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Nonadditive generalization of the quantum Kullback-Leibler divergence
for measuring the degree of purification
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The Kullback-Leibler divergence offers an information-theoretic basis for measuring the difference between
two given distributions. Its quantum analog, however, fails to play a corresponding role for comparing two
density matrices, if the reference states are pure states. Here it is shown that nonadditive quantum information
theory inspired by nonextensive statistical mechanics is free from such a difficulty and the associated quantity,
termed the quanturg-divergence, can in fact be a good information-theoretic measure of the degree of state
purification. The correspondence relation between the ordinary divergence apditteggence is violated for
the pure reference states, in general.
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Purification is of fundamental relevance to quantum error d L
correction, which is important for quantum computation and Klpllo]=g Tr(p o) : 3

guantum communication. Specifically, a task is to purify a x—1-0
state of a subsystem of a composite system decayed into
mixed state(see[1-4], for example.

In such a situation, it is essential to quantify the degree o
purification, that is, to compare a mixed-state density matrix Kol pllo]=DyTr(p* o ™), 1 -0, (4)
with a reference pure-state density matrix. This problem is

often treated by the use of the concept of fidely6]. For  where D, denotes the Jackson differential operator defined
two density matricesp and g, it is given by by

The quantung-divergence is obtained by replacing the de-
{ivative in Eq.(3) with the Jacksom-derivative:

Flo.p]=[Tr(Nop o) 17, (D D (x)= 10T )

x(q-1)
which is also related to the Bures metric betweesnd o as . o . o _
d§=2—2 IF[o,p]. For a pure statar=|y)(y/, the fidelity which satisfies the following-deformed Leibniz rule:

becomes=[ |)(l.p]=(¥lpl#). - n Fx(g—
On the other hand, in classical information theory, a com- Dol f()90)]=[Dgf C01g(x) + T()[Dgg(x) ]+ x(q 1)
parison of two distributions is customarily discussed by em- X[Dgf(x)][Dga(x)]. (6)

ploying the Kullback-Leibler divergence. Its quantum-

mechanical counterpart is the quantum divergence of & the limit g—1, D,f tends to the ordinary derivative,
density matrixp with respect to a reference density mawix df/dx. Equation(4) is found to be

which is given by[7]

K U=LTI‘ d(pl-a—gl-a
qlello] 1-q Lpi(p )]

=T p%In, p—In . 7
where the equality holds if and only if= o. However,this Lp(Ingp=Ing )] @)

quantity turns out to be inadequate for measuring degree ofn this equationg is a positive parameter termed the entropic

purification, sinceln o is a singular quantity if the reference index, and Igx stands for the-logarithmic function defined
state o is a pure state (More genericallyK[plic] can be py

well defined only when the support ofis equal to or larger
than that ofp [7].) 1

In this paper we study a generalized information-theoretic Ing x= ﬁ(x 1-1), ®)
approach to quantifying the degree of purification based on
nonadditive quantum information theory, which has been iniywhich converges to the ordinary logarithmic functionx/in
tiated in[8] and applied to the problems of quantum en-the limit — 1. ThereforeK, might also be expected to con-
tanglemen{9-11]. In particular, we discuss the nonadditive verge toK in such a limit.(However, we shall see that this is
generalization of the quantum divergence, termed the quarot the case, in generaBinceK,, should not be too sensitive
tum g-divergence, and explicitly show how it is superior to to small eigenvalues of and o, the range of the entropic

Klplla]=Tr p(Inp—Ino)]=0, (2

the one in Eq(2). index must be taken to be
Let us start our discussion with noting that the ordinary
quantum divergence in E@2) can be rewritten as follows: 0<g<1. (9)
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11)

G

) =0. (13

Several comments are in order. Firstly, the classical coun- Let us see thak[ pllo] is non-negative for any two den-
terpart of Eq.(7) has been proposed independently and al-sity matricesp ando. For this purpose, consider the diago-
most simultaneously if12—-14. Secondly, the construction nal decompositions gf and o [27]:
in Eq. (4) reminds us of that of the Tsallis entropy5] de-
veloped in[16]. This is due to the fact th&, in Eq. (6) is
the relative entropy associated with the Tsallis entropy, PIEa r(a)la)(al, UZ; s(b)[b)(bl,

Syl p]1=(Trp9—1)/(1—q), analogously to the relationship

betweenK in Eq. (2) and the von Neumann entrop§{p]  where{|a)} and{|b)} are the orthonormal complete bases, 0
=—Tr(pInp). Thirdly, it should be noted that the Tsallis <r(a), s(b)<1, and=, r(a)=3, s(b)=1. A straightfor-
entropy gives the basis for nonextensive generalization ofyard calculation shows that

traditional Boltzmann-Gibbs statistical mechanics. This

theory, termed nonextensive statistical mechanitd, is 1 s(b)\1d
considered to statistically describe complex systems in their ~ Kglpllo]= rz [(alb)[r(a)| 1~ @ }
nonequilibrium stationary states and, in fact, is currently ac- dap 12
cumulating its successful applicatiosee the URL, http://

tsallis.cat.cbpf.br/TEMUCO.pdf, for thg comprehensive ”StMaking use of the inequality, (2xP)/p=1—x (x=0,0

of referenceps At _f|rst. glance, one might feel that one- ‘<p<1) with the equality fox=1 (Theorem 42 i28]), we
parameter generalization of the von Neumann entropy pf thiSrive at the conclusion

kind is completelyad hocand there are huge ambiguities

behind it. Quite remarkably, however, it is not the case at all.

It has been rigorously shown that thelassical Tsallis en- Kq[p\lo]zz [(alb)|*r(a)

tropy is a unique quantity, which is consistent with the prin- ab

ciples of thermodynamids8—20, satisfies the stability con- . N o
dition [21], and is characterized by the generalized Shannon:"om the_above discussion, it is gl_ear that non-negativity of
Khinchin axioms and the uniqueness theorg@22. In  Kalpllo] itself holds for any positive values af and the
addition, it has analytically been shown by the renormalizaestriction in Eq.9) is not necessary.

tion group techniqué23] that the Kolmogorov-Sinai entropy ~ Kalplol is notzsymmetrlc inp and o unlessq=1/2. Its
has to be replaced by the Tsallis entropy when nonlineafymmetrization, dg=Kq[pllo]+Kg[ollp] looks like the
dynamical systems are prepared at the edge of chaos. Takigguared “distance” betweemp and o. However, to our
into account these developments and recalling the philosdhowledge, the triangle inequality is not established yet for
phy of Jayneg24] for building a bridge between statistical dq With q#1. S

mechanics and physical information theory, clearly it is of Now, a point of crucial difference betweed(pllo] and
importance to explore if nonadditive information theory Kolpllo] is that, in marked contrast with i Inqo is a
based on the Tsallis entropy and its associagetivergence ~ Well-defined quantity 1‘°9f a pure reference state |¢)(y|.
K4 have any points superior to the additive von Neumanrin fact, in this caseg™9=0(0<q<1), whereas In=(o

theory. —1)¢(1), which is divergent, wheré and {(s) are the unit
Let us summarize the basic properties of the quangum Matrix and the Riemand function, respectively. Accord-
divergenceK [ pllo] is jointly convex: ingly, Eq. (7) is seen to be
_ _ o 1
Kq 2.: Aip) 2}: o) $§i: NiKqLp MM, Kq[P|||¢/><¢f|]=ﬁ(l—(ﬂpqh/f))- (14

where\;>0 and=; \;=1. This follows from Lieb’s theo- It is important to note that the additive limit-g¢1 cannot be
rem [25], which states that TE* " *M*) with 0<x<1 is taken in this equation anymare ) )
jointly concave in any positive operatoils,and M. Here, we wish to consider the particular case wheis

Quite recently, it has been prove6] that K, monotoni- also a pure statey=|¢)(4|. Then, Eq(14) further becomes
cally decreases by projective measuremeliitsis nonaddi- 2
tive in the sense that for the factorized joint density matrices K _ __Fs 15
of a composite systerfA, B), p(A,B)=p1(A)®p,(B) and Ll ()] 1-q’ (19
o(A,B)=01(A)®a,(B), it yields

where
Koglp1®palloy® op] =Kyl palloy ]+ Kyl pallas]

+(q=1)Ky[pilloi]Kq[palloz],
(10) is the Fubini-Study metric in the projective Hilbert space,
which may give the geometric interpretations to quantum
which essentially has its origin in thg-deformed Leibniz  uncertainty and correlatiof29]. In addition, the transition
rule in Eq.(6). Thus, the value of % q indicates the degree probability on the right-hand side of E(L6) coincides with
of nonadditivity. the value of the fidelity in this case.

des=1—Kglp)l (16)

032302-2



NONADDITIVE GENERALIZATION OF THE QUANTUM . .. PHYSICAL REVIEW A 68, 032302 (2003

Finally, let us examine the quantugrdivergence for mea- 1
suring the degree of purification of the Werner s{&k The Kolpwl| ¥~ W []= 1-g(1-F9=0, (18)
Werner state is a state of a bipartite spin-1/2 system, i.e., two q
qubits, given as follow$30]:

-F where the zero value is realized whéw=1 or g— +0.
pw=F[W W[+ = (|W (W[ +[PTN(PT[+|®7)  However, as already stressed, the linpit: 10 is singular
and does not commute with the linft—1—0.

xX{(P7|), (17 In conclusion, we have discussed a possible information-
. . . theoretic measure of the degree of state purification based on
Whe_rSZ [¥=) and |(I)1> ar_ellzthe Bell states:|[¥™)  nonadditive quantum information theory. We have analyzed
=271 D=L, [@)=27"K([11)=|11)). Fisthe fi- o hroperties of the quantumpdivergence and have found
delity with respect to the reference _state|\lf (W] Its that, for pure reference states, it is superior to the ordinary
aIIowe_d range 1s 14F<1, andpy is known t.o be sepa- quantum divergence. In particular, we have seen that the ad-
rable if and only ifF <1/2. In a recent pap¢B1], it has been ditive limit cannot be taken in such a situation, and the cor-

d'S;\:l%‘c\’,\‘j’etﬂQoggﬁjxﬁgxfnﬁg g;fp%\r/ﬁhsfgg :c?t:)tihe respondence relation between the ordinary divergence and
’ q o 9 w P the g-divergence is violated.

reference stater=|¥ " ){('V | is immediately calculated to
be The author thanks Dr. A. K. Rajagopal for discussions.

[1] M. A. Nielsen and I. L. ChuangQuantum Computation and [14] M. Shiino, J. Phys. Soc. Jp67, 3658(1998.
Quantum Information(Cambridge University Press, Cam- [15] C. Tsallis, J. Stat. Phy&2, 479 (1988.

bridge, 2000. [16] S. Abe, Phys. Lett. 224, 326 (1997); 244, 229 (1999; see
[2] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. also R. S. Johal, Phys. Rev.3B, 4147 (1998; Phys. Lett. A
Smolin, and W. K. Wootters, Phys. Rev. Let6, 722(1996. 253 47 (1999.
[3] C. H. Bennett, D. P. DiVicenzo, J. A. Smolin, and W. K. Woot- [17] Nonextensive Statistical Mechanics and Its Applicaticet:
ters, Phys. Rev. 54, 3824(1996. ited by S. Abe and Y. Okamot(Springer-Verlag, Heidelberg,
[4] V. Korepin and J. Terilla, e-print quant-ph/0202054. 2003).
[5] R. Jozsa, J. Mod. Optil, 2315(1994). [18] S. Abe, Phys. Rev. B3, 061105(2002.
[6] B. Schumacher, Phys. Rev. 34, 2738(1995. [19] S. Abe, Continuum Mech. Thermodyrito be published
[7] H. Umegaki, Kodai Math. Sem. Reft4, 59 (1962. e-print cond-mat/0305087.
[8] S. Abe, Phys. Lett. 71, 74 (2000. See also, S. Abe and A. [20] S. Abe and A. K. Rajagopal, Phys. Rev. Léta be publisheg
K. Rajagopal, Physica 289 157 (2001); Chaos, Solitons e-print cond-mat/0304066.
Fractals13, 431 (2002. [21] S. Abe, Phys. Rev. B6, 046134(2002.
[9] S. Abe, Phys. Rev. 85, 052323(2002; Physica A306, 316 [22] R. J. V. dos Santos, J. Math. Phy8, 4104(1997).
(2002. [23] F. Baldovin and A. Robledo, Phys. Rev. &, 045104R)
[10] C. Tsallis, S. Lloyd, and M. Baranger, Phys. Re\62\ 042104 (2002; Europhys. Lett60, 518(2002.

(2001); F. C. Alcaraz and C. Tsallis, Phys. Lett. 301, 105 [24] E. T. Jaynes: Papers on Probability, Statistics and Statistical
(2002; C. Tsallis, D. Prato, and C. Anteneodo, Eur. Phys. J. B Physics edited by R. D. Rosenkrant@luwer, Dordrecht,
29, 605(2002. 1989.

[11] N. Canosa and R. Rossignoli, Phys. Rev. L&8, 170401 [25] E. H. Lieb, Adv. Math.11, 267 (1973.
(2002; R. Rossignoli and N. Canosa, Phys. Rew@\ 042306 [26] S. Abe, Phys. Lett. 812, 336 (2003.

(2002. [27] A. K. Rajagopal, in18]. See also, A. K. Rajagopal and R. W.
[12] C. Tsallis, Phys. Rev. 558, 1442 (1998; L. Borland, A. R. Rendell, Phys. Rev. &6, 022104(2002.

Plastino, and C. Tsallis, J. Math. Phy&9, 6490 (1998; 40, [28] G. H. Hardy, J. E. Littlewood, and G."B@, Inequalities 2nd

2196E) (1999. ed. (Cambridge University Press, Cambridge, 1952

[13] S. Abe, inProceedings of the 5th International Wigner Sym- [29] S. Abe, Phys. Rev. 46, 1667 (1992; 48, 4102(1993.
posium Vienna, 1997, edited by P. Kasperkovitz and D. Grau[30] R. F. Werner, Phys. Rev. AQ, 4277(1989.
(World Scientific, Singapore, 1998p. 66; see also A. K. Ra- [31] Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Phys. Rev.
jagopal and S. Abe, Phys. Rev. Le#8, 1711(1999. A 66, 062315(2002.

032302-3



