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Generalizations of entanglement based on coherent states and convex sets
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Unentangled pure states on a bipartite system are exactly the coherent states with respect to the group of
local transformations. What aspects of the study of entanglement are applicable to generalized coherent states?
Conversely, what can be learned about entanglement from the well-studied theory of coherent states? With
these questions in mind, we characterize unentangled pure states as extremal states when considered as linear
functionals on the local Lie algebra. As a result, a relativized notion of purity emerges, showing that there is a
close relationship between purity, coherence, @mahentanglement. To a large extent, these concepts can be
defined and studied in the even more general setting of convex cones of states. Based on the idea that
entanglement is relative, we suggest considering these notions in the context of partially ordered families of Lie
algebras or convex cones, such as those that arise naturally for multipartite systems. The study of entanglement
includes notions of local operations and, for information-theoretic purposes, entanglement measures and ways
of scaling systems to enable asymptotic developments. We propose ways in which these may be generalized to
the Lie-algebraic setting and, to a lesser extent, to the convex-cones setting. One of our motivations for this
program is to understand the role of entanglementlike concepts in condensed matter. We discuss how our work
provides tools for analyzing the correlations involved in quantum phase transitions and other aspects of
condensed-matter systems.
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[. INTRODUCTION one photon in two coupled cavities. Being the state of one
particle, there is a tendency to expect that there is no en-
Entangled states are joint states of two or more distintanglement because one particle cannot be entangled. On the
guishable quantum systems that cannot be expressed asther hand, each cavity is a quantum system. From the point
mixture of products of states of each system. Entangledf view of these two quantum systems, the state where the
states can exhibit quantum correlations between the two syghoton is in an equal superposition of being in either cavity
tems that have no local classical interpretation. One of thean be represented a$10>+|01>)/ﬁ and is clearly en-
most important developments in the study of quantum metangled. Another example involving photons is provided by
chanics was the characterization of these correlations by Beiptical “cat states19,20. In this case, cat states are quan-
[1,2], whose many experimental verificatiof&4] (see also  ym superpositions of sufficiently distinct coherent states in a
Ref. [5] and the references thergihave given further sup-  ,54de. As the name suggests, such states are thought to in-

port to the .\éal;d'ty of %uan(tjum rEecr;]amgs];_ Entangled StateZolve entanglement. They certainly have distinctive nonclas-
are now widely considered to be the defining resource of;e,, behavior, but since they exist in a single sysighe

quantum communlcatlon, engblmg protocpls such as qgar}hode the strict interpretation of entanglement based on sub-
tum teleportatior{6] and leading to great improvements in

the communication efficiency of certain multiparty tasksSyStemS would indicate that no entanglement is present. A

[7,8]. As a result, entanglement is being actively investigate hird example is that of a system consisting of a number of

both from a physical and from an information-theoretic per- ' MoNs I a lattice. The "simple” states for S.UCh a system
spective. are described by the so-called Slater determinéseg, for

So far, nearly all studies of entanglement involved two or®X@mple, Refl21], p. 7, Ref[22]), which describe the wave
more distinguishable quantum subsystems. As a resullt, invefunction of nonmter_actmg fgrmlons. Because the fermions in
tigations of entanglement have focused on understandingtch @ wave function are independent, one expects that no
how quantum systems are made up from subsystems ar@itanglement is present in such a state. However, from the
how this differs from classical systems. However, there are #0int of view of the lattice modes, most Slater determinants
number of signs that the assumption of distinguishable quarexhibit entanglemer{23]. The three examples make it clear
tum subsystems is too narrow to capture all the properties ghat the presence or absence of entanglement depends on the
states that one might like to ascribe to entanglement. Severphysically relevant point of view. Here we propose that this
authord9-18] have considered entanglement-related notiongoint of view depends on the relationships between different
for bosons and fermions. For example, consider the state afpaces of observables that determine the dynamics and our

ability to control the system of interest. In particular, the
extent to which entanglement is present depends on the ob-

*Email address: barnum@lanl.gov servables used to measure a system and describe its states.
"Email address: knill@lanl.gov One of our goals is to show that the relationships between
*Email address: g_ortiz@lanl.gov product states, separable states, and entangled states are at
$Email address: Iviola@lanl.gov least Lie-algebraic in nature, and to some extent even more
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general. This makes it possible to study the salient features For the purpose of determining what are the essential
of entanglement without reference to subsystems, using improperties of states needed to study entanglement, we intro-
stead whatever Lie algebras are physically relevant. For thduce a setting even more general than Lie algebras. Since the
case of bipartite quantum systems, the relevant Lie alggbra states when viewed as linear functionals on observables form
consists of the unilocal operatofeperators of the form a convex cone, we generalize the definitions to the setting
A®I or®B). To show that the ideas of entanglement, sepawhere we have two or more convex cones related by positive
rability and product states do not critically depend on the twamaps. The cones represent the family of states as linear func-
subsystems, we provide several ways in which product statd®nals on the Lie algebras. In the case of bipartite systems,
can be characterized in terms Ipfalone. All of these ways these are the local Lie algebra and the Lie algebra of all
lead to the same concept for general semisimple Lie algeoperators. The map relating the two state spaces is the re-
bras, namely that of generalized coherent sti#ds-26. Itis  striction map of linear functionals. The definitions relating to
therefore natural to consider product states to be specigeparability and entanglement only require this structure. En-
kinds of coherent states. From this perspective, separabf@nglement measures can also be defined based only on con-
states are mixtures of coherent states, and pure entangl¥gXity, and so can various notions of local maps. This is of
states are incoherent pure states. Another way to think abolfterest because convex cones of states and observables and

these structures is to realize that the coherent states are ¢R€ associated ordered linear spaces have been used as a
a<;|1eneral framework for investigating the foundations of quan-

: : . hanics, classical mechanics, and other physical or
with respect to the set of expectations of observables in thgJm mech: e ’
P P robabilistic theoried32,33. Our work can therefore be

Lie algebra. Thus, pure states are entangled if they appear gosed to generalize some aspects of entanglement to this
be mixed with respect to the Lie algebra’s expectations. | g Pex gk .

. ! L r}rfamework, even though the notion of composite system is
the case of bipartite quantum systems, this is an aspect Qhot uniquely defined in this casa4,35)

entanglement that has long been considered a key nonclassi- | ia1ing seriously the idea that entanglement is a relative
cal property of quantum mechanics: Pure entangled stat§ytion one finds that in many cases there are many more
have mixed reduced density operators whereas, for examplgyan two relevant Lie algebras. In the bipartite case, we can
in classical probability no pure state can have a mixed margonsider the hierarchy of algebras consisting of the trivial
ginal (see, for example, Ref27], p. 298, Ref[28], p. 116;  |je algebra, the algebra of operators acting on the first sys-
and Ref[29], p. 308. This fact was noted by Schinger in  tem, that acting on the second system, the sum of these, and
the papers where he introduced the notion of entanglemerite algebra of all operators. When there are more than two
and the example of his cf30,31]. Schralinger writes: “The  systems, the number of different ways of combining local
best possible knowledge ofvehole does not necessarily in- Lie algebras multiplies. For photons, there is the Lie algebra
clude the best possible knowledge of all garts” Here,  of passive linear operations, of active linear operations, and
having best possible knowledge of a system requires that thiat of all linear and nonlinear operations. To these one might
system be in a known pure state. add the Lie algebras acting locally on the modes, etc. It is in
The recognition that incoherence naturally generalizes erthe increasing amount of information that is available about
tanglement makes explicit the dependence of the notion oftates as more operators are added that crucial quantum prop-
entanglement on the relevant Lie algebra and makes avaierties emerge. We believe that in studying a given system, it
able the tools of the theory of generalized coherent stateis beneficial to consider coherence and entanglement proper-
[25,26 for investigating aspects of entanglement. To extendies at multiple levels.
the power of this perspective to the information-theoretic Independently of the work reported here, KlyacHi&]
applications of entanglement requires introducing measurdsas recently proposed a generalization of entanglement for
of entanglement, generalizing the ways in which entanglerepresentations of semisimple Lie groups. His starting point
ment can be manipulated, and providing a means for using an extremality property that we use as one of the equiva-
states as a resource. In bipartite systems, there is an abuent characterizations of produ@h general, coherepstates.
dance of measures of entanglement, many of which generaklyachko’s work is focused on the geometric invariant
ize naturally. Further measures arise naturally in the generaheory approach for investigating states with respect to one
context and specialize to potentially interesting measures fdtie group of operators. This approach leads to useful classi-
multipartite systems that have not yet been considered. Ifications of the orbits of states under the Lie group’s action.
bipartite systems, a key role is played by LOQ@cal quan- In this context, he discusses how the notions of classical
tum operations and classical communicatioraps. We pro- realism that lead to Bell's inequalitidd] generalize to the
pose several classes of maps for general semisimple Lie alie-algebraic setting. He also introduces notions of maximal
gebras that, in the case of bipartite systems, are related &ntanglement and another interesting entanglement measure.
LOCC. A desirable property of entanglement measures is In Sec. Il, we introduce the basic notions required for
that they are nonincreasing under LOCC. We can shovgeneralizing separability and entanglement by reviewing the
monotonicity properties for some classes of maps in the gerexample of bipartite systems from the point of view of Lie
eral setting. To introduce the notion of states as a resourcalgebras and coherence. The generalization to semisimple
and enable asymptotic analysis, we consider schemes for asie algebras is explained in Sec. lll, and the extent to which
sociating Lie algebras with tensor products of systems dethe generalization depends only on the relationships between
fined by a given representation of a semisimple Lie algebraconvex cones is discussed in Sec. IV. For reference, the dif-
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ferent settings for studying entanglement are compared iknowledge of the correlations, which are expectations of op-
Table I. The paper concludes with a discussion of other relerators of the formA®B. Note that this method for distin-
evant examples and the potential applications to condensefliishing between unentangled and entangled states does not
matter. We assume familiarity with the basic concepts ofextend to mixtures. A generic separable state can contain
guantum i_nformati_on and ent_anglement.Agood reference fofontrivial correlations. An example is |Q)(0|®|0)(0|
quantum information theory is Ref37]. For reviews of en- 1 1)(1]®|1)(1])/2. Here the two subsystems are classically
tanglement, see Reff38—40. We also use results from the qrrelated. Nevertheless, it is possible to characterize sepa-
basic theory of Lie algebras. Details can be found in booksapijiy by investigating the structure of states in terms of
such as Refd41-44. For physically motivated treatments their expectations of local versus global observables.

of Lie algebras, see Ref15-49. References for convexity There are four nontrivial Lie algebras of observables that

and convex cones include Ref80,51. determine the structure of the bipartite system.fgth,) be

the Lie algebra of operators of the formA®I

II. ENTANGLEMENT FOR BIPARTITE QUANTUM (I®B) acting on systena (b). We call these thainilocal
SYSTEMS algebras because they consist of operators acting on one sub-

The standard setting for studying entanglement involve system only. Thdocal Lie algebra is given byy =ba* by

two (or more distinguishable quantum subsystems forming Let N t}e th(la_.L|e|ang;—:~bra of all opelratorHs Otk - AS d?fme_lq, f
bipartite system. The properties of entanglement are mos €se four Lie aigebras are complex. HOWEVET, as Tamiles o

salient if the quantum subsystems are spatially well Sepagperators they are tlosed that is, closed under Hermitian

rated, with communication between the sites restricted t§°njugation. Let Ref) be the set of Hermitian operators in
classical signals subject to speed-of-light limitations. Let the)- For a Hermitian-closed space of operatysh=Re(h)

state space of two such quantum subsystems be given by thei Re(h), wherei =/~ 1. Using complex Lie algebras sim-
Hilbert spaceg, andH, of dimensionN, andN,, respec- plifies the representation theory and is useful for defining
tively. The joint state space of the bipartite systeni4g,  generalizations of local quantum mafsee Sec. Il B Al-
=H,®H,. All state spaces and operator algebras are aghough exponential®” for non-skew-Hermitian operators
sumed to be finite dimensional. See Sec. V A for a briefare not unitary, they can be interpreted as Lie-algebraically
discussion of the need and possibilities for extensions télefinable operators associated with postselected outcomes in
infinite-dimensional systems. Product states are pure staté@® implementation of a quantum map.

of H,p, of the form|)® | #). Entangled pure states are states A simple way of characterizing product states without re-
of H,;, that are not expressible as a product state. It is nederring to the underlying partition into two subsystems can
essary to generalize the state space to mixtures of pure staté§ based on unique ground statesiAque ground statef a
which are probability distributions over pure states. For thisHermitian operator is a unigue minimum-eigenvalue eigen-
purpose, one uses density matrices to represent states. A détate. Operators with degenerate minimum-eigenvalue
sity matrix p is pure if p=|y)(y| for some|y). Equiva- €igenspaces do not have a unique ground state. In general,
lently, it is pure if tr(p?)=1, or if p is extremal in the set of Wwe call the minimum-eigenvalue eigenspace of an operator
density matricegsee below A separable state is a mixture theground space

of product states. Its density matrix is therefore@nvex Theorem 1|1) € Hap is @ product state iff it is the unique
combinationof product states, which is a sum of the form ground state of an operator in Rg).
=Pl B ] ® | )byl , where @) is a probability distri- Proof. Suppose thalty) is the unique ground state &f

bution [52]. We will use the expressions “convex combina- =A®|+1®BeRe(h). The ground space df is the inter-
tion” and “mixture” interchangeably. A nonseparable state is section of the ground spaces Af1 and | ®B, which are
said to be entangled. It is worth recalling that separable statgyroduct subspaces. Thus, a unique ground state is a product
can have nonclassical features. For example, see Refstate. Conversely, ldt))=|¢,)®|dp). Choose an operator
[53,54. A(B) on H,(H,,) such that ¢,)(| ¢p)) is the unique ground
state of A(B). Then |¢) is the unique ground state of
Axl+1®BeRe(l). |
We can use Theorem 1 to define a generalization of a
In our approach, the key distinction between entanglegroduct state for any Hermitian-closed Lie algebra of opera-
and separable states is the difference between the way thingms. As we will see in Sec. lll, this generalization agrees
look locally and globally. The local observables are operatorsvith the notion of generalized coherent states.
of the form A®| and1®B. For our purposes, it is conve- The distinction between product and entangled states can
nient to allow arbitrary operators as observables, not onlalso be viewed in terms of purity with respect to the relevant
Hermitian ones. Since non-Hermitian operators can be exalgebra of operators. It can be seen that product states are
pressed as complex linear combinations of hermitian operaexactly the states whose reduced density matrices on each of
tors, expectations of such operators are readily computethe two subsystems are pure. The two reduced density ma-
from expectations of Hermitian operators. trices for a state completely determine the expectations of the
If a pure state of the two systems is unentangled, then it isbservables in the local Lie algebra. To prepare for general-
completely determined by the expectation values of the locaking these observations, consider states as linear functionals
observables. To specify a pure entangled state requiremn the Lie algebras in question. We definetastateto be a

A. Characterizing product states
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linear functional\ on the operators df inducedby a density ~ the observable as a Hamiltonian. The weak interaction there-

matrix p according tox(C) =tr(pC). The set off-states is fore naturally limits the available control to Lie algebras gen-
denoted byh*. In the present setting, states are completelfrated by a small number of observables. An example where

determined by the linear functional on the Lie algebra of aIILh'isn S|tuat|r?tn n?cicu;s flor rS);ﬁterzstitharlt are best rpodelled las
operatorsg induced by their density matrix. 4-state\ can €ing quantum IS nuciear magnetic resohance of molecules

be restricted to each of the Lie algebtgs b, andb, . For in the liquid state 5]
example, the restriction [ h, of \ to b, determines the ex-
pectations of observables on the first subsystem, and there-
fore the reduced density matrix associated with the state. ~ One can compare states in the context of information pro-
Consider the sefi,” of b-states. This set is closed under c€ssing resources by considering families of “local” quan-
convex(or probabilistic combination. That is, if the,, are UM maps that can be used to convert states. For bipartite
hy-states, then so i&,p,\ for any probability distribution systems, as well as for multipartite systems in general, the

(P« By compactness, all states i can be obtained as most important such fgmily, LOCC, consists of maps that
convex combinations afxtremalstates(or extreme pointef ~ ¢an be implemented with local quantum maps with access to

h,"). Extremal states are states not expressible as a conv%gc'”as and classical communicatidsee Ref.[37], Sec.

combination of other states. If the only information availableO éarég rl_"’ggﬁlr frzmr'ggngaﬁsﬁagﬁggsﬂiﬂanﬁmome?gtsérhagf t?]r;
about a state are the expectations of observablés,ithen P P 9 P S

states that induce extremal expectations, that is, extremal eflOrrn A®B. Separable quantum maps are readily generalized

ements ofy;", are those about which there is the least un_to the Lie-algebraic setting, whereas we have not yet found

certainty. It therefore makes sense to call such s or N equally convincing generalization of LOCC.
P ifi faes A quantum maps a trace-preserving completely positive
h, pure to be specific.

Theorem 2An b.-state is pure iff it is induced b linear transformation of density operators. Rather than defin-
praduct state b IS pure i it 1S induced by a pure ing these terms, we use the fact that every quantum map can

Proof. Consider a density matrig inducing theh,-state be written in the operator-sum representation As

to fe _ ; i
\. The state\ is determined by the reduced density matrices > >kCkPCr, With 2, G, C=1. We will also considecom-

of p. Itis possible to find a probabilistic combination of pure PI€t€ly positive mapwhich have the same form, but do not
product states with the same reduced density matrices, whidigduire the constraint o8, To define LOCC, we maqu the
therefore also induces. This implies that every-state is ~S€quenceC=(Cy),. explicit and defineC(p) =2y CypCy.
expressible as a probabilistic combination Igfstates in-  Note that the sequend is not uniquely determined by the
duced by pure product states. Consequently, the pure Map. We callC an explicit map See Ref[37], p. 372 for
states are among those induced by pure product states. CdMW to determine when two explicit maps act the same. To
versely, if\ is not pure, thei can be nontrivially expressed avqld trivial deggnera(:les, we assume that the opergtors that
in the formpA;+ (1—p)\,, where\, are b,-states. It fol- define an epr|C|t.rr.1ap are always nonzero. D,J, is a
lows that the two reduced density matrices that can be dei€quence of explicit quantum maps, then the conditional
duced from\ are not both pure: they are mixtures of the COmMposition ofC and Oy) is the quantum map with opera-
reduced density matrices deduced fram, and, sincen; tor sequenceld,,Cy),, and actionp—>2k|Dk|CkpCIDL. A
#\,, at least one of these mixtures is nontrivial. [ | unilocal quantum mays a map of the form &,®1), or (I

The previous theorem shows that the difference betweem®B,),. LOCC is the set of quantum maps obtained as con-
pure unentangled states and pure entangled states is thatdisonal compositions of unilocal maps. The length of the
expectations ofy, the latter are not extremal. If the only composition is associated with the number of rounds of clas-
information that is available are expectations®£ b, itis  sical communication. Aeparable majs a completely posi-
not possible to distinguish between entangled states and utive map with an explicit form given byA,®B,),. Note
entangled mixedthat is, separabjestates. To distinguish, we that all LOCC maps are necessarily separable. The set of
need expectations of other operators. It is worth noting whaseparable maps has been called SLQ66-58 and can be
it means to have access only to expectations of sets of obviewed as maps that can be implemented with LOCC and
servables. Given only a single instance of a quantum systenpostselection based on the communication record.
the expectations cannot be inferred. On the other hand, with Quantum maps as defined here are often called “quantum
sufficiently powerful control, it is possible to realize a pro- operations”[37], though the latter term is sometimes ex-
jective measurement of the eigenvalues of observables, tended to include non-trace-preserving completely positive
process that gives information not just about the expectatiomaps. In this paper, we use the word “map” to refer to linear
of an observable, but also about the expectations of its powfunctions of spaces other than the Hilbert space of the quan-
ers. One situation where access to expectations only is readldm system under consideration. We use the word “opera-
istic is when the quantum system can only be accessed cdler” to refer to linear functions from the Hilbert space to
lectively in large ensembles involving mostly identical statesitself. An important role in defining various notions of local
In an appropriate weak interaction and large ensemble limitmaps is played by explicit maps, which in the bipartite and in
the effect on other large systems reveals the expectations tfie Lie-algebraic setting are completely positive by defini-
observables involved in the interaction, whereas the effect otion. There is the potential for confusion in referring to ex-
the systems in the ensemble tends to a unitary evolution witplicit maps. For example, an explicit map can be separable

B. Local quantum maps
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without the operators in the explicit representation havingoe lifted to §. Its lifting is the mapC’ induced onh-states.
the necessary product form. To simplify the terminology, we(Technically,C’ is a lifting along the restriction map o
position the adjective “explicit” such that it applies to all composed with the restriction map.

modifiers between it and the word “map.” For example, an  In the present setting, the notion of liftability can be sim-
explicit separable mag=(C,), satisfies the fact that each plified by using the canonicdlia the trace inner produrct
Cy is a product operator, whereas this is not required ofsomorphismu betweenh* andl. Because the trace inner

separable explicit maps. product is nondegenerate when restricted to the t-closed set
Separable maps can be defined frpnwithout reference  of operatord, the isomorphisnu is uniquely determined by

to the two-component subsystems. the identity \(C)=tr[ w(\)TC] for all Ce}. In particular,
Theorem 3A completely positive map is separable iff it for the algebray of all operators ort,y, if A e g* is induced

has an explicit representatio€), with C, e e". by the operatok, thenw(N\)=X. In general, we say that the

By definition,e" is the topological closure of the set of all linear functional\ is inducedby w(\). Let tr, (tr,) denote
exponentials of operators if . The notion of closure may the partial trace mapping operators dfy, to operators on
be based on the norm induced by the matrix inner productt, (Ha, respectively. We have the following identities:
tr(ATB).

Proof. e consists of all nonzero determinant operators of
the formA®B. Thuse’ contains all invertible product op-
erators which are dense in the set of product operators. The
set of product operators is closed. [ | w(NThy) =N @tr[ w(M)],

There are separable quantum maps that are not LOCC
[54]. The goal is to define or construct, with minimal refer-
ence to the two subsystems, quantum maps that respect log (A [h) =trg[ w(N) I /Ny + 1/Ng@trg[ w(N)]—tr{ w(N)]
cality better than the separable ones. For example, in order to
construct the family of LOCC maps, it is sufficient to be able
to determine when an operator fipis unilocal, and when a

family of unilocal operators all act on the same side. WithThese identities witness the fact that the reduced density ma-
this ability, one can construct LOCC as was done above, bysices of a state determine the induced linear functionals on
conditional composition. If the ability does not depend onne |ocal Lie algebras. In the range af the nullspaces of
the bipartitg nature of the §ystem, there is hope that LOCGhe restriction maps td,,h,, and b, are the three spaces
has a nontrivial generalization. o N spanned byA® B with B tracelesgrestriction toh,), A trace-

We have two approaches to obtaining families of sepajess(restriction toh,), and bothA andB tracelessrestriction
rable quantum maps with stronger locality properties. Thgq, y ) Using the fact that product operators are a basis of all
first approach is based on the observation that unilocal MaRSherators or,®H,, it can be seen that the explicit map

induce well-defined transformations dj,-, bh,-, and C lifts to b, iff try=,C t_
. : a b2 kC(A®B)C,=C'(A)tr(B) for some
h,-states. To formally define what this means, &the an map C’. Equivalently, it lifts iff whenever tB)=0,

explicit map. TherC acts on the set of linear functional$ then t3.CuA®B)CI=0. Similar statements can
of g according toC(\)(X)=\(2xC{XCy). It will be clear be madg akbokLﬁﬁb. C)Iiftks tO.fh iff whenever both trf) =0
from this context whether we are applyiyto operators or and r@)=0 then 3, C(A® B)CT_O and

. ) . = . =0, r=
to linear functionals. The ma@, but not its explicit form, is 1,3, Cu(A® B)CI=0.

determined by the action ggstates. Note also thatstates Most completely positive maps, even LOCC ones, cannot

linearly span all linear functionals gn and similarly forh- . g ) "
states withh one off,, by, or b;. C induces a well-defined be ,I'|fted. An e>_<ample for two qupns |s_the conditional re-

. . -~ set” map that first measures qubitand, if the measurement
transformation ofy-states if we can complete the following . . ; )
commutative diagram with a ma@’ of b* outcome d.l), it resets qubib to |0>.. However, the unilocal

' maps are liftable. In fact, they are liftable to bdthandb,,
. . as arg(unconditional compositions of unilocal maps. This is
g ., 8 the case because such maps are determined by their actions
on the reduced density matrices. This suggests that liftable

m(NTha)=trp[ (N)]@1/Np,

X (1®1)/(NaNp).

¢}

restrict | L restrict explicit guantum maps could be used as a generating set for
x C' i« guantum maps with more locality than separable quantum
b b 1 : , .
— maps. We next discuss some of the properties of liftable
separable maps and their relationship to LOCC.
whereh* is the set of linear functionals on Equivalently, Theorem 4Let C=(C,®C;) be a one-operator, explicit

whenevemn ; and\, areg-states that agree dn that is, for ~ separable map liftable t . ThenC=aU®V with U andV
which N1 [h=X\,[h, it is the case tha€C(\;) [h=C(\,)[h.  unitary anda e C.

Equivalently, if\ is a linear functional ory such that\ [ Proof. Liftability implies that if A andB are traceless, then
=0, thenC(\) [h=0. The last statement is equivalent to the C,AC] andC,BC} are traceless. This implies that the map
statement thaC preserves the nullspace of the restrictionf: AHClACJ{ satisfies that fif (A) ]= a tr(A) for somea;.
map. If any of the above properties hold, we say thatan  Thus f/«; is trace preserving from which it follows that
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ClCi;=ayl. For the same reasof,;C,=a,l. The conclu- If the answers to this problem and to Problem 6 are
sion of the theorem now follows, with= \[a;a,]. m  “yes,” then one has to consider the strengthening of the

Theorem 5Let C be an explicit separable map that lifts to questions in Problem 6 where “separable” is replaced by
the identity map ory,. ThenC is unilocal, acting on system “explicit separable” and “LOCC” by “explicit LOCC.”

a only. This is required so that conditional composition can be used
Proof. Write C=(D® E, ), whereD,®E,#0 for allk.  Without leaving LOCC. Here is one case where we can prove
By assumption and app|y|ng the map|t® B, that a famlly of quantum maps is eXpIiCit LOCC.

Theorem 8 Let C=(D,®E,) be an explicit separable

quantum map that lifts tg, with the additional property that
> tr(DD{)EBE}=N_B. (2)  (DIDyy is linearly independent. TheR,=y,U, with U,
K unitary. In particularC is an explicit LOCC map.
, Proof. Using the identification of linear functionals with
I for some k. Ey#l, we can find [¢)(¢| such that ,oorai0rs consider linear functionals of g induced by
Ed i) (¥lE('s one-d|meQS|onaI range does not contain.  A@B with tr(B)=0. The restriction oh to b, is induced by
Because for all, tr(D;Dy)>0, the left side of Eq(2) also  (A)I@Beb,. The restriction has only scalar dependence

has this property, contradicting the identity. Herige= a4l on A, Restricting after applying gives the linear functional
for eachk and the result follows. B induced by

Theorem 5 characterizes the unilocal maps but has the
disadvantage that we have to refer explicitly to the unilocal

Lie algebras, thus requiring more information about locality >, (D AD)I/N,® E(BE]
than that provided by, alone. This suggests the following K
problem.
Problem 6 Are separable quantum maps that lift fip +§k: DAD}®tr(E,BEDI/N,. (©)

LOCC? Are they LOCC if they lift to botty, and h,?
I th_e answer to this problem is “no, thgn we are inter- Note that because 8() =0, and the assumption that the map
ested in the question of whether the explicit separable quan- . I .
. Is trace preserving, the contribution t®| vanishes. Be-
tum maps that are liftable t generate all separable quan- cause of liftability, the same scalar dependence applies to this
tum maps by conditional composition. Y, P bp

In order to be able to conditionally compose explicit Sepa_expresslon. By cycI|C|tTy of th_e trace, %ADD
rable quantum maps that are LOCC without departing from™— Ff(ADkDi).- BecauseDkFDk are independent, we can
LOCC, we need the explicit representations to have the adth00seA; such that tr§,DyD,) = 5. Hence the following
ditional property that they can be LOCC implemented inare all scalar multiples of the same operator, where the scalar
such a way that the communication record reveals which ofs independent oB:
the operators in the sequence occurred. Following our con-
vention for using the adjective “explicit,” we call an explicit
guantum map with this property axplicit LOCC map

Problem 7 Are there explicit separable quantum maps
that are LOCC but not explicit LOCC? Computing the partial trace over the first system, we get

0,=1/N,®EBE/+ >, D AD®tr(E,BE)I/Ny. (4)
k

E/BE/+ >, tr(AD/D)tr(BE/EL)/N,, by cyclicity of the trace
k

tr,(0))={ EBE/+2> t[(A®B)(D{D®E{E)]/Ny, because the trace is multiplicative fop
k

E,BE,T+tr(A,®B)/Nb, becauseC is a quantum map
E,BE/, because (B)=0.

Consequently, the operatdesB E,’r are all proportional with ~ for all tracelessB, where o tr(A,)=tr(A). Reformulating,

constant of proportionality independent Bf ConsiderE ~ we get that for all traceles8, tr(BE/E,)=a,tr(BE'E).

=E,. We have Hence E/E,=aE'E+pB ] for some B,. The trace-
E\BE/ =« EBE' (5)  preserving condition requires that
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B . P ‘ . the span ofe®Ce P|D e b} with C maximally unilocal an
l®l _Ek DiDy® EkEk—g DiDi@ (e E'E+ Byl) m-compatibleunilocal family. With this definition, we have
(6) the following theoerem.
Theorem 11An explicit unilocal quantum map consists of
an m-compatible unilocal family of operators.
. ) Proof. Every unilocal one-dimensional projector is maxi-
mally unilocal, and the span of the conjugates uneferof
one such projector consists of all operators acting on the

Suppose that the traceless part BE is not zero, then Same side. . u
zkakolok:o, which is possible only iy, =0 for all k (by Using this theorem, we can characterize LOCC as the set

independende But by constructiony, =1, soE'E is a mul- of quantum maps obtained by conditional composition of

tiple of the identity, henc&=E, is a multiple of a unitary eXP"C'_t m—_compat_lble quantum maps. However, this charac-

operator, sayE, = v,U, . Returning to the trace-preserving terization is not directly related to the definition of separable
1 r r r-

condition[Eq. (6)] and using the fact thatwas arbitrary, we =~ Ma@PS- To do so requires introduci_ng explicit quantum maps
i P — _ _ whose operators are exponentials of members of an
find that =,y D Dyyx=1. This makesD=(yD,®I), a

. . 7 m-compatible family. Also note that in addition to using lin-
unilocal quantum magJy can be implemented conditionally g5 closure in the  definition af-compatibility, we could

on which D occurs in a unilocal implementation d@,  paye ysed closure under commutatérie brackel. In the

henceC is LOCC. B pipartite setting, this makes no difference. Alternatively, we
Corollary 9. Let C=(D1®E;,D,®E;) be an explicit  ¢qy1d have left out linear closure and just used conjugation

separable quantum map that lifts fip. ThenC is explicit  ngered. We do not know whether conditional composition

LOCC. T of the resulting quantum maps yields LOCC. See the discus-
Proof. The result follows by Theorem 8 unle$3;D,  sjon of this topic in Sec. Il B.

=a’'DID; andEJE,=B’E]E, for somea and 3. In this
case, using the trace-preserving conditiD;® EJE, |
®| making all operators proportional to unitaries. Such a ) ) . )
map can be realized explicitly with LOCC by first creating a  In the study of multiparty protocols, an important issue is
shared random variable, then implementing local unitariehe€ communication complexity of converting one state to
conditional on the random variable. u another using LOCC maps. The communication complexity
Every explicit unilocal quantum map can be obtained as a5 defined as the number of classical bits that need to be
nary quantum map is an explicit quantum map consisting ofar LOCC map to a given state can be determined from a
two operators. The modifier “explicit” is assumed when us- Fepresentation as a conditional composition. This can be
ing the modifier “binary.” We can therefore use the corollary done by adding the resources used in each round. The con-
to characterize LOCC as the quantum maps obtained by coffibution from a round depends on the previous map in the
ditional composition of binary separable quantum maps thageduence of conditional compositions, as we now explain.
lift to b, . Suppose that the initial-state density matrix is givengyy
Instead of using liftability as the basis for generalizing the total explicit quantum map before the round under con-
LOCC and other C|asses Of |Oca| mapS, one can use the Spe%derauon |£, and thIS IS then Cond|t|0na”y Composed W|th
tral properties of the constituent operators of an explicitthe family of unilocal explicit quantum may; . In general,
quantum map. This idea is motivated by the following result.9iven an explicit quantum map applied to the density ma-
Theorem 10An operator in Ref;) that has a maximal trix p, the average number of bits needed to communicate

=<2 aDID,|@ETE+| D>, BDID¢|®
k k

C. Communication complexity

ground space is unilocal. the outcomes is given byl(D,p) = —Zypyl0g, px, Where
Maximal means maximal among ground spaces differenpk=1r(pD,D}) is the probability of outcom®,. This is, of

from H of operators in Rey)). course, an asymptotic expression assuming knowledge of
Proof. An operator in Reff;) is of the formA®|+1®B. In other cases, one might prefer to just use,Bg as the

By subtracting a multiple of the identity, we can assume thanumber of bits required. In any case, the contribution to the

A andB are traceless, not both zero. If they are both nonzerogommunication complexity of the current round is the aver-

then the operator’s ground space is strictly contained in thatge communication complexity for transmitting the informa-

of A®I, hence not maximal. [ | tion in the outcomes of the conditionally applied maps. This
For future reference, an operator whose traceless part guantity is given by

zero or satisfies the condition of Theorem 10 is said to be

quimally unilocal l_\lote that except foNa= Nbf 2, not all E tr(pCle)H(Bk ,CkpCl/tr(pCle)). ®)

unilocal operators in Ré() are maximally unilocal. How- K

ever, two maximally unilocal operator€; and C, with

ground spacesi; andH, such thatH,=ePH; for someD The contributions from each round are added up to obtain the

e b, act on the same side. Also, @, is maximally unilocal communication complexity of the sequence of conditional

andC,=ePC,e P with D e b, thenC, is unilocal and acts compositions. Depending on the application, the contribution

on the same side. We call a family of operators contained imf the last round can be omitted as its outcomes need not be
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communicated to implement the quantum map. Note that ittatement follows from the observation that any operator of
the detailed outcomes in one round are not required for corthe form A®1)®(1®B) is in G,(h;). If A andB are trace-
ditioning in the next rounds, then the explicit maps can bedess, this operator is not ify, . |
modified to defer these outcomes until the last round, which The above theorem provides ways of constructipgand
is one reason to omit the contribution of the last round.  hg but noth, . However, one can construgt as the Lie

In general, the goal is to implement a given communica-algebra generated by, andhg. This depends on the bipar-
tion task with (neaj minimum communication complexity. tition only through its emergence from having the two unilo-
By determining the complexity according to E8), we can  cal Lie algebras.
generalize communication complexity to any scheme for de- Another way in which one can attempt to constrijgt
fining a family of quantum maps by conditional composition, involves using a group of unitary operators that extends the
including the generalized local maps to be introduced for thgpermutations groui$, acting on the factorsS, by itself is

Lie-algebraic setting in Sec. lIl. insufficient, in the sense that the Lie algebra generated by
_ gCg' for g a permutation operator an@e by is just
D. Resource scaling @ by - A sufficiently large extension suffices. An example

An important aspect of information theory involves is the groupd®V, with U andV acting on the tensor prod-
asymptotic characterizations of the relationships between indcts of the?, and’H,, factors, respectively, which generates
formation resources and of the complexity of tasks. To ashyx from b, ; by conjugation. The problem is whether such an
ymptotically scale up a problem, one usually creates tensagxtension can be chosen naturally. An idea that does not
copies of the bipartite states involved and then investigatework but might have some independent interest is to consider
their relationships in the context of the now much largerthe Lie algebrayy generated bgCg' with Ce by 1 andg as
bipartite system. The relationship between the local Lie ala unitary operator in the group algebra generated by the per-
gebras of the individual bipartite subsystems and the onenutation operators. To see that this does not yield the desired
obtained after forming the tensor products requires a corkie algebras, lets be the swap operator. Theg=(l
struction other than the usual products. We did not find antis)/\/2 is unitary, butg((A®1)®(I®1))g’ is not inh,.
obvious way of implementing such a construction that does
not rely on the knowledge of additional structure. It may be E. Measures of entanglement
the case that one must have knowledge of how the represen- ) )
tation of b, was constructed. Nevertheless, there are a few FOf Pure statesy) of a bipartite system, the generally
things we can say that may help in better understanding howccepted and |nfqrmgtlon—theoretlcally meaningful measure
resources can be scaled and how to implement asymptotRf €ntanglement is given by the von Neumann entropy of
analyses. either one of the reduced density matrices|fsr [59]. Thus,

We construct the spadi=H,,® - - - ® Hyp, as ann-fold the entanglement ofiy) can be computed as the S_hannon
tensor product of copies df,p. Let b be the local Lie gntropy of the spectrum of the reduced density matrix on the
algebra acting on thé&’th factor. Leth, be the local Lie first (or, equivalently, the secondystem. For, states, the

algebra forH, where’ is bipartitioned intoH,® - - - @ H underlying Hilbert space is not directly accessible. However,
ande®~~~<§’§>Hb Defineb, v, ba,s bp s and 83 Iikewisea there are natural complexity measures associated with the
. a, ks [} ks .

The group of permutations amelements acts of{ by per- ~ CONVeX structure of these states. To define such measures, let
muting the tensor factors. The goal is to establish Hpw S be a Schur-concave function of probability distributions.

relates toby, , . It suffices to consider the case-2, because By definition, Schur-concave functions are permutation in-

we can viewh, as the smallest Lie algebra that contains theyanant and concavésee, for example Ref60], p. 40. That

appropriate Lie algebras obtained for each pair of factors. is, if p andq are two prp'b.ability distributions 9f the same
Let G,(h,) (xe{a,b,l}) be the set of operator€ on length where the probabilities gfare a permutation of those

f p, thenS(p)=9S(q); and if p=rp;+(1—r)p, for r=0,
Ha®Ha, Such that for all operatorsX on H,,, ° L 2
trla[b(:(x?%l)]ebxz and t[C(I®XT)]eby,. Here, tratis then S(p) =rS(pa) +(1-r)S(p2). An example of a Schur-
tracing out the 'th factor with respect to the tensor product concave function is the Shannon entropy. For a pure state

N is th t of ¢ hich |y, we defineS(|¢(/)) to ng evaluated on the spectrum of
rggﬁzgkily I?k;vggjesrﬁér(g ’})rhls © Set o operators whic the reduced density matrices. For [grstaten, we define
.-

Theorem 12 Gy(ha)=ba, Ga(bp)=hs, but Gy(h)
strictly containsh, . S(\)=inf{ S(p)]N =2, Pk with A b-puref.  (9)

Proof The definition ensures that,C G,(h,). Let C K
EGz(f)a). We can WriteCZEk”Sak”S(Ak@ B|)®(Ar®BS)
with (Ay)x and B,), the orthonormal bases of operators in-
cluding the identity. The ordering of the tensor product is
according to H,a®Hy,) ® (Ha®Hp). Suppose thatyy s is

We will routinely overload the functios. Which definition

is intended is communicated through the argument. So far,
the argument type can be a probability distribution, a state in
Hap O anb,-state.

nonzero for somé, with B, #1, then usingX=A&Bs in Theorem 13If the b;-state\ is induced by a pure state
the definition of G, and tracing out, we get |4) on the bipartite system, theB(\)=S(|)).
ZyakrsAc® By, which is not in, due to the ternB, . By Proof. Using the Schmidt decomposition, we can write

symmetry, this establishes the first two identities. The third #)==/Pil 1) ® @k with (| )« and (@)« orthonor-
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mal bases and®(|#))=S(p). If N\ are the pureh, states
induced by|¢)®|¢,), then \==,p\. It follows that
SN =S(|#)).

To prove thatS(\)=3(|¢)), write A=3=,p N, With
Nk h-pure and S(p) arbitrarily close to S(\). To be
specific,S(p)<S(\) + €. By Theorem 2\, are pure prod-
uct states. Let\, be induced by|¢)®|¢,). Define p
=Pl P (Dl @)@l - Then  th(p) == pil di){ Pl

and is equal to the corresponding reduced density matrix for

| ). It therefore suffices to prove th&(p) is at leastS
evaluated on the spectrum pf. One way to see this is to
write p,=APA', whereA consists of unit-length columns
(the|¢y)) andP is the diagonal matrix with the,’s on the

diagonal. The eigenvalues of, are the same as those of

PY2ATAPY2, This matrix hag, on the diagonal. The result
now follows from the fact thap is a transformation of the
spectrum by a doubly stochastic matfisee, for example,

PHYSICAL REVIEW A8, 032308 (2003

sort, see Ref[63]. If there is a reasonable choice of a
maximally entangled state, th&{p, o) can be considered to
be an entropy of formation arié(o,p) an entropy of distil-
lation. By varying the constraints on the quantum maps, dif-
ferent measures are obtained.

Ill. THE LIE-ALGEBRAIC SETTING

To generalize the notions introduced in the preceding sec-
tion requires not much more than removing the connection
between the local Lie algebra and the bipartite system. As a
consequence, we will learn that product states are general-
ized coherent states.

We fix a finite-dimensional Hilbert spad¥ (H,, in the
bipartite settinggand consider states from the point of view
of various t-closed, complex Lie algebras of operators acting
on H. Ultimately, we consider families of Lie algebralg )y

Ref.[37], page 518 Doubly stochastic matrices are convex gcting on{ and ordered by inclusion. But first we consider

combinations of permutation matricésee, for example, Ref.
[61], page 36; Ref[37], p. 574 and concavity ofS [ |

one t-closed Lie algebria By default we assume thais a
member of our operator Lie algebras. The set of traceless

Theorem 13 makes it possible to introduce entanglemer‘gpermOrs off is denoted byh,. The abstract Lie algebra

measures without reference to the underlying pair of sys
tems, while being faithful to the known measures for such

systems. We extend the entanglement meaSure mixed

faithfully represented by is denoted by“;. The assumption
that b is T-closed implies thab is reductive(see, for ex-

states by a second minimization over convex representatiordnple, Ref[64], Sec. 1.7. A reductiveLie algebrar consists

as pure state$?2]. To do so, consider g-state\ induced by
the density matrixo. With respect to the convex set gf

of the direct product of an Abelian and a semisimple Lie
algebras (see, for example, Ref64], Sec. 1.7 or Refl41],

states\ is pure iff p is pure. The distinction between sepa- P- 102. Thedirect productis in the category of Lie algebras
rability and entanglement can be seen to be associated wii"d homomorphisms of Lie algebras and corresponds, after

the purity of a state from the points of view gfandb, .
Thus, we define

S(\; b)) =inf Ek PRS(Nk B[N
(10

=2 Pl with Ay g-pure}.
K

Because of the isomorphism between density matycasd

exponentiation, to the direct product of groups. In this case,
it means that as vector spaces;a®s, wherea commutes
with s. For Lie algebrasx andy commutsff [x,y]=0. A
semisimple_ie algebra is a direct product of simple Lie al-
gebras, where simpleLie algebra is not Abelian and has no
proper ideals. Reductiveness of our Lie algebras is useful
because the finite-dimensional semisimple Lie algebras and
their representations have been completely clasdiéiee, for
example, Ref[41]). If b is irreducible as a set of operators,
then the Abelian part consists only of multiples of the iden-
tity operator and the semisimple part consists of the traceless

g-states, this expression defines an entanglement measure fiperators.

arbitrary bipartite density matrices. In anticipation of the

The two examples foh to keep in mind areh, in the

generalizations to come, we explicitly introduce the Lie al-bipartite setting and the set of generators of the spatial rota-

gebrah, as a parameter.

Suppose tha§(p)=0 iff p is pure, that isp,= dj for
somej. We call such arS proper Then ag-state\ satisfies
S(\;h) =0 iff it is a mixture of product states, which justi-

tions of a spin-1 particle. In the second example, the Hilbert
space is three dimensional with basis1), |0), and|1)
corresponding to the three states with definite spin atong
The Lie algebrd) is spanned by the identity together with the

fies thinking ofSas an entanglement measure. Several propspin operatorsl,, J,, andJ,. The corresponding abstract

erties are desirable of an entanglement meagb®¢ For

Lie algebra islXsl,C, wherel is the one-dimensional Lie

example, the measure should be convex and it should balgebra. As linear spaces, this is the samelas(,C, the
nonincreasing under LOCC maps. Both of these propertiesperator X emphasizes the fact that the construction is a

are satisfied bys as defined abovis6].

direct product, so that the two Lie algebras commute. For

Entanglement measures can be based on asymptotic cotiis example, we takg to consist of all operators.

vertibility of states with respect to a family of local maps.

For example, one can defif&(p,o) as the asymptotic su-
premum ofr/s, wherer is the number of asymptotically
good copies op which can be constructed froscopies of

Before proceeding, we recall the basic properties of semi-
simple Lie algebras that are needed to define generalized
coherent states and relate them with our characterizations of
product states in the bipartite setting.

o given any number of additional product states and using A Cartan subalgebra of by is a maximal Abelian subal-
separable quantum maps. For more precise definitions of thigebra whose elements are diagonalizafiteat is, semi-
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simple. According to a fundamental result for Lie algebras, goal is to choose states that are in a sense the most classical,
Cartan subalgebras exist and are conjughtce isomor- then there are strong arguments for choosing the minimum-
phic) with respect to an operator igfo (see Ref[41], pp.  weight states of a representation of the Lie group. Theorem
81-87; Ref[43], Theorem D.22, p. 492; Rdi42], Theorem 14 below provides some of these arguments. We therefore
4.1.2, p. 263 Every diagonalizable operator ifn is con-  use the terngeneralized cohererdtate, or simplycoherent
tained in some Cartan subalgebra. If the operator is Hermitstate, to refer specifically to minimum-weight states of a Lie
ian, the Cartan subalgebra can be chosen to be t-cléted. algebra. Because we only consider the finite-dimensional
can be decomposed into the joint eigenspacescfak = representations, our treatment does not directly apply to the
& ,H, ., wherea are distinct linear functionals ansuch that conventional coherent states of optics, for example. In this
for |y e H, andAec, Aly)=a(A)|y) [see Ref[41], p. Case, the relevant Lie algebra is the Heisenberg algebra,
107; Ref.[43], p. 199, Eq(14.4]. H,, are called thaveight which is not semisimple(or reductive. The standard

spacegor the representatiofi of ¢ and thea are called the T-closed representation is therefore necessarily infinite. The

weights In general, a weight for a Cartan subalgebra is atheory of coherent states suggests that extensions to such Lie

linear functional for which there exists a finite-dimensional algebras and representations are possibi:
representation with a nonempty corresponding weight space.

The abstract Lie algebréy, can be represented on itself by A. Purity, coherence, and entanglement
the Lie bracket. This is called thadjoint representation of

ho- The weights for this representation are calledts It r@-states as before as finear functionals lpinduced by a

turns out that the geometrical properties of the roots dete ) . . . -
mine the Lie algebra. The roots are in effect also linear funcState’s density matrip according ta\(A) =r(pA). Observe

. . )
tionals onc. There are special sets of roots calgahple root again that the sej O.f h-states is convex closedure h
systemgor bases that span the linear functionals erand states are extreme pointsipf. Suppose that thig-state is

have the property that every root is either a positive or Anduced by the density matrig. We can projecp onto b

negative integral combination of simple roots. The formerW|th respect to the trace inner product. Denote the projection

are called positive roots. The definition depends on the map o.ntob by Pb Becausel IS T-closed, the pr_olecnon
choice of simple roots, but not in a crucial way, because aIFb(p) IS a Hermitian operator ith. Furthermore is also
simple root systems are isomorphic via a special kind ofduced byPy(p), that is, A(A)=tr[Py(p)A]=tr(pA) for
isomorphism(a member of the so-called Weyl group, see” € 9- Note that in generafP,(p) is not positive. For ex-
Ref. [41], p. 51; Ref.[43], Proposition D.29, p. 494 The ample, letp be the density matrix f.0k1>. in the spin-1 ex-
weights can be partially ordered by definiagsa’ if o' ample. Another |mpprtant ob§ervat|qn is thRy{(p) depends
—« is a positive integral sum of simple roots. With this °NIY OonX. That is, if p and p" both inducex, thenPy(p)
ordering, in an irreducible representation, there is a uniquezpb(/) ). ) ) )
minimum weight, whose weight space is one dimensional W& now assume thaf acts irreducibly or?. If it does
(see Ref[41], pp. 108—109; Ref[43], Proposition 14.13, not act irreducibly, decomposﬂ into irreducible invariant
pp. 202—203 The minimum-weight state depends on thesubspaceg foly and con5|der each of thesze subspaceg sepa-
choice of Cartan subalgebra and simple roots. Howevef@tely. Define the-purity of A as tf7(p)], where\ is
el Rebo) acts transitively on the set of minimum-weight vec- induced by the den3|t_y matrip. This is, of course, the
tors. Furthermore, every minimum-weight vector can be oblength of ,(p) according to the trace-inner-product norm.
tained by means of a t-closed Cartan subalgebria Gfhe Thezh-purl_ty is bounded_ abqve by the conventional purity
minimum-weight space has the property that it is annihilated"(p°), which is theg-purity with g the algebra of all opera-
by operators i, which are in root spaces associated witht0rs on ‘H. This generalization of purity is useful because
negative roots. In fact, this is another characterization of théccording to Theorem 14 below, the purstates are exactly
minimum-weight spaceésee the definition and theorem in the states with maximurp-purity. o _
Ref. [41], p. 108. Usually, treatments of semisimple Lie ~ The goal of the remainder of this section is to give a
algebras focus on the maximum weights of a representatiomumber of useful characterizations of purestates. In par-
Here we choose to use the equivalent minimum-weights beticular, we show that they are exactly the coherent states for
cause of the relationship to ground states of Hamiltoniansh. We first state the characterization theorem and then dis-
The basic properties of Cartan subalgebras and the notions 6#ss the equivalent characterizations before proving the theo-
roots and weights extend from semisimple to reductive Lig€Mm.
algebras by adjoining the Abelian part. Theorem 14The following are equivalent for a density
A family of generalized coherent states consists of an ormatrix p inducing theh-stateX: (1) N is a pureh-state;(2)
bit of a dynamical group acting on a state sp&26,26.  p=|¥)(#| with [¢) the unique ground state of sorkein
According to this definition, every state is in a family of Re(®); (3) p=[¢){(¢| with |¢) a minimum-weight vector
generalized coherent states. As a result, an important part éfor some simple root system of some Cartan subalgedfra
the theory of generalized coherent states is to choose tho$e; (4) A has maximunh-purity; (5) p is a one-dimensional
orbits that best generalize the properties of the coherenirojector ine.
states familiar in optics. In our case, the dynamical groups This theorem is a synthesis of various largely known re-
are Lie groups generated by semisimple Lie algebras. If thsults in the representation theory of semisimple Lie algebras

For a T-closed Lie algebra of operatgren H, we define
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and coherent states. Statemefifsand(2) are motivated by of (2)=(3), |#) is a minimum-weight state. Minimum-
Theorems 2 and 1, respectively. Statem@ytalso provides weight states form an orbit &8*®  a compact set. Thus
an interpretation of many mean-field ground states as cohethere is a cluster poirji/y) of |, ). It must be the case that
ent states. This is because mean-field Hamiltonians are oftgg,)«|4). Hence|y) is minimum-weight.
expressed as operators in a small Lie algebra, in particular, (e) (4)=(1): By convexity of purity.
operators quadratic in the creation and annihilation opera- (f) (1)=(3): Let ¢ be the t-closed Cartan subalgebra
tors. containing the projection gb into . We call this asupport-
Statement3) is one of the definitions of generalized co- ing Cartan subalgebra gf. Let H, be the weight spaces
herent states. For other characterizations of generalized cevith respect to this Cartan subalgebra. Theis zero on the
herent states, see R¢25,26]. nonzero root spaces with respecttdincep is a mixture of
Statement4) is a version of the minimum variance prin- normalized superpositions of weight vectdts,) € H,, it
ciple for coherent statg$5,66. The variance of a staf@/) ~ follows that\ | ¢ is a convex combination of weights. But the
with respect to Réfj) is computed as the expectation of an weights are all in the convex closure of the set of minimum-
“invariant uncertainty operator.” For a state), this expec-  weights with respect to different orderings of the roots. Ex-

tation is given by tremality therefore requires that ¢ is given by a minimum-
weight. Let|¢) be the corresponding minimum-weight state.
> xixi— > (x| ) (x| ), (11) By choice ofc, X is also induced byy)(y|. The density
i i

matrix p cannot have a contribution to the mixture with dif-
ferent weight spaces, as otherwiséy is in the strict interior
of the convex closure of the set of minimum-weights. That

AY . . | ) . .
where ); is a basis of Refo), and '); is the dual basis =|¢){ | now follows from the fact that due to irreducibil-

with respect to the trace inner product. This is a linear func?

tion of theh-purity because the second sum is the negative o ﬁf th :Eetmmlmurtr_l-weghtt spacebs iarebone, d|m_eﬂt3|0nal.
the purity up to a constant due to our inclusion of the identity ote that supporting L.artan subalgebras' weight spaces
operator. generalize the Schmidt basis used to diagonalize reduced

Statemeni5) is motivated by the results concerning the density rlnagriges in Zh? é)ipartite Sﬁttin_g: See Thgorr]em 23.
classical simulatability of fermionic linear optid$7,68. © [51 )&(3)]=(4): ié%?use a ml_nllmum—wel_ght states
Simulatability depends crucially on the fact that the initial- 2'€ " the same orbit &f » €very minimum-weight state

state preparations and the measurement outcomes can be Qﬁ‘-s’ the same purity. By extremality and convexity of purity,

pressed in terms of projectors &, minimum-weight states have maximum purity. |
Proof of Theorem 14
(@ (2) = (3): Let ¢ be a T-closed Cartan subalgebragpf
containingH. We can perturld slightly without affecting the }
ground space by adding a generic element tf make sure We can use Theorem 3 to generalize separable maps. Thus
thatH is generic, that is, so that the commutantbis c. The ~ We defineh-separablequantum maps to be those with an
commutandf H is the set of elements df, that commute ~ €xplicit form (A with A€ €”. To generalize LOCC maps,
with H. It therefore suffices to show that ground states ofone can always return to the multipartite setting by using the
generic elements afare minimum-weight for an ordering of fact that by semisimplicityj, can be uniquely represented as
the roots. Note that for no nonzero raetis «(H)=0, be- a product of simple Lie algebraig,= X by (see, for ex-
cause otherwisél is not generic. Thus we can call a root ample, Ref.[41], p. 23. The state space then factors as
positive if a(H)>0, and there is some simple root system® ,H, , with h, acting on, only. We define)-LOCC maps
for which this coincides with the definition of positive roots. by conditional composition of explicit b+ Cl)-separable
A ground state is annihilated by the root spaceg)pthat  quantum maps. This definition is more general than the usual

correspond to the negative roots. This implies that it is g,5ti0n of LOCC maps for multipartite systems becagge

minimum—weight_ state. , can be different frons(,,C or its representatioh, need not be
(b) (3) = (2): Every minimum-weight vectofy) has e first fundamental representation.

minimum-weight for some T-closed Cartan subalgebsgth In the bipartite setting, we discussed two other ways in

root basisay, ... ,aq. There is a Hermitian membéf of ¢ yhich LOCC maps can be characterized. One way used lift-

for which a,(H)>0 for eachk. | ) is the ground state dfi.  apjjity to well-defined maps of-states. The other used re-
(©) (2) = (5): Let\ be the eigenvalue diy) for H. Then  gyictions on the operators based on their eigenspaces. We

B. Local quantum maps

the desired projector is lim.. e+, o consider how these ideas can lead to other interesting fami-
@ (5)&[(2)=(3)D=(3): Let |p)(y|=lime ™, jies of quantum maps.
with H, e . Then|)(y|=lim, e Hke k. The operators in A subfamily of the explicith-separable quantum maps is

the limit are now Hermitian, which implies that they can be obtained by requiring that each operator lifts o Such
written in the forme™ M, with h, Hermitian inf. For suffi-  quantum maps are callegkplicit b-liftable quantum maps.
ciently large k, the minimum eigenvalue oh, must be (Recall our convention for using the word “explicid.In the
unique. This eigenvalue must go to zero and the eigenvalukipartite setting, Theorem 4 implies that all such quantum
gap d, of hy goes to infinity. Thus for sufficiently large the ~ maps are mixtures of unitaries, a small subfamily of the
ground staté,) of h, is projectively well defined. Because LOCC maps. The conclusion of Theorem 4 does not hold in
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general. For example, trivially, i consists of all operators simple root system of a t-closed Cartan subalgebrig, of

on H, then all quantum maps are in this family. One nice The dual basis of a simple root system corresponds to the
property of the family of explicip-liftable quantum maps is fundamental weights via the isomorphism induced by the
that there is a straightforward proof of monotonicity for aKilling form. The Killing form is the symmetric bilinear
large family of entanglement measures, see Theorem 29. form associated with the trace in the adjoint representation.
A family of quantum maps that includes the explicit The k’th fundamental weighh, for a simple root system
b-liftable ones consists of theseparable quantum maps that consisting of the rootse; has the property that ifh,
are liftable toh. In the bipartite setting, this family may be =[x,,y,] with x, andy, members of the root space fa4
larger than the family of LOCC maps, see Problem 6. In theand for— «, , respectively, thei (h)=0 except forl =k. It
general setting, we pose the following problem. also has minimum length among weights satisfying this
Problem 15 Is the family of quantum maps obtained by property. Fundamental weights are important because all the
conditional composition of explicith-separable quantum representations of a Lie algebra can be built from the ones
maps that are liftable t§ strictly smaller than the family of whose minimum-weight is fundamental.
h-separable quantum maps? Proof of Theorem 17 Let HeRe(h) and choose a
Based on Theorem 8 and its corollary, one might want tof -closed Cartan subalgebeacontainingH and an ordering
consider the family of maps consisting of bindpseparable  of the roots such that for positive roots a(H)=0. Let
quantum maps. Unfortunately, this family can be trivial in (@i)x be the simple root system for this ordering. ¢ be
the sense that in many cases it consists of mixed unitar{he ground space df. Then?, is a union of weight spaces
quantum maps only. For example, consider the spin-1 Li@f c. By definition of the ground space, X is in the root
algebra and suppose tha,B) is an explicit separable quan- space for a negative root, thet#{,CH,. In particular,H,
tum map. We havé\,Be e’ andATA+B'B=I. The opera- contains the weight space for the minimum-weigptof the
torsATA andB'B are ine” and can be written in the form chosen ordering of the roots. Furthermoté, consists ex-
el and e with H, and Hg in Re(h). Thus Hy=al actly of the weights\ such that\ —\ is a positive integral
+x-J. With a suitable rotation, we can assume tHat=a  COMbination of positive roote with a (o) =0. ThusH, is
+BJ,. This ensures thae"s is diagonal in the basis Nontrivially maximal iff e\ (o) =0 for all but onek=k.
|—1),]0,]1) and has diagonal entries #,e%,e* " ~. It fol- _G|ven ko,_ the set of operators Wlth this property is necessar-
lows thates is diagonal also, and hence of the same formlly one d!mensmna! and contains one the_lt contributes to the
with ' and 8'. Their sum isl, and it can be checked that dual basis of the simple root system.. This follows from the
the solutions satisfi8= 8’ =0. HenceA andB are propor- fact that the simple roots are a basis of the dual space of
tional to unitaries. . . . : u
One idea for avoiding the possible triviality of binary  The maximally h-unilocal operators fall into different
h-separable quantum maps is to Usary quantum maps. classes dgpen_dlng on _the _ass_ouated fundamental weight.
That is, consider extremé&tary h-separable quantum maps. However, !t is likely that iffg is §|mple, th.en the Imegr span
A quantum map ixtremalif its action on density matrices ©f the conjugates undes’ of a given maximallyh-unilocal
is not a convex combination of other quantum maps. BeopPerator is all off,. We do not know whether this holds in
cause mixed unitary quantum maps are not extremal unle§ieneral, but it is certainly the case fby, by, andg. This
they are unitary, the spin-1 example shows that there may EPlies that if we definen compatibility as in the bipartite
no such extremal quantum maps for2. Let k., be the setting and close under conqlltlonal comeS|t|on, we might
minimum k> 1 for which such quantum maps exist. Let the 96t &ll h)-LOCC maps. So define ancompatiblefamily of
family of minimally generatedeparable quantum maps con- OPerators as a family consisting of the conjugates ustief
sist of explicit quantum maps obtained by conditional com-& maximallyh-unilocal operator. o o
position of unary or extremat,-ary h-separable quantum Problem 18 Does condltlonal_composmon of explicit
maps. Because of Corollary 9, this family is the family of SéParable quantum maps with operators from an
LOCC maps in the bipartite setting. h-compatible family generate the fa_mlly bfLQCC maps?
Problem 16 What is the relationship between the family ~FOr now, the properties of the various families of quantum
of minimally generated-separable quantum magsLOCC, ~ Maps are largely unknown and offer a fruitful area of further

andh-separable quantum maps? investigation.
Another family of quantum maps that might be interesting o _
is obtained by adding the liftability condition to the genera- C. Communication complexity
tors of the family in the above problem. Communication complexity can be defined exactly as in

We now move on to considering families bfseparable the pipartite setting for any of the families of explicit quan-

quantum maps that are characterized by generators with larggm maps defined by conditional composition in the preced-
ground spaces. Based on Theorem 10, we can defm@&  ing section.

mally h-unilocal operator to be an operator in Rg(whose
ground space is maximal. These operators have a Lie alge-
braic characterization. ) . i
Theorem 17Maximally ho-unilocal operators are the ones ~ The goal is to determine what might be the reasonable
that are proportional to an operator of the dual basis to @hoices of “scaled” Lie algebrag®" acting onH ®", ex-

D. Resource scaling
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tending the action of on each factor so as to be consistent

with the corresponding picture for bipartite systems. It makes P(A;b)= SUP‘ ; PkP(Nk[h) such that
sense to require th&t®" be contained irG,(h), the set of
operatorsX with the property that ifY is an operator acting
as the identity on thé’th factor of H ®", then the partial
trace ofXY onto thek’th factor is inh acting on this factor.

A= P\ With \ pure forg!. (12)
k

. . . . . . Thenp(\;h) achieves its maximum exactly at the states that
In the bipartite case, it was possible to obtain the degjf&dt are mixtures of)-coherent states, ani{\ ;) is convex in.

by appealing to the two unilocal Lie algebras containedl.in - \ivtyres of h-coherent states are generalized separable
We can similarly use any generating Lie subalgebras. That igj5teg.

let h be generated by Lie subalgebrias. With respect to Observe that for bipartite pure states, the purity is a linear
these Lie subalgebras, we can defiff¢" as the Lie algebra function of the Renyi entropy given by Ekpﬁ, where py
generated byG,(h). In this case, it makes sense to defineare the eigenvalues of the reduced density matrices. In this

bE"=Gy(by). At this point, we do not know to what extent Case, the Renyi entropy can be derived from the Schur-

H — 2
this scheme is useful in analyzing the asymptotic relationoncave functiorS((p)i) = —Zpj- _
ships between states from the point of viewhofAs a po- It is possible to define resource-based measures of relative

tentially interesting alternative, the scheme based on extergt@nglement as discussed at the end of Sec. Il E, with the

sions of the permutation group discussed in the |aS{:aution that asymptotic versions of such measures depend on

paragraph of Sec. Il D can, of course, be applied to any Li%/vhether a useful notion of scaling for resources can been

ound.
algebra of operators. One advantage of relativizing measures of entanglement

by using pairdyC g is that one can better investigate proper-
E. Measures of relative entanglement ties of states on systems with a hierarchy of meaningful
choices for Lie algebras. Multipartite systems are examples
From the point of view of), incoherent pure states @  Where this situation arises. For every subseif the sub-
look like a mixture of coherent states. This is becausejthe SyStems, there is the algebya of operators acting only on
state induced by an incoherent state is a proper convex corif}€ subsystems ig andhs can be summed over a partition
binations of pureh-states. However, incoherent pure statesCf the subsystems to obtain generalization$ofThese Lie

can exhibit generalized entanglement provided that it is pos2/9€bras are ordered by inclusion. Given a state, one can, for
sible to refer to operators outside pf We therefore need every pairtCl, determine the state’s generalized entangle-

access to observables in a larger Lie algebra.g et be a ment. These quantities can ther_1 be used to charact_enze dif-
Lie algebra of operators of. Theorem 14 applies tg as ferent types of states and Iocallzg the extent to V\_/h|ch they

. ' are entangled. Other examples with multiple, physically mo-
well and in general, not all purg-states are pure when re-

. ) tivated Lie algebras are discussed in Sec. V A.
stricted toh. Note that gg-state that restricts to a pulestate
is necessarily pure. So it makes sense to call a gistateh-
coherentif it restricts to a purey-state. ) )
The goal of this section is to find ways to quantify the e mention two other types of relative entanglement
relative entanglemertf g-states with respect th. The idea measures_for states, which may gengrallze the blparplte set-
is thath-coherenig-states are not entangled, while any otherting: One is based on the amplitudes in a representation of a

pure g-state is definitely entangled, but the extent of en-Stale as a superposition of coherent states, the other uses
. supporting Cartan subalgebras as a generalization of the

bei h tricted o h tandl t of "8 chmidt basis. Since both of them can be extended to mixed
eing pure when restricted fn Once the entanglement o -states using the construction repeatedly used alsee

pure g-states has been quantified, this can be extended %q.(lO)], we discuss them only for putgstates. Since these

arbitrary g-states. _ ___areinduced by pure states &f and the relativization comes
~ Let Sbe a Schur-concave function of probability distribu- i thyrough the extension, we define the measures for all pure
tions. Then we can defin§()) for h-statesk andS(\";h)  stateq y) e H.

for g-states\ as we did in Sec. Il E. In the bipartite setting, et S be a Schur-concave function afd) a state that

F. Other measures

S(A) is concave as a function dfstates. _ induces a purg-state. We can define an entanglement mea-
Problem 19 For whichh is Sa concave function of-  sure by minimizing theS-complexity of |#)’s renormalized
states? square amplitudes in writingy) as a superposition of coher-

That S(A;h) is a convex function ofy-states\ will be ent states. Formally
shown in the more general setting of convex cones, where
we will also discuss the issue of monotonicity®&inder the s _ 2 2
. . X S =inf = , Where
various notions of generalized local quantum maps. a(19)) (S(p)lpk e / ; e )
Another measure that can be used for quantifying gener-

alized entanglement is based on purity. pék’) denote the _ ith B-coh t 13
h-purity of anh-stateN’. We can define, for g-state\, Ek adhg with b-coherent|y 13
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Note that by irreducibility ofy, every state is in the span of can work with any linear space of operators and study the

the coherent states for properties of the convex set of linear functionals induced by
Problem 20 Is Sy(|#))=S(]#)) in the bipartite setting? states. In fact, as pointed out in Sec. V A, there are physi-
S(|¢)) is defined for the bipartite setting before Theoremcally interesting cases where this may be necessary. In this

13. section we focus on the convexity properties of the state
A limiting case of this definition is theéh-rank of |4)  space and investigate the extent to which local maps and

defined as the minimum number of states needed to represemeasures of generalized entanglement can still be defined

|) as a superposition of coherent states. Hhank is ob-  and retain their features.

tained as the limit of the Schur-concave functioBs p

— 3" asr—. A special case of thg-rank has a long A. Convex cones
history in quantum chemistrisee, for example Ref69], p. A convex cone s a subset of a real linear spate
69) and has been proposed in the context of entanglement fljosed under positive linear combinations. That isx iy

Problem 21 What is the relationship between the . :
amplitude-basedS,(|#))] and the convexity-basedS(\)] we assume thatl is the span ofC. Let C consist of the
measures of entanglement for puratates? nonzero elements dt. The coneC is pomt_edlf there is a

S, satisfies that for proped, S,(|#)) =0 iff | ) is coher-  linear furjctional tr(t.hetrace) on U such trC)>0. Equiv.a-
ent forh. The measur&c(|¢)) based on supporting Cartan lently, C is pointed ifCN(—C)={0}. We assume thall is
subalgebras does not satisfy this. To defig€|)), letc be  finite dimensional aqd that is c!osed in the ugual topology
a Supporting Cartan Suba|gebra fpfor |¢><¢| Let Pa be for U. For the remainder of this paper,caneils a C|Osed,

the projectors onto the We|ght SpaceScDWe can define POinted convex cone, equipped with the pOSitive linear func-
tional tr. For our purposes, cones represent spaces of unnor-

Sc(l4)) =inf S((|Pol#)1%) ), (14 malized pure and mixed states. In the Lie-algebraic setting,

where the minimization is over supporting Cartan subal e:[he cone is given by the set of linear functionals ™ that
: Supp 9 . 959re non-negative multiples ¢fstates. The trace is given by
bras. In the generic case, there is only one supporting Cart

a . . . ..

subalgebra. Nevertheless, it would be nice if the minimiza—gvah.]atlon of\ at _the |dent|tyl © b‘. I )‘. is induced by the
' matrix p, evaluation at the identity gives the usual trace,
tion was redundant.

2 , - tr(p). We refer to memberge C with tr(x)=1 asstates
Problem 22 1s S(.(| Pal )1 a) as introduced above inde The pure states ofC are extremal states @&. Our assump-
pendent of the choice of supporting Cartan subalgebra? tions onC imolv that every state of is a convex combina-
Note thatSc(|¢)) is zero for any|y) contained in a Py y

. . tion of pure states.
W::\%?glspsicc?hfgia?g??o\rgar:gnci%%?gnibffrc?g??hé?r%térlg In the Lie-algebraic setting, we explicitly introduced a
?hese V\;ei ht spaces are usually not one dimensional N’evesr-ecOnd Lie algebrg when discussing measures of relative
theless tr?is mgasure eneraliz)és the bipartite settin | entanglement. Before we introduced such measuyasas

Thec;rem 23Assumegthe bipartite settirl? with= 'Igﬁe implicitly present, but was trivially associated with the set of

. oip 9 b all operators. This is because the fact thadtates are in-
weight spaces o_fasupportmg Cartgn subqlgebrduﬁb)rare uced by density operators plays a crucial role. In the
the one-dimensional spaces associated with tensor produc Bnvex-cones setting, there is no equally obvious way in
of Schmidt basis elements for each side for some choice : : ! -

. : hich states are induced, so we explicitly introducepater
Schmidt basis. Henc8(| ) = S(| #)). PUCtty

This implies that for the bipartite setting, the answer toconeD in a real linear spacd, whose states induce the
pies, ” P 9 states onC via a linear mapw: V—U satisfying (D)
Problem 22 is “yes.

o . L =C, andxeD,tr(x)=1 implies tf w(x)]=1, that is, = is
. Proof. The projection off)(y| into b, is given by e trace preservingln the Lie-algebraic settingr is simply the
=pa® /Ny +1/Na@pp=I/Ny®1/Ny,, Wherep, andp, are o ioion map: if\ is ag-state, thenm(\)=\[heh’. We
the respective reduced density matrices. The supporting Car—fer toC as th.einner cone If;< is a pure state o€ .then

fe
tan subalgebras are the Cartan subalgebras that commuté ] : losed and i |
with @. These are necessarily of the foregs | +1®c, 7 ~(X) is convex closed and its extremal states are pure

states irD. Note that in the Lie-algebraic setting, (x) for
wherec, and¢, are t-closed Cartan subalgebrashgfand . X
: . . a pureh-statex is a pureg-state. We definseparablestates
by, which commute wittp, andpy,, respectively. Therefore, .
X . f D to be states in the convex closure of
ca (cp) is generated by the projectors onto an orthogonal . .
) . . o~ H(x)|x is pure inC}. We denote the cone generated by
basisB, (By,) of eigenstates op, (p,, respectively. The ! .
; . . ; he separable states bfasD ., (this depends oR). A pure
associated weight spaces are one dimensional, spanned Y iex of D satisfies thatzr(;) is pure inC
tensor products of members &, and B,. Because the Sep P '

members oB. andB. can be paired to form a Schmidt basis As we discuss the extent to which we can define suitable
for |¢), the rgsult fotilows P = generalizations of various notions to the convex-cones set-

ting, it is worth keeping in mind what the two cones corre-

spond to in the bipartite setting. In this settirigjs isomor-

phic to the cone of positive operators By ® H,, , with tr the
Many of the notions introduced for T-closed operator Lieusual trace functional. The trace-one operators are the den-

algebras can be generalized even further. For example, waty matricesC is determined by the reduced density matri-

IV. THE CONVEX-CONES SETTING
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ces. FormallyC is isomorphic to the cone of operators of the the swap. For complete positivity, we introduce one more
form A®I/Np+I1/Na®@B+ al/N;®1/N, with AB traceless coneE and positive trace-preserving mapE— D (onto). In
andA+ al/N, andB+ al/N,, positive. The connection -  the setting where states are defined by density matrices on a
states is discussed in Sec. Il B. The map frorto Ctakesp  Hilbert spaceH of dimensiond, E represents the cone gen-

to try(p) @ 1/Np+1/Na®@tra(p) —tr(p) (1/Na®1/Ny,). erated by density matrices 6@+, with H’ of dimension
at leastd?. With this cone in hand, we can try to get the
B. Local maps completely positive maps by considering only those maps

A positivemap of D is a linear mapA: V—V such that that are a mixture of extremality-preserving mafg, ob-
A(D)CD. The map A is trace preservingif tr(x) tained as liftings _of extremality-preserving positive méqQs
=tr[A(x)] for all x. This definition corresponds to positive, ON E. Whether this works depends on the answer to the fol-
but not necessarily completely positive maps in the Lie-lowing problem.
algebraic setting. Without the algebraic structure available Problem 24 Let A be a positive map on operators of
for states, it is not possible to define a unique “tensor prodH®H' with dim(’)=dim(*)?. Suppose thah preserves
uct” of cones, as would be required to distinguish betweerthe set of rank one operators and that it lifts to a mapof
positive and completely positive maf34,35 (cited in Ref. ~ operators orf{. Is A’ completely positive?

[70]). Because of the absence of a suitable tensor product To exclude the swap, it suffices to introduce cones in-
construction, we also do not have any suggestions for how téluded inC to represent density matrices &ty and, and
address asymptotic questions by resource scaling. require liftability to both of these cones.

The family of positive maps db is closed under positive The other tool used to restrict separable maps involves
combinations and hence form a cométhout a tracé Inthe  operators with maximal ground spaces. It is not clear how to
Lie-algebraic or even the bipartite setting, the extreme point@pply this tool to the convex-cone setting since the distinc-
of this cone are not easy to characterizee, for example, tion between positive and negative eigenvalues is not easily
Ref. [70], p. 1927, Ref[71]). However, the extreme points recovered in the actiop—ApA.
of the cone of completely positive maps are certainly extre- To be able to generate families of maps by a kind of
mality preserving in the following sense: A positive mapf  locality preserving composition requires the idea of condi-
D is extremality preservingf for all extremalxe D, A(x) is  tional composition based on explicit maps. An explicit posi-
extremal. There are extremality-preserving positive, notive mapA onD is given byA=(A,), with A, extremality-
completely positive, maps. An example is partial transposipreserving positive maps. For explicit separability, are
tion for density operators of qubits. We call a positive maprequired to beC-separable. In addition, we can impose the
that is a mixture of extremality-preserving mappositive It liftability condition on eachA,. We call the latterexplicit
is possible to recapture the idea of complete positivity byC-liftable separable maps. The idea of Sec. Il B to restrict
explicitly introducing a cone representing the “tensor prod-the separable maps by using certain minimal explicit sepa-
uct” extension ofD. This will be discussed after defining rable maps can be applied in the convex-cones setting. How-
liftability. In the bipartite setting, the family ofi-positive  ever, without the strong symmetry present in the Lie-
maps ofD is between the family of positive maps and the algebraic setting, the definition &f;, (Sec. Il B) is unlikely
family of completely positive maps acting on density matri- to be as natural. However, one could investigate the families
ces onH,p . of maps obtained by replacifg,, by 2,3, ... .

The next step is to define a family of maps that general- Conditional composition can be used to generate a family
izes the separable maps. Call a positive mapof D  of maps as before. One can then readily generalize commu-
C-separable if it is a mixture of extremality-preserving posi- nication complexity to the resulting conditionally composed
tive mapsA, that are also extremality preserving and posi-maps.
tive for Dgep. In the bipartite setting, this definition includes
maps such as the swap, which exchanges the two subsystems C. Measures of relative entanglement
and is not separable, in addition to some noncompletely posi-
tive operations. Note that if the Lie-algebraic definition of
separability is used, operations such as the swap are exclud
because they are not in the Lie group generated,bythe
swap induces an exterior automorphism pf From the
point of view of entanglement, including the swap can make S(x)=inf[ S(p)[x= 2 pix with x, pure}, (15
sense because it obviously does not increase entanglement. .

One tool used to narrow the family of separable quantum
maps was based on liftability. The definition of liftability and for statesxe D,
immediately generalizes to our cones. We say that a positive
mapA on D can be lifted toC if A preserves the nullspace of
7 or, equivalently, if there exists a positive m#&3 on C S(x;C)zinf[E ka(w(xk))lxzz PrXi With Xy pure].
such thatr(A(x))=A’ (m(x)). In this case, we say thal’ is K K
the lifting of A to C. (16)

Using liftability, we can add more cones to try to capture
the idea of complete positivity or to exclude maps such agn general S(x) is not concave, though this is the case in the

The entanglement measures defined on the basis of a
Schur-concave functio8 are intrinsically defined using only
& nvexity. Thus, for statese C,

032308-15



BARNUM et al. PHYSICAL REVIEW A 68, 032308 (2003

bipartite setting and if the set of states is a simplex. In the Lemma 28Suppose tha$(x;C) is explicitly nonincreas-
latter case, the expression of a point as a convex combinatidng for the trace-preserving explicit positive m#@p Then

of extreme points is unique. S(x;C) is nonincreasing foA.

Problem 25 For which convex sets iS(x) concave for The Lemma holds for anY defined from its values on
all Schur-concavé&s? pure states according to Y(x)=inf{Z,pY (X,)|x

Theorem 26S(x;C) is convex inx. =3 pXx With x, pure.

Proof. Let y=px;+(1—p)x, be a convex combination Proof. Let A=(A)), with A, positive and write py
of statesx;,x,eD. We show thatS(y;C)=pS(x;;C)+ (1 =tr[ A (X)] To prove the lemma, first consider an extremal

—p)S(x,;C) from which the theorem follows. For every Then
way of expressing, = =,px Xy as a convex combination of

pure states oD, we havey=ZX[ppyXy+(1—p)paXal-
Thus S(A(X);C)=S(; Ak(x);C>
S(yiC)= 3 [PPuS(m(xy))+ (1= P)paS(r(xa)] =2 PSALI;C). by convexiy
(by definition <S(x;C), by being explicitly nonincreasing.
ZPZ p1|S(7T(X1|))+(1—IO)Z Do S(7(Xa))). For a nonextremak, write x=2,q,x, with x; pure and

219;S(x; ;C) arbitrarily close toS(x;C). Note that for pure
Y, S(y;C)=S(m(y)). Then

The last two sums can be chosen to be arbitrarily close to
S(x1;C) andS(x,;C). u A(x);C =s( A(x -c) by linearit
Purity as defined in the Lie-algebraic setting does not gen- SARC) E| AAx) y Y
eralize to the setting of convex cones unl€séas a well-
defined center and satisfies that all its pure states are equi- <> ,S(A(x);C) by convexity and trace
distant from the center in a natural metric. I

preservation
D. Monotonicity for explicit liftable maps

A desirable property for measures of entanglement is that $2 q:S(x,;C), by extremality ofx; .
they are nonincreasing under the family of maps that are !
considered to be local.
Problem 27 For which of the families of maps that we The result now follows because the right-hand side is arbi-

have introduced isS(x;C) [or, more specificallyS(x;h)]  trarily close toS(x,C). u
nonincreasing? Theorem 291f A is a trace-preserving explicit liftable
In the bipartite setting, it has been shown tBéx;h) is  C-separable map db, thenS(x;C) is explicitly nonincreas-
nonincreasing under LOCC map56]. Here we show that ing underA.
this is the case in the convex-cones setting for the family of Proof. Let A=(A), with eachA, liftable to C and C-
trace-preserving explicit liftabl€-separable maps of cones. separable. Writg, =tr[ A (x)]. Because of Lemma 28, it is
With the cones that arise in the bipartite setting, this familysufficient to prove Inequalityl7). Letx be a pure state db.
of maps includes the explicit liftable separable quantumLet w(x)=2X,q)y, be a convex representation af(x) in
maps.(See also Problem 24The monotonicity result is easy terms of pure states & such thatS(q) is arbitrarily close to
to see for the latter family because in this case, the family ofS(x;C)=S(7(x)). We can find pure statege D such that

maps consists of mixtures of product unitaries. 77(_z|)=y| . Thus x_=2,q|z|+z for_ somez with 7(z)=0.
For x#0 in a cone, defin&="(x)=tr(x) x to be the ~With the appropriate interpretation @(x)/pyx when py
unique state proportional ta If x=0, definex=0. We say =0,

that the functionY': D— R is explicitly nonincreasindor the

trace-preserving explicit positive mafp=(A,)\ if for ex- TV _
tremal statex e D, T(AK(X)= T(AX)/ Pi) = 7| Ay Z Qiz+z

/»

Y(x)zEk peY (A(X)), (17) =2| (a/p)m(A(2)),

sinceA, preserves the nullspace of
wherep, =t A(X)]. The property of being explicitly non-
increasing is useful as a sufficient condition for being non- _ rod / A (Z)). with ru=tTAu(z
increasing. EI (ridi /P m(Ak(z))), k=tlA(z)].
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Since A, is C-separable and; is pure in Dy, SO is its generalizations to multipartite systems. Relativizing the
A(z). Thus, by definition, S(A(X);C)=S(m(A(X))) idea of entanglement has the advantage of being able to im-
<S((rq;/py),)- To prove the desired inequality, bound as mediately use the entire hierarchy of local Lie algebras and

follows: associated entanglement measures in the multipartite setting.
There are other settings where multiple, physically moti-

S(AX):C)< S((rua/ vatgd Lie alggbras occur. We give four examples of. such

EK PS(AX):C) EK PS((ria/pon) settings. The first example involves spectrum generating al-

gebras(SGA9. SGAs are used to determine the spectrum
<9 roa ] , (eiggnvalues an_d eiggnspa):er.ﬁ quantum systems. SGAS
<2k P(T ikl pk)') provide the starting point for one or more chains of Lie sub-
algebras that are used for obtaining algebraic bases of states

by Schur concavity and for expanding the Hamiltonian as a linear combination
of invariant (Casimip operators belonging to the chains.

ZS(( > r,kq,) )zS((ql),) When such an expansion contains only invariant operators of

K | a single algebraic chain, the system exhibits a dynamical

symmetry, and the corresponding spectrum can be calculated

exactly using the representation theory of Lie subalgebras. In

the generic case where operators from multiple chains occur
. (that is, distinct dynamical symmetries coexishe SGA ap-
proach may still make it possible to accurately represent the
Hamiltonian in terms of a small number of algebraic opera-
é s. Since they were introduced in nuclear phydi¢g],

A methods have been successfully applied to a variety of

=35(q), because is trace preserving,

which is arbitrarily close t&(x;C). [ |
Conditional composition of trace-preserving explicit lif
able C-separable maps preserves explicit liftability and
C-separability. Nevertheless it is useful to know circum-
stances that guarantee that conditional composition preserv

monotonicity ofS(x;C). . ;

Theorem 30 Suppose thaS(x;C) is explicitly nonin- problems in molecular, atomic, and condensed matter ph_ys-
creasing under the trace-preserving explicit extremality—ICS [.73]' Uimg the altpplro:_:lch ggvelopﬁd ?ere_l,. onefcouhld In-
preserving mapé=(Ay) andB,. Then it is explicitly non- vestigate t € sta(tjes_ rhe ?‘t'of.s |psbtc: t s ami |gs orf co erﬁn.t
increasing under the conditional compositidd of A states associated with the Lie subalgebras and quantify their

followed by the By. E is also an explicit extremality- relative entanglement,
' by k- P y An example we have already mentioned as motivation for
preserving map.

Proof Letx be a pure state dd. ThatE is also an explicit  CY" work involves fermions ifN modes. In this case, in
. P o . P addition to the algebra of all relevant operators, there is the
extremality-preserving map is clear. Wripe=tr[ A (x)] and

a = o Lie algebrah, of number-preserving operators quadratic in
G = I By (A(x))1/pic. If py=0, setq=0. To prove In- 0 o ation and annihilation operators. These operators can
equality (17), compute

be expressed in the foraiMa, whereM is anNx N matrix.
The h,-coherent states are the Slater determingsee, for
E APk SC[ By (Ak(x))];C) example, Ref[21], p. 7 and represent independent fermi-
K ons. If the Lie algebra is enlarged tg consisting of all
operators that are homogeneous quadratic in the creation and
= quPkSCI[By (A(X)];C) annihilation operators, coherent states include BCS states
Kl [74], which can be thought of as describing independent fer-
mion pairs. Therefore, from this perspective, BCS states are

sz P S(AL(X);C), because, are explicitly unentangled. On the other hand, they have entanglement
K with respect to the pailj,Ch, of Lie algebras.
nonincreasing and the,(x) are extremal. The example of fermions generalizes to anyons. Anyons

as defined in quantum field theory include particles with
=§(x;C), because\ is explicitly nonincreasing. fractional exchange statistid§5]. To apply our theory to
anyons requires the use of features of the convex-cones set-
n ting. This is because the various sets of operators quadratic
in the creation and annihilation operators are Lie algebras
V. DISCUSSION only for fermions and bosor{g6]. This was one of our mo-
tivations for extending the formalism. The convex cones can
be defined as the set of linear functionals induced by states
The traditional setting for studies of entanglement is thabn sets of operators as before and investigated using essen-
of bipartite systems. Our investigation shows that the morgially the same basic tools. Further investigation is required
general theory based on Lie algebras exhibits most of théo determine whether special properties that are not available
features associated with bipartite entanglement, and a signifin the convex cones setting still apply to quadratic anyonic
cant number of these features can even be found in theperator families.
convex-cones setting. As a result, we hope that the general For bosons irN modes, four algebras frequently play an
theory provides new insights into bipartite entanglement andmportant role. The smallest ortg,, consists of the opera-

A. Further examples and extensions
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tors of the forma'Ma, whereM is anNX N matrix andais  problems, correlations between particles, rather than modes,
the vector of annihilation operators of thé¢ modes. This are relevant, taking us beyond the distinguishable-
algebra generates the passive linear optics operators. Tisgbsystems framework of standard entanglement theory.
second Lie algebrg, is the one that generates shifts in the ~ The introduction of “quasiparticles,” or transformations
canonical variables associated with the modes and consisgsich as the Jordan-Wigner transformatj@s, 79, may fur-
of operators at most linear in the creation and annihilatioriher alter the algebraic language we use to analyze the sys-
operators. The Lie algebitg, Db, + hs consisting of all op- tem; our motivation for such transformations may be math-
erators that are at most quadratic in the annihilation and creematical(easier solvability in one algebraic language than in
ation operators is the algebra that generates all linear opticnothey or physical(one algebra better exhibits the physical
operators. Finally, there is the algebra of all relevant operastructure of the system’s dynamics, or of our interactions
tors. The usual coherent states of optics and harmonic osciWith it). In either case, the formalism of coherent states is
lators are the),-coherent states. often known to be useful, and tools and concepts from quan-

Although much of our proposal can be applied to the extum information theory, such as generalized entanglement
ample of bosons, caution is required in generalizing theneasures, generalized LOCC and asymptotics may help as
finite-dimensional theory to the infinite-dimensional statewell. Initial work in the direction of connecting the
spaces of bosonic modes. In addition, algebras sughae  information-theoretic approach to entanglement to con-
not semisimple or reductive, requiring an extension of thedensed matter can be found in Rg¢80-82.
theory, as can be done for the theory of coherent states To give a more explicit example, Landau quasiparticles
[25,26]. refer to thosedressedparticles of the original interacting

system which weakly interact as a result@nsferringmost
B. Relevance to condensed-matter physics of the real interactions into the properties of the quasiparti-

L . . cles themselves. As a result, these quasiparticles may be
Entanglement, and our generalizations of it, may be im- q P Y

portant in the understanding of physical phenomena. For e gualitatively different from the original particles, an example

; o . of which is provided by the composite fermions in the quan-
ample, the concept of “quantum phase transitiofi#7] in- tum Hall setup[83]. But how do we construct those quasi-

voIve_s a qualitative change in the_ behavior of correlation articles? Weak interactions can be related to weak correla-
functions at zero temperature, i.e., in a pure ground state, Bns and, thereforayeak generalized entanglemetftone

parameters in a system's I—_|am|Iton|.an are varied. In__som%an reexpress the original problem in a language such that
cases an order parameter is associated to the transition, ﬂ&

! ; ) e Hamiltonian operator belongs to the quadratic expres-
others a topological order. Since classical pure states cann@t. i the language’s generating operatdcs example
exh|b|t|\(/*iorrelat|ontsh, this is an es?entlallly tc_luantll;m: phenom(':reation and annihilation operatprhien we know that the
enon. Moreover, the presence of correlations between su juasiparticles are noninteracting. Otherwise, we need to
systems in a pure state can serve as a_defmmon of gntangl Uantify the degree of “entanglementin the ground state,
ment, So quantu.m phase transltlons might be considered ay) to determine whether thearticlesgenerated by the lan-
be due to a qualitative change in the nature of entanglemen

o e 'uage interact sufficiently weakly to behave as true quasipar-
Therefore, quantifying and classifying entanglement ma g y y g P

help characterizing a quantum phase transition. Can me%:;(]:ifiss';l—re([a?%?e of hierarchical languages may help to address

sures of entanglement distinguish between a broken symme-
try and a topological phase transition? Can one classify
guantum critical points? It is essential in this regard to have
a notion of entanglement that need not make reference to We have outlined a program whose goal is to tie together
locality or subsystems. Whether the correlation functions thathe theory of entanglement and the theory of coherent states.
best characterize a given phase transition are those of distif¥e implemented the first few steps of this program starting
guishable subsystemSay, lattice sitesor of some other with the observation that the fundamental concepts of the
kind of correlations(say, two-particle correlation functions theory of coherent states coincide with the concepts from the
for systems of indistinguishable particlemay determine theory of entanglement. We extended this observation by
whether standard entanglement, or instead some generalizaroviding general definitions of the key information-
tion of it, provides appropriate concepts. Even standard entheoretic notions in entanglement theory. In particular, we
tanglement is relative to a distinguished factorization of aintroduced several classes of quantum maps to the Lie-
total Hilbert space into “local” ones, though this is usually algebraic setting appropriate for coherent-state theory that
unproblematic in quantum information settings. In other setgeneralize the idea of separable maps for multipartite sys-
tings, such as many-body condensed-matter systems, diffelems and approach LOCC. The numerous open problems at-
ent factorizations may occur on a more equal footing agest to the richness of this program.

“global” transformations typically play a natural role. Thusa  After noting that many of the notions that we generalized
system of interacting bosons or fermions on a lattice may bean, to some extent, be stated even more generally in the
viewed in terms of a factorization of the state space intacontext of convex cones, we made this explicit by investigat-
distinguishable lattice sites, but the Fourier transformatioring appropriate definitions for convex cones. Except for the
from position modes to momentum modes may provide artonvex cones arising as spaces of linear functionals on op-
alternative factorization; and it may also be that for someerator families induced by states, most such convex cones are

C. Conclusion
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it is clear that entanglement is a relative property of states,
requiring that states that are mixed from one perspective can
be pure from other, more powerful perspectives. Once this
relativity is recognized, it is possible to investigate relative
entanglement of states when many physically motivated per-
spectives coexist. Examples include multipartite systems,
condensed-matter systems, and systems whose dynamics is
described by the chain of Lie algebras associated with a dy- Table | shows the three settings as generalizations of the
namical symmetry or a spectrum generating algebra. bipartite setting.

APPENDIX: COMPARISON OF THE SETTINGS
FOR GENERALIZED ENTANGLEMENT

TABLE I. Comparison of entanglement settings.

Bipartite systems Lie algebras Cones
Structure: Ha®Hy, & tensor product {I}chCg, t-closed Lie algebras Closed, convex coneSCD with
of two Hilbert spaces. of operators on a Hilbert spadé. traces, andr: D—C a linear,

trace-preserving, map onf.

States: Full or reduced density matrices. Linear functionals orf or g Trace-one elements @ or D.
induced by density matrices.

Specialization to bipartite h={A®|+I1®B}, g is the set C={(A,B) | A(B) positive on

systems: of all operators orH,®Hj, . Ha(Hp)}, D = {C | C positive on},

m(C) = (tra(C), tr,(C)).

Specialization to Lie C(D) consist of the linear functionals induced
algebras: on h(g) by positivep onH as
x—tr(px).  is the restriction map.

Distinguished pure states: Product pure states. Coherent(or, equivalently, pureh-states. Statese D such thatr(x) is pure inC.
Distinguished mixed states: Separable states. Convex combinations of-states The conB e, 0f separable states in
that restrict to cohererff-states. D consisting of convex combinations of states

xe D such thatwr(x) is pure inC.

Pure state entanglement von-Neumann entropy for pure S Schur-concave) an h-state: Foix, a pure state i,
measures: states. Unilateral purity. S(\)=inf{S(p) | X=X pyh with S(x) =inf{S(p) | x=Zypxy with
Nk h-coherentp,=0}. h-purity. Xk pure, p=0}.

Measures based on amplitudé(\)) and
supporting Cartan subalgebré&:(\)).

Mixed state entanglement Given pure state entanglement meastire Given anh-state measur€ and ag-statex,  Given aC-measureS, x a state inD.
measures. S(p) =inf{{ZpS(pi) | ZxPrpx=p, S(\) =inf{Z P SN | Zpihi=X, S(x) =infH{Z P S(m (%)) | ZyPix=x,

pk is a pure product statg,=0}. N\k[h is coherentp,=0}. (Xy) is pure,p=0}.
Properties of entanglement Convex. Monotone under LOCC. Convex. Monotone under explicit Convex. Monotone under trace-preserving
measures: liftable separable quantum maps. explicit liftable C-separable maps @.
Maximally entangled states: Bell states. See Ref]. Undefined.
Nonclassicality of entangled states:  Bell inequalities. See [Réf. Undefined.
Hierarchies: Add the unilateral algebras. Arbitrary family of operator Lie Avrbitrary family of cones, partially

algebras ordered by inclusion. ordered by trace preserving onto maps.

Local unitary operators: Product unitary operators. el Re®) Positive linear isomorphisr: D—D

such thatmf =T for some isomorphism

T: c—C. Caution: Defs of local maps

do not always specialize to the corresponding
defs for Lie algebras.
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TABLE I. (Continued.

Bipartite systems Lie algebras Cones

Local operators:

Separable maps:

Unilocal operators:

Compatible families of

one-sided local operators:
LOCC:

Communication complexity:

Known monotonicity of
entanglement results:

Resource scaling:

Product operators. e, C-product maps: Extremality-preserving

positive maps: D—D that preserve
extremality inDggpalso.
p— S ApAT, whereA e . C-separable maps— 3 A(X),
Caution: Defs of local maps do not

always specialize to the corresponding
defs for bipartite systems.

pHEkAkpAE , where the

Ay are product operators. where theA, are C-product maps

Axl, I®A. Operators ofy with maximal ground spaces?

Operators whose action lifts fpstates?

C-product maps oD that lift to C?

Operators acting on Undefined.
the same subsystem.

Monoid generated by conditional

composition of explicit unilocal

quantum maps.

Operators conjugate unde to
one with maximal ground spaces?
Monoid generated by conditional composition Monoid generated by conditional composition
of explicit quantum maps consisting of of trace-preserving explicit liftabl€-separable
compatible families? maps?
Monoid generated by conditional composition
of explicit liftable separable quantum
maps? ...
Defined in terms of outcome probabilities in each step of a conditional composition.
Under explicitly liftable separable Under trace-preserving explicit
quantum maps. liftable C-separable maps.
Grow Lie algebras over tensor Undefined.
products ofH using partial traces.
May require additional structure?

Under LOCC maps.

By tensor product, preserving
orientation of the bipartition.
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