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Motional macroscopic quantum superposition states of a trapped three-level ion
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We investigate quantum dynamical properties of a trapped three-level ion interacting with two laser beams
in A configuration. A unitary transformation method is developed to study the interaction of the ion with its
vibrational phonons, quanta of ion’s own center-of-mass motion. Under certain conditions on laser parameters,
this interaction is shown to be unitarily equivalent to two-phonon cascade transitions. Complicated temporal
behaviors of level populations and mean number of phonons are described clearly by identifying dynamical
variables of the cascade model as building blocks. Furthermore, analyzing quantum states of vibrational
phonons by Husim® function, we find that at times, determined by the underlying cascade dynamics, two-
and three-component macroscopic quantum superposition states can be obtained depending on the Lamb-Dicke
parameter and the initial conditions of the system. A wide range of initial conditions and experimental param-
eters are discussed using both exact and analytical solutions. Alternative routes to reach the target states are
found.
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[. INTRODUCTION namical equivalence between Jaynes-Cummings m@tgI
of cavity quantum electrodynamid®QED) and the trapped

Advances in ion trapping and laser cooling technologytwo-level ion systeni21] in the weak excitation regime. This
[1-3] allows for the realization of strictly nonclassical states,is used to predict superrevivals of the mean number of vibra-
such as entanglef], Fock number5], spin-oscillator[6]  tional phonons, which is originally known to occur in cavity
and even-odd coherent stafgg, of motion of trapped cold photons with sub-Poissonian distributiorji22]. Subse-
ions. Local character of trapped ion leads to the quantizatioquently, the unitary transformation technique has been
of its center-of-mass motion in terms of vibrational phononswidely used to explore other time-varying properties of
Extremely weak damping and decoherence experienced dyapped two-level ion§23]. Generalizations to trapped two-
the vibrational phonon$8] make it easier to prepare and level N-ion systen{24] and trapped neutral atomi25] were
detect such delicate profoundly quantum states in ion traps ideveloped.
comparison to other systems such as optical cavities or solid- In this paper, we present a unitary transformation method
state heterostructures. Which system or combination of varito investigate dynamical properties of a trapped three-level
ous systems would be most suitable for technological appliton optically driven inA configuration. We will show that
cations is a question of practical importance. lon trapboth two- and three-component macroscopic quantum super-
systems can be utilized to improve our understanding of nonposition (Schralinger cat states of the vibrational phonons
classical states and quantum decoherence. It is suggested thah be generated with the same initial state depending on the
one can deliberately induce damping into the ion trap systermalue of the Lamb-Dicke parameter. We shall further demon-
and study engineered decoherence using Slihger's cat- strate that the time at which cat states appear can be deter-
like states[7], which are superpositions of macroscopically mined by the unitary dynamical equivalent of the system,
distinct coherent statg9]. Besides their fundamental impor- which turns out to be the two-phonon cascade in our case.
tance, cat states can be used in testing quantum measuremé&uich multiple-component generalizations of the catlike
theories, in applications of matter interferometgtf], and states have been considered before in the context of cavity
for quantum computatiofl2]. Various proposals to con- QED system$26] and trapped ion systeni27]. In the cav-
struct two-component cat states in trapped two-level ion sysity QED schemé?26], a cat state is created in the cavity field
tems have been discussed extensively in the last decadsing multiple three-level atoms passing through a cavity at
[10-19. equal interaction times. Three-level atoms are reduced to

In schemes of nonclassical state generation in ion trapgywo-level atoms under an adiabatic elimination. In the
external classical driving fields are used to manipulate coutrapped ion proposal, linear superpositions of coherent states
pling internal electronic levels of the ion with its vibrational in the phase space are discus$2d]. Both proposals are
phonons. Physical models of such systems contain exponehased upon sequential steps of laser operations. The experi-
tial nonlinearities in the motional degrees of freedom. Formental demonstratiof7] of two-component cat states is also
linearization, one may consider the strong excitation regiméased upon a sequential procedure. Increase of the number of
or the Lamb-Dicke limit(LDL). In the strong excitation re- laser operations and steps in such procedures limit the gen-
gime, driving field intensities are so high that the Rabi fre-eralizations to higher excitations, shorter time operation, and
guency of ion-laser interaction becomes much larger than thirger macroscopic states that could allow direct detection.
ion trap frequency. LDL is established when laser wave-Present paper differs from the above proposals and the ex-
length is much larger than ion confinement. Quantum propperiment as it is based upon deterministic creation of cat
erties of ion motion are most prominent in weak excitationstates in a single step. In the experiment, additional laser
regime. It was recently shown that there exists a unitary dyeperations are needed to simulate the effect of displacement

1050-2947/2003/68)/02381111)/$20.00 68 023811-1 ©2003 The American Physical Society



O. E. MUSTECAPLIOG.U PHYSICAL REVIEW A 68, 023811 (2003

0 \ """"""""" the system is described by the Hamiltonian in units where
’e) h=1,
5,
"""""""""""""""" H:HCM+Hi0n+Hl+H27 (1)
where
2
pX 1 2,2
=4 —
r\) Hem=5,+ 5 mv™x", )
|g> Hion= wegRee+(weg_ wer)Ryy ©)
FIG. 1. Three-level ion interacting with two laser pulses iN a (0% ( Kox— o)
configuration. H1=7€ T etVR gt H.C, (4)
operators by tuning the Raman pulses appropriately. In the Q, .
unitary transformation method, such preparation and dis- H2=7e'(ik2>‘*‘”2t)Rer+ H.c. (5)

placement steps are contained within the transformation ma-
tr.|x while thel transfqrm_ed cascade model generates the dgye introducedR,,= |a)(b| as the ionic transition operators
sired dynamics. This is how present method reduces thg . e |evels a b=g,r,e, with Ry;+R,+Ree=1. The

number of laser operations yet maintaining a similar step;onic internal le e 9 i

wise strategy. round level. Two laser beants=1,2) are characterized by
Other differences between the present paper and the pr ieir wave numberk; >0 and frequencies; . Rabi frequen-

phosals on two- al?d mucljnple—compgnent cat stat%s as fWI(Ia" %es of the dipole interactions between the lasers and the ion
the experimenta 'y uUSed one can beé summarized as 10llowsq given byQ); . It is implicitly supposed that harmonic trap
Coherent states in-our stuo!y are superposed on a fing in tr}i:“equencyv is the same for all levels. Level dependence of
phase space, which is suitable for number squeezing an[gap frequencies can be more significant in the case of neutral

amplitude squeezing applications, and not possible with "nhtoms where this may induce pairwise correlations among
early superposed states. We demonstrate tunable generatiQil, \inrational phononk25]

of two- and three-component states at a single ion with the

o ) : Quantum-mechanical investigation of the ionic ¢.m. mo-
same initial state depending on easily controllable SYSeBon can be performed by the standard harmonic-oscillator
parameters. We also note the alternative routes which Ca&‘uantization of H via x=\12mu(a+a’) and p
provide flexibility in experiments. The present method doesz.\/—/2 r é:"" . ¢ T which ob tﬁ
not rely on standard approximations such as adiabatic elimi- | ymw/2(a’—a). Bosonic operatora,a’, which obey the

nation or rotating wave approximatidRWA) and is suitable usual Weyl-Heisenberg algebra, are the annihilation and cre-
for both small and large number of vibrational phonons inatlon operators of the vibrational phonons, respectively. In-

coherent states. troducing the Lamb-Dicke parametetg=k;\/1/2mv, the

Finally, let us emphasize that in addition to the cat statd 12miltonian of the system can be written as
results, the paper develops a systematic engineering of three- H=Hq+V 6)
level Hamiltonians. Engineering two-level Hamiltonians has '
been considered by approximate schemes bdib8 and  where
recently by unitary transformation method3]. Present pa-
per eliminates the need for standard adiabatic elimination Ho=va'a— 6;Ree= (81~ 2Ry,
approximation and goes beyond the LDL. Full three-level
ion dynamics with and without rotating wave approximation
has been characterized.

The paper is organized as follows. In Sec. Il the physical
model is introduced and unitary transformation method isWe applied a rotating frame transformation by,
developed. Numerical results and their discussions are giveff €xd —iw tRee—i(w;—w;)R,]. Here the detunings aré;
in Sec. Ill. Finally, we summarize the results and conclude in= ®1— @eq, 6= wy— we,. We now remove the Bose vari-
Sec. V. ables from the interaction part of the Hamiltonian. A unitary
transformation method to accomplish this has been devel-
oped originally for the case of a two-level ip81] and gen-
eralized to neutral two-level atonig5]. The success of the

We consider an ion trapped in a harmonic potential andnethod lies in the fact that bosoriexternal/c.m.degrees of
driven by two classical laser fields as depicted in Fig. 1. Wereedom enter into the interactioh in the form of Glauber
assume that harmonic potential frequencies are designed thsplacement operator®(a)=exp(@a'—a*a) with a=
construct a linear trap so that the center-of-m@ss) mo- *i#n. This permits the construction of a unitary matrix in-
tion of the ion is effectively one dimensional along the trapvolving displacement operators with purely imaginary pa-
axis (x axis). Neglecting tightly confined transverse motion, rametersg so that due to the propert®(«)D(8)=D(a

vel energiesv,, are measured from the

. Q, .
V= etlnl(a*+a)Reg+72eilnz(aT+a)Rer+ H.c.

Il. PHYSICAL MODEL AND THEORY
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+ ), we can remove all the exponential term3a/int should

~ 1Q,?
be noted that external degrees of freedom are not eliminated(Ho)rg=

SEl(vn—68))Eg— —= S E[D(in)(vn—4)

- . 2 V202
from the whole system, as it is usually done in the standard
approximate (Markovian or semiclassicalapproaches in 10,2
quantum optic§28]. While they are entirely removed from XD (i 7y)Eq— ! E/D(iny)vnD(i 71)Eq,

V, new contributions appear iH, because of the transfor- V202

mation of the free field energya'a. They arise due to the

property D(a)ataD(a)=ata+a(a'—a)—a? where the Where n;,=7;—7,,A=38,—6,, andn=a'a are used for
second and the last terms are, respectively, the recoil mdotational simplicity. Examination of these equations gives
mentum and Doppler shifts in the free field energy due to théis the conditions o, . In order to linearize the exponential
ionic motion. Despite these additional terms, the unitarydependences on vibrational phonon operators, we conse-
transformation method is beneficial due to trading off thequently choosef;=¢;(a+a") with {; being real numbers
exponential complexity i/ with a polynomial one irH,, ~ under the constraints @f;= ¢, and{={y— »;. Hence, the
while still being exact. exponential phase operators become displacement operators

Following this strategy, we find that there exists a generak;=D(i{;) which yield H, given by

class of transformationdg which diagonalizeéV identically
such that having/=U[VUg, we get

o @
2

(Rrr - Rgg)- (7)

Here V consists of only ionic internal degrees of freedom
with Q= |Q4|2+|Q,|2. The unitary transformation matrix
can be expressed as a product of two matri¢es TE given

by

*
2

J20

T=

D(=i72)(Riy = Ryg)

Q, Q’I ) 1
+ ﬁRge'{' ED(_| 7]1)(Rgr_ Rgg)+ E(Rer+ Reg)
(8

Q.
- ED[|(771_ 72) IRre,

E=E4Ryg+ E/Ryr + EcRee. 9)

Here,E;=exp(¢) and #; are arbitrary unitary and Hermitian

operators, respectively, to be specified later. We can explo

their arbitrariness, in order to convert the transforniégl

into an appropriate simple model Hamiltonian. Let us first

consider the off-diagonal elements = UEHOUE,

_ *Q*

(Fo)er= - \/%Qz[EZDT(iUlz)(Vn—A)D(—iﬁz)Er
—vEIND(—inyE,],

<ﬁo>eg=é—Q§[EzDT<i 712 (v—A)D(~iny)Eq

—vE{ND(—in1)Eg],

*

~ . 192 +
(Ho)er=—Ii V’?lZW(a —a)+Cqr,

*

|1Q,/?
QZ

~ v
(Ho)rg:|§<771_ 712 )(aT_a)"‘Crg,

~ 0,4]?
(Ho)ee=vn+iv gﬁ“i—j')(atawcee, (10

| 2

et it —QZ| )
e 1 12
|

~ v
(Ho)rr:Vn+| E

(HO)gg:(HO)rrv (HO)eg:_(HO)er-

Scalar constantg;; are given in Appendix A. SincdRqe

+ R, +Ryg=1, first terms of each diagonal element add up
to a contributionvn in the transformed total Hamiltonian.
One can also seek a similar decoupling of the internal and
external degrees of freedom in the nésécondl terms. It can

be observed that if the coefficient of the momentum operator

i(a'—a) in (Hg)ee would be the same as the corresponding

one in Ho),, , the diagonal operatot$)(j| would be simi-
,}arly uncoupled fromi(a'—a). Thus, we could now specify

- to eliminate such terms completely. The requirement of
the same momentum operator coefficients in the diagonal

elements ofH, is satisfied if

ki Q572|042

2 210,70, "
under which choosingl.= — 7,5 Q4]%/|Q|? cancels c.m.
momentum terms. If the laser beam parameters are adjusted
to satisfy this condition, the transformed Hamiltonian would
be the same as the Hamiltonian of a single mode bosonic
field interacting with a three-level system. Further specifica-
tion of the laser parameters would allow us to engineer vari-
ous interaction schemes. In this paper, we shall examine a
case of counterpropagating beakis- —k,>0, which gives
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|Q4]=]Q,|. We immediately find/y={,=0 and{.= 7,= 26 . w w .
— 71=— 7. Transformed Hamiltonian of the system in this £ 25WMWW4MWMW~WWWMWWM

case becomes 24 ' ‘ ‘ '
1.5 T T T T
1A o 1 fetmaes it S s o~
T t i t
H=va a+2 R+ —= E—Ivn(a —a) [(Rer+Rpe 05 | | w |
! \/E N:> 1 T T T T
1 , A) E’ 0.5/
—Reqg—Rge) + 3| — =01t =|(RyTR,y). (12 - 0 ‘ ‘ '
eg ge) 2 vn 15 ( gr rg) (12 50 | | | |
- —T T L —— .
0
We introduced effective free energies of the ion as Y 50 | | | .
A 50 T T T T
YL L L L L L L =
€= 1/772— -, w0
2 50 1 | I 1
0 100 200 300 400 500
Time
v 5 A Q
6f:7_?_ Z+ > (13 FIG. 2. Dynamical properties of vibrational phonons when

=0.1 are determined by exactly solving the model via NDA for the
initial condition y/(0)=|a=5i)(|g)—|r))/\2. Time is dimension-
less, scaled by/2v7|a|, and#=0 is used.

ment operators with many nonzero elements in the Fock ba-
Before going further let us consider some trivial cases ofiS: The transformed cascade model on the other hand
large detunings. IAA is large enough, it can be seen imme- becomes a band matrix and allows for an efficient diagonal-
diately that the c.m. motion is decoupled from internal leveliZation procedure. We described such a numerical approach

dynamics. This may be used in generating particular states ¢¢' the exact solution of a two-level system in Rg25].
c.m. motion by applying a large detunin as a sudden eneralization of this numerical diagonalization algorithm

. X ; (NDA) to the present situation is straightforward and sum-
f;?ggr%itt'of :aéterlgwi?n::cslzdOsftithee'sio(;]re;tsd'b\é\f(i)?e marized in Appendix C. We have performed extensive nu-

_ > X . , merical study on RWA and NDA predictions. One compari-
coupled through a classical field interaction while they inter-gq is exemplified in Figs. 2 and 3. Dynamical variables that
act with the upper leve(g) via vibrational phonon transi- 516 ysed in characterizing temporal properties of the three-
tions. It can be shown that either one of the couplingst (  |eve| ion are defined as followgn) is the mean number of

or e-g), can be discarded under RWA and the system bepnonons,| =1—Tr(p2) is the impurity parametef29], Q
haves effectively as ®-type three-level system. Below, we — ((n2)—(n)2)/(n) is the Mandel'sQ-paramete30], and
focus on a nontrivial quantum case of a weakly detuned sySyariances of quadratures até/? where

tem in whichA=0 and&;=—v5% A=0 can be true when ) ) ' ) )

lower levels of the ion are degenerate as we consikigr (ae '"+a'e'?) (ae"'?—a'e’)

=|k,|. However, there is no loss of generality here. More ()= V2 - Yo(O)= '
general case of nondegenerate levels can be treated by sim-
ply consideringk; andk, to be proportional and rescaling
the interaction coefficients in the Hamiltonian accordingly. In & 25
the weakly detuned case, classical field induced lower-level 245
transitions cannot contribute to the transformed Hamiltonian. 18 ‘ ' ' ‘
There remains four processésther four are conjugate pro-
cessepin the form aTRij . In the interaction picture, they °-~:>
acquire phase factors of expit(v+e&—¢)]. We havee, N o ‘ ' ' ‘
— €= €.~ €,=— (/2. Taking )~2v (weak excitation re- ) | | ‘
gime), only processes of the ladder transitions would domi- sg
nate the dynamical behavior of the system under the regimes = || .mmibbbbbbone.weesbbbbbbbtommmnn
where RWA is valid. The regime of validity here is 5 ‘ , | ‘

255

" el
1 et At

)

1 Tr(p
|

>pyl\2, or p<2. The RWA applied here works perfectly 50 ‘ , | ‘

in the Lamb-Dicke regime£<1) and can also be used be- g gl ittt .ot bl Rttt ]
yond Lamb-Dicke limit(given by <<1). Determination of a 50 | | I |

certain value of Lamb-Dicke parameter below which RWA is ° 100 200 Time 800 400 500

perfectly valid requires comparison of predictions of RWA

with those of the exact solution. Unitary transformation FIG. 3. Dynamical properties of vibrational phonons when
method developed above has an advantage that one has+®.1 are determined under RWA for the initial conditigi(0)
deal with a less involved matrix representation of the Hamil-=|a=5i)(|g)—|r))/y2. Time is dimensionless, scaled by
tonian. The original trapped ion model contains the displace2v7|a|, and =0 is used.
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When either of the parametefs= AYiZ— 1/4 becomes nega-
tive, the system is said to be in a squeezed state. In additior
we also consider level populationéR;;) as well as
Q(a,a*)={(alp,|a), which is a quasiprobability function
known as Husimi® function [31]. Reduced density matrix
p, of vibrational phonons is found by taking the trace of the
density matrix of the total system over internal electronic 2) [r) |2)

levels. In Figs. 2 and 3, we see excellent agreement between o ) _ _

RWA and NDA predictions. Deviations start to become more  FIG- 4. Three-level ion interacting with two laser pulses in a
and more significant ag increases. By examining a number conflgyratlon can pe made unitarily equivalent tq resonant cascade
of initial conditions andy, we reached a general conclusion transitions of V|brat|onal phonons for the appropriately chosen laser
that up to a critical Lamb-Dicke parametgg~ 1/ «|, RWA parameters as explained in the text.

can be used with very good agreement with the NDA. Here . . .
. S ) o A given state of vibrational phonons and the ion evolves
« is the initial coherent-state amplitude of the vibrational .

phonons. The range of perfect agreement is close but small&} the = configuration according to the propagator in the

than 7.. For «=2i,3,5,10, excellent quantitative agree- Mnteraction picture,

ment is found up t077=_0.3,0.2,0._07,0.08 respe_ctively. The cosAt —pSa —Sa

phase ofa plays a role in the optimum range since a wider ) . 5

range of validity is obtained for purely imaginagy. For K(t)=| wnaS 1+u-aCa waCa |. (16
example, when 25 phonons are in a coherent state,0.1 wa's wla'ca’ 1+pu?a’Ca

and 0.2, respectively, for real and imaginary Same con-

clusions were reached for th@ function, which can be ex- Here the basis ige|—(1,0,0){r|—(0,1,0){g|—(0,0,1).
pected as th& function behavior is closely related to the : . — fonataia
impurity parameter. For=5, we did not find any signifi- For notational simplicity, we used =uv2aa+1 and
cant difference irQ functions obtained by NDA and RWA up
to »=0.06, beyond which small differences in heights of the , )
peaks of the) function were observed. Afte=0.08, quan- A2 A

titative differences became more appreciable but we still ob-

served qualitatively the same behavior. We would prefer td>ropagation of an initial stat¢(0) of the original system
know the impurity parameter as exactly as possible in ordegan be expressed as

to identify the formation of macroscopic quantum superpo- e

sitions. Therefore, we shall use RWA only in regimes where Y()=UjUge "H-VRwAK (1)UL y(0). (17
it is exact. In the vicinity ofp, where quantitative deviations

start to become significant despite the good qualitative agreérhe two rightmost factorsy(0)T#(0)="4(0), act as the
ment, we use NDA. It may also be mentioned that the staninitial state for the cascade system, evolving K{t) into

dard approximations in LDL consist of the removal of the7,(t), a state vector of the cascade. The exponential term and
d|selacement operators VIa(i7)~1 or D(in)~1+in(a  the prefactorU, stand for the interaction picture and the
+a'). These are possible only ifi3a|<1. Unitary trans-  rotating frame back transformations, respectively. The time-
formation method under RWA extends this limit tg|e|  independent factobg is the back transformation from the
~1. Furthermore, with NDA, it can deal with the whole cascade to the original\() system. It redistributes the level
range of 7. NDA may loose its practicality for smalh. (e r g) amplitudes of the evolved state of the cascade and
because for larger, we would need to diagonalize large prings back multiple phonon transition effects through the
matrices. In those regimes, however, RWA works perfectlyshift of the amplitudes in momentum space. This can be seen
Hence, it is good to have analytical solutions in such casesglearly in the explicit exact solution below. We assume an

_Finally, we present the Hamiltonian describing the underjnitial state as a product state of the subsystems which is
lying E configuration for the dynamics of the vibrational given to be

phonons while optically, the system is in configuration,

cosAt—1 sinAt
C=—, S

H=vn+v7%+u(R; —Ryg) + Vawa, (14) ¢(0)=(x|g>+y|r>+zle))go Faln). (18)
where Here F,, are the amplitudes of the Fock number states of
vibrational phonons. This state is transformed to an initial
Vewa= —iu(a'Rg,— aTRge+ H.c), (15) state of the cascade so that
with w=v7/\/2. The upper level of the iofe) now becomes ~ Ay — S n n
the intermediate level of the cascade as shown in Fig. 4. In ¥(0) ngo (Anle.m+Bylr.m+Colg.n)), (19

this cascade model, all levels are linked resonantly with the
same transition strengths. where
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it is possible to describe dynamical behaviors of the opera-

An:i > [XFuDami 7) = YFmDam( —im)], tors of the trapped ion system using those of the cascade
J2 =0 model as building blocks. Time dependences of the operators
of the cascade model are well known and much simpler than
z 1< ] the trapped ion system which involves multiple phonon tran-
:T T3 2 [XFuD (i 7) +YFuDoml =i )], sitions. For example,
z - ULR. U= (1 Re)+ SO

1 . .
anﬁFn_ E m§=:0 [XFnDnm(i7) +YFmDnm(—in)].

1 1
T —
Matrix elements of the displacement operatorD(«)|n) UERggUE_Z(1+Ree)_§(S)r(g+ \/Es)e(g_ \/ESQ,)
D.(«@) are the same as Franck-Condon factors dor
=iy and are given in terms of the Laguerre polynomials

2
n
[31], uga*aUE=aTa+7(1+ Ree—2Sly)

/n! 2
— _ A—lal?/2_ m—n,m-n . X X
Do) m!e 20 Ly (|a|2) (20) _\/_%l(a‘r_a)(sre_seg)_

It may be noted that foF, corresponding to an initial co- Here the dipolgispin) operators are introduced b;Y (R,
herent state/(0) becomes a superposition of the states of the, R;)/2. Time-varying properties of vibrational phonons
form |B)|a) where =a,axiz, a=er,g. Denoting the ,,qjoyel populations are affected by the propagation of such
amplitudes of the evolved transformed staf(t) by  dipole operators under ladder transitions. In particular, the
An(1),B(1),Cy(t) in the Schrdinger picture, we find that excited state time evolution is directly influenced by the dy-
the actual state vector of the system is given by namics ofS);. Lower-level dynamics carry the combined
effect of all three dipoles. Looking at the cascade dynamics
of those dipoles, we can easily understand the underlying

‘f”(t):,;o (Unl&,n)+va|r,m)+wplg.n)). @D time scales and simpler behaviors of the resultant, complex
dynamics of level populations. There appears to be contribu-
where tions from both the dipole and the momentum terms in the
mean number of phonons. It is illuminating to compare such
e ioat terms with those of the transformed Hamiltonian. Just before
un:W[Bn(t)_{—Cn(t)]y the rotating wave approximation made, we have the relation
ULHU 2
© - t _“E E n
_ 1 B(t)—Cp(t) Ura'aUg= ” +(l— 7) Ryg
vp= 2 Dinelin)| = AR+ ———5——|,
m=0 V2 ] 7
- 1 Bin(t)— Crn(1)] - ”?)R”_”z%' 22
t) = Cp(t
w,= D —i7)| —=Ap(t) + ——— 1.
" mz:O mnl = 177) 2 () 2 | The first term can be split into two. One part is the Hamil-

tonian obtained after RWA, and the other part consists of the
The amplitudes\,(t),B,(t),C,(t) are given in Appendix B. remaining counterrotating terms. The RWA part is a constant
This result shows explicitly the inter-relation of state vectorfor the cascade wave function and does not contribute to the
amplitudes of theA and E models. We can describe time dynamics. Considering smat, the major dynamical contri-
dependence of the state vector of thesystem by examining butions come from the counterrotating terms and the inver-
the dynamics of the state vector of the cascade model. BelosionR,,-Rg, terms. In cases where these are negligible, other
we shall use a quasiprobability distribution to discuss waveerms Ryq+ R, and the last termcan also influence the
function temporal properties. It can be noted that for a negdynam|cs in the order of?.
ligibly small Lamb-Dicke parameter, only those amplitudes
associated with the same number of vibrational phonons are IIl. RESULTS AND DISCUSSIONS
inter-related, without any interference from amplitudes of
different number of phonons. Time dependence of operator We consider an initial state of the system in which the
functions ® can be Sim”aﬂy studied within the cascade vibrational phonon Subsystem is in a coherent state and the
model provided that the function is transformed accordinglyion is in a superposition state of its lower levels so that
As we have(®)(t) =(¥(t)|®]y(t)) where

1 %
<>(t):<'{jf(t)|eit(’|:|7VRWA)UE@UEe*it(ﬁvawA)rl;/}(t)% {/,(O):Edg)_lr))nzo Fn(a)|n>1 (23)
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FIG. 5. Dynamical properties of vibrational phonons for the FIG. 7. Time evolution of spin operators of the cascade model
initial condition #(0)=|a=5)(|g)—|r))/y2 in the Lamb-Dicke  prepared initially in staté&{y(0) with 4(0)=|a=5)(|g)—|r))/2
limit with =0.01. Time is dimensionless, scaled $§v7|a|, and  andz=0.01. The bottom frame shows a combined evolutioRgf
#=0 is used. with Sf; such thatf (Ree, Sfg) =((1— Reet Sfg)/2). Time is dimen-
sionless, scaled by2vy|al.
where
model are well known and not shown hésee, for example,
o @ Ref.[32]). When only the middle level is populated initially,
Fo(a)=¢ I /2\/7»'- (24 the mean number of phonons cannot change in a cascade
n: system where the levels are linked resonantly at equal

The state in Eq(23) transforms into an initial state for the strengths. The small and rapidly reviving oscillations we ob-

cascade model in which the ion can be considered approxf€'Ve iN(n) are due to the counterrotating processes as we
mately in the intermediate stafe) of the cascade fofe|  @rued for Eq(22). The other terms in Eq22) cannot make

> . It is known that a three-level cascade model, prepare&igniﬁcam cpn_tri_bution. The smaI_I La_mb-Dicke parameter
initially in its middle level, produces a two-component cat used here diminishes any dynamical influences of the level

state[32]. That is why we consider that particular initial POPUlations and the dipole tersrg in (n). Inversion also
preparation of the originak system. cannot contribute as it is vanishing for the cascade model.

For «=5, and7=0.01, time dependence of the original Hence, we directly observe the dynamics of counterrotating
A system is shown in Figs. 5 and 6. In all figures, time ist€Ms of theH in the(n) evolution. The MandeQ parameter
scaled byy2v7|a| and is dimensionless. For the initial con- indicates the super-Poissonian character of the system and

dition where the cascade is prepared in its intermediate stafge quadratures show no squeezing, also similar with the

|e), time variances of spin operators in the cascade modeqascade _model. . .
are shown in Fig. 7. Note that the regular collapse and Behavior of level populations can be more directly under-

double revival patterns of the level populations in a cascad§tOOd In terms OT the cascad_e model. Upper—le_vel dynamics
of the A system is characterized by tlﬁg evolving under

1 , | the E model as can be seen clearly by comparing Figs. 6 and
7. The bottom frame in Fig. 7 shows the combined evolution
of Rge andSi‘g of the cascade model. The result is same with
the (Rqo in the A configuration as expected. Similarly, we
understand that the broad oscillatory naturéS@J under the

1 cascade model shapes the lower level dynamics ofAthe
system.

=
c 05y ) ‘” The behavior of the impurity parameter of thesystem is
““H similar to that of the cascade modgee, e.g., Ref[32))
prepared initially in its intermediate state. Aroubé 100,
1 where impurity is almost zero, the phonon subsystem be-
comes disentangled from the internal degrees of freedom.
0.5 ”‘ This pure state can be examined by the Hugihfisnction as
l““ ‘ . shown at several times in Fig. 8.
% 100 200 300 400 500 Initially, Q function is a single-peak Gaussian distribution
centered at thee=5. As time progresses, it splits into three
FIG. 6. The same as in Fig. 5 but for the internal level popula-distinct peaks, rotating counterclockwise on a circle of radius
tions of the ion. ~|a| with different speeds. Only contour lines correspond-

0

R,
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g
E
g
E
Re(o)
FIG. 8. Contour lines of the vibrational phon@ function in FIG. 9. Contour lines of th& function at dimensionless time

the complexa plane at dimensionless timegs) t=100, (b) t t=100 for (@) »=0.01, (b) »=0.025, (c) »=0.03, and(d) 7@
=225, (c) t=325, and(d) t=400. Contours corresponding to =0.05.

heights beyond 0.009 and between 0.00009 and 0.001 are not

shown for clarity in the figure. The initial condition and the param- two-component cat state similar to the cascade, with only
eters are the same as in Fig. 5. difference in the rotational speeds and positions of the peaks.
. ] o A more striking difference would be to emphasize the pres-
ing to very low heights are shown in Fig. 8 as the peakgnce of the small peak as an additional third component to
(componentwith circular contours is negligibly small com- he cat state. We can achieve this objective by considering
pared to the other two. At time=100 there is no interfer- eyen slightly larger;. The sensitive dependence of peaks on
ence among the components and the pure state is, in prifzmp-Dicke parameter should be expected since it intro-
ciple, a three-component Schiioger cat. On the other hand, gyces momentum space displacementtljn, and also di-

as one peak is negligible, the state is approximately a tworgctly determines the interaction coefficignf the cascade
component cat state. At=225, two components collide, but \,odel. We show the; dependence of peaks in Fig. 9.

the small_peak_ survives. Eve_n though there is no cat §t§1te As 7 increases, the height of the peak associated with
now, the impurity parameter in Fig. 5 makes a local mini-gireyjar contours increases. At=0.01 the cat state has two
mum. A similar situation happens &t 325 where the impu-  components. The negligible third component cannot be no-
rity has another and deeper local minimum. From Fig. 8, W&iced in the scale used in present figures. When0.025,

see that the small peak collides with the other two at thigy, 4| peak becomes visible and whgr:0.03, it becomes a
time while the other two are at their extreme phase Spacg,asonaply significant component. We could make it even
separation from each other. After that, all three collide a%igher than the other two peaks by continuing to incregse
given att=400. It should be mentioned that collisions never ;"o cost of increasing the impurity. However, beyopd

occur at the starting location due to the presence of the mov- 5 55 he impurity becomes too high to classify this state

ing small peak. The negligible component affects the 10Cayg 5 cat state anymore. Correlations of internal and external

tions of the other two. The field quasiprobability cannot re'degrees of freedom of the ion do not become disentangled

gain its original valu_e at all. T_here_fore, we observe ne'thercompletely and the multiple-component superposition state
normal nor superrevivals gh) in this case.

. . . _becomes an incoherent superposition. The trap frequency or
Furthermore, different from cavity QED models, there ISthe laser frequency can be used to pigkfor the desired

no obvious relation between the splitting-combination timesnumber of components in the cat state. We note that if the
of the components of th@ function and the revival times of 5561 fraquency is chosen as the control parameter, then in
(n). In particular, the occurrence of cat statet atl00 does . er to maintain the condition, = — »52, which is inde-

not coincide with the half-revival time of the mean numberpendent ofv, detunings should also be adjusted accordingly.

of phonons. It does, however, coincide with the haIf-revivaIIn Fig. 10, we present results obtained by NDA for a general
time of (n) of the cascade model. This dynamical relation;itial condition of the form

between the) function and(n) is hidden in the trapped ion

system due to the contributions of multiple vibrational pho- #(0)=(cosby|g)+ €' sinby|r))| ). (25)
non transitions, yet it can be revealed by examining the un-
derlying cascade transitions. Here three comparable components are obtained both at

The differences between th@ functions of cavity QED small and at large;. We see that impurity parameter can be
cascade model and the trapped iomirconfiguration reflect  significantly lowered down te-0.1. Such states can be con-
the linear superposition effect of the back unitary transfornsidered as almost purel1,32 and identified to be three-
in the state vector amplitudes as we have argued before. FeGopmponent cat states with comparable peaks. A similar struc-
such a smally=0.01, ignoring the third peak, we just have a ture of three components but with one of them as stationary
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interactions among internal levels can also be tailored to oc-
cur via quantum or classical channels again by choosing pa-
rameters of the system such as detunings, directions, and
frequencies of the laser beams.

For a particular set of system parameters under the weak
excitation and Lamb-Dicke regimes, a ladder-type two-
phonon transition model can be constructed. Summarizing
the parameters, the driving beams are antiparallel and weakly
red detuned from the upper level by the same amount if the
lower levels are degenerate. It may be noted that Lamb-
Dicke limit here is employed only to solve the problem ana-
Iytically. Presence of counter rotating terms were treated nu-
merically. Their inclusion did not destroy the cat state. It has
been recently argued that when the excited level is elimi-
L nated adiabatically, two component cat states may still ap-
Reo(a) 5 0w %0 500 pear beyond the Lamb-Dicke lim{t33]. Besides, the cat

states are generated here in a single step in a time determined

FIG. 10. Q functions att=100 and the time dependence of the by the cascade model. Therefore, going beyond Lamb-Dicke
impurity parameters are shown for two different initial conditions. limit to decrease preparation time does not seem to be as
In both figuresa=5,0,= /4. Upper figures are forp=m/4, 5 essential as it might be for other sequential schemes.

Im(cr)
o B MO NMOD
— —T—

Im{ce)
o s NMNONDLO
— :

=0.1 and the lower ones are fgr=7/2, =0.03. All figures are Complex temporal properties of the original system are
obtained by the exact solution via NDA. Time is dimensionless,now understood within the reduced cascade problem. Using
scaled byy2vy|al. the known results off configuration, we have discussed

time dependence of the trapped ion Anconfiguration as-

and not interfering with the others was found in cavity QED suming that the vibrational phonons are given in a coherent
systemg 32] and in two-level trapped ions in optical cavities state initially. In particular, time evolution of level popula-
[11]. The states in Ref[32] are not identified to be cat tions and mean number of phonons are explained.
states as they have much larger impurity parameters Furthermore, identifying the underlying cascade model,
(I~0.3—0.5) and are not interfering. In our results, we ob-we predicted the existence of two- and three-component
serve that all three components are time dependent and ischralinger cat states. We have found that for the same ini-
teract with each other. In Ref32], it has been concluded tial preparation of the system, where the ion is given in a
that in order to reduce the impurity down te-0.1, one superposition of its lower levels, one can obtain either two-
needs to eliminate the effect of the third level via reducingor three-component cat states depending on the Lamb-Dicke
the dipole moment coupling or by using large detuning. Thisparameter. At larger Lamb-Dicke parameters, a third compo-
approach removes the stationary noninteracting componentent appears and contributes more significantly with the in-
In the present case, we show that it is possible to increase tlaeease ofp. Trap frequency or laser frequency can be used to
purity when all three levels are contributing to the ion dy-adjust# as a knob for this effect. Cascade model character-
namics and all three components are present. ization also permits us to determine when cat states appear.

Let us also note that in our extensive numerical and anawe have shown that cat states of the originasystem occur
lytical studies for a wide range of parameters, we have founat half-revival time of the cascade model. It is argued that a
that the number of components in the cat states as well darge detuning of the lasers from the upper level as a sudden
their amplitudes can be tuned by varying the magnitude angerturbation results in dynamical decoupling of the phonon
phase ofa, 6y, and ¢ in addition to . As the effects are subsystem from internal levels. This may be used to keep the
similar, we shall only mention that there are alternativecat states for detection and other applications once they are
routes leading to similar superpositions and effects whicltgenerated.
may provide flexibility in experiments. Unitary transformation method has been developed here
for a trapped three-level ion optically driven in configura-
tion. We have illustrated the method for the case of underly-
ing cascade dynamics of vibrational phonons. This method

We have examined the problem of trapped three-level iortan be easily adopted to three-level ions in other optical con-
interacting with two laser beams il configuration. A gen-  figurations(such as=,V) or to engineer different underlying
eral family of unitary transformations is developed which dynamical mechanisms for vibrational ions. Knowing simple
permits analytical study of multiple vibrational phonon tran- unitary dynamical equivalents of trapped ion systems is de-
sitions in the actual problem via two-phonon transition mod-sirable for understanding complex temporal behaviors, mak-
els. Multiple transitions are contained within a transforminging predictions, and designing system parameters for quan-
matrix of momentum space displacement operators. Variousim state generation, as well as extending standard
choices of system parameters in the transformed two-phonaspproximate treatments. Unitary transformation method for
Hamiltonian result in already known three-level interactionthe three-level ion eliminates the need for standard approxi-
schemes of cavity QED. In addition to their configurations,mate schemes relying on adiabatic elimination and Lamb-

IV. CONCLUSION
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Dicke regimes. We hope the presented method and the re-
sults can be useful for the ongoing theoretical and
experimental efforts in trapped ion physics.
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APPENDIX A: CONSTANTS OF ﬁo

The constantg;; in the general expression of the trans-
formed free HamiltoniarH, in Eq. (10) are given below:

PHYSICAL REVIEW A 68, 023811 (2003

n -
=1An_1 VmSIﬂ(Mt\lzn—l)

+C,l1

ﬁ[l—cos{,ut\/Zn—l)]}

—anzvz(n _l)[l cog uty2n—1 )]]

X @~ ivtn—1+ 79)

APPENDIX C: NUMERICAL DIAGONALIZATION

ALGORITHM

_ 1903 2 Numerical diagonalization algorithm starts by preparation
Cer=— /202 (281wt v,—A), of the transformed initial state given by E4.9). Introducing
m as the truncation of the Fock space, we write the column
|Q,2) 8 A|Q,|? vectorsA=(A;,A,, ... A,)", etc., so that the initial trans-
={1v| M M2 0z | >t 202 formed state can be expressedyg®)=(A,B,C)". In the
Q.12 same representation, the transformed Hamiltoam Eq.
Il e S || (12) becomes
2 71— M12 Qz ’
2 | 1|2 Hee Her Heg
Cee= Vi 02 ——(2{evm1ot V7712 A), A= He Hy Hrg _ (C1)
H H H
ge Tlgr Tlgg
) vt 6 vt A)[Qy)?
Crr:V§e+V§e7ll+T+ VgeﬂlZ"'T K . ~
Q Here,H,, with a,b=e,r,g are themXm blocks of theH;

H..= €, are diagonal matrices corresponding to effective

Cgg=Crrs  Ceg™ ~Cer-

free energy part of thél; andH, =

Hg =0 are zero matri-

ces. The elements of the interaction matrices are simply pro-

APPENDIX B: TIME DEPENDENCE OF WAVE FUNCTION
AMPLITUDES IN CASCADE MODEL

portional to the elements of the momentum operafer’
—a) in the Fock number basis and thHg, ,Heg,Hre ,Hge

eg:

The time dependence of the wave function amplitudesare tri-diagonal matrices. Therefore, tHeis a band matrix
A, (1),B(1),C,(1) is given below in the Schobinger picture.  with nonvanishing nine diagonals. We numerically find the
A,.B,,C, used without any explicit time dependence areeigenvalues and eigenvectorstdf The eigenvectors are the

those given at=0:

[ n
An COS{/J,t\/Zn'Fl)—(Bnl m
+Chy \/2 1 sin(uty2n+1)
An+1\/2n+35|r(ut\/2n+ )

[1 cog uty2n+3 )]}

An(t) =

g int(n+ 79

Bn(t):

+B,

- 2n+3

columns of the diagonalizing matri¥. Writing the eigen-
value vector to baV, the propagating kernel is found to be
K(t)=V exp(iWt)V L. Time evolved transformed state
vector becomesyi(t)=(A(t),B(t),C(t))"=K(t)(0). Fi-
nally, we get the evolved actual state vector vidt)
=Ugy(t) (up to an unimportant phase factas in Eq.(21).

In the case of RWA, which yields the cascade transitions
model,He,~a" andH4~a. NDA is still applicable but the
analytical results are also available. The propagating kernel
is analytically determined and(t),B(t),C(t) are explicitly
given in Appendix B. The truncation is chosen so that
>|a+in|2. We consider successively larger Fock spaces in

order to check the convergence and the accuracy of the trun-

(n+1)(n+2)
nt2 - 2n+3

[1—cos(,ut\/2n+3)]]

cation. For largera, NDA demands more numerical re-
sources. As long as we are in their regime of validity, as in

the case of larger with small 7., results of RWA allow for

X g ivt(n+1+ 7%)

more efficient numerical treatment.
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