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Quantal and classical radiative cascade in Rydberg plasmas
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Atoms in high-(n,,) states formed in cold Rydberg plasmas decay to the ground state in a succession of
radiative transitions populating intermediate excited states. A classical treatment presents radiative cascade in
a physically transparent way and reveals the ‘‘trajectory’’ inn, space obeyed by the cascade, scaling rules, and
other aspects hidden within the quantal approach. Quantal-classical correspondence in radiative decay is
directly demonstrated. Classical transition probabilities are also presented and are in excellent agreement with
quantal transition probabilities, even for moderate quantum numbers.
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Cold Rydberg plasmas, wherein electrons and ions coe
with atomsR(nl) in highly excited Rydberg statesn,, have
recently been produced by direct laser excitation@1# or ion-
ization @2# of atoms initially prepared at submillikelvin tem
peratures. In the ATRAP experiment at CERN, levelsn
>50 of antihydrogen at 4 K are observed@3#. In these three
experiments, the basic processes@4# include three-body re-
combination which mainly produces Rydberg or an
Rydberg atoms in high-,;n21 circular states, which hav
very long lifetimestn,;n3,2 towards spontaneous radiativ
decay. Stark mixing@5# by the electric microfields and colli
sion with ultraslow ions then produce a redistribution of t
angular momentum towards much lower,, which, because
of the increased electrodynamicale22R1 interaction at the
pericenter of the highly eccentric orbits, radiate;n2 times
faster than the high-, states. Theoretical analysis of ultraco
Rydberg plasmas involves the distribution of Rydberg ato
over both n and , so that the standard collisional-radiativ
models @6# must be extended. Such an inclusion increa
dramatically the computational and numerical difficultie
since the dimension of the required array increases fromn2

to n4, enough to render direct calculation unfeasible a
physical interpretation intractable. Moreover, the well-kno
Gordon formula@7# for the required radiative transition prob
abilities becomes numerically unstable fornf50, even with
special numerical algorithms and substantial numerical
fort. Some physical transparency is therefore required.

In this paper, we investigate the energy route preferre
radiative cascade of an excited atom in an initially prepa
Rydberg leveln,. In so doing, we advance a remarkab
accurate classical theory of the subsequent trajectory inn,
space produced by radiative cascade and illustrate a pow
classical-quantal correspondence at work. A classical tr
ment of the transition probability~EinsteinA coefficient! is
also provided. It is worth noting that classical theory of r
diative decay was not vigorously pursued after 1930, p
sumably due to its prediction that the accelerating spira
electron will ultimately pass through the Coulomb force ce
ter, an untenable feature evident for those lowest-n and -,
states, the only states then accessible to experimental o
vation. For high-n states, however, we shall show that t
classical picture developed here works remarkably well, e
for states with,/n>0.2 which includes the majority of Ry
dberg states created in the ultracold Rydberg plasmas
cently observed@1–3#.
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The instantaneous classical power of photon emiss
from an atom with energyE is given by the Larmor formula
@8,9#

I 5
2

3

e2

c3
u r̈ u252

dE

dt
52F• ṙ , ~1!

whereF is the ~Abraham-Lorentz! force @8# exerted on the
atom during photoemission. On assuming thatF is small
compared with the Coulomb attraction, then on averag
over the electronic periodTn52pn3tau , wheretau is the
au of time, and following Refs.@8,9#, the secular rate of
change in quantum numbern is given by

dn

dt
52

A0

,5 S 12
,2

3n2D , ~2!

whereA05aFS
3 /tau51.606531010 s21 is the characteristic

rate for radiative processes andaFS is the fine-structure con
stant. The secular rate of change in angular momentumL
5 l\ is obtained upon similar averaging@8,9# as

d,

dt
52

2

3

A0

n3,2
. ~3!

A classical estimate@10# of the characteristic timetn, of
radiative decay to all lowern,,21 states is obtained by
equating~3! with 21/tn, to yield tn,593.37n3,2 ps. Many
orbits occur during radiative decay, since this radiative de
time tn,@Tn , the orbital period.

Combining Eqs.~2! and ~3! yields

dn

d,
5

3

2

n3

,3 S 12
,2

3n2D . ~4!

Since Eq.~4! is always positive, bothn and, change in the
same direction, in accord with the quantal propensity r
@6#. The solution of Eq.~4! yields n25,2/(12C,3), where
the quantity

C~n0 ,,0!5
12,0

2/n0
2

,0
3

5
12,2/n2

,3
~5!
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is determined by the initial staten0,0 and remains conserve
throughout the radiative cascade process. Then, states sub-
sequently populated are illustrated in Fig. 1 where, succes-
sively decreases by one unit. Each trajectory is character
by different values ofC(n0 ,,0), which can vary between 0
for circular (,05n0) states, and 1, for eccentric (,051)
high-n0 states. Circular states decay along the diagonal
(C50) of Fig. 1 as (n,,5n)→(n21,,85n21)→(n
22,,95n22), . . . , while states with lower angular mo
mentum ~and C.0) will decay by making increasingly
larger jumps

Dnc5n2
,21

F12~12,2/n2!S ,21

, D 3G1/2, ~6!

from leveln in the ,→,21 transition. Direct calculation o
the corresponding quantal expression for the avera
change in the principle quantum number

Dnq5S (
n85,

n21

~n2n8!An,→n8,21D / (
n85,

n21

An,→n8,21

in terms of probabilitiesAi→ j for i→ j transitions show
agreement with the classical prediction~6!, even for moder-
aten;20, over an extensive range of,.

Thus, the Bohr correspondence~which predictsDn51
transitions along the diagonal line of circular states! is gen-
eralized via Eq.~6! for decay of general noncircular state
Figure 1 also clearly illustrates that any initial orbit w
eventually become increasingly circular during the casc
process. The coupled equations~2! and ~3! can be solved in
analytic form to provide the durationt of n0,0→n,, tran-
sitions as

A0t5
n0,0

5

S 11
,0

n0
D 2 2

n,5

S 11
,

nD 2 . ~7!

It is worth noting that Eq.~7! predictsA0t53n5/2 for tran-
sitions between circular states, in agreement with the hign
limit of the calculated quantal transition rate

FIG. 1. ~Color online! ‘‘Trajectories’’ in (n,,) space for initial
statesl 051,11,21,31,41,51,61,71 within then0580 shell. Dots cor-
respond to a change of one unit of angular-momentum quan
number (D,521). The dashed diagonal line,5n represents tran-
sitions between circular states.
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An,n21→n21,n225
~2n21!A0

3n4~n21!2 F24n2~n21!2

~2n21!4 G n

. ~8!

The set of coupled rate equations for the time-depend
quantal evolution of populationrn,(t) involved in the cas-
cade from the initially populated level (n0 ,,0) are

drn,

dt
5 (

n85n11

n0

rn8,11~ t !An8,11→n,

1 (
n85n11

n0

rn8,21~ t !An8,21→n,

2rn,~ t !S (
n85,

n21

An,→n8,211 (
n85,

n21

An,→n8,11D .

The steady-state solution, subject to the constant so
represented asrn0,0

(t)51 at all times, is shown in Figs. 2

and 3. It is seen that the quantal distribution over then,
plane exhibits~a! a sharp ridge which follows the deduce
classical trajectory~5! and is~b! skewed~Fig. 3! towards the
left, indicating the predominance of,→,21 downward
transitions, in accord with a propensity rule@7#. The quantal-
classical correspondence illustrated by Figs. 2 and 3 ma
explained as follows. The quantal rate that energyEi f
5\v i f is radiated is the power@7#

I i f 5\v i f Ai f 5
4

3

e2

c3
~Ei f /\)4ur i f u2, ~9!

where r i f is the dipole electronic matrix elemen

^fnf, fmf
ur ufni, imi

&. Since r̈ i f 52v i f
2 r i f exactly, when exact

wave functionsf i , f are used, the total power radiated into a
lower states is

m

FIG. 2. ~Color online! The steady-state quantal distributionrn,

of n, states populated by the radiative cascade originating fro
source maintained at leveln05100, ,0555. The quantal ridge fol-
lows the prescribed classical trajectory~5!.
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I i5
4

3

e2

c3 (
f , i

u r̈ i f u2.

The sum(all f u r̈ i f u25^ r̈2& i is dominated by a symmetric ban
of states centered about the highly excited leveli. Then
( f , i u r̈ i f u25 1

2 ^ r̈2& i and

I i5
2

3

e2

c3
^ r̈2& i ~10!

in agreement with Larmor’s theorem~1!, from which Eqs.
~5! and~6! followed upon a corresponding classical avera
The present classical approach based on Eq.~1! is therefore
expected to be valid forn and, large enough that radiativ
decay is confined to within a band of neighboring levels. I
therefore expected to be inadequate for low-, core penetrat-
ing electrons where the stronger interactions induce la
quantum jumps to levels outside the band. Based on the
cess that the quantal ridge in Figs. 2 and 3 follows the ene
route classically prescribed by Fig. 1, it is now worthwh
exploring classical rates fori→ f transitions between two
discrete levels. The positionr of the electron in initial state
i[ni, imi and executing bounded periodic motion with co
stant angular frequencyv can be Fourier decomposed as

r ~ i ;u,c,f!5(
s

r s~ i !expi ~s1u1s2c1s3f!, ~11!

where the sum is over alls[$s1 ,s2 ,s3%, whereu5vt1d is
the angular position of the particle in the orbital plane who
orientation is determined by the constant Euler anglesQ
5cos21 m/ l ,f,c). This permits the time averagêI &Tn

of

the Larmor power~1! to be decomposed as(s>0I s, where
each component

I s5
4

3

e2

c3
~s1\v/\)4ur s~ i !u2. ~12!

FIG. 3. ~Color online! Two-dimensional representation of Fig.
but with quantal isodistributions represented by lines with mag
tudes determined by each color code on the right hand side.
white line is the classical ridge~5!.
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When compared with Eq.~9!, Eq. ~12! provides the Bohr
@11#-Van Vleck@12# correspondence principle, which equat
the power of line spectra between equally spaced levelsEi f
5s1\v ~the Bohr frequency theorem@11#! with the power
associated with thesth harmonic of the classical motion o
state i. The correspondence also holds providedr i f 5r s( i ),
where s15nf2ni ,s25, f2, i ,s35mf2mi , which is the
Heisenberg form@13# of a correspondence principle for ma
trix elements. Sincer is real,r s( i )5r2s( i ), as also assumed
within the derivation of Eq.~10!. Moreover,r i f 'r s( i ) and
r f i* 'r2s* ( f ), wherei or f denote taking the parameters for th
initial or final orbits, respectively. Fori 5ni,→ f 5nf,61
transitions, calculation of the Fourier coefficientsr s( j ) in Eq.
~11! for the initial and final classical orbitsj 5 i , f then pro-
vides the new correspondence

ur i f u25r i f r f i* 'r s~ i !r2s* ~ f !5
,.

2,11
Ri~s!Rf~s!, ~13!

which is symmetrical with respect to the ‘‘classical’’ radi
matrix elements

Rj~s!5
aj

2s F S 12D,
, j

nj
D Js21~se j !2S 11D,

, j

nj
D Js11~se j !G .

Here aj5nj
2a0 ,e j5(12, j

2/nj
2)1/2, s5(ni2nf).0, D,5

71, and Js61 are Bessel functions of orders61. Since
Ri(s)Rf(s) in Eq. ~13! is our classical representation of th
standard@7# quantal radial matrix elementRni,,nf,61

2 , then

under radial correspondence alone, our classical versio
the A coefficient fori→ f transitions in Eq.~9! is, therefore,

Ani, i→nf, f
5

4A0

3

,.

2,11 S ni
22nf

2

2ni
2nf

2 D 3

Ri~s!Rf~s!, ~14!

where only the Heisenberg correspondencer i f 'r s( i ) and
r f i* 'r2s* ( f ) is used. Expressions~13! and~14!, symmetric in
the initial and final states, are proved to be valid and mu
more accurate over a much more extensive range ofs5(ni
2nf) than those obtained@14# from the assumption in Eq
~12! that ur i f u2'Ri(s)2/2. This distinction, as derived in th

FIG. 4. ~Color online! Quantal~blue dots! and classical@~13!,
red lines# radial matrix elements as a function of scaled chan
s/n5(n2n8)/n for various initial-state ratios,/n from 0.9 to 0.1
in steps of 0.1. The ordinate axis uses a base-10 logarithm.
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new correspondence~14! is important, particularly for inter-
mediate and large values ofs when the approximation
Ri(s)'Rf(s) breaks down, being valid only fors;1,2,3.
Figure 4 forn,→n8(,21) transitions shows that the qua
tal and classical radial matrix elements,Rn,,n8,61

2 are in ex-
cellent agreement over an extensive range ins5n2n8 as,
is varied from 0.9n to 0.1n. Figure 4 illustrates also that th
strongere-ion interaction at the pericenter for low, orbits
induces transitions over a broader range ofs, in contrast to
transitions with smalls characteristic of near circular~higher
,) orbits.

The quantal and classical transition probabilities are co
pared in Figs. 5 and 6 for,→,71 downward transitions
The agreement is excellent, particularly for large angu
momenta, circular states, in accord with Bohr’sDn51 cor-
respondence. It is less good for elongated states with
angular momenta~which favor largern changes! because the
equally spaced levels approximation within the Heisenb
correspondence becomes less accurate and because thEi f

3

factor in Eq.~14! amplifies any error inRi , f(s). Note that the
probabilities for ,→,21 downward transitions are muc
higher by a factor of 102 than those for,→,11 transitions,

FIG. 5. ~Color online! Quantal~blue dots! and classical@~13!,
red lines# transition rates A200,→n8,21 times tn,n→n21,n21

53n5/2A0, as a function of (n2n8)/n for various initial scaled
angular-momentum values,/n from 0.9 to 0.2 in steps of 0.1.
-
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as illustrated also in Figs. 2 and 3. The extent of quan
classical agreement shown in Figs. 2–6 is representative
all n>10. The present classical radiative rates are m
easier to evaluate correctly than their quantal counterpar

In summary, the classical treatment of radiative decay o
lined here has proven to be accurate, particularly for Rydb
states with,/n>0.1 ~preponderant in recombination! and
has provided an accurate yet physically transparent pictur
radiative cascade of Rydberg states. The deduced trajec
in n, space obeyed by radiative cascade origination from
constant source is confirmed by quantal calculation. The
duced classical invariant~5! has, as yet, no quantal analo
indicating a hidden symmetry. The theory is further dev
oped, via Eq.~13! in Eq. ~9!, to provide here a symmetrize
new version of the power correspondence~12! and a classi-
cal version~14! of Einstein transition rates, to a high degre
of accuracy. It is particularly appropriate for the analysis
Rydberg plasmas over (n,,) and for the proposed deactiva
tion of the highn>50 states in the ATRAP experiment b
laser deexcitation methods, subjects of intense current th
retical and experimental interest.

This work was supported by AFOSR Grant No. 4962
02-1-0338 and NSF Grant No. 01-00890 and by a NSF Gr
to ITAMP at the Harvard University-Smithsonian Astro
physical Observatory.

FIG. 6. ~Color online! As in Fig. 5, but for @200,,→n8,(,
11)# transitions for,/n50.120.5.
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