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Atoms in high-f,¢) states formed in cold Rydberg plasmas decay to the ground state in a succession of
radiative transitions populating intermediate excited states. A classical treatment presents radiative cascade in
a physically transparent way and reveals the “trajectoryfithspace obeyed by the cascade, scaling rules, and
other aspects hidden within the quantal approach. Quantal-classical correspondence in radiative decay is
directly demonstrated. Classical transition probabilities are also presented and are in excellent agreement with
quantal transition probabilities, even for moderate quantum numbers.
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Cold Rydberg plasmas, wherein electrons and ions coexist The instantaneous classical power of photon emission
with atomsR(nl) in highly excited Rydberg states¢ have from an atom with energ# is given by the Larmor formula
recently been produced by direct laser excitafibhor ion-  [8,9]
ization[2] of atoms initially prepared at submillikelvin tem-
peratures. In the ATRAP experiment at CERN, levels 2e ..
=50 of antihydrogen at 4 K are observigl. In these three I= 3 —3|r
experiments, the basic proces$ds include three-body re- ¢
combination which mainly produces Rydberg or anti-

Rydberg atoms in higli—~n—1 circular states, which have duri h . 0 ; Fai I
very long lifetimesr,,,~n3¢2 towards spontaneous radiative &10M during photoemission. On assuming thals sma

decay. Stark mixing5] by the electric microfields and colli- compared with the Coulomb attra;c‘uon, then on averaging
sion with ultraslow ions then produce a redistribution of the@Ver the electronic period,=2m7n"r,,, wherer,, is the
angular momentum towards much lowér which, because au of time, and following Refs[8,9], the secular rate of
of the increased electrodynamial —R* interaction at the ~change in quantum numberis given by
pericenter of the highly eccentric orbits, radiate?® times )
faster than the higlf-states. Theoretical analysis of ultracold d_n: Ao 1- £ ) @)

3n

dE

—gi=F 1)

whereF is the (Abraham-Lorentg force [8] exerted on the

Rydberg plasmas involves the distribution of Rydberg atoms dt ¢5
over both nand ¢ so that the standard collisional-radiative

models[6] must be extended. Such an inclusion increasegnere A =a33/7 —1.6065<10° s ! is the characteristic
dramatically the computational and numerical difficulties, 0 FS Tau —
since the dimension of the required array increases fiém

to n*, enough to render direct calculation unfeasible an
physical interpretation intractable. Moreover, the well-known

rate for radiative processes aagg is the fine-structure con-
Ostant. The secular rate of change in angular momertum
=I# is obtained upon similar averaging,9] as

Gordon formuld 7] for the required radiative transition prob-

L : X de¢ 2 A
abilities becomes numerically unstable for 50, even with — = 3
special numerical algorithms and substantial numerical ef- dt 3 n3¢?

fort. Some physical transparency is therefore required.

In this paper, we investigate the energy route preferred in A classical estimatgl0] of the characteristic time,, of
radiative cascade of an excited atom in an initially preparedadiative decay to all lowen,f—1 states is obtained by
Rydberg levelnt. In so doing, we advance a remarkably equating(3) with — 1/7,, to yield 7,,=93.3M3¢? ps. Many
accurate classical theory of the subsequent trajectoryin  orbits occur during radiative decay, since this radiative decay
space produced by radiative cascade and illustrate a powerftime 7,,> T, the orbital period.
classical-quantal correspondence at work. A classical treat- Combining Eqs(2) and(3) yields
ment of the transition probabilityEinstein A coefficien} is
also provided. It is worth noting that classical theory of ra- dn 3 n €2
diative decay was not vigorously pursued after 1930, pre- d¢ 23\ 7 3n2)”
sumably due to its prediction that the accelerating spiraling
electron will ultimately pass through the Coulomb force cen-gjce Eq.(4) is always positive, boti and ¢ change in the

ter, an untenable feature evident for those lowestad € g3me direction, in accord with the quantal propensity rule
states, the only states then accessible to experimental obs%j' The solution of Eq(4) yields n?=¢2/(1— C¢3), where
vation. For highn states, however, we shall show that the o quantity ’

classical picture developed here works remarkably well, even

4

for states with/n=0.2 which includes the majority of Ry- 1-¢€3/n2 1—¢%n?
dberg states created in the ultracold Rydberg plasmas re- C(ng,€g)= Fa— 3 (5)
cently observed1—3]. €0 ¢
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FIG. 1. (Color onling “Trajectories” in (n,€) space for initial
stated =1,11,21,31,41,51,61,71 within timy= 80 shell. Dots cor-
respond to a change of one unit of angular-momentum quanturr
number A¢=—1). The dashed diagonal life=n represents tran-
sitions between circular states.

is determined by the initial statg,{, and remains conserved
throughout the radiative cascade process. Thstates sub- FIG. 2. (Color onling The steady-state quantal distributipgy
sequently populated are illustrated in Fig. 1 whérsucces-  of n¢ states populated by the radiative cascade originating from a
sively decreases by one unit. Each trajectory is characterizegburce maintained at leval,= 100, ¢,="55. The quantal ridge fol-

by different values oC(ng,€), which can vary between O, |ows the prescribed classical trajectdfy).

for circular (€;=ng) states, and 1, for eccentrid{=1)

high-n, states. Circular states decay along the diagonal line 2n—1DA- [ 24n2(n—1)2]"
(C=0) of Fig. 1 as @,f=n)—(n—1,6'=n—1)—(n An,n—lan—l,n—Zz( - ) 2 ( 4) (8)
—24"=n-2), ..., while states with lower angular mo- 3n*(n=1)° (2n-1)
mentum (and C>0) will decay by making increasingly . ]
larger jumps The set of coupled rate equations for the time-dependent
quantal evolution of populatiop,(t) involved in the cas-
-1 cade from the initially populated levehg,€,) are
An,=n— 3 (6)
1—(1—€2/n2)(—) dppe
4 d: 2 Prre+1(DAR ¢+ 1n¢
n"=n+1
from leveln in the {— ¢ —1 transition. Direct calculation of
the corfespondl_ng_ quantal expression for the averaged + 2 prre- (DAL 1 e
change in the principle quantum number I ——
n—1 n—1 n—-1
> (n_”’)Anéﬂn'fl)/ > Ancenet e 2 Annreo1t 2 Aneonrer]-
n'=¢ n'=¢ n'=¢ n'=¢
in terms of probabilitiesA;_; for i—j transitions show The steady-state solution, subject to the constant source

agreement with the classical predicti@), even for moder-  represented apn, ¢ (1) =1 at all times, is shown in Figs. 2

aten~20, over an extensive range 6f ; P

’ : . _ and 3. It is seen that the quantal distribution over tHe
; Thf[].s’ thel Bohtrh co(;_responldlt_anm?lch plredlitst_An—l plane exhibits(a) a sharp ridge which follows the deduced
ransitions along the diagonal fine or circufar s atissgen- classical trajectoryb) and is(b) skewed(Fig. 3) towards the
efa"zed via Eq/6) for (_jecay of general nonglr_cular states. left, indicating the predominance aof—¢—1 downward
Figure 1 also clearly illustrates that any initial orbit will fransitions, in accord with a propensity rliid. The quantal-

eventually become increasingly circular during the cascadgI : ; ;
. . assical correspondence illustrated by Figs. 2 and 3 may be
process. The coupled equatiof@® and(3) can be solved in explained as fgllows. The quantal ):ateg that enegy y
analytic form to provide the duration of ng€y—n,€ tran- — hwy, is radiated is the powd] i
|

sitions as
4 e2
Nols n¢s = oA =7 5 (Eulh) 42, 9)
AnT= — . 7 ifAif = if if
o7 o 2 £\ 2 (7
1+ n— 1+ ﬁ
0 where r;; is the dipole electronic matrix element
. . . H o 2

It is worth noting that Eq(7) predictsAyr=3n%/2 for tran-  {(®n,em || #nem)- Sinceris=— wjiri; exactly, when exact
sitions between circular states, in agreement with the high wave functionsp; ; are used, the total power radiated into all
limit of the calculated quantal transition rate lower states is

030502-2



RAPID COMMUNICATIONS

QUANTAL AND CLASSICAL RADIATIVE CASCADE IN. .. PHYSICAL REVIEW A 68, 03050ZR) (2003
100 0.1 8
I .- J' n=60
80 || A
— 0% CRIg
|| x i '."!. LT
|| 80 2 0 e ety
bs : & o o © ‘e ..'3.2'.'..'3. oo (n n)/n
|| -40 A A Seg 2000y :
n =10 7 S O TN T
40 - tn= \ o % ‘e ". %e
| 2 09} \o \* \ e\ %\ °\ "% \%
— 60 = . . . .
20 — 10 4 L 5 o
I 0.7 06 05 04 03 02 0.1
0 0 FIG. 4. (Color online Quantal(blue dotg and classica[(13),
0 20 40 60 80 100

¢ red lineg radial matrix elements as a function of scaled change
s/n=(n—n")/n for various initial-state ratiog/n from 0.9 to 0.1
FIG. 3. (Color onling Two-dimensional representation of Fig. 2 in steps of 0.1. The ordinate axis uses a base-10 logarithm.
but with quantal isodistributions represented by lines with magni-
tudes determined by each color code on the right hand side. Th&/hen compared with Eq9), Eq. (12) provides the Bohr
white line is the classical ridge). [11]-Van Vleck[12] correspondence principle, which equates
the power of line spectra between equally spaced lekgls
e ) =s;fiw (the Bohr frequency theorefil]) with the power
li=2 2 |rie|2. associated with theth harmonic of the classical motion of
f<i statei. The correspondence also holds provided=r (i),
w0 o . i where s;=n;—n;,S,=4€;—{;,S3=m;—m;, which is the
The sums y;¢|ri¢|*=(r); is dominated by a symmetric band Heisenberg forni13] of a correspondence principle for ma-
of states centered about the highly excited leweThen  yrix elements. Since is real,rgi)=r_4i), as also assumed
Sioilrif]?=3(r?),; and within the derivation of Eq(10). Moreover,r;;~r4i) and
2 2 ri~r*(f), wherei or f denote taking the parameters for the
li== —(r?); (100  initial or final orbits, respectively. For=n;{—f=ni+1
transitions, calculation of the Fourier coefficient§j) in Eq.

_ ) i (11) for the initial and final classical orbits=i,f then pro-
in agreement with Larmor’s theorefd), from which Egs. \;ides the new correspondence

(5) and(6) followed upon a corresponding classical average.
The present classical approach based on(Eqis therefore
expected to be valid fon and € large enough that radiative
decay is confined to within a band of neighboring levels. It is
therefore expected to be inadequate for lbwere penetrat- which is symmetrical with respect to the “classical” radial
ing electrons where the stronger interactions induce largematrix elements

guantum jumps to levels outside the band. Based on the suc-
cess that the quantal ridge in Figs. 2 and 3 follows the energRJ(s)_
route classically prescribed by Fig. 1, it is now worthwhile
exploring classical rates for—f transitions between two
discrete levels. The positionof the electron in initial state
i=n;¢;m; and executing bounded periodic motion with con-
stant angular frequency can be Fourier decomposed as

-
Irigl?=rigrf~rgire(f)= 2€+1R(S)Rf(5) (13

€ €
(1 At ) Js1(s€))— 1+Mn—1)35+1(3q-).
j
Here aj=n’ag,e=(1-€7/n?)¥2 s=(nj—ny)>0, Al=
*1, andJs., are Bessel functions of ordey=1. Since
Ri(s)R:(s) in Eq. (13) is our classical representation of the
standard[7] quantal radial matrix elemerﬁﬁi&nfhl, then

(i 0 = r(i)expi(s 0+s,U+S 11 under radial correspondence alone, our classical version of
( v:9) 2 LD)expi(s, 2+ S3d) ) the A coefficient fori— f transitions in Eq(9) is, therefore,

where the sum is over al={s; ,s,,s3}, wheref=wt+ & is 4A, - (nf—nf

the angular position of the particle in the orbital plane whose Antnti= 73 2011 2n?n?
orientation is determined by the constant Euler angl@s ( o
=cos 'm/l,$,4). This permits the time averagé)r of  \yhere only the Heisenberg correspondemge=r (i) and
the Larmor power(1) to be decomposed a5.ols, Where  rf~r* (f) is used. Expressiond3) and(14), symmetric in

3
) Ri(s)Ri(s), (14

each component the initial and final states, are proved to be valid and much
o2 more accurate over a much more extensive range=df;
= —(sihalh)ryi)|2 (12 —ny) than those obtainefil4] from the assumption in Eq.
38 (12) that|ri¢|2~R;(s)?/2. This distinction, as derived in the
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) . FIG. 6. (Color onling As in Fig. 5, but for[200£—n’,(¢
FIG. 5. (Color online Quantal(blue dot$ and classical(13), +1)] transitions for¢/n=0.1-0.5.

red lineg transition rates Ay .n¢—1 tiMes 7, n_1n-1
=3n°/2A,, as a function of §—n’)/n for various initial scaled  ag jllustrated also in Figs. 2 and 3. The extent of quantal-
angular-momentum value§n from 0.9 to 0.2 in steps of 0.1. classical agreement shown in Figs. 2—6 is representative for
all n=10. The present classical radiative rates are much
easier to evaluate correctly than their quantal counterparts.
In summary, the classical treatment of radiative decay out-
lined here has proven to be accurate, particularly for Rydberg
) _ _ ; states with€/n=0.1 (preponderant in recombinatiprand
tal and classical radial matrix eleme”&zﬂf,n'e:l are In ex-  has provided an accurate yet physically transparent picture of
cellent agreement over an extensive range#m—n’ as{  radiative cascade of Rydberg states. The deduced trajectory
is varied from 0.8 to 0.1In. Figure 4 illustrates also that the jn n¢ space obeyed by radiative cascade origination from a
strongere-ion interaction at the pericenter for lo orbits  constant source is confirmed by quantal calculation. The de-
induces transitions over a broader rangesoih contrast to  duced classical invariar(b) has, as yet, no quantal analog,
transitions with smals characteristic of near circuléhigher  indicating a hidden symmetry. The theory is further devel-
€) orbits. oped, via Eq(13) in Eq. (9), to provide here a symmetrized
The quantal and classical transition probabilities are comnew version of the power corresponderitg) and a classi-
pared in Figs. 5 and 6 fof — ¢+ 1 downward transitions. cal version(14) of Einstein transition rates, to a high degree
The agreement is excellent, particularly for large angulaiof accuracy. It is particularly appropriate for the analysis of
momenta, circular states, in accord with BorAs=1 cor-  Rydberg plasmas oven(¢) and for the proposed deactiva-
respondence. It is less good for elongated states with lowion of the highn=50 states in the ATRAP experiment by
angular momentawvhich favor largem changesbecause the |aser deexcitation methods, subjects of intense current theo-
equally spaced levels approximation within the Heisenbergetical and experimental interest.
correspondence becomes less accurate and becau& the  This work was supported by AFOSR Grant No. 49620-
factor in Eq.(14) amplifies any error ifR; ¢(s). Note thatthe  02-1-0338 and NSF Grant No. 01-00890 and by a NSF Grant
probabilities for{—<¢—1 downward transitions are much to ITAMP at the Harvard University-Smithsonian Astro-
higher by a factor of 19than those fo — € +1 transitions, physical Observatory.

new correspondendd4) is important, particularly for inter-
mediate and large values & when the approximation
Ri(s)~Rs(s) breaks down, being valid only fos~1,2,3.
Figure 4 forn€—n’(€— 1) transitions shows that the quan-
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