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Nonadditive generalization of the quantum Kullback-Leibler divergence
for measuring the degree of purification
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The Kullback-Leibler divergence offers an information-theoretic basis for measuring the difference between
two given distributions. Its quantum analog, however, fails to play a corresponding role for comparing two
density matrices, if the reference states are pure states. Here it is shown that nonadditive quantum information
theory inspired by nonextensive statistical mechanics is free from such a difficulty and the associated quantity,
termed the quantumq-divergence, can in fact be a good information-theoretic measure of the degree of state
purification. The correspondence relation between the ordinary divergence and theq-divergence is violated for
the pure reference states, in general.
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Purification is of fundamental relevance to quantum er
correction, which is important for quantum computation a
quantum communication. Specifically, a task is to purify
state of a subsystem of a composite system decayed in
mixed state~see@1–4#, for example!.

In such a situation, it is essential to quantify the degree
purification, that is, to compare a mixed-state density ma
with a reference pure-state density matrix. This problem
often treated by the use of the concept of fidelity@5,6#. For
two density matrices,r ands, it is given by

F@s,r#5@Tr~AsrAs!1/2#2, ~1!

which is also related to the Bures metric betweenr ands as
dB

25222AF@s,r#. For a pure state,s5uc&^cu, the fidelity
becomesF@ uc&^cu,r#5^curuc&.

On the other hand, in classical information theory, a co
parison of two distributions is customarily discussed by e
ploying the Kullback-Leibler divergence. Its quantum
mechanical counterpart is the quantum divergence o
density matrixr with respect to a reference density matrixs,
which is given by@7#

K@ris#5Tr@r~ ln r2 ln s!#>0, ~2!

where the equality holds if and only ifr5s. However,this
quantity turns out to be inadequate for measuring degree
purification, sinceln s is a singular quantity if the referenc
state s is a pure state. ~More generically,K@ris# can be
well defined only when the support ofs is equal to or larger
than that ofr @7#.!

In this paper we study a generalized information-theore
approach to quantifying the degree of purification based
nonadditive quantum information theory, which has been
tiated in @8# and applied to the problems of quantum e
tanglement@9–11#. In particular, we discuss the nonadditiv
generalization of the quantum divergence, termed the qu
tum q-divergence, and explicitly show how it is superior
the one in Eq.~2!.

Let us start our discussion with noting that the ordina
quantum divergence in Eq.~2! can be rewritten as follows:
1050-2947/2003/68~3!/032302~3!/$20.00 68 0323
r
d

a

f
x
is

-
-

a

f

c
n
i-
-

n-

K@ris#5
d

dx
Tr~rxs12x!U

x→120

. ~3!

The quantumq-divergence is obtained by replacing the d
rivative in Eq.~3! with the Jacksonq-derivative:

Kq@ris#5DqTr~rxs12x!ux→120 , ~4!

whereDq denotes the Jackson differential operator defin
by

Dqf ~x!5
f ~qx!2 f ~x!

x~q21!
, ~5!

which satisfies the followingq-deformed Leibniz rule:

Dq@ f ~x!g~x!#5@Dqf ~x!#g~x!1 f ~x!@Dqg~x!#1x~q21!

3@Dqf ~x!#@Dqg~x!#. ~6!

In the limit q→1, Dqf tends to the ordinary derivative
d f /dx. Equation~4! is found to be

Kq@ris#5
1

12q
Tr@rq~r12q2s12q!#

5Tr@rq~ lnq r2 lnq s!#. ~7!

In this equation,q is a positive parameter termed the entrop
index, and lnq x stands for theq-logarithmic function defined
by

lnq x5
1

12q
~x12q21!, ~8!

which converges to the ordinary logarithmic function, lnx, in
the limit q→1. Therefore,Kq might also be expected to con
verge toK in such a limit.~However, we shall see that this i
not the case, in general.! SinceKq should not be too sensitive
to small eigenvalues ofr and s, the range of the entropic
index must be taken to be

0,q,1. ~9!
©2003 The American Physical Society02-1



u
a

n

py
p

is

hi

he
ac

is
-
th
s
al

in
-
o

za
y
ea
k
s
l
o
ry

n

ce

-
o-

0

of

for

e,
um

SUMIYOSHI ABE PHYSICAL REVIEW A 68, 032302 ~2003!
Several comments are in order. Firstly, the classical co
terpart of Eq.~7! has been proposed independently and
most simultaneously in@12–14#. Secondly, the constructio
in Eq. ~4! reminds us of that of the Tsallis entropy@15# de-
veloped in@16#. This is due to the fact thatKq in Eq. ~6! is
the relative entropy associated with the Tsallis entro
Sq@r#5(Trrq21)/(12q), analogously to the relationshi
betweenK in Eq. ~2! and the von Neumann entropy,S@r#
52Tr(r ln r). Thirdly, it should be noted that the Tsall
entropy gives the basis for nonextensive generalization
traditional Boltzmann-Gibbs statistical mechanics. T
theory, termed nonextensive statistical mechanics@17#, is
considered to statistically describe complex systems in t
nonequilibrium stationary states and, in fact, is currently
cumulating its successful applications~see the URL, http://
tsallis.cat.cbpf.br/TEMUCO.pdf, for the comprehensive l
of references!. At first glance, one might feel that one
parameter generalization of the von Neumann entropy of
kind is completelyad hoc and there are huge ambiguitie
behind it. Quite remarkably, however, it is not the case at
It has been rigorously shown that the~classical! Tsallis en-
tropy is a unique quantity, which is consistent with the pr
ciples of thermodynamics@18–20#, satisfies the stability con
dition @21#, and is characterized by the generalized Shann
Khinchin axioms and the uniqueness theorem@8,22#. In
addition, it has analytically been shown by the renormali
tion group technique@23# that the Kolmogorov-Sinai entrop
has to be replaced by the Tsallis entropy when nonlin
dynamical systems are prepared at the edge of chaos. Ta
into account these developments and recalling the philo
phy of Jaynes@24# for building a bridge between statistica
mechanics and physical information theory, clearly it is
importance to explore if nonadditive information theo
based on the Tsallis entropy and its associatedq-divergence
Kq have any points superior to the additive von Neuma
theory.

Let us summarize the basic properties of the quantumq-
divergence.Kq@ris# is jointly convex:

KqF(
i

l ir
~ i !I(

j
l js

~ j !G<(
i

l iKq@r~ i !is~ i !#,

wherel i.0 and ( i l i51. This follows from Lieb’s theo-
rem @25#, which states that Tr(L12xMx) with 0,x,1 is
jointly concave in any positive operators,L andM.

Quite recently, it has been proved@26# thatKq monotoni-
cally decreases by projective measurements.Kq is nonaddi-
tive in the sense that for the factorized joint density matri
of a composite system~A, B!, r(A,B)5r1(A) ^ r2(B) and
s(A,B)5s1(A) ^ s2(B), it yields

Kq@r1^ r2is1^ s2#5Kq@r1is1#1Kq@r2is2#

1~q21!Kq@r1is1#Kq@r2is2#,

~10!

which essentially has its origin in theq-deformed Leibniz
rule in Eq.~6!. Thus, the value of 12q indicates the degree
of nonadditivity.
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Let us see thatKq@ris# is non-negative for any two den
sity matrices,r ands. For this purpose, consider the diag
nal decompositions ofr ands @27#:

r5(
a

r ~a!ua&^au, s5(
b

s~b!ub&^bu, ~11!

where$ua&% and $ub&% are the orthonormal complete bases,
<r (a), s(b)<1, and(a r (a)5(b s(b)51. A straightfor-
ward calculation shows that

Kq@ris#5
1

12q (
a,b

z^aub& z2r ~a!F12S s~b!

r ~a! D
12qG .

~12!

Making use of the inequality, (12xp)/p>12x (x>0, 0
,p,1) with the equality forx51 ~Theorem 42 in@28#!, we
arrive at the conclusion

Kq@ris#>(
a,b

z^aub& z2r ~a!F12
s~b!

r ~a!G50. ~13!

From the above discussion, it is clear that non-negativity
Kq@ris# itself holds for any positive values ofq and the
restriction in Eq.~9! is not necessary.

Kq@ris# is not symmetric inr and s unlessq51/2. Its
symmetrization, dq

25Kq@ris#1Kq@sir# looks like the
squared ‘‘distance’’ betweenr and s. However, to our
knowledge, the triangle inequality is not established yet
dq with qÞ1.

Now, a point of crucial difference betweenK@ris# and
Kq@ris# is that, in marked contrast with lns, lnq s is a
well-defined quantity for a pure reference states5uc&^cu.
In fact, in this case,s12q5s(0,q,1), whereas lns5(s
2I)z(1), which is divergent, whereI and z(s) are the unit
matrix and the Riemannz function, respectively. Accord-
ingly, Eq. ~7! is seen to be

Kq@riuc&^cu#5
1

12q
~12^curquc&!. ~14!

It is important to note that the additive limit q→1 cannot be
taken in this equation anymore.

Here, we wish to consider the particular case whenr is
also a pure state,r5uf&^fu. Then, Eq.~14! further becomes

Kq@ uf&^fuiuc&^cu#5
dFS

2

12q
, ~15!

where

dFS
2 512 z^fuc& z2 ~16!

is the Fubini-Study metric in the projective Hilbert spac
which may give the geometric interpretations to quant
uncertainty and correlation@29#. In addition, the transition
probability on the right-hand side of Eq.~16! coincides with
the value of the fidelity in this case.
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Finally, let us examine the quantumq-divergence for mea-
suring the degree of purification of the Werner state@2#. The
Werner state is a state of a bipartite spin-1/2 system, i.e.,
qubits, given as follows@30#:

rW5FuC2&^C2u1
12F

3
~ uC1&^C1u1uF1&^F1u1uF2&

3^F2u!, ~17!

where uC6& and uF6& are the Bell states:uC6&
5221/2(u↑↓&6u↓↑&), uF6&5221/2(u↑↑&6u↓↓&). F is the fi-
delity with respect to the reference states5uC2&^C2u. Its
allowed range is 1/4<F<1, andrW is known to be sepa
rable if and only ifF<1/2. In a recent paper@31#, it has been
discussed how to experimentally prepare such a state.

Now, the quantumq-divergence ofrW with respect to the
reference states5uC2&^C2u is immediately calculated to
be
-

J.

t-

.

. B

-
au
-

03230
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Kq@rWiuC2&^C2u#5

1

12q
~12Fq!>0, ~18!

where the zero value is realized whenF51 or q→10.
However, as already stressed, the limitq→120 is singular
and does not commute with the limitF→120.

In conclusion, we have discussed a possible informati
theoretic measure of the degree of state purification base
nonadditive quantum information theory. We have analyz
the properties of the quantumq-divergence and have foun
that, for pure reference states, it is superior to the ordin
quantum divergence. In particular, we have seen that the
ditive limit cannot be taken in such a situation, and the c
respondence relation between the ordinary divergence
the q-divergence is violated.
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