inh. Furthermore,l is also
induced byPh(r), that is, l(A)5tr@Ph(r)A#5tr(rA) for
APh. Note that in general,Ph(r) is not positive. For ex-
ample, letr be the density matrix foru1& in the spin-1 ex-
ample. Another important observation is thatPh(r) depends
only on l. That is, if r and r8 both inducel, thenPh(r)
5Ph(r8).

We now assume thath acts irreducibly onH. If it does
not act irreducibly, decomposeH into irreducible invariant
subspaces forh and consider each of these subspaces se
rately. Define theh-purity of l as tr@Ph(r)2#, wherel is
induced by the density matrixr. This is, of course, the
length of Ph(r) according to the trace-inner-product norm
The h-purity is bounded above by the conventional pur
tr(r2), which is theg-purity with g the algebra of all opera
tors on H. This generalization of purity is useful becau
according to Theorem 14 below, the pureh-states are exactly
the states with maximumh-purity.

The goal of the remainder of this section is to give
number of useful characterizations of pureh-states. In par-
ticular, we show that they are exactly the coherent states
h. We first state the characterization theorem and then
cuss the equivalent characterizations before proving the th
rem.

Theorem 14. The following are equivalent for a densit
matrix r inducing theh-statel: ~1! l is a pureh-state;~2!
r5uc&^cu with uc& the unique ground state of someH in
Re(h); ~3! r5uc&^cu with uc& a minimum-weight vector
~for some simple root system of some Cartan subalgebra! of
h0; ~4! l has maximumh-purity; ~5! r is a one-dimensiona
projector ineh.

This theorem is a synthesis of various largely known
sults in the representation theory of semisimple Lie algeb
8-10
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and coherent states. Statements~1! and~2! are motivated by
Theorems 2 and 1, respectively. Statement~2! also provides
an interpretation of many mean-field ground states as co
ent states. This is because mean-field Hamiltonians are o
expressed as operators in a small Lie algebra, in partic
operators quadratic in the creation and annihilation ope
tors.

Statement~3! is one of the definitions of generalized c
herent states. For other characterizations of generalized
herent states, see Ref.@25,26#.

Statement~4! is a version of the minimum variance prin
ciple for coherent states@65,66#. The variance of a stateuc&
with respect to Re(h0) is computed as the expectation of a
‘‘invariant uncertainty operator.’’ For a stateuc&, this expec-
tation is given by

(
i

xixi2(
i

^cuxi uc&^cuxi uc&, ~11!

where (xi) i is a basis of Re(h0), and (xi) i is the dual basis
with respect to the trace inner product. This is a linear fu
tion of theh-purity because the second sum is the negative
the purity up to a constant due to our inclusion of the iden
operator.

Statement~5! is motivated by the results concerning th
classical simulatability of fermionic linear optics@67,68#.
Simulatability depends crucially on the fact that the initia
state preparations and the measurement outcomes can b
pressed in terms of projectors ineh.

Proof of Theorem 14.
~a! ~2! ⇒ ~3!: Let c be a †-closed Cartan subalgebra ofh0

containingH. We can perturbH slightly without affecting the
ground space by adding a generic element ofc to make sure
thatH is generic, that is, so that the commutant ofH is c. The
commutantof H is the set of elements ofh0 that commute
with H. It therefore suffices to show that ground states
generic elements ofc are minimum-weight for an ordering o
the roots. Note that for no nonzero roota is a(H)50, be-
cause otherwiseH is not generic. Thus we can call a ro
positive if a(H).0, and there is some simple root syste
for which this coincides with the definition of positive root
A ground state is annihilated by the root spaces ofh0 that
correspond to the negative roots. This implies that it is
minimum-weight state.

~b! ~3! ⇒ ~2!: Every minimum-weight vectoruc& has
minimum-weight for some †-closed Cartan subalgebrac with
root basisa1 , . . . ,ad . There is a Hermitian memberH of c
for which ak(H).0 for eachk. uc& is the ground state ofH.

~c! ~2! ⇒ ~5!: Let l be the eigenvalue ofuc& for H. Then
the desired projector is limt→` e(2H1l)t.

~d! „(5)& @(2)⇒(3)#…⇒(3): Let uc&^cu5 limk e2Hk,

with HkPh. Thenuc&^cu5 limk e2Hke2Hk
†
. The operators in

the limit are now Hermitian, which implies that they can
written in the forme2hk, with hk Hermitian inh. For suffi-
ciently large k, the minimum eigenvalue ofhk must be
unique. This eigenvalue must go to zero and the eigenv
gapdk of hk goes to infinity. Thus for sufficiently largek, the
ground stateuck& of hk is projectively well defined. Becaus
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of (2)⇒(3), uck& is a minimum-weight state. Minimum
weight states form an orbit ofeRe(h), a compact set. Thus
there is a cluster pointuc0& of uck&. It must be the case tha
uc0&}uc&. Henceuc& is minimum-weight.

~e! (4)⇒(1): By convexity of purity.
~f! (1)⇒(3): Let c be the †-closed Cartan subalgeb

containing the projection ofr into h. We call this asupport-
ing Cartan subalgebra ofr. Let Ha be the weight space
with respect to this Cartan subalgebra. Thenl is zero on the
nonzero root spaces with respect toc. Sincer is a mixture of
normalized superpositions of weight vectorsuva&PHa , it
follows thatl�c is a convex combination of weights. But th
weights are all in the convex closure of the set of minimu
weights with respect to different orderings of the roots. E
tremality therefore requires thatl�c is given by a minimum-
weight. Letuc& be the corresponding minimum-weight stat
By choice of c, l is also induced byuc&^cu. The density
matrix r cannot have a contribution to the mixture with di
ferent weight spaces, as otherwise,l�c is in the strict interior
of the convex closure of the set of minimum-weights. Th
r5uc&^cu now follows from the fact that due to irreducibil
ity of h, the minimum-weight spaces are one dimensiona

Note that supporting Cartan subalgebras’ weight spa
generalize the Schmidt basis used to diagonalize redu
density matrices in the bipartite setting. See Theorem 23

~g! @(1)&(3)#⇒(4): Because all minimum-weight state
are in the same orbit ofei Re(h), every minimum-weight state
has the same purity. By extremality and convexity of puri
minimum-weight states have maximum purity. j

B. Local quantum maps

We can use Theorem 3 to generalize separable maps.
we defineh-separablequantum maps to be those with a
explicit form (Ak)k with AkPeh. To generalize LOCC maps
one can always return to the multipartite setting by using
fact that by semisimplicity,h0 can be uniquely represented a
a product of simple Lie algebrash053khk ~see, for ex-
ample, Ref.@41#, p. 23!. The state space then factors
^ kHk , with hk acting onHk only. We defineh-LOCC maps
by conditional composition of explicit (hk1CI )-separable
quantum maps. This definition is more general than the us
notion of LOCC maps for multipartite systems becauseȟk
can be different fromslnC or its representationhk need not be
the first fundamental representation.

In the bipartite setting, we discussed two other ways
which LOCC maps can be characterized. One way used
ability to well-defined maps ofh-states. The other used re
strictions on the operators based on their eigenspaces
consider how these ideas can lead to other interesting fa
lies of quantum maps.

A subfamily of the explicith-separable quantum maps
obtained by requiring that each operator lifts toh. Such
quantum maps are calledexplicit h-liftable quantum maps.
~Recall our convention for using the word ‘‘explicit.’’! In the
bipartite setting, Theorem 4 implies that all such quant
maps are mixtures of unitaries, a small subfamily of t
LOCC maps. The conclusion of Theorem 4 does not hold
8-11
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general. For example, trivially, ifh consists of all operators
on H, then all quantum maps are in this family. One ni
property of the family of explicith-liftable quantum maps is
that there is a straightforward proof of monotonicity for
large family of entanglement measures, see Theorem 29

A family of quantum maps that includes the explic
h-liftable ones consists of theh-separable quantum maps th
are liftable toh. In the bipartite setting, this family may b
larger than the family of LOCC maps, see Problem 6. In
general setting, we pose the following problem.

Problem 15. Is the family of quantum maps obtained b
conditional composition of explicith-separable quantum
maps that are liftable toh strictly smaller than the family of
h-separable quantum maps?

Based on Theorem 8 and its corollary, one might wan
consider the family of maps consisting of binaryh-separable
quantum maps. Unfortunately, this family can be trivial
the sense that in many cases it consists of mixed uni
quantum maps only. For example, consider the spin-1
algebra and suppose that (A,B) is an explicit separable quan
tum map. We haveA,BPeh andA†A1B†B5I . The opera-
tors A†A andB†B are ineh and can be written in the form
eHA and eHB with HA and HB in Re(h). Thus HA5aI

1xW•JW . With a suitable rotation, we can assume thatHA5a
1bJz . This ensures thateHA is diagonal in the basis
u21&,u0&,u1& and has diagonal entriesea2b,ea,ea1b. It fol-
lows thateHB is diagonal also, and hence of the same fo
with a8 andb8. Their sum isI, and it can be checked tha
the solutions satisfyb5b850. HenceA andB are propor-
tional to unitaries.

One idea for avoiding the possible triviality of binar
h-separable quantum maps is to usek-ary quantum maps
That is, consider extremalk-ary h-separable quantum map
A quantum map isextremalif its action on density matrices
is not a convex combination of other quantum maps. B
cause mixed unitary quantum maps are not extremal un
they are unitary, the spin-1 example shows that there ma
no such extremal quantum maps fork52. Let kmin be the
minimum k.1 for which such quantum maps exist. Let th
family of minimally generatedseparable quantum maps co
sist of explicit quantum maps obtained by conditional co
position of unary or extremalkmin-ary h-separable quantum
maps. Because of Corollary 9, this family is the family
LOCC maps in the bipartite setting.

Problem 16. What is the relationship between the fami
of minimally generatedh-separable quantum maps,h-LOCC,
andh-separable quantum maps?

Another family of quantum maps that might be interesti
is obtained by adding the liftability condition to the gener
tors of the family in the above problem.

We now move on to considering families ofh-separable
quantum maps that are characterized by generators with l
ground spaces. Based on Theorem 10, we can define amaxi-
mally h-unilocal operator to be an operator in Re(h) whose
ground space is maximal. These operators have a Lie a
braic characterization.

Theorem 17. Maximally h0-unilocal operators are the one
that are proportional to an operator of the dual basis t
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simple root system of a †-closed Cartan subalgebra ofh0.
The dual basis of a simple root system corresponds to

fundamental weights via the isomorphism induced by
Killing form. The Killing form is the symmetric bilinear
form associated with the trace in the adjoint representat
The k8th fundamental weightlk for a simple root system
consisting of the rootsa l has the property that ifhl

5@xl ,yl # with xl and yl members of the root space fora l
and for2a l , respectively, thenlk(h)50 except forl 5k. It
also has minimum length among weights satisfying t
property. Fundamental weights are important because al
representations of a Lie algebra can be built from the o
whose minimum-weight is fundamental.

Proof of Theorem 17. Let HPRe(h) and choose a
†-closed Cartan subalgebrac containingH and an ordering
of the roots such that for positive rootsa, a(H)>0. Let
(ak)k be the simple root system for this ordering. LetH0 be
the ground space ofH. ThenH0 is a union of weight space
of c. By definition of the ground space, ifX is in the root
space for a negative root, thenXH0#H0. In particular,H0
contains the weight space for the minimum-weightl0 of the
chosen ordering of the roots. Furthermore,H0 consists ex-
actly of the weightsl such thatl2l0 is a positive integral
combination of positive rootsa with a(H0)50. ThusH0 is
nontrivially maximal iff ak(H0)50 for all but onek5k0.
Givenk0, the set of operators with this property is necess
ily one dimensional and contains one that contributes to
dual basis of the simple root system. This follows from t
fact that the simple roots are a basis of the dual space
c. j

The maximally h-unilocal operators fall into differen
classes depending on the associated fundamental we
However, it is likely that ifh0 is simple, then the linear spa
of the conjugates undereh of a given maximallyh0-unilocal
operator is all ofh0. We do not know whether this holds i
general, but it is certainly the case forha, hb , andg. This
implies that if we definem compatibility as in the bipartite
setting and close under conditional composition, we mi
get all h-LOCC maps. So define anh-compatiblefamily of
operators as a family consisting of the conjugates undereh of
a maximallyh-unilocal operator.

Problem 18. Does conditional composition of explici
separable quantum maps with operators from
h-compatible family generate the family ofh LOCC maps?

For now, the properties of the various families of quantu
maps are largely unknown and offer a fruitful area of furth
investigation.

C. Communication complexity

Communication complexity can be defined exactly as
the bipartite setting for any of the families of explicit qua
tum maps defined by conditional composition in the prec
ing section.

D. Resource scaling

The goal is to determine what might be the reasona

choices of ‘‘scaled’’ Lie algebrashs* n acting onH ^ n
, ex-
8-12
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tending the action ofh on each factor so as to be consiste
with the corresponding picture for bipartite systems. It ma

sense to require thaths* n be contained inGn(h), the set of
operatorsX with the property that ifY is an operator acting
as the identity on thek8th factor of H ^ n

, then the partial
trace ofXY onto thek8th factor is inh acting on this factor.

In the bipartite case, it was possible to obtain the desiredhs* n

by appealing to the two unilocal Lie algebras contained inh.
We can similarly use any generating Lie subalgebras. Tha
let h be generated by Lie subalgebrashk . With respect to

these Lie subalgebras, we can definehs* n as the Lie algebra
generated byGn(hk). In this case, it makes sense to defi

hk
s* n5Gn(hk). At this point, we do not know to what exten

this scheme is useful in analyzing the asymptotic relati
ships between states from the point of view ofh. As a po-
tentially interesting alternative, the scheme based on ex
sions of the permutation group discussed in the
paragraph of Sec. II D can, of course, be applied to any
algebra of operators.

E. Measures of relative entanglement

From the point of view ofh, incoherent pure states ofH
look like a mixture of coherent states. This is because theh-
state induced by an incoherent state is a proper convex c
binations of pureh-states. However, incoherent pure sta
can exhibit generalized entanglement provided that it is p
sible to refer to operators outside ofh. We therefore need
access to observables in a larger Lie algebra. Letg.h be a
Lie algebra of operators onH. Theorem 14 applies tog as
well and in general, not all pureg-states are pure when re
stricted toh. Note that ag-state that restricts to a pureh-state
is necessarily pure. So it makes sense to call a pureg-stateh-
coherentif it restricts to a pureh-state.

The goal of this section is to find ways to quantify th
relative entanglementof g-states with respect toh. The idea
is thath-coherentg-states are not entangled, while any oth
pure g-state is definitely entangled, but the extent of e
tanglement depends in some way on how far the state is f
being pure when restricted toh. Once the entanglement o
pure g-states has been quantified, this can be extende
arbitraryg-states.

Let Sbe a Schur-concave function of probability distrib
tions. Then we can defineS(l) for h-statesl and S(l8;h)
for g-statesl8 as we did in Sec. II E. In the bipartite settin
S(l) is concave as a function ofh-statesl.

Problem 19. For which h is S a concave function ofh-
states?

That S(l;h) is a convex function ofg-statesl will be
shown in the more general setting of convex cones, wh
we will also discuss the issue of monotonicity ofSunder the
various notions of generalized local quantum maps.

Another measure that can be used for quantifying gen
alized entanglement is based on purity. Letp(l8) denote the
h-purity of anh-statel8. We can define, for ag-statel,
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p~l;h!5supH(
k

pkp~lk�h! such that

l5(
k

pklk with lk pure forgJ . ~12!

Thenp(l;h) achieves its maximum exactly at the states t
are mixtures ofh-coherent states, andp(l;h) is convex inl.
Mixtures of h-coherent states are generalized separa
states.

Observe that for bipartite pure states, the purity is a lin
function of the Renyi entropy given by2(kpk

2 , wherepk

are the eigenvalues of the reduced density matrices. In
case, the Renyi entropy can be derived from the Sch
concave functionS„(pk)k…52(kpk

2 .
It is possible to define resource-based measures of rela

entanglement as discussed at the end of Sec. II E, with
caution that asymptotic versions of such measures depen
whether a useful notion of scaling for resources can b
found.

One advantage of relativizing measures of entanglem
by using pairsh#g is that one can better investigate prope
ties of states on systems with a hierarchy of meaning
choices for Lie algebras. Multipartite systems are examp
where this situation arises. For every subsets of the sub-
systems, there is the algebrahs of operators acting only on
the subsystems ins, andhs can be summed over a partitio
of the subsystems to obtain generalizations ofhl . These Lie
algebras are ordered by inclusion. Given a state, one can
every pairk#l, determine the state’s generalized entang
ment. These quantities can then be used to characterize
ferent types of states and localize the extent to which t
are entangled. Other examples with multiple, physically m
tivated Lie algebras are discussed in Sec. V A.

F. Other measures

We mention two other types of relative entangleme
measures for states, which may generalize the bipartite
ting. One is based on the amplitudes in a representation
state as a superposition of coherent states, the other
supporting Cartan subalgebras as a generalization of
Schmidt basis. Since both of them can be extended to m
g-states using the construction repeatedly used above@see
Eq. ~10!#, we discuss them only for pureg-states. Since thes
are induced by pure states ofH and the relativization come
in through the extension, we define the measures for all p
statesuc&PH.

Let S be a Schur-concave function anduc& a state that
induces a pureg-state. We can define an entanglement m
sure by minimizing theS-complexity of uc& ’s renormalized
square amplitudes in writinguc& as a superposition of coher
ent states. Formally

Sa~ uc&)5 infH S~p!upk5uaku2Y (
k

uaku2 , where uc&

5(
k

akuck& with h-coherent uck&J . ~13!
8-13



f

m

s

t f

e

n

ge
rt

za

-

v

u
e

to

C
m

,
na

d

is

ie
, w

the
by

ysi-
this
ate
and
ned

,

y

nc-
nor-

ing,

y

e,

a
ve

of

the
in

e

ure

of
by

ble
set-
e-

den-
ri-

BARNUM et al. PHYSICAL REVIEW A 68, 032308 ~2003!
Note that by irreducibility ofh, every state is in the span o
the coherent states forh.

Problem 20. Is Sa(uc&)5S(uc&) in the bipartite setting?
S(uc&) is defined for the bipartite setting before Theore

13.
A limiting case of this definition is theh-rank of uc&

defined as the minimum number of states needed to repre
uc& as a superposition of coherent states. Theh-rank is ob-
tained as the limit of the Schur-concave functionsSr : p
→(kpk

1/r as r→`. A special case of theh-rank has a long
history in quantum chemistry~see, for example Ref.@69#, p.
69! and has been proposed in the context of entanglemen
fermions in Ref.@12# and for bosons in Refs.@13,17#.

Problem 21. What is the relationship between th
amplitude-based@Sa(uc&)] and the convexity-based@S(l)#
measures of entanglement for pureg-states?

Sa satisfies that for properS, Sa(uc&)50 iff uc& is coher-
ent for h. The measureSC(uc&) based on supporting Carta
subalgebras does not satisfy this. To defineSC(uc&), let c be
a supporting Cartan subalgebra ofh for uc&^cu. Let Pa be
the projectors onto the weight spaces ofc. We can define

SC~ uc&)5 inf S„~ uPauc&u2)a…, ~14!

where the minimization is over supporting Cartan subal
bras. In the generic case, there is only one supporting Ca
subalgebra. Nevertheless, it would be nice if the minimi
tion was redundant.

Problem 22. Is S„(uPauc&u2)a… as introduced above inde
pendent of the choice of supporting Cartan subalgebra?

Note that SC(uc&) is zero for anyuc& contained in a
weight space for some Cartan subalgebra ofh and that, in
general, such states are not coherent forh. Furthermore,
these weight spaces are usually not one dimensional. Ne
theless, this measure generalizes the bipartite setting.

Theorem 23. Assume the bipartite setting withh5hl . The
weight spaces of a supporting Cartan subalgebra foruc& are
the one-dimensional spaces associated with tensor prod
of Schmidt basis elements for each side for some choic
Schmidt basis. HenceSC(uc&)5S(uc&).

This implies that for the bipartite setting, the answer
Problem 22 is ‘‘yes.’’

Proof. The projection ofuc&^cu into hl is given by %
5ra^ I /Nb1I /Na^ rb2I /Na^ I /Nb , wherera and rb are
the respective reduced density matrices. The supporting
tan subalgebras are the Cartan subalgebras that com
with %. These are necessarily of the formca^ I 1I ^ cb ,
whereca and cb are †-closed Cartan subalgebras ofha and
hb , which commute withra andrb , respectively. Therefore
ca (cb) is generated by the projectors onto an orthogo
basisBa (Bb) of eigenstates ofra (rb , respectively!. The
associated weight spaces are one dimensional, spanne
tensor products of members ofBa and Bb . Because the
members ofBa andBb can be paired to form a Schmidt bas
for uc&, the result follows. j

IV. THE CONVEX-CONES SETTING

Many of the notions introduced for †-closed operator L
algebras can be generalized even further. For example
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can work with any linear space of operators and study
properties of the convex set of linear functionals induced
states. In fact, as pointed out in Sec. V A, there are ph
cally interesting cases where this may be necessary. In
section we focus on the convexity properties of the st
space and investigate the extent to which local maps
measures of generalized entanglement can still be defi
and retain their features.

A. Convex cones

A convex cone Cis a subset of a real linear spaceU
closed under positive linear combinations. That is, ifx,y
PC and p,q>0, thenpx1qyPC. To avoid degeneracies

we assume thatU is the span ofC. Let Ċ consist of the
nonzero elements ofC. The coneC is pointed if there is a

linear functional tr~the trace! on U such tr(Ċ).0. Equiva-
lently, C is pointed ifCù(2C)5$0%. We assume thatU is
finite dimensional and thatC is closed in the usual topolog
for U. For the remainder of this paper, acone is a closed,
pointed convex cone, equipped with the positive linear fu
tional tr. For our purposes, cones represent spaces of un
malized pure and mixed states. In the Lie-algebraic sett
the cone is given by the set of linear functionalslPh* that
are non-negative multiples ofh-states. The trace is given b
evaluation ofl at the identityI Ph. If l is induced by the
matrix r, evaluation at the identity gives the usual trac
tr(r). We refer to membersxPC with tr(x)51 as states.
The pure states ofC are extremal states ofC. Our assump-
tions onC imply that every state ofC is a convex combina-
tion of pure states.

In the Lie-algebraic setting, we explicitly introduced
second Lie algebrag when discussing measures of relati
entanglement. Before we introduced such measures,g was
implicitly present, but was trivially associated with the set
all operators. This is because the fact thath-states are in-
duced by density operators plays a crucial role. In
convex-cones setting, there is no equally obvious way
which states are induced, so we explicitly introduce anouter
cone D in a real linear spaceV, whose states induce th
states onC via a linear mapp: V→U satisfying p(D)
5C, andxPD,tr(x)51 implies tr@p(x)#51, that is,p is
trace preserving. In the Lie-algebraic setting,p is simply the
restriction map: ifl is a g-state, thenp(l)5l�hPh1. We
refer to C as theinner cone. If x is a pure state ofC then
p21(x) is convex closed and its extremal states are p
states inD. Note that in the Lie-algebraic setting,p21(x) for
a pureh-statex is a pureg-state. We defineseparablestates
of D to be states in the convex closure
$p21(x)ux is pure inC%. We denote the cone generated
the separable states ofD asDsep~this depends onC). A pure
statex of Dsep satisfies thatp(x) is pure inC.

As we discuss the extent to which we can define suita
generalizations of various notions to the convex-cones
ting, it is worth keeping in mind what the two cones corr
spond to in the bipartite setting. In this setting,D is isomor-
phic to the cone of positive operators onHa^ Hb , with tr the
usual trace functional. The trace-one operators are the
sity matrices.C is determined by the reduced density mat
8-14
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ces. Formally,C is isomorphic to the cone of operators of th
form A^ I /Nb1I /Na^ B1aI /Na^ I /Nb with A,B traceless
andA1aI /Na andB1aI /Nb positive. The connection tohl-
states is discussed in Sec. II B. The map fromD to C takesr
to trb(r) ^ I /Nb1I /Na^ tra(r)2tr(r)(I /Na^ I /Nb).

B. Local maps

A positivemap of D is a linear mapA: V→V such that
A(D)#D. The map A is trace preserving if tr( x)
5tr@A(x)# for all x. This definition corresponds to positive
but not necessarily completely positive maps in the L
algebraic setting. Without the algebraic structure availa
for states, it is not possible to define a unique ‘‘tensor pr
uct’’ of cones, as would be required to distinguish betwe
positive and completely positive maps@34,35# ~cited in Ref.
@70#!. Because of the absence of a suitable tensor pro
construction, we also do not have any suggestions for ho
address asymptotic questions by resource scaling.

The family of positive maps ofD is closed under positive
combinations and hence form a cone~without a trace!. In the
Lie-algebraic or even the bipartite setting, the extreme po
of this cone are not easy to characterize~see, for example
Ref. @70#, p. 1927, Ref.@71#!. However, the extreme point
of the cone of completely positive maps are certainly ex
mality preserving in the following sense: A positive mapA of
D is extremality preservingif for all extremalxPD, A(x) is
extremal. There are extremality-preserving positive,
completely positive, maps. An example is partial transpo
tion for density operators of qubits. We call a positive m
that is a mixture of extremality-preserving mapsq-positive. It
is possible to recapture the idea of complete positivity
explicitly introducing a cone representing the ‘‘tensor pro
uct’’ extension ofD. This will be discussed after definin
liftability. In the bipartite setting, the family ofq-positive
maps ofD is between the family of positive maps and t
family of completely positive maps acting on density mat
ces onHab .

The next step is to define a family of maps that gene
izes the separable maps. Call a positive mapA of D
C-separable if it is a mixture of extremality-preserving po
tive mapsAk that are also extremality preserving and po
tive for Dsep. In the bipartite setting, this definition include
maps such as the swap, which exchanges the two subsys
and is not separable, in addition to some noncompletely p
tive operations. Note that if the Lie-algebraic definition
separability is used, operations such as the swap are excl
because they are not in the Lie group generated byhl ; the
swap induces an exterior automorphism ofhl . From the
point of view of entanglement, including the swap can ma
sense because it obviously does not increase entanglem

One tool used to narrow the family of separable quant
maps was based on liftability. The definition of liftabilit
immediately generalizes to our cones. We say that a pos
mapA on D can be lifted toC if A preserves the nullspace o
p or, equivalently, if there exists a positive mapA8 on C
such thatp„A(x)…5A8„p(x)…. In this case, we say thatA8 is
the lifting of A to C.

Using liftability, we can add more cones to try to captu
the idea of complete positivity or to exclude maps such
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the swap. For complete positivity, we introduce one mo
coneE and positive trace-preserving maps:E→D ~onto!. In
the setting where states are defined by density matrices
Hilbert spaceH of dimensiond, E represents the cone gen
erated by density matrices onH^ H8, with H8 of dimension
at leastd2. With this cone in hand, we can try to get th
completely positive maps by considering only those ma
that are a mixture of extremality-preserving mapsAk , ob-
tained as liftings of extremality-preserving positive mapsBk
on E. Whether this works depends on the answer to the
lowing problem.

Problem 24. Let A be a positive map on operators o
H^ H8 with dim(H8)>dim(H)2. Suppose thatA preserves
the set of rank one operators and that it lifts to a mapA8 of
operators onH. Is A8 completely positive?

To exclude the swap, it suffices to introduce cones
cluded inC to represent density matrices onHa andHb and
require liftability to both of these cones.

The other tool used to restrict separable maps invol
operators with maximal ground spaces. It is not clear how
apply this tool to the convex-cone setting since the disti
tion between positive and negative eigenvalues is not ea
recovered in the actionr→ArA†.

To be able to generate families of maps by a kind
locality preserving composition requires the idea of con
tional composition based on explicit maps. An explicit po
tive mapA on D is given byA5(Ak)k with Ak extremality-
preserving positive maps. For explicit separability,Ak are
required to beC-separable. In addition, we can impose t
liftability condition on eachAk . We call the latterexplicit
C-liftable separable maps. The idea of Sec. III B to restr
the separable maps by using certain minimal explicit se
rable maps can be applied in the convex-cones setting. H
ever, without the strong symmetry present in the L
algebraic setting, the definition ofkmin ~Sec. III B! is unlikely
to be as natural. However, one could investigate the fami
of maps obtained by replacingkmin by 2,3, . . . .

Conditional composition can be used to generate a fam
of maps as before. One can then readily generalize com
nication complexity to the resulting conditionally compos
maps.

C. Measures of relative entanglement

The entanglement measures defined on the basis
Schur-concave functionSare intrinsically defined using only
convexity. Thus, for statesxPC,

S~x!5 infH S~p!ux5(
k

pkxk with xk pureJ , ~15!

and for statesxPD,

S~x;C!5 infH(
k

pkS„p~xk!…ux5(
k

pkxk with xk pureJ .

~16!

In general,S(x) is not concave, though this is the case in t
8-15
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bipartite setting and if the set of states is a simplex. In
latter case, the expression of a point as a convex combina
of extreme points is unique.

Problem 25. For which convex sets isS(x) concave for
all Schur-concaveS?

Theorem 26. S(x;C) is convex inx.
Proof. Let y5px11(12p)x2 be a convex combination

of statesx1 ,x2PD. We show thatS(y;C)<pS(x1 ;C)1(1
2p)S(x2 ;C) from which the theorem follows. For ever
way of expressingxk5( l pklxkl as a convex combination o
pure states ofD, we havey5( l@pp1lx1l1(12p)p2lx2l #.
Thus

S~y;C!<(
l

@pp1lS„p~x1l !…1~12p!p2lS„p~x2l !…#

~by definition!

5p(
l

p1lS„p~x1l !…1~12p!(
l

p2lS„p~x2l !….

The last two sums can be chosen to be arbitrarily close
S(x1 ;C) andS(x2 ;C). j

Purity as defined in the Lie-algebraic setting does not g
eralize to the setting of convex cones unlessC has a well-
defined center and satisfies that all its pure states are e
distant from the center in a natural metric.

D. Monotonicity for explicit liftable maps

A desirable property for measures of entanglement is
they are nonincreasing under the family of maps that
considered to be local.

Problem 27. For which of the families of maps that w
have introduced isS(x;C) @or, more specifically,S(x;h)]
nonincreasing?

In the bipartite setting, it has been shown thatS(x;hl) is
nonincreasing under LOCC maps@56#. Here we show that
this is the case in the convex-cones setting for the family
trace-preserving explicit liftableC-separable maps of cone
With the cones that arise in the bipartite setting, this fam
of maps includes the explicit liftable separable quant
maps.~See also Problem 24.! The monotonicity result is eas
to see for the latter family because in this case, the family
maps consists of mixtures of product unitaries.

For x5” 0 in a cone, definex̂5ˆ(x)5tr(x)21x to be the
unique state proportional tox. If x50, definex̂50. We say
that the functionY: D→R is explicitly nonincreasingfor the
trace-preserving explicit positive mapA5(Ak)k if for ex-
tremal statesxPD,

Y~x!>(
k

pkY„Ak~x!̂…, ~17!

wherepk5tr@Ak(x)#. The property of being explicitly non
increasing is useful as a sufficient condition for being no
increasing.
03230
e
on

to

-

ui-

at
e

f

y

f

-

Lemma 28. Suppose thatS(x;C) is explicitly nonincreas-
ing for the trace-preserving explicit positive mapA. Then
S(x;C) is nonincreasing forA.

The Lemma holds for anyY defined from its values on
pure states according to Y(x)5 inf$(kpkY(xk)ux
5(kpkxk with xk pure%.

Proof. Let A5(Ak)k with Ak positive and write pk
5tr@Ak(x)# To prove the lemma, first consider an extremalx.
Then

S„A~x!;C…5SS (
k

Ak~x!;CD
<(

k
pkS„Ak~x!̂;C…, by convexity

<S~x;C!, by being explicitly nonincreasing.

For a nonextremalx, write x5( lqlxl with xl pure and
( lqlS(xl ;C) arbitrarily close toS(x;C). Note that for pure
y, S(y;C)5S„p(y)…. Then

S~A~x!;C!5SS (
l

qlA~xl !;CD , by linearity

<(
l

qlS„A~xl !;C… by convexity and trace

preservation

<(
l

qlS~xl ;C!, by extremality ofxl .

The result now follows because the right-hand side is a
trarily close toS(x,C). j

Theorem 29. If A is a trace-preserving explicit liftable
C-separable map ofD, thenS(x;C) is explicitly nonincreas-
ing underA.

Proof. Let A5(Ak)k with eachAk liftable to C and C-
separable. Writepk5tr@Ak(x)#. Because of Lemma 28, it is
sufficient to prove Inequality~17!. Let x be a pure state ofD.
Let p(x)5( lqlyl be a convex representation ofp(x) in
terms of pure states ofC such thatS(q) is arbitrarily close to
S(x;C)5S„p(x)…. We can find pure stateszlPD such that
p(zl)5yl . Thus x5( lqlzl1z for some z with p(z)50.
With the appropriate interpretation ofAk(x)/pk when pk
50,

p„Ak~x!̂…5p~Ak~x!/pk!5pXAkS (
l

qlzl1zD Y pkC
5(

l
~ql /pk!p„Ak~zl !…,

sinceAk preserves the nullspace ofp

5(
l

~r lkql /pk!p„Ak~zl !̂…, with r lk5tr@Ak~zl !#.
8-16
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Since Ak is C-separable andzl is pure in Dsep, so is
Ak(zl). Thus, by definition, S„Ak(x)̂ ;C…5S(p„Ak(x)̂ )…
<S„(r lkql /pk) l…. To prove the desired inequality, bound
follows:

(
k

pkS„Ak~x!̂;C…<(
k

pkS„~r lkql /pk! l…

<SS (
k

pk~r lkql /pk! l D ,

by Schur concavity

5SXS (k
r lkql D

l
C5S„~ql ! l…

5S~q!, becauseA is trace preserving,

which is arbitrarily close toS(x;C). j
Conditional composition of trace-preserving explicit lif

able C-separable maps preserves explicit liftability a
C-separability. Nevertheless it is useful to know circum
stances that guarantee that conditional composition prese
monotonicity ofS(x;C).

Theorem 30. Suppose thatS(x;C) is explicitly nonin-
creasing under the trace-preserving explicit extremal
preserving mapsA5(Ak)k andBk . Then it is explicitly non-
increasing under the conditional compositionE of A
followed by the Bk . E is also an explicit extremality-
preserving map.

Proof. Let x be a pure state ofD. ThatE is also an explicit
extremality-preserving map is clear. Writepk5tr@Ak(x)# and
qkl5tr@Bkl„Ak(x)…#/pk . If pk50, setqkl50. To prove In-
equality ~17!, compute

(
kl

qklpkS„ˆ@Bkl„Ak~x!…#;C…

5(
kl

qklpkS„ˆ@Bkl„Ak~x!̂…#;C…

<(
k

pkS„Ak~x!̂;C…, becauseBk are explicitly

nonincreasing and theAk~x! are extremal.

<S~x;C!, becauseA is explicitly nonincreasing.

j

V. DISCUSSION

A. Further examples and extensions

The traditional setting for studies of entanglement is t
of bipartite systems. Our investigation shows that the m
general theory based on Lie algebras exhibits most of
features associated with bipartite entanglement, and a sig
cant number of these features can even be found in
convex-cones setting. As a result, we hope that the gen
theory provides new insights into bipartite entanglement
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its generalizations to multipartite systems. Relativizing t
idea of entanglement has the advantage of being able to
mediately use the entire hierarchy of local Lie algebras a
associated entanglement measures in the multipartite set

There are other settings where multiple, physically mo
vated Lie algebras occur. We give four examples of su
settings. The first example involves spectrum generating
gebras~SGAs!. SGAs are used to determine the spectru
~eigenvalues and eigenspaces! of quantum systems. SGA
provide the starting point for one or more chains of Lie su
algebras that are used for obtaining algebraic bases of s
and for expanding the Hamiltonian as a linear combinat
of invariant ~Casimir! operators belonging to the chain
When such an expansion contains only invariant operator
a single algebraic chain, the system exhibits a dynam
symmetry, and the corresponding spectrum can be calcul
exactly using the representation theory of Lie subalgebras
the generic case where operators from multiple chains oc
~that is, distinct dynamical symmetries coexist!, the SGA ap-
proach may still make it possible to accurately represent
Hamiltonian in terms of a small number of algebraic ope
tors. Since they were introduced in nuclear physics@72#,
SGA methods have been successfully applied to a variet
problems in molecular, atomic, and condensed matter ph
ics @73#. Using the approach developed here, one could
vestigate the states’ relationships to the families of cohe
states associated with the Lie subalgebras and quantify
relative entanglement.

An example we have already mentioned as motivation
our work involves fermions inN modes. In this case, in
addition to the algebra of all relevant operators, there is
Lie algebrahp of number-preserving operators quadratic
the creation and annihilation operators. These operators
be expressed in the forma†Ma, whereM is anN3N matrix.
The hp-coherent states are the Slater determinants~see, for
example, Ref.@21#, p. 7! and represent independent ferm
ons. If the Lie algebra is enlarged toha consisting of all
operators that are homogeneous quadratic in the creation
annihilation operators, coherent states include BCS st
@74#, which can be thought of as describing independent
mion pairs. Therefore, from this perspective, BCS states
unentangled. On the other hand, they have entanglem
with respect to the pairhp,ha of Lie algebras.

The example of fermions generalizes to anyons. Anyo
as defined in quantum field theory include particles w
fractional exchange statistics@75#. To apply our theory to
anyons requires the use of features of the convex-cones
ting. This is because the various sets of operators quad
in the creation and annihilation operators are Lie algeb
only for fermions and bosons@76#. This was one of our mo-
tivations for extending the formalism. The convex cones c
be defined as the set of linear functionals induced by st
on sets of operators as before and investigated using es
tially the same basic tools. Further investigation is requi
to determine whether special properties that are not avail
in the convex cones setting still apply to quadratic anyo
operator families.

For bosons inN modes, four algebras frequently play a
important role. The smallest onehpl , consists of the opera
8-17
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tors of the forma†Ma, whereM is anN3N matrix anda is
the vector of annihilation operators of theN modes. This
algebra generates the passive linear optics operators.
second Lie algebrahs is the one that generates shifts in t
canonical variables associated with the modes and con
of operators at most linear in the creation and annihilat
operators. The Lie algebrahal$hpl1hs consisting of all op-
erators that are at most quadratic in the annihilation and
ation operators is the algebra that generates all linear op
operators. Finally, there is the algebra of all relevant ope
tors. The usual coherent states of optics and harmonic o
lators are thehs-coherent states.

Although much of our proposal can be applied to the
ample of bosons, caution is required in generalizing
finite-dimensional theory to the infinite-dimensional sta
spaces of bosonic modes. In addition, algebras such ashs are
not semisimple or reductive, requiring an extension of
theory, as can be done for the theory of coherent st
@25,26#.

B. Relevance to condensed-matter physics

Entanglement, and our generalizations of it, may be
portant in the understanding of physical phenomena. For
ample, the concept of ‘‘quantum phase transitions’’@77# in-
volves a qualitative change in the behavior of correlat
functions at zero temperature, i.e., in a pure ground state
parameters in a system’s Hamiltonian are varied. In so
cases an order parameter is associated to the transitio
others a topological order. Since classical pure states ca
exhibit correlations, this is an essentially quantum pheno
enon. Moreover, the presence of correlations between
systems in a pure state can serve as a definition of entan
ment, so quantum phase transitions might be considere
be due to a qualitative change in the nature of entanglem
Therefore, quantifying and classifying entanglement m
help characterizing a quantum phase transition. Can m
sures of entanglement distinguish between a broken sym
try and a topological phase transition? Can one clas
quantum critical points? It is essential in this regard to ha
a notion of entanglement that need not make referenc
locality or subsystems. Whether the correlation functions t
best characterize a given phase transition are those of di
guishable subsystems~say, lattice sites! or of some other
kind of correlations~say, two-particle correlation function
for systems of indistinguishable particles! may determine
whether standard entanglement, or instead some genera
tion of it, provides appropriate concepts. Even standard
tanglement is relative to a distinguished factorization o
total Hilbert space into ‘‘local’’ ones, though this is usual
unproblematic in quantum information settings. In other s
tings, such as many-body condensed-matter systems, d
ent factorizations may occur on a more equal footing
‘‘global’’ transformations typically play a natural role. Thus
system of interacting bosons or fermions on a lattice may
viewed in terms of a factorization of the state space i
distinguishable lattice sites, but the Fourier transformat
from position modes to momentum modes may provide
alternative factorization; and it may also be that for so
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problems, correlations between particles, rather than mo
are relevant, taking us beyond the distinguishab
subsystems framework of standard entanglement theory.

The introduction of ‘‘quasiparticles,’’ or transformation
such as the Jordan-Wigner transformation@78,79#, may fur-
ther alter the algebraic language we use to analyze the
tem; our motivation for such transformations may be ma
ematical~easier solvability in one algebraic language than
another! or physical~one algebra better exhibits the physic
structure of the system’s dynamics, or of our interactio
with it!. In either case, the formalism of coherent states
often known to be useful, and tools and concepts from qu
tum information theory, such as generalized entanglem
measures, generalized LOCC and asymptotics may hel
well. Initial work in the direction of connecting the
information-theoretic approach to entanglement to c
densed matter can be found in Refs.@80–82#.

To give a more explicit example, Landau quasipartic
refer to thosedressedparticles of the original interacting
system which weakly interact as a result oftransferringmost
of the real interactions into the properties of the quasipa
cles themselves. As a result, these quasiparticles may
qualitatively different from the original particles, an examp
of which is provided by the composite fermions in the qua
tum Hall setup@83#. But how do we construct those quas
particles? Weak interactions can be related to weak corr
tions and, therefore,weak generalized entanglement. If one
can reexpress the original problem in a language such
the Hamiltonian operator belongs to the quadratic expr
sions in the language’s generating operators~for example,
creation and annihilation operators! then we know that the
quasiparticles are noninteracting. Otherwise, we need
quantify the degree of ‘‘entanglement’’~in the ground state,
say! to determine whether theparticlesgenerated by the lan
guage interact sufficiently weakly to behave as true quasi
ticles. The use of hierarchical languages may help to add
this issue@75#.

C. Conclusion

We have outlined a program whose goal is to tie toget
the theory of entanglement and the theory of coherent sta
We implemented the first few steps of this program start
with the observation that the fundamental concepts of
theory of coherent states coincide with the concepts from
theory of entanglement. We extended this observation
providing general definitions of the key information
theoretic notions in entanglement theory. In particular,
introduced several classes of quantum maps to the
algebraic setting appropriate for coherent-state theory
generalize the idea of separable maps for multipartite s
tems and approach LOCC. The numerous open problem
test to the richness of this program.

After noting that many of the notions that we generaliz
can, to some extent, be stated even more generally in
context of convex cones, we made this explicit by investig
ing appropriate definitions for convex cones. Except for
convex cones arising as spaces of linear functionals on
erator families induced by states, most such convex cones
8-18
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not physically relevant. Nevertheless, they help us apprec
what aspects of the various models are required in orde
investigate different properties of generalized entanglem
and their information-theoretic implications.

The main conclusion of our program so far is that co
ventional entanglement is a special case of a much m
general theory with many of the same features. Furtherm
it is clear that entanglement is a relative property of sta
requiring that states that are mixed from one perspective
be pure from other, more powerful perspectives. Once
relativity is recognized, it is possible to investigate relati
entanglement of states when many physically motivated
spectives coexist. Examples include multipartite syste
condensed-matter systems, and systems whose dynam
described by the chain of Lie algebras associated with a
namical symmetry or a spectrum generating algebra.
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APPENDIX: COMPARISON OF THE SETTINGS
FOR GENERALIZED ENTANGLEMENT

Table I shows the three settings as generalizations of
bipartite setting.
s

rving

g

TABLE I. Comparison of entanglement settings.

Bipartite systems Lie algebras Cones

Structure: Ha^ Hb , a tensor product $I %#h#g, †-closed Lie algebras Closed, convex conesC#D with

of two Hilbert spaces. of operators on a Hilbert spaceH. traces, andp: D→C a linear,

trace-preserving, map ontoC.

States: Full or reduced density matrices. Linear functionals onh or g Trace-one elements ofC or D.

induced by density matrices.

Specialization to bipartite h5$A^ I 1I ^ B%, g is the set C.$(A,B) u A~B! positive on

systems: of all operators onHa^ Hb . Ha(Hb)%, D . $C u C positive onH%,

p(C)5„tra(C),trb(C)….

Specialization to Lie C~D! consist of the linear functionals induced

algebras: on h(g) by positiver on H as

x→tr(rx). p is the restriction map.

Distinguished pure states: Product pure states. Coherent~or, equivalently, pure! h-states. StatesxPD such thatp(x) is pure inC.

Distinguished mixed states: Separable states. Convex combinations ofg-states The coneDsep of separable states in

that restrict to coherenth-states. D consisting of convex combinations of state

xPD such thatp(x) is pure inC.

Pure state entanglement von-Neumann entropy for pure S Schur-concave,l an h-state: Forx, a pure state inC,

measures: states. Unilateral purity. S(l)5 inf$S(p) u l5(kpklk with S(x)5 inf$S(p) u x5(kpkxk with

lk h-coherent,pk>0%. h-purity. xk pure,pk>0%.

Measures based on amplitudes„Sa(l)… and

supporting Cartan subalgebras„SC(l)….

Mixed state entanglement Given pure state entanglement measureS: Given anh-state measureS and ag-statel, Given aC-measureS, x a state inD.

measures: S(r)5 inf$(kpkS(rk) u (kpkrk5r, S(l)5 inf$(kpkS(lk) u (kpklk5l, S(x)5 inf$(kpkS„p(xk)… u (kpkxk5x,

rk is a pure product state,pk>0%. lk�h is coherent,pk>0%. p(xk) is pure,pk>0%.

Properties of entanglement Convex. Monotone under LOCC. Convex. Monotone under explicit Convex. Monotone under trace-prese

measures: liftable separable quantum maps. explicit liftable C-separable maps ofD.

Maximally entangled states: Bell states. See Ref.@36#. Undefined.

Nonclassicality of entangled states: Bell inequalities. See Ref.@36#. Undefined.

Hierarchies: Add the unilateral algebras. Arbitrary family of operator Lie Arbitrary family of cones, partially

algebras ordered by inclusion. ordered by trace preserving onto maps.

Local unitary operators: Product unitary operators. ei Re(h). Positive linear isomorphismf : D→D

such thatp f 5 f̃ p for some isomorphism

f̃ : C→C. Caution: Defs of local maps

do not always specialize to the correspondin

defs for Lie algebras.
8-19
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TABLE I. ~Continued!.

Bipartite systems Lie algebras Cones

Local operators: Product operators. eh. C-product maps: Extremality-preserving

positive mapsf : D→D that preserve

extremality inDsep also.

Separable maps: r→(kAkrAk
† , where the r→(kAkrAk

† , whereAkPeh. C-separable maps:x→(kAk(x),

Ak are product operators. Caution: Defs of local maps do not where theAk areC-product maps
always specialize to the corresponding
defs for bipartite systems.

Unilocal operators: A^ I , I ^ A. Operators ofh with maximal ground spaces? C-product maps ofD that lift to C?

Operators whose action lifts toh-states?

Compatible families of Operators acting on Operators conjugate undereh to Undefined.

one-sided local operators: the same subsystem. one with maximal ground spaces?
LOCC: Monoid generated by conditional Monoid generated by conditional composition Monoid generated by conditional compo

composition of explicit unilocal of explicit quantum maps consisting of of trace-preserving explicit liftableC-separable
quantum maps. compatible families? maps?

Monoid generated by conditional composition
of explicit liftable separable quantum

maps? . . .
Communication complexity: Defined in terms of outcome probabilities in each step of a conditional composition.
Known monotonicity of Under LOCC maps. Under explicitly liftable separable Under trace-preserving explicit
entanglement results: quantum maps. liftable C-separable maps.
Resource scaling: By tensor product, preserving Grow Lie algebras over tensor Undefined.

orientation of the bipartition. products ofH using partial traces.
May require additional structure?
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~Birkhäuser, Boston, 2001!.

@45# R. Gilmore,Lie Groups, Lie Algebras, and Some of Their A
plications ~Wiley, New York, 1973!.

@46# B.G. Wybourne,Classical Groups for Physicists~Wiley, New
York, 1974!.

@47# J.F. Cornwell,Group Theory in Physics~Academic Press, Lon-
don, 1989!.

@48# J. Fuchs and C. Schweigert,Symmetries, Lie Algebras, an
Representations, Cambridge Monographs on Mathematic
Physics ~Cambridge University Press, Cambridge, Englan
1997!.

@49# H. Georgi, Lie Algebra in Particle Physics~Perseus Books
Reading, MA, 1999!.

@50# J. Hilger, K. H. Hoffman, and J.D. Lawson,Lie Groups, Con-
vex Cones, and Semigroups~Clarendon Press, New York
1989!.

@51# See, A. Barvinok http://www.math.lsa.umich.edu/barvino
courses.html

@52# R.F. Werner, Phys. Rev. A40, 4277~1989!.
@53# H. Ollivier and W.H. Zurek, Phys. Rev. Lett.88, 017901

~2002!.
@54# C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rain

P.W. Shor, J.A. Smolin, and W.K. Wootters, Phys. Rev. A59,
1070 ~1999!.
03230
-

,

/

,

@55# A. Abragam, Principles of Nuclear Magnetism~Clarendon
Press, Oxford, England, 1961!.

@56# G. Vidal, J. Mod. Opt.47, 355 ~2000!.
@57# C.H. Bennett, S. Popescu, D. Rohrlich, J.A. Smolin, and A

Thapliyal, Phys. Rev. A63, 012307~2001!.
@58# W. Dür, G. Vidal, and J.I. Cirac, Phys. Rev. Lett.89, 057901

~2002!.
@59# M.J. Donald, M. Horodecki, and O. Rudolph, J. Math. Phy

43, 4252~2002!.
@60# R. Bhatia,Matrix Analysis~Springer, New York, 1997!.
@61# H. Minc, Permanents~Addison-Wesley, Reading, MA, 1978!.
@62# C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Woo

ters, Phys. Rev. A54, 3824~1996!.
@63# C. Bennett, Phys. Scr.T76, 210 ~1998!.
@64# J. Dixmier,Enveloping Algebras~American Mathematical So-

ciety, Providence, RI, 1996!.
@65# R. Delbourgo, J. Phys. A10, 1837~1977!.
@66# R. Delbourgo and J.R. Fox, J. Phys. A10, L233 ~1977!.
@67# B.M. Terhal and D.P. DiVincenzo, Phys. Rev. A65, 032325

~2002!.
@68# E. Knill, e-print quant-ph/0108033.
@69# R. McWeeny, Methods of Molecular Quantum Mechanic

~Academic Press, London, 1992!.
@70# A. Wilce, Int. J. Theor. Phys.31, 1915~1992!.
@71# L. Gurvits, e-print quant-ph/0201022.
@72# F. Iachello and A. Arima,The Interacting Boson Model~Cam-

bridge University Press, Cambridge, UK, 1987!.
@73# A. Barut, A. Bohm, and Y. Ne’eman,Dynamical Groups and

Spectrum Generating Algebras~World Scientific, Singapore,
1988!.

@74# J.R. Schrieffer,Theory of Superconductivity~Perseus Books,
Reading, MA, 1964!.

@75# C.D. Batista and G. Ortiz, Phys. Rev. B67, 134301~2003!.
@76# A. Lerda and S. Sciuto, Nucl. Phys. B401, 613 ~1993!.
@77# S. Sachdev,Quantum Phase Transitions~Cambridge Univer-

sity Press, Cambridge, UK, 2001!.
@78# P. Jordan and E. Wigner, Z. Phys.47, 631 ~1928!.
@79# C.D. Batista and G. Ortiz, Phys. Rev. Lett.86, 1082~2001!.
@80# T.J. Osborne and M.A. Nielsen, e-print quant-ph/0109024.
@81# T.J. Osborne and M.A. Nielsen, Phys. Rev. A66, 032110

~2002!.
@82# A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature~Lon-

don! 416, 608 ~2002!.
@83# J.K. Jain and R.K. Kamilla,Composite Fermions~World Sci-

entific, Singapore, 1998!, pp. 1–90.
@84# E. Schrödinger, Proc. Am. Philos. Soc.124, 323 ~1980!; refer

to Ref. @85#.
@85# J.A. Wheeler and W.H. Zurek,Quantum Theory and Measure

ment~Princeton University Press, Princeton, 1983!.
8-21


