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Direct estimation of functionals of density operators by local operations
and classical communication
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We present a method of direct estimation of important properties of a shared bipartite quantum state, within
the “distant laboratories” paradigm, usiranly local operations and classical communication. We apply this
procedure to spectrum estimation of shared states, and locally implementable structural physical approxima-
tions to incompletely positive maps. This procedure can also be applied to the estimation of channel capacity
and measures of entanglement.
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There are many scenarios in quantum information sciencéor single-qubit interferometry, conveniently expressed in
where it is necessary to estimate certain properties of a quaterms of quantum gates and networks: Hadamard gate,
tum statep, such as its spectrum, purity, or degree of en-phase-shift gate, Hadamard gate, and measurement in the
tanglement. Moreover, such estimations are often needecbmputational basi§0),|1)}. We modify the interferometer
when g is a bipartite stat® 55, shared by two distant par- by inserting a controlled} operation between the Hadamard
ties, Alice and Bob, who can perform only local operationsgates, with its control on the qubit and with acting on a
and communicate classicalliyOCC). The desired properties quantum state (Fig. 1). The controlledd models the inter-
can be then estimated either by resorting to quantum statection between the qubit and an auxiliary syst@ncilla),
tomography[ 1] or more directly, e.g., via estimating nonlin- initially in the statep, and leads to modification of the ob-
ear functionals ofo5g. The second method has the naturalserved interference pattern, by the facatet“=Tr[Up]. The
advantage of being more efficient, since we compute directlyactorv is the visibility anda is the shift of the interference
the desired properties without estimating any superfluous pdringes, known as the Pancharatnam pH&eThe observed
rameters. In fact the direct estimation has been successfuliyodification of the fringes gives us an estimate of the aver-
applied to local spectrum estimatif?], entanglement detec- age value of unitary operatdf in statep [7].
tion [2,3], and the evaluation of one-qubit quantum channel Suppose now thai is the quantum state of two separable
capacities[4]. However, the LOCC version of these tech- subsystemsp=p,® 05, and that we choostl to be the
niques was left as an open problem. In this paper we showwap operatol, defined such tha¥/| )l ¥)g=|¢)al P)g .,
that the two basic techniques, namely, the estimation of norny |),|). In this case, the modification of the interference
linear functionals of quantum states and constructions opattern will bev =Tr[V(eA® 05)]=Tr[@a0g] OF the over-
structural physical approximatioiSPAS [2,3] admit LOCC  |ap between the input states, and ¢g. If the two input
implementation. This opens the possibility of the direct esti-states are equalp,=0z=¢, we obtain an estimation of
mation of entanglement and some channel capacities usinge purity, Tf ¢2]. The generalization of the swap operation

only LOCC. V to the shift operation V& (V| p) ) .. .|
As a general remark, let us recall that a quantum opera=| g é,) . ..|dr_1), Vi), i=1, ... k), and the choice
tion A can be implemented USing LOCC if it can be written of p= Q®k as the input state, allows us to estimate mu]ticopy
as a convex sum observables TpX] of an unknown state [4,2,3.
Let us now extend this method to the LOCC scenario by
A=2 PA@ B, (D) PSR SHUFT o

VISIBILITY v

whereA, acts on the subsystem at Alice’s location @)don
the subsystem at Bob’s location, apdrepresent the respec-
tive probabilities.

Let us start with the estimation of nonlinear functionals of P )
0 ag Using quantum interferometry. Consider a typical setup

HE

Tr[Up]=ve®

FIG. 1. A modified Mach-Zehnder interferometer with coupling
to an ancilla by a controllet} gate. The interference pattern is
*Electronic address: carolina.mouraalves@qubit.org modified by the factove'*=Tr[Up].
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0 . . cal approximations were introduced recently as tools for de-
) H H o .

termining relevant parameters of density opera(eeg Refs.
[2,3] for more details Basically the SPA of a mathematical

: operationA, denoted ad\, is a physical operation, a process
k— that can be carried out in a laboratory, that emulates the
character ofA. More precisely, suppose: B(H %)~ B(H %)

is a trace preserving map which does not represent any

s o physical process, for example, an antiunitary operation such
10) as transposition. Then a convex sum
1
: ® A=aD+(1—a)A, 5
V Bob (1-a) (5)

where D is the depolarizing map which sends any density

FIG. 2. Network for remote estimation of nonlinear functionals operator into the maximally mixed state, represents a physi-
of bipartite density operators. Since[ VY0 "] is real, Alice and process, i.e., a completely positive map, as long as
Bob can omit their respective phase shifters. sufficiently large. On top of thi®, with its trivial structure,
does not mask the structure &f. The structural physical
approximation toA is obtained by selecting, in the expres-
sion above, the threshold value= (d?\)/(d’\+ 1), where
—\ is the lowest eigenvalue ofi¢ A)P'@ and P@ is a
maximally entangled state ofdx d system[14].

Please note that the physical implementation of SPAs is
Qot a trivial problem as the formulé), which explicitly

constructing two local networks, one for Alice and one for
Bob, in such a way that the global network is similar to the
network with the controlled shift. Unfortunately, the global
shift operation V(¥ cannot be implemented using only
LOCC, since it does not admit decompositidn. Thus, we
will implement it indirectly, using the global network shown
in Fig. 2. Alice and Bob share a number of copies of the stat . ; X . . . :
oape B(HY. They group them respectively into sets lof contains the physically |mpos_S|bI\_e man IS of I|ttlg guid-
elements, and run the local interferometric network on thei?"® here. L?t us a~lso mentpn in passing that ifs nc?t
respective halves of the StfﬁﬂBZQ%- For each run of the trace preserving theA may be |mplement_able but only in a
experiment, they record and communicate their result. probabilistic sense, e.g., via a postselection. _
The individual interference patterns that Alice and Bob _1Nere are many examples of mathematical operations
record will depend only on their respective reduced density/ich although important in the formulation of the physical
operators. Alice will observe the visibilityAzTr[Q,'i] and theory do' not rgpr_esent a physical process. For .e.xample,
Bob will observe the visibility s = Tr[ 0]. However, if they mathematical criteria for entanglement involve positive but
compare their individual observations, they will be able tonOt completely positive mapb] and as such they are not

) ! ; directly implementable in a laboratory; they tacitly assume
gxéra(;tbg?rmatmn about the global density operatg ., that a precise description of a quantum state of a physical

system is given and that such operations are performed on
the mathematical description of the state rather than the sys-
Trleks] =Tl eRE(VRI®VED)]. @ o el P Y

This is because Alice and Bob can estimate the probabilities . l_f IA does_ not represent any p;{u:jsical process then its
P, that in the measurement of Alice’s interfering qubit is V12! €xtension to a bipartite cad® A does not represent a
found in statdi), and Bob's in statéj), for i,j =0,1. These phys!cal process either. Stl", its _S%A does d(_escnbe a
probabilities can be conveniently expressed as physical operation, but can it be implemented with LOCC?
The positive answer is obtained by puttihg A into the
1 - : tensor product forngl). Let us start by writing it as
Py=7TleREI+(—~DVRle[+ (- DIV, (3) P y g
I8 A=aDRD+(1—-a)l®A
hence the formula for the basic nonlinear functionabqg

reads o 1-a B
k =(1 a+,8)][®(l_a+ﬁj\+ 1—a+,3D
Tl @asl=Poo— Po1~ P1ot Pua. 4 8
o -
In fact, the expression above is the expectation value +(a_ﬂ)(a—ﬂp+a—ﬁl)®p

(o,®0,), measured on Alice’s and Bob’s qubitthe two _ _

qubits that undergo interferencesiven that we are able to =(l-a+p)IeA+(a=B)ORD, (6)
directly estimate 1[rg,'§B] for any integer value ok, we can

estimate the spectrum of,g without resorting to a full state Where

tomography.
We next show how to implement structural physical ap- K= 1-a A+ B D @
proximations within the LOCC constraint. Structural physi- l1-a+p l-a+B8""
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- @ B on g, is effectively channel tomography of. However,
0= a—BD+ﬁ(_H)' (8 given a bipartite state , , Alice and Bob can also use the
LOCC techniques to directly estimate its desired properties.
Equation(6) does not represent a convex sum of physicallyFor example, it has been shown that a single-qubit chatinel
implementable maps for any values efand 8 but if we  has nonzero channel capacity if and only if the maximal
choose eigenvalue ofp , is strictly greater thar (see Ref[4] for
detailg. This can be estimated directly via the spectrum es-
B=(1—a)\d?, (99  timation, which in the case of two qubits requires only 2
X 4—3=5 measurements of the typg® o, as opposed to
(10) the 15 parameters required for the state estimation.
For Bell diagonal statesi.e., two-qubit states, whose
where —\ is the minimum eigenvalue dfe A(PY), then  €igenvectors are all maximally entanglethe entanglement
indeedl® A is a physical operation in the LOCC form. Note, of formation (or negativity, see belojcan be inferred from

however, that the ma@ is not trace preserving and as such Its spectrum{9]. Thus, if Alice and Bob share a Bell en-
) . . pres g anc tangled state, they can estimate the degree of entanglement
it can be implemented only with a certain probability of suc-

- P .~ of their state through spectrum estimation only. An important
cess. The minimal parametesand 4 that satisfy inequali- subclass of Bell diagonal states are the maximally correlated
ties Egs.(9) and10) are 9 y

states, rank two states equivaléap toU ,® Ug transforma-
N4 tions) to mixtures of two pure statefy. )=1/\/2(|0)|0)

aBBdZ,

LTI (1) +]1)[1)) and |¢_)=1/y2(]0)|0)—|1)|1)). The one-way
A distillable entanglement can be calculated for such states as
N D_ =In2-Yp), which is a function solely of the spectrum.

B= _ (12) Thus, instead of estimating the seven parameters required to
AdA+1 describe maximally correlated states, we need only estimate
. five parameters.

Hence, the SPA® A can be implemented, by Alice and Bob,  The estimation of entanglement measufese Ref[10]

using only LOCC. for review) is known only for special cases, such as the com-
The SPAs have been employed to test for quantum emyytaple measure of entanglemdit], N(QAB)Em”Q;BB”

tgnglemen[_Z]. Recall that a necessary and sufficient Condi'zln(2i|)\i|). This measure is valid for any shared bipartite

108 ffgrr glblgzirttil\t/i ?:1&2@;\\8[; @riiseparig!e 'k@ﬁ(eAB) _state, with a maximally mixed reduced density operator of at

~ P P - [TIS condition, When €on- 045t one subsystem, and it is a function of the specfiuin

sidering the SPA® A on @4, is equivalent to of the partially transposed matrix,8=I®T(gag), WhereT

d2x is the (incompletely positivg transposition map. Thus, we
[I® Al apg= 2 , (13 can estimateN{pg) using only LOCC, if we choose\
d'A+1 =T and then estimate the spectrum of the resultant state.

. . . Given any quantum channel, A{g,) is the upper
where —A |32 the minimal eigenvalue of the stal¢l]) bound for one-way channel capacity. We obtain, therefore, a
@ (12 A)](PY) [2]. Thus, by estimating the spectruior the  necessary condition for nonzero one-way capaty: if
lowest eigenvalueof the statd I@ A]o g, We can directly A{g,)=0, the two-way channel capacity musinish[12]
detect quantum entanglement. Moreover, we have alreadhis can be easily seen using distillation and binding en-
shown that bofA® A and the spectrum estimation gf,g,  tanglement channgll3]). Hence, the positive partial trans-
via nonlinear functionals, can be performed using onlyPOSe testis a strong necessary test of quantum nonzero chan-

LOCC, hence a direct detection of quantum entanglemerit€! capacity. .
within the LOCC scenario is also possible. To conclude, we have demonstrated that both direct spec-

Let us now comment briefly on other potential applica-trum estimations and the structural physical approximations
tions of the methods presented above. Let a completely posfan be implemented in the case of bipartite states using only
tive map A:B(H%)—B(H) represent a quantum channel local operations and classical communication. This leads to
shared by Alice and Bob. An estimation of the channel caimore direct, LOCC type, detections and estimations of quan-
pacity may involve either a channel tomography or a direcfum entanglement and of some properties of quantum chan-
estimation. In the case of tomography Alice prepares a maxibels. Direct estimations of specific properties have the natu-
mally entangled pair of particles in sta® and sends one ral advantage over the state tomography because they avoid

half of the pair to Bob. They now share the state estimating superfluous parameters. Still, the exact compari-
son of the use of physical resources in tomography and direct
o =[I® A]pd+ i (14) estimations depends very much on the physical implementa-

tions of these techniques. Our objective here is to provide
From the Jamiotkowski isomorphisf8], this bipartite state additional tools for quantum information processing rather
encodes all properties of the channel so state tomography than comparative studies of these tools.
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