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Enhanced thermal entanglement in an anisotropic HeisenberYZ chain
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The thermal entanglement in the Heisenb&y Z chain is investigated in the presence of an external
magnetic fieldB. In the two-qubit system, the critical magnetic fie} is increased by introducing the
interaction of thez component of two neighboring spids. This interaction not only improves the critical
temperaturel ., but also enhances the entanglement for a particular fied/e also analyze the pairwise
entanglement between nearest neighbors in three qubits. The pairwise entanglement, fof aciirelolecome
strong by controllingB andJ, .
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Introduction. Entanglement is an important resource in  The Hamiltonian of theN-qubit anisotropic Heisenberg
qguantum informatiorf1]. The ideal case in which quantum XY Zmodel in an external magnetic fieRlis [11]
computing and quantum communication are put into use is to
find an entanglement resource in solid system at a finite tem-
perature. The Heisenberg model is a simple but realistic and
extensively studied solid-state systé?3]. Recently, it has
been found that the Heisenberg interaction is not localized in +B(of+0f )], 1
spin system. It can be realized in quantum ddfs nuclear R
spins[5], cavity QED[6,7]. This effective Hamiltonian can where aj=(crjx,a]y,ajz) is the vector of Pauli matrices and
be used for quantum computatig8] and controlledvoT  J;(i=x,y,z) is the real coupling coefficient. The coupling
gate[7]. The thermal entanglement in an isotropic Heisen-coefficient J; of arbitrary nearest-neighbor two qubits is
berg spin chain has been studied in the abs¢hBpand in  equal in value. For the spin interaction, the chain is said to be
the presence of an external magnetic fiBl§9,10,14. The  antiferromagnetic fod;>0 and ferromagnetic faj; <O.
entanglement of the two-qubit isotropic Heisenberg system For a system in equilibrium at temperatu® the
decreases with increasingand vanishes beyond a critical density operator is p=Z"'exp(—H/kgT), where Z
value T [9,10], which is independent oB. Pairwise en- =Tr[exp(—H/ksT)] is the partition function andg is the
tanglement in theN-qubit isotropic Heisenberg system in Boltzmann constant. For simplicity, we writes=1. The
certain degree can be increased by increasing the temperatwgtanglement of two qubits can be measured by the concur-
orthe external f|r-_3IdB [9].An amsotroplc‘XYHelsenberg spin  rence C which is written asC=max(0,2 ma;p\i}_zi“:l)\i)
chain has been investigated in the cas®ef0 [10] andB  [13,16,17, where\; are the square roots of the eigenvalues
#0 [11]. For a two-qubit anisotropic HeisenbeXd¥ chain,  of the matrix R=pSp*S, p is the density matrixS= o
one is able to produce entanglement for fifitby adjusting ®0Y and * stands for the complex conjugate. The concur-
the. magnepc—ﬂeld sFrengtﬂil]. Hoyvevgr, the _entan_glement rence is available, no matter whetheis pure or mixed.
by Increasingr or B, in the two_—q_ub|t anisotropic He|senbe_rg The two-qubit Heisenberg XY Z chaMow, we consider
XY chain[11] or in the N-qubit isotropic Heisenberg chain the Hamiltonian for an anisotropic two-qubit Heisenberg

[9], is very weak. How to produce strong entanglement iSyy 7 chain in an external magnetic fieRl The Hamiltonian

worth studying.
On the other hand, we have not found any work regardingcan be expressed as

N
— X __X z 7
H= iZl [Jxoiois i+ dyoi ol + 30707,

N| =

the two-qubit or theN-qubit anisotropicXY Z Heisenberg H=J(o] o, +o0;)+dy(oF s +o105)
chain in the presence of magnetic field. Although Kaqubit
Heisenberg chain has been stud[é@,9], in Ref.[12] the + (J/2) dio5+ (BI2) (d5+ 03), 2

authors studied the maximum possible nearest-neighbor en-

tanglement for ground state in a ring Nfqubits, and in Ref. Whereo™=3(0*+i¢”) are raising and lowering operators
[9] they just investigated the case of the isotropiqubit  respectively, and = (Jx+J,)/2, y=(Ix—Jy)/(Ix+Jy). The
Heisenberg chain. In this paper, we study the entanglememarametery (0<y<1) measures the anisotropyartial an-
of the two-qubit anisotropic HeisenbeXjY Z chain and the isotropy) in the XY plane. When the Hamiltonian of the sys-
pairwise entanglement of the three-qubit anisotropic Heisentem has the form of Eq.(2), in the standard basis
berg XYZ chain. Introducing the interaction of the {|00),/01),[10),/11)}, the density matrix of the system can
z-component of two neighboring spins not only improves thebe written as

critical temperaturel; but also enhances the entanglement

for fixed B and T in particular regions. In the case of the uy 0 0 v

anisotropic three-qubit HeisenbeXgy Z chain, the effect of 0O w z O

partial anisotropyy makes the revival phenomenon more P12~ (©)]
. . . ' 0O z wo

apparent than in the two-qubit chain; for a fix€done can

obtain a robust entanglement by controlliBgandJ, . v 0 0 u
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These nonzero matrix elements can be calculated through (a)
Uy =Tr([00)(00p), U =Tr([11)(11p),

w=Tr(|01)(01p), v=Tr(|00)11p),

z=Tr(|01)(10p). (4)

The square roots of the eigenvalues of the maRiare
N1o=|W=*z|, N34=|Jusu,*v|. Therefore, we can calculate
the concurrence.

The eigenvalues and eigenstatedHoére easily obtained
as H|P=)=(—J3,/2+0)|¥*), HI[ZF)=(I/2+ n)|=*),
with the eigenstates|¥*)=(1/y2)(|01)+|10)), [3F)
=[1\27(n+B)][(»+B)|00)+Jy|11)], where 7
= /BZ+(Jy)Z. One can notice that the eigenstates are the
same as the case 6§=0 [11]. Because the bas¢81) and
|10) are the two degenerate eigenstatesffs with eigen-
value —1, the superposition of the two degenerate states
|01) and|10) still is the eigenstate af; o3, thatis,| ¥ =) is
the eigenstate od,=0 as well as that o8,#0. The same
reason accounts foE =) both as an eigenstate of Eg) and
as that of the case df=0 . From Eq.(4), tracing the eigen-
states, we obtain the square roots of the eigenvalues of the
matrix R,

No=Z" 1eB,120+ ),

J
S

2
Y . Jy .
—sinh ) F—sinh
. Bn . Bn

FIG. 1. Concurrence in the two-qubit Heisenbety Z chain is
’ plotted vsT andB, where(a) J,=0, (b) J,=0.9. For all plotted
(5) =1.0, y=0.3.

)\3’4: Z—le—BJZ/Z

where the partition function Z=2(e %/?'coshBy  maximal values is extended in terms®fand T, so that we

+e#7%c0oshpJ). Because the concurrence is invariant undercan obtain strong entanglement in the extended range.
the substitutiond— —J and y— — y [11], we will consider We can understand the effectdfon B, from the case of
the casesJ>0 and O<y<1. But with substitutiondJ,  T=0. For T=0 under the condition ofl,<J, C can be
——J,, the concurrence is variant. We choosg>0, and  written analytically as
we will state the reason later.

We first review the circumstance of the anisotropic 1 for »<J+1J,,
HeisenbergXY chain, which is analyzed in Ref11]. At T .
=0, there exists a critical magnetic fieRL.. As B crosses C(T=0)=y (1=Jy/m)/2 for n=J+J;, ©®)
B., the concurrenc€ drops suddenly and then undergoes a Jyln for »>J+J,.
“revival” for sufficiently large y. However, we noticed that
B. decreases with the increase of the anisotropic parametdihe parameterd, », andy are independent af, in the case
v. Although with the increase of the critical temperature of two interacting qubits. Comparing E¢p) with Eq. (6) of
T, is improved, the entanglement, when temperature is in th&ef. [11], we can see clearly that I, is positive,J, makes
revival region, is very weak. the intersection points of the piecewise function shift. In this

With y=0.3, we show the concurrence as a functioBof paper, we consider the case &f>0. Figure 2 shows the
and T for two values ofJ, in Fig. 1. ForJ,=0 [Fig. 1(a)]  concurrence at =0 for three values of positivé, . It shows
corresponding to the circumstance of the anisotropic Heiserelearly that the concurrence drops sharply at a finite value of
berg XY chain[11], one can observe a revival phenomenonthe magnetic fieldB, which is called the critical magnetic
and weak entanglement in the revival region. For the convefield B, at which the quantum phase transition ocddrs.
nience of representation, we define the main region in whictBut with the increase ad,, B, is increased. The interaction
the concurrence& keeps its constant and maximal values.of thez component of two neighboring spids causes a shift
Comparing Fig. (a) with 1(b), we find that with the increas- in the locations of the phase transitions. Namely, the pres-
ing J,, the main region is extended in termsB®&NdT, i.e.,  ence of positivel, increases the region over which the con-
the critical magnetic fieldB, is broadened and the critical currence C attains its maximum value. This result means that
temperatureT . in the main region is improved. That is to in larger region o8 andT, we can obtain stronger entangle-
say, the range of concurrendé® keeping its constant and ment. The effect 08, is different from that ofy on changing
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FIG. 2. Concurrence in the two-qubit Heisenb&ry Z chain vs
B at zero temperature for various valuesJgfwith y=0.3 andJ
=1.0. From left to rightJ, equals 0, 0.5, 0.9, respectively.

B.. In the case 0f,=0 [11], although with the increase of
v the critical temperatur&, is increased, the larger the val-
ues of y, the smaller the critical magnetic fieB,. Here,
introducing thez-component interaction of two neighboring
spins not only extends the critical magnetic fi@dbut also
improves the critical temperaturg, and the entanglement
(we will further show it in Fig. 3.
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FIG. 3. Concurrence in the two-qubit Heisenb&y Z chain is
plotted vsT. For all plottedJ=1.0, B=1.1, y=0.3. From top to
bottom, J, equals 0.9, 0.5, 0.2, 0, respectively.

If we introducelJ,, the critical external magnetic fielB,
becomes larger so th&=1.1 is less tharB, (the critical
magnetic field whenl,=0.2,0.5 orJ,=0.9), and thus we
observe the maximal value of entanglement 1. In the tem-
perature range 9 T<1.725, the larger the value df, the
stronger the entanglement. Therefadg,not only improves
the critical temperatur@,, but also enhances the entangle-
ment for particular fixed and y.

Let us consider the concurrence changing with tempera- The pairwise entanglement in three qubithe calcula-

ture for different values o8, in a fixedB(B=1.1). We plot

tion of pairwise entanglement iN qubits is very compli-

itin Fig. 3 with y=0.3. We notice the existence of a critical cated due to the anisotropy in the HeisenbX¥fgZ chain.
temperatureT . at which the entanglement vanishes. Obvi-Here we just calculate the pairwise entanglement in three

ously, T is improved monotonously with the increaseJof
Under the condition),=0 (corresponding to th&XY model

qubits to show the effects af,. We now solve the eigen-
value problems of the three-qub{ty Z Hamiltonian. We list

[11]), the concurrence exhibits a revival phenomenon, buthe eigenvalues and the corresponding eigenvectors as fol-
the maximal values of entanglement in both areas are smallows:

J, 1 1
Elyzz_J_§+B:|q)1yz>:i§ 11

&

1

1

1110+ \/§|101>I%(1i%)|01]),

J
E3’4:J+§Z_Bi n- :|(D3’4>=

J

E5,6: - \] -

1

V29 [5-*(3,-2B-J)]

] 1 1
2 B.|q)5’6>:i§ 1+ﬁ |010>+

2
{(JZ—ZB—Ji 77_)|000)+3720 Y”|110>},

1

10 _E(l"‘i) 00
\/§| O>+2 —\/§ | 1)!

J
E7,8:‘]+EZ+Bi m+ :|CD7’8>:

where 7. =(J,—J+2B)?+3(Jy)? and Y is the cyclic
right shift operatof15]. The reduced density matrix of two

V277 = (J,+2B=J)]

2
[(JZ+2B—Ji 7,+)|11]>+3720 Y“|010>}, (7)

trices uq, mo,W, z,v, and then further obtain the concur-
rence. Here we do not write the expressions\ptbecause

nearest-neighbor qubits in tHé-qubit system also has the they are very long. We will directly plot some curves to show

form of Eq. (3). Employing Eq.(4) and tracing on the basis

of eigenstates shown in E¢7), one can get the density ma-

the effect ofJ, on enhancing entanglement.
Figure 4 shows the concurrence as a functioB@nd T
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FIG. 4. Pairwise entanglement in the three-qubit Heisenberg FIG. 5. Pairwise entanglement is plotted as a functioB aind

XY Z chain is plotted as a function &f and B, where y=0.3, J
=1.0,J,=0.9.

with y=0.3, J,=0.9, andJ=1.0 in the three-qubiXYZ
Heisenberg chain. We see that with the saye0.3, the

effect of partial anisotropy makes the revival phenomenon

more apparent than in the two-qubit chain. WHga 4 in
Fig. 1, the largest critical temperatue produced byy is

about 1.JFig. 1(a)]; due to the restrain af,, the maximum

temperature only caused hyis below 0.8 Fig. 1(b)]. How-

ever, in the three-qubit systemBf=4 with the same set of
parameters, comparing Figth} with Fig. 4, the critical tem-

J,, whereT=0.6,J=1.0, y=0.3.

larger than 0.2, there are two areas showing entanglement,
and the entanglement appearing in the lower rangeé oén

be much stronger than that in the higher magnetic field. In
the lower range oB, for a certainB, the larger the value of

J, the large concurrence. Thus, in tNequbit XY Z system,

for a fixed T, one can obtain a robust entanglement by con-
trolling B andJ,.

Conclusion.The thermal entanglement in an anisotropic
XY Z Heisenberg chain is investigated. Through analyzing
the two-qubit system, we find that with the increaselof
the critical magnetic fiel@. is increased; the coupling along

peratureT in the revival region almost equals 1.8. The z not only improves the critical temperatufe but also en-
stronger effect ofy implies that if we aim to obtain a strong hances the entanglement for a certain fiBdVe also ana-

entanglement, we can decreaggroperly and increasé, ;

lyze the entanglement between two nearest neighbors in

otherwise increasingy can make the revival phenomenon three qubits and find that the effect of the partial anisotropy

more evident. Of course, the coupling constapntalso in-

creases the magnetic fieB), and expand the region of con-

currence keeping constant in termsBandT as it does in

the two-qubit(due to lack of space, we do not plot it here
For T=0.6, Fig. 5 shows concurrence as a functiorBof

and J,. There is no entanglement f&=0, which corre-

sponds to Fig. 4. 19, is below a certain value, in case of Fig.

is more evident than that in the two-qubit system. The pair-
wise entanglement exhibits an interesting phenomenon. For a
certain fixedB, if the coupling constani, is small, the pair-
wise entanglement only exists in the relative strong magnetic
field B and the entanglement is weak. By increasihg in

the lower range oB, one can obtain a strong entanglement.
Therefore, interaction constant of tzecomponent of two

5 the value is about 0.2, the entanglement appears in an ar@gighboring spinsl, plays an important role in enhancing
corresponding to the revival orf@1] on condition that the entanglement and in improving the critical temperature.
magnetic field is larger than a certain value, and the certain This work was supported by Ministry of Science and

value ofB is increased with the increase &f. But, if J, is

Technology of China under Grant No. 2100CCA00700.
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