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Direct estimation of functionals of density operators by local operations
and classical communication
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We present a method of direct estimation of important properties of a shared bipartite quantum state, within
the ‘‘distant laboratories’’ paradigm, usingonly local operations and classical communication. We apply this
procedure to spectrum estimation of shared states, and locally implementable structural physical approxima-
tions to incompletely positive maps. This procedure can also be applied to the estimation of channel capacity
and measures of entanglement.
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There are many scenarios in quantum information scie
where it is necessary to estimate certain properties of a q
tum state%, such as its spectrum, purity, or degree of e
tanglement. Moreover, such estimations are often nee
when% is a bipartite state%AB , shared by two distant par
ties, Alice and Bob, who can perform only local operatio
and communicate classically~LOCC!. The desired propertie
can be then estimated either by resorting to quantum s
tomography@1# or more directly, e.g., via estimating nonlin
ear functionals of%AB . The second method has the natu
advantage of being more efficient, since we compute dire
the desired properties without estimating any superfluous
rameters. In fact the direct estimation has been success
applied to local spectrum estimation@2#, entanglement detec
tion @2,3#, and the evaluation of one-qubit quantum chan
capacities@4#. However, the LOCC version of these tec
niques was left as an open problem. In this paper we sh
that the two basic techniques, namely, the estimation of n
linear functionals of quantum states and constructions
structural physical approximations~SPAs! @2,3# admit LOCC
implementation. This opens the possibility of the direct e
mation of entanglement and some channel capacities u
only LOCC.

As a general remark, let us recall that a quantum ope
tion L can be implemented using LOCC if it can be writte
as a convex sum

L5(
k

pkAk^ Bk , ~1!

whereAk acts on the subsystem at Alice’s location andBk on
the subsystem at Bob’s location, andpk represent the respec
tive probabilities.

Let us start with the estimation of nonlinear functionals
%AB using quantum interferometry. Consider a typical se
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for single-qubit interferometry, conveniently expressed
terms of quantum gates and networks: Hadamard g
phase-shift gate, Hadamard gate, and measurement in
computational basis$u0&,u1&%. We modify the interferometer
by inserting a controlled-U operation between the Hadama
gates, with its control on the qubit and withU acting on a
quantum stater ~Fig. 1!. The controlled-U models the inter-
action between the qubit and an auxiliary system~ancilla!,
initially in the stater, and leads to modification of the ob
served interference pattern, by the factorveia5Tr@Ur#. The
factorv is the visibility anda is the shift of the interference
fringes, known as the Pancharatnam phase@6#. The observed
modification of the fringes gives us an estimate of the av
age value of unitary operatorU in stater @7#.

Suppose now thatr is the quantum state of two separab
subsystems,r5%A^ %B , and that we chooseU to be the
swap operatorV, defined such thatVuf&Auc&B5uc&Auf&B ,
; uf&,uc&. In this case, the modification of the interferen
pattern will bev5Tr@V(%A^ %B)#5Tr@%A%B# or the over-
lap between the input states%A and %B . If the two input
states are equal,%A5%B5%, we obtain an estimation o
the purity, Tr@%2#. The generalization of the swap operatio
V to the shift operation V(k) (V(k)uf1&uf2& . . . ufk&
5ufk&uf1& . . . ufk21&, ; uf i&, i 51, . . . ,k), and the choice
of r5% ^ k as the input state, allows us to estimate multico
observables Tr@%k# of an unknown state% @4,2,3#.

Let us now extend this method to the LOCC scenario

FIG. 1. A modified Mach-Zehnder interferometer with couplin
to an ancilla by a controlled-U gate. The interference pattern
modified by the factorveia5Tr@Ur#.
©2003 The American Physical Society06-1
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constructing two local networks, one for Alice and one f
Bob, in such a way that the global network is similar to t
network with the controlled shift. Unfortunately, the glob
shift operation V(k) cannot be implemented using on
LOCC, since it does not admit decomposition~1!. Thus, we
will implement it indirectly, using the global network show
in Fig. 2. Alice and Bob share a number of copies of the s
%ABPB(H d). They group them respectively into sets ofk
elements, and run the local interferometric network on th
respective halves of the staterAB5%AB

^ k . For each run of the
experiment, they record and communicate their result.

The individual interference patterns that Alice and B
record will depend only on their respective reduced den
operators. Alice will observe the visibilityvA5Tr@%A

k # and
Bob will observe the visibilityvB5Tr@%B

k #. However, if they
compare their individual observations, they will be able
extract information about the global density operator%AB ,
e.g., about

Tr@%AB
k #5Tr@%AB

^ k~VA
(k)

^ VB
(k)!#. ~2!

This is because Alice and Bob can estimate the probabil
Pi j that in the measurement of Alice’s interfering qubit
found in stateu i &A and Bob’s in stateu j &A for i , j 50,1. These
probabilities can be conveniently expressed as

Pi j 5
1

4
Tr†%AB

^ k@I1~21! iVA
(k)# ^ @I1~21! jVB

(k)#‡, ~3!

hence the formula for the basic nonlinear functional of%AB
reads

Tr@%AB
k #5P002P012P101P11. ~4!

In fact, the expression above is the expectation va
^sz^ sz&, measured on Alice’s and Bob’s qubits~the two
qubits that undergo interference!. Given that we are able to
directly estimate Tr@%AB

k # for any integer value ofk, we can
estimate the spectrum of%AB without resorting to a full state
tomography.

We next show how to implement structural physical a
proximations within the LOCC constraint. Structural phy

FIG. 2. Network for remote estimation of nonlinear functiona
of bipartite density operators. Since Tr@V(k)% ^ k# is real, Alice and
Bob can omit their respective phase shifters.
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cal approximations were introduced recently as tools for
termining relevant parameters of density operators~see Refs.
@2,3# for more details!. Basically the SPA of a mathematica
operationL, denoted asL̃, is a physical operation, a proces
that can be carried out in a laboratory, that emulates
character ofL. More precisely, supposeL:B(H d)°B(H d)
is a trace preserving map which does not represent
physical process, for example, an antiunitary operation s
as transposition. Then a convex sum

L̃5aD1~12a!L, ~5!

whereD is the depolarizing map which sends any dens
operator into the maximally mixed state, represents a ph
cal process, i.e., a completely positive map, as long asa is
sufficiently large. On top of thisD, with its trivial structure,
does not mask the structure ofL. The structural physica
approximation toL is obtained by selecting, in the expre
sion above, the threshold valuea5(d2l)/(d2l11), where
2l is the lowest eigenvalue of (I^ L)P1

(d) and P1
(d) is a

maximally entangled state of ad3d system@14#.
Please note that the physical implementation of SPA

not a trivial problem as the formula~5!, which explicitly
contains the physically impossible mapL, is of little guid-
ance here. Let us also mention in passing that ifL is not
trace preserving thenL̃ may be implementable but only in
probabilistic sense, e.g., via a postselection.

There are many examples of mathematical operati
which although important in the formulation of the physic
theory do not represent a physical process. For exam
mathematical criteria for entanglement involve positive b
not completely positive maps@5# and as such they are no
directly implementable in a laboratory; they tacitly assum
that a precise description of a quantum state of a phys
system is given and that such operations are performed
the mathematical description of the state rather than the
tem itself.

If L does not represent any physical process then
trivial extension to a bipartite caseI^ L does not represent
physical process either. Still, its SPAI^ L̃ does describe a
physical operation, but can it be implemented with LOCC

The positive answer is obtained by puttingI^ L̃ into the
tensor product form~1!. Let us start by writing it as

I^ L̃5aD^ D1~12a!I^ L

5~12a1b!I^ S 12a

12a1b
L1

b

12a1b
DD

1~a2b!S a

a2b
D1

2b

a2b
ID ^ D

5~12a1b!I^ L̃1~a2b!Q̃ ^ D, ~6!

where

L̃5
12a

12a1b
L1

b

12a1b
D, ~7!
6-2
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Q̃5
a

a2b
D1

b

a2b
~2I!. ~8!

Equation~6! does not represent a convex sum of physica
implementable maps for any values ofa and b but if we
choose

b>~12a!ld2, ~9!

a>bd2, ~10!

where 2l is the minimum eigenvalue ofI^ L(P1
d ), then

indeedI^ L̃ is a physical operation in the LOCC form. Not
however, that the mapQ̃ is not trace preserving and as su
it can be implemented only with a certain probability of su
cess. The minimal parametersa andb that satisfy inequali-
ties Eqs.~9! and~10! are

a5
ld4

ld411
, ~11!

b5
ld2

ld411
. ~12!

Hence, the SPAI^ L̃ can be implemented, by Alice and Bo
using only LOCC.

The SPAs have been employed to test for quantum
tanglement@2#. Recall that a necessary and sufficient con
tion for a bipartite state%AB to be separable isI^ L(%AB)
>0 for all positive mapsL @5#. This condition, when con-
sidering the SPAI^ L̃ on %AB , is equivalent to

@I^ L̃#%AB>
d2l

d4l11
, ~13!

where 2l is the minimal eigenvalue of the state@(I^ I)
^ (I^ L)#(P1

d2
) @2#. Thus, by estimating the spectrum~or the

lowest eigenvalue! of the state@I^ L̃#%AB , we can directly
detect quantum entanglement. Moreover, we have alre
shown that bothI^ L̃ and the spectrum estimation of%AB ,
via nonlinear functionals, can be performed using o
LOCC, hence a direct detection of quantum entanglem
within the LOCC scenario is also possible.

Let us now comment briefly on other potential applic
tions of the methods presented above. Let a completely p
tive map L:B(H d)°B(H d) represent a quantum chann
shared by Alice and Bob. An estimation of the channel
pacity may involve either a channel tomography or a dir
estimation. In the case of tomography Alice prepares a m
mally entangled pair of particles in stateP1

d and sends one
half of the pair to Bob. They now share the state

%L5@I^ L#P1
d . ~14!

From the Jamiołkowski isomorphism@8#, this bipartite state
encodes all properties of the channelL, so state tomography
03230
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on %L is effectively channel tomography onL. However,
given a bipartite state%L , Alice and Bob can also use th
LOCC techniques to directly estimate its desired propert
For example, it has been shown that a single-qubit channeL
has nonzero channel capacity if and only if the maxim
eigenvalue of%L is strictly greater than1

2 ~see Ref.@4# for
details!. This can be estimated directly via the spectrum
timation, which in the case of two qubits requires only
342355 measurements of the typesz^ sz as opposed to
the 15 parameters required for the state estimation.

For Bell diagonal states~i.e., two-qubit states, whos
eigenvectors are all maximally entangled!, the entanglemen
of formation ~or negativity, see below! can be inferred from
its spectrum@9#. Thus, if Alice and Bob share a Bell en
tangled state, they can estimate the degree of entangle
of their state through spectrum estimation only. An importa
subclass of Bell diagonal states are the maximally correla
states, rank two states equivalent~up toUA^ UB transforma-
tions! to mixtures of two pure statesuc1&51/A2(u0&u0&
1u1&u1&) and uc2&51/A2(u0&u0&2u1&u1&). The one-way
distillable entanglement can be calculated for such state
D→5 ln 22S(%), which is a function solely of the spectrum
Thus, instead of estimating the seven parameters require
describe maximally correlated states, we need only estim
five parameters.

The estimation of entanglement measures~see Ref.@10#
for review! is known only for special cases, such as the co
putable measure of entanglement@11#, N(%AB)[ lnuu%AB

TBuu
5ln((iuliu). This measure is valid for any shared bipart
state, with a maximally mixed reduced density operator o
least one subsystem, and it is a function of the spectrum$l i%
of the partially transposed matrix%AB

TB [I^ T(%AB), whereT
is the ~incompletely positive! transposition map. Thus, w
can estimateN(%AB) using only LOCC, if we chooseL
5T and then estimate the spectrum of the resultant state

Given any quantum channelL, N(%L) is the upper
bound for one-way channel capacity. We obtain, therefor
necessary condition for nonzero one-way capacityQ→ : if
N(%L)50, the two-way channel capacity mustvanish@12#
~this can be easily seen using distillation and binding
tanglement channel@13#!. Hence, the positive partial trans
pose test is a strong necessary test of quantum nonzero c
nel capacity.

To conclude, we have demonstrated that both direct sp
trum estimations and the structural physical approximati
can be implemented in the case of bipartite states using
local operations and classical communication. This lead
more direct, LOCC type, detections and estimations of qu
tum entanglement and of some properties of quantum ch
nels. Direct estimations of specific properties have the na
ral advantage over the state tomography because they a
estimating superfluous parameters. Still, the exact comp
son of the use of physical resources in tomography and di
estimations depends very much on the physical impleme
tions of these techniques. Our objective here is to prov
additional tools for quantum information processing rath
than comparative studies of these tools.
6-3
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