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Shrinking of a condensed fermionic cloud in a trap approaching
the Bose-Einstein condensation limit
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We determine the zero-temperature density profile of a cloud of fermionic atoms in a trap subject to a mutual
attractive interaction, as the strength of the interaction is progressively increased. We find a significant decrease
of the size of the atomic cloud as it evolves from the weak-coupling regime of overlapping Cooper pairs to the
strong-coupling Bose-Einsteinregime of nonoverlapping bound-fermion pairs. Most significantly, we find a
pronounced increase of the value of the density at the center of théetrap by an order of magnitugehen
evolving between the two regimes. Our results are based on a generalized Thomas-Fermi approximation for the
superfluid state, which covers continuously all coupling regimes.
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The impressive experimental realization of Bose-Einsteircal potential for the BCS-BEC crossover problem of a ho-
condensatioiBEC) of ultracold bosonic atoms in a trap over mogeneous system to the case ofpatially varying gap
the past few yeargl] has prompted the expectation that alsofunctionin the presence of a harmonic trap, and study in a
the properties of ultracold fermionic atoms in a trap could besystematic way the evolution of the density profile at zero
revealed in a regime of quantum degenerigy In addition,  temperature where the mean-field equations are expected to
the possibility that the study of Fermi gases may lead to @e reliable. Our approach generalizes the fermionic Thomas-
superfluid phase analogous to the BCS state has added exermi(TF) approximation to the superfluid state at zero tem-
citement to the field. In particular, experimental proposalsgperature for any coupling, and recovers the TF approxima-
are under investigation for realizing Cooper pairs with ultra-tion for the composite boson] in the strong-coupling
cold dilute fermionic atoms in a trap, either via the enhancedimit. We find a significant decrease of the size of the atomic
interaction between fermionic atoms with a tunable scattereloud as the strong-coupling limit is approached; even more
ing (Feshbachresonancg3] or via sympathetic cooling with  significantly, we find a pronounced increase of the value of
a mixture of fermions and boson4]. the density at the center of the trap when evolving between
Given these rapid experimental advances, it seems timelthe two regimes. This increase can thus be regarded as a
to explore theoretically the even more intriguing question ofsignature of the achieved BCS-BEC crossover. Numerical
the crossoverbetween the weak-couplin@BCS) regime of  calculations for the density profile, gap function, and chemi-
overlapping Cooper pairs and the strong-couplif@pse- cal potential, as well as analytic results for the radius of the
Einstein) regime of nonoverlapping bound-fermion pairs for cloud and related quantities are presented.
a gas of ultracold Fermi atoms in a trap, thus dealing simul- A central issue of the BCS-BEC crossover problehis
taneously with two basic quantum phenomena that share the obtain for all coupling regimea single theoryexpressed
same spontaneous broken-symmésyperfluid behavior. In - in terms of fermionic variables, which recovers known re-
particular, novel and interesting physics may result in thesults for weakly interacting fermion®n the weak-coupling
intermediate-coupling regime where neither one of the tweside and for weakly interacting boson@n the strong-
limits is fully realized. coupling side, thus providing an interpolation scheme over
Detection of density profiles of ultracold trapped atoms isthe intermediate-coupling regime. The treatment of the
routinely used to explore their degeneracy properties. Thisntermediate-coupling regime is necessarily an approximate
feature could also be explored to detect the continuous evane, because in this regime a small parameter to control the
lution from Cooper pairs to bound-fermion pairs as theapproximations is lacking. For these reasons, the interpola-
strength of the attractive interaction between fermions is intion via a single fermionic theory represents at present the
creased, with the expectation that the density profile shrinkenly manageable approach to the BCS-BEC crossgizér.
upon approaching the strong-coupling regime owing to thdects going beyond the BCS theory in weak coupling have
diminished Fermi pressure. In this respect, partial resultbeen included for the homogeneous case in F&f.In the
have already been obtained as a function of temperature jpresent treatment of the inhomogeneous case, we shall limit
the broken-symmetry phase for a single coupling toward théo consider the crossover from BCS theory to the BEC limit,
weak-coupling side of the BCS-BEC crossoybt, as well  thus leaving out these additional effegts.
as a function of coupling in the normal phase above the The present calculations are based on a local-density ap-
critical temperaturé¢6]. proximation, whereby the fermionic chemical potential en-
In this paper, we calculate the density profile of a cloud oftering the BCS gap and density equations are replaced by a
fermionic atoms in a trap subject to a mutual attractive interfocal chemical potentiathat adapts to the spatial position in
action, as its strength is progressively increased from weak tthe harmonic trap. We thus sg{(r)=u—V(r), whereu is
strong coupling. To this end, we extend the coupled meanthe equilibrium chemical potential an{r) = mw?r?/2 is the
field equations determining the gap function and the chemiharmonic potential for the Fermi atoms at positioin the
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trap (M being the fermionic mass and the characteristic from the system in the two limits, namely, from the Fermi
trap frequency: Correspondingly, the gap function takes the sea and from a bound molecule, respectively.

local valueA(r). With the replacement gk by w(r) and of In analogy to the homogeneous c§%&], analytic results

A by A(r), theswave BCS gap equation at zero tempera-can be obtained from the coupled equati¢hsand(2) both
ture becomes dependent and reads in dimensionless form:in the weak- and strong-coupling limits, defined, in the order,

by the conditionsi(r)>0 andA(r)<u(r), and u(r)<0

o =fochE\/~E 1 1 and A(t)<|u(r)| (for O<T<T.). In weak coupling, one
keag Jo \/[’E_ﬁ(}')]z +iF)? E ' obtains A(r) =[8(r)/e*]exp{— m/(2ke|ag| Vi (r))} with

(1) the typical essential singularity behavior ledag|—0, and
the associated density profila(r)=(8N/7?)(1—r?)%?
We have here introduced the dimensionless Variaﬁﬂes which is the standard result within the TF apprOXimation for
—Irl/Re, AT =A(r|)/Er, and n(F) = w(|r|)/Ex=—T72 noninteracting ferm|ons. For the radius of the atomic cloud
fol ‘,L sgheric(:a)l trap(,| vl/)hergpz(m/\f)(l’)% 'ELh(L'i thioulthoul one gets correfaondlnglyc=RF; In~strong coupling, one
is the Fermi energy for noninteracting fermions in the trapobtains instead\(r)*=2(e;/Ef) ug(r) with the associated
[7], Re is identified by the conditomw?R2/2=E¢, and bgs?]mc deﬂSlt?na(r)=br|1(r)/2=h (mB/4waB)uE§r) Ip tern;s
~_ , : of the original variables, wher@ag=2a; identifies the
’;(L bl;//IIEEF; L/g?(g%\;e further defined the Fermi wave VeCtorbosonic scattering length. The TF result for bosiofiss thus
F The gbovFe equétion has been obtained by considering properly recovered by our calculation in the strong-coupling

contact potential for the attractive fermionic interaction ac-lﬁmt’ with a residual bosonic interactiddo = 4mag/mg . [A
. P T X .- more sophisticated theory for the homogeneous EEehas
tive between two equally populated fermionic species with

different internal(“spin” ) states, and then regularizing the shown that the correct value for the bosonic scattering length

ensuing ultraviolet divergence of the gap equation in term

of the scattering length a of the associated fermionic two- Thomas-Fermi density profile omg in strong coupling

body problem[10,11. This regularization, in fact, consider- L .

ably simplifies dealing with the BCS-BEC crossover and pa__(see.below, t.h's dlfference makes practically no change
: ) . ) in this quantity] Using eventually the expression @fg

rametrizes the interaction in terms of the measurable

scattering lengtta . for bosons in a trag7], one gets the valug.=\ug/2
Dealing with the BCS-BEC crossover requires us to=0.69(kgar)Y®, showing a nontrivial dependence f on
supplement the gap equation by the density equahion the coupling parameter in the strong-coupling limit.

ag is smaller by about a factor of 3 than the valuar2
%Wing to the very slow dependence of the size of the

— fdrn(r)=fdrn(r), yielding Recovering from Eqs(1) and(2) the TF results for both
noninteracting fermionsin the weak-coupling limjtand for
. - . E-72(T) weakly interacting bosongin the strong-coupling limjt
= f'cd}‘FZJ d~E\/~E 1— ) should not be surprising, since these equations can also be
24 Jo 0 \/[E_IL(?)]ZJFZ('F)z obtained by generalizing the TF procedure for fermions to

2) the superfluid state. To this end, one introduces an energy
functional E[n(r),A(r)] that depends on the local variables
n(r) andA(r), such that minimizindz[n(r),A(r)] with re-
spect to variations @i (r) andn(r) [subject to the constraint
-~ ] ! N=fdrn(r)] leads to Eqs(1) and(2), respectively. Within

=0 for r=r. as a necessary conditiprit can be readily  the present approach, this functional is given by the expres-
verified thatr is determined by the equatigu(r.)=0 for  sion

ar<0, yieldingT.= vz, and by the equatiop.g(F.) =0 for
ar>0, yieldingr.= v+ (krag) “2 In the above expres- E[n(r),A(r)]=J dr|n(r)V(r)—4:a A(r)2+f dk
F

sion, we have introduced the lodabsonicchemical poten- (2m)3
ee—N)TA(N?  A(r)?

tial ug(r)=pwug—Ve(r), whereug=2u+ €, is the equilib-
rium bosonic chemical potential/g(r) =2V(r)=mgw?r3/2
X (S + I (3)
Viec—N)Z+A(r)2 26
where e,=k?/(2m) and \ is here an implicit function of

is the harmonic potential for the bosonic molecules of mass
n(r) andA(r) via the equation

Here,T. is the radius of the atomic cloudiefined by the
conditionn(r)=0 for T=T. (which, in turn, requiresA(r)

mg=2m, and'soz(maﬁ)‘1 is the molecular binding energy.
Contrary to Eq(1), Eq.(2) couples different positions in the
trap, since obtaining a uniform chemical potengiatequires
knowledge ofA(r) and w(r) over the whole trap region.
The weak- and strong-coupling limits of Eq4) and(2) dk N
are essentially determined by the behavior of the chemical n(r):J K
potential u, which almost coincides with the Fermi energy (2m)° \/(ek—)\)7+ A(r)z
Er in the weak-coupling limit and wit{minus halj the
binding energye, in the strong-coupling limit. These values In particular, in the strong-coupling limifwhereby n(r)
represent, in fact, the energy required to extract one fermior A(r)?] functional (3) reduces to
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FIG. 2. Radius of the atomic cloudull line) and its strong-
coupling approximationdashed ling vs the coupling parameter
(keag) 2. Inset: corresponding values of the dimensionless density
at the center of the trap.

FIG. 1. Density profile(divided byN) vs the radial coordinate
for several values of the coupling parametiegd;) .

.

UO €p
?n(r)2+ V(r)— ?) n(r)

E[n(r)]= f dr
density profile is recovered in strong coupling, respectively.

from which the bosonic TF expression fog(r) can be ob-  Note also the shrinking of the size of the atomic cloud as it
tained by minimizing with respect ta(r) and taking the evolves from the weak-coupling to the strong-coupling re-
constraint into accounf.The absence of the kinetic-energy ime, the critical radius, being reduced by about a factor of
term in the bosonic TF approximation results in the presend 5.ro0ss the crossover region. Correspondingly, the density
approach by the neglecting of the center-of-mass motion of the center of the trap increases significarily about a
the pairs in expressio8) for the energyl This result imple-  t5tor of 6 for the coupling values shown in the figure
ments at the level of the TF approximation the density func- Figure 2 shows the raditi, of the atomic cloud(full

tional theory for superconductors described in R&g). line) vs the coupling parameter, as determined by entering
Rescaled equatiori#) and (2) dependonly on the dimen- the numerical values of the chemical potent{abtained

sionless coupling parametekgar) ~* and not on the total . . X
number of particlesN. This is due to the fact that, as ex- from t.he solution of Eqs(1) and(2)) into the analytic ex-

pected, the kinetic energy is not properly taken into accounPressions of . reported previo'usly._"rhree distin_ct regions of
in the present local-density treatment that reduces to the Tf€ coupling parameter are identified from this pl6y: A
approximation for fermions in weak coupling and for bosonsweak-coupling region forkzag) < —1 wherer . is almost

in strong coupling. What is missing in our equations is thecoupling independent and equal to (i) an intermediate-
presence of the length scale of the harmonic trap, which fogoupling region for— 1< (krag) <1 where?c rapidly de-

a bosonic molecule equalt. = (mgw) 2 and to which

there would be associated tNedependent dimensionless ra- 1
tio Rg/al =2.40NY6. The physical lower boundr,

=aZ,., however, can never be reached in practice, since it
would correspond to the conditionkdag) ~*=12.5N%%, 5 os)
yielding the totally unrealistic valua-~10 3a, (a, being

the Bohr radiusin the case of a fermionic atom such #&

for N~ 1P and a typical trap value~10° s 1.

1

A(r=0)/Eg
o N O~ O ©

¥

21012345
(keag)"!

Similarly, it can be shown that the local-density approxi-
mation for the trapped Fermi gas holds, providedRp>1
(such that the energy quantization in the trap is irrelevant
with respect toEg) and A(r=0)/w>1 (such that the pairs
are well contained within the trap14]. When N~ 1(F, ‘ , , )
keRg~10° while A(r=0)/w~10 already for the weak- 2 A 0 1 2 3 4 5
coupling value krag) 1= —2. (keag)”

Fig_ure 1 ShOWS the density profiter) along the radial FIG. 3. Chemical potential in units dtr when x>0 and of
coordinate(in units ofRg) for several values of the coupling ¢ /> when <0 (full line) and its strong-coupling approximation
parameter Kcag) ~*. The TF profiles for noninteracting fer- (dashed ling vs the coupling parametekgag) . Inset: gap pa-
mions as well as for interacting pointlike bosofwith  rameter at the center of the tréfull line) and its strong-coupling
(keag) ~*=5] are also shown for comparison. Note from the approximation(dashed ling vs the coupling parametdthe value
figure that the noninteracting fermion density profile is re-for three-dimensional homogeneous cédash-dotted lingis also
covered in weak coupling and the interacting pointlike bosorshown for comparison
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creases for increasing coupling, being reduced by about 35%eous case as the coupling increases. Specifically, in strong
when (rag) '=1; (iii) a strong-coupling region for 1 coupling the analytical arguments discussed above yield
=(keag) ! wherer . coincides with the analytic expression A (7)=(2\2/kear) V0.476(Ksag)?5—72, producing the
of the bosonic TF theorfdashed ling For completeness, we value A (0)=1.951kear)~*5 at the center of the trap: for

also show in the inset the value of the densiy=0) atthe the homogeneous case, on the other hant/Er
center of the trap vs the coupling paramefeitl line). Fol-  _— 1.303keag) Y2

lowing a flat behavior in the weak-coupling regime, a quite  Ag the data of Figs. 1-3 for the various physical quanti-
rapid increase ofn(r=0) occurs in the intermediate- tiesn(r), A(r), r., andu show, the BCS-BEC crossover
coupling regime, approaching eventually the power-law detakes place in practice over the rather narrow range
pendencen(r =0)c(kragr) ~° obtained analytically in the <(krag) 1=1 of the coupling parameter. This remark sug-

strong-coupling regimédashed ling gests that it would be especially interesting to explore experi-
The chemical potential is finally shown in Fig. @Il mentally this intermediate-coupling region, where deviations

line) vs the coupling parameter. The behavior of the chemicajrom the purely fermionic and bosonic behaviors occur.

potential obtained from the expressiu=(ug—€0)/2 in In conclusion, we have shown that the density profile for

strong coupling(with the value ofug for bosons in a trap  gyperfluid fermionic atoms in a trap exhibits an interesting

[7]) is also shown for compariscidashed ling In the inset,  gprinking of the size of the atomic cloud as the strength of
the gap parameteX(r =0) at the center of the traffull line)  the attraction increases. This behavior should permit one to
is shown vs the coupling parameter and compared with itglecide whether the superfluid behavior is either of the BCS
the three-dimensional homogeneous ddse (dashed-dotted  type with nonoverlapping bound-fermion pairs.

line) is also showh Note the marked difference between the

trapped and homogeneous cases, with the value for the We are indebted to M. Inguscio and G. Modugno for dis-

trapped case increasing much faster than for the homoge&ussions.
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