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Motional macroscopic quantum superposition states of a trapped three-level ion

Ö. E. Müstecaplıog˘lu
Koç University, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey

~Received 28 February 2003; revised manuscript received 6 May 2003; published 27 August 2003!

We investigate quantum dynamical properties of a trapped three-level ion interacting with two laser beams
in L configuration. A unitary transformation method is developed to study the interaction of the ion with its
vibrational phonons, quanta of ion’s own center-of-mass motion. Under certain conditions on laser parameters,
this interaction is shown to be unitarily equivalent to two-phonon cascade transitions. Complicated temporal
behaviors of level populations and mean number of phonons are described clearly by identifying dynamical
variables of the cascade model as building blocks. Furthermore, analyzing quantum states of vibrational
phonons by Husimi-Q function, we find that at times, determined by the underlying cascade dynamics, two-
and three-component macroscopic quantum superposition states can be obtained depending on the Lamb-Dicke
parameter and the initial conditions of the system. A wide range of initial conditions and experimental param-
eters are discussed using both exact and analytical solutions. Alternative routes to reach the target states are
found.
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I. INTRODUCTION

Advances in ion trapping and laser cooling technolo
@1–3# allows for the realization of strictly nonclassical state
such as entangled@4#, Fock number@5#, spin-oscillator@6#
and even-odd coherent states@7#, of motion of trapped cold
ions. Local character of trapped ion leads to the quantiza
of its center-of-mass motion in terms of vibrational phono
Extremely weak damping and decoherence experienced
the vibrational phonons@8# make it easier to prepare an
detect such delicate profoundly quantum states in ion trap
comparison to other systems such as optical cavities or s
state heterostructures. Which system or combination of v
ous systems would be most suitable for technological ap
cations is a question of practical importance. Ion tr
systems can be utilized to improve our understanding of n
classical states and quantum decoherence. It is suggeste
one can deliberately induce damping into the ion trap sys
and study engineered decoherence using Schro¨dinger’s cat-
like states@7#, which are superpositions of macroscopica
distinct coherent states@9#. Besides their fundamental impo
tance, cat states can be used in testing quantum measure
theories, in applications of matter interferometers@10#, and
for quantum computation@12#. Various proposals to con
struct two-component cat states in trapped two-level ion s
tems have been discussed extensively in the last de
@10–19#.

In schemes of nonclassical state generation in ion tra
external classical driving fields are used to manipulate c
pling internal electronic levels of the ion with its vibration
phonons. Physical models of such systems contain expo
tial nonlinearities in the motional degrees of freedom. F
linearization, one may consider the strong excitation reg
or the Lamb-Dicke limit~LDL !. In the strong excitation re
gime, driving field intensities are so high that the Rabi f
quency of ion-laser interaction becomes much larger than
ion trap frequency. LDL is established when laser wa
length is much larger than ion confinement. Quantum pr
erties of ion motion are most prominent in weak excitati
regime. It was recently shown that there exists a unitary
1050-2947/2003/68~2!/023811~11!/$20.00 68 0238
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namical equivalence between Jaynes-Cummings model@20#
of cavity quantum electrodynamics~QED! and the trapped
two-level ion system@21# in the weak excitation regime. Thi
is used to predict superrevivals of the mean number of vib
tional phonons, which is originally known to occur in cavi
photons with sub-Poissonian distributions@22#. Subse-
quently, the unitary transformation technique has be
widely used to explore other time-varying properties
trapped two-level ions@23#. Generalizations to trapped two
level N-ion system@24# and trapped neutral atoms@25# were
developed.

In this paper, we present a unitary transformation meth
to investigate dynamical properties of a trapped three-le
ion optically driven inL configuration. We will show that
both two- and three-component macroscopic quantum su
position ~Schrödinger cat! states of the vibrational phonon
can be generated with the same initial state depending on
value of the Lamb-Dicke parameter. We shall further dem
strate that the time at which cat states appear can be d
mined by the unitary dynamical equivalent of the syste
which turns out to be the two-phonon cascade in our ca
Such multiple-component generalizations of the catl
states have been considered before in the context of ca
QED systems@26# and trapped ion systems@27#. In the cav-
ity QED scheme@26#, a cat state is created in the cavity fie
using multiple three-level atoms passing through a cavity
equal interaction times. Three-level atoms are reduced
two-level atoms under an adiabatic elimination. In t
trapped ion proposal, linear superpositions of coherent st
in the phase space are discussed@27#. Both proposals are
based upon sequential steps of laser operations. The ex
mental demonstration@7# of two-component cat states is als
based upon a sequential procedure. Increase of the numb
laser operations and steps in such procedures limit the
eralizations to higher excitations, shorter time operation,
larger macroscopic states that could allow direct detect
Present paper differs from the above proposals and the
periment as it is based upon deterministic creation of
states in a single step. In the experiment, additional la
operations are needed to simulate the effect of displacem
©2003 The American Physical Society11-1
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operators by tuning the Raman pulses appropriately. In
unitary transformation method, such preparation and
placement steps are contained within the transformation
trix while the transformed cascade model generates the
sired dynamics. This is how present method reduces
number of laser operations yet maintaining a similar st
wise strategy.

Other differences between the present paper and the
posals on two- and multiple-component cat states as we
the experimentally used one can be summarized as follo
Coherent states in our study are superposed on a ring in
phase space, which is suitable for number squeezing
amplitude squeezing applications, and not possible with
early superposed states. We demonstrate tunable gener
of two- and three-component states at a single ion with
same initial state depending on easily controllable sys
parameters. We also note the alternative routes which
provide flexibility in experiments. The present method do
not rely on standard approximations such as adiabatic el
nation or rotating wave approximation~RWA! and is suitable
for both small and large number of vibrational phonons
coherent states.

Finally, let us emphasize that in addition to the cat st
results, the paper develops a systematic engineering of th
level Hamiltonians. Engineering two-level Hamiltonians h
been considered by approximate schemes before@13# and
recently by unitary transformation methods@23#. Present pa-
per eliminates the need for standard adiabatic elimina
approximation and goes beyond the LDL. Full three-le
ion dynamics with and without rotating wave approximati
has been characterized.

The paper is organized as follows. In Sec. II the physi
model is introduced and unitary transformation method
developed. Numerical results and their discussions are g
in Sec. III. Finally, we summarize the results and conclude
Sec. IV.

II. PHYSICAL MODEL AND THEORY

We consider an ion trapped in a harmonic potential a
driven by two classical laser fields as depicted in Fig. 1.
assume that harmonic potential frequencies are designe
construct a linear trap so that the center-of-mass~c.m.! mo-
tion of the ion is effectively one dimensional along the tr
axis (x axis!. Neglecting tightly confined transverse motio

FIG. 1. Three-level ion interacting with two laser pulses in aL
configuration.
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the system is described by the Hamiltonian in units wh
\51,

H5HCM1Hion1H11H2 , ~1!

where

HCM5
px

2

2m
1

1

2
mn2x2, ~2!

Hion5vegRee1~veg2ver!Rrr , ~3!

H15
V1

2
ei (6k1x2v1t)Reg1H.c., ~4!

H25
V2

2
ei (6k2x2v2t)Rer1H.c. ~5!

We introducedRab5ua&^bu as the ionic transition operator
for the levels a,b5g,r ,e, with Rgg1Rrr 1Ree51. The
ionic internal level energiesvag are measured from the
ground level. Two laser beams~i51,2! are characterized by
their wave numberski.0 and frequenciesv i . Rabi frequen-
cies of the dipole interactions between the lasers and the
are given byV i . It is implicitly supposed that harmonic tra
frequencyn is the same for all levels. Level dependence
trap frequencies can be more significant in the case of neu
atoms where this may induce pairwise correlations am
the vibrational phonons@25#.

Quantum-mechanical investigation of the ionic c.m. m
tion can be performed by the standard harmonic-oscilla
quantization of HCM via x5A1/2mn(a1a†) and px

5 iAmn/2(a†2a). Bosonic operatorsa,a†, which obey the
usual Weyl-Heisenberg algebra, are the annihilation and
ation operators of the vibrational phonons, respectively.
troducing the Lamb-Dicke parametersh i5kiA1/2mn, the
Hamiltonian of the system can be written as

H5H01V, ~6!

where

H05na†a2d1Ree2~d12d2!Rrr ,

V5
V1

2
e6 ih1(a†1a)Reg1

V2

2
e6 ih2(a†1a)Rer1H.c.

We applied a rotating frame transformation byU0
5exp@2iv1tRee2i(v12v2)Rrr#. Here the detunings ared1
5v12veg , d25v22ver . We now remove the Bose vari
ables from the interaction part of the Hamiltonian. A unita
transformation method to accomplish this has been de
oped originally for the case of a two-level ion@21# and gen-
eralized to neutral two-level atoms@25#. The success of the
method lies in the fact that bosonic~external/c.m.! degrees of
freedom enter into the interactionV in the form of Glauber
displacement operatorsD(a)5exp(aa†2a*a) with a5
6 ih. This permits the construction of a unitary matrix in
volving displacement operators with purely imaginary p
rametersb so that due to the propertyD(a)D(b)5D(a
1-2
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1b), we can remove all the exponential terms inV. It should
be noted that external degrees of freedom are not elimin
from the whole system, as it is usually done in the stand
approximate ~Markovian or semiclassical! approaches in
quantum optics@28#. While they are entirely removed from
V, new contributions appear inH0 because of the transfor
mation of the free field energyna†a. They arise due to the
property D(a)a†aD(a)5a†a1a(a†2a)2a2 where the
second and the last terms are, respectively, the recoil
mentum and Doppler shifts in the free field energy due to
ionic motion. Despite these additional terms, the unit
transformation method is beneficial due to trading off t
exponential complexity inV with a polynomial one inH0,
while still being exact.

Following this strategy, we find that there exists a gene
class of transformationsUE which diagonalizeV identically
such that havingṼ5UE

†VUE , we get

Ṽ5
V

2
~Rrr 2Rgg!. ~7!

Here Ṽ consists of only ionic internal degrees of freedo

with V5AuV1u21uV2u2. The unitary transformation matrix
can be expressed as a product of two matricesUE5TE given
by

T5
V2*

A2V
D~2 ih2!~Rrr 2Rrg!

1
V2

V
Rge1

V1*

A2V
D~2 ih1!~Rgr2Rgg!1

1

2
~Rer1Reg!

2
V1

V
D@ i ~h12h2!#Rre , ~8!

E5EgRgg1ErRrr 1EeRee. ~9!

Here,Ej5exp(iuj) andu j are arbitrary unitary and Hermitia
operators, respectively, to be specified later. We can exp
their arbitrariness, in order to convert the transformedH0
into an appropriate simple model Hamiltonian. Let us fi
consider the off-diagonal elements inH̃05UE

†H0UE ,

~H̃0!er52
V1* V2*

A2V2
@Ee

†D†~ ih12!~nn2D!D~2 ih2!Er

2nEe
†nD~2 ih1!Er #,

~H̃0!eg5
V1* V2*

A2V2
@Ee

†D†~ ih12!~nn2D!D~2 ih2!Eg

2nEe
†nD~2 ih1!Eg#,
02381
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~H̃0!rg5
1

2
Er

†~nn2d1!Eg2
uV2u2

A2V2
Er

†D~ ih2!~nn2D!

3D†~ ih2!Eg2
uV1u2

A2V2
Er

†D~ ih1!nnD†~ ih1!Eg ,

where h125h12h2 ,D5d12d2, and n5a†a are used for
notational simplicity. Examination of these equations giv
us the conditions onu j . In order to linearize the exponentia
dependences on vibrational phonon operators, we co
quently chooseu j5z j (a1a†) with z j being real numbers
under the constraints ofzg5z r andze5zg2h1. Hence, the
exponential phase operators become displacement oper
Ej5D( i z j ) which yield H̃0 given by

~H̃0!er52 inh12

V1* V2*

A2V2
~a†2a!1cer ,

~H̃0!rg5 i
n

2 S h12h12

uV2u2

V2 D ~a†2a!1crg ,

~H̃0!ee5nn1 inS ze1
h12uV1u2

V2 D ~a†2a!1cee, ~10!

~H̃0!rr 5nn1 i
n

2 S ze1h11h12

uV2u2

uVu2 D ~a†2a!1crr ,

~H̃0!gg5~H̃0!rr , ~H̃0!eg52~H̃0!er .

Scalar constantsci j are given in Appendix A. SinceRee
1Rrr 1Rgg51, first terms of each diagonal element add
to a contributionnn in the transformed total Hamiltonian
One can also seek a similar decoupling of the internal
external degrees of freedom in the next~second! terms. It can
be observed that if the coefficient of the momentum opera
i (a†2a) in (H̃0)ee would be the same as the correspondi
one in (H̃0) rr , the diagonal operatorsu j &^ j u would be simi-
larly uncoupled fromi (a†2a). Thus, we could now specify
ze to eliminate such terms completely. The requirement
the same momentum operator coefficients in the diago
elements ofH̃0 is satisfied if

k1

k2
5

uV2u222uV1u2

2uV2u22uV1u2
, ~11!

under which choosingze52h12uV1u2/uVu2 cancels c.m.
momentum terms. If the laser beam parameters are adju
to satisfy this condition, the transformed Hamiltonian wou
be the same as the Hamiltonian of a single mode boso
field interacting with a three-level system. Further specifi
tion of the laser parameters would allow us to engineer v
ous interaction schemes. In this paper, we shall examin
case of counterpropagating beamsk152k2.0, which gives
1-3
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uV1u5uV2u. We immediately findzg5z r50 andze5h25
2h1[2h. Transformed Hamiltonian of the system in th
case becomes

H̃5na†a1(
j

e jRj j 1
1

A2
FD2 2 inh~a†2a!G~Rer1Rre

2Reg2Rge!1
1

2 S 2nh22d11
D

2 D ~Rgr1Rrg!. ~12!

We introduced effective free energies of the ion as

ee5nh22
D

2
,

e r5
nh2

2
2

d1

2
2

D

4
1

V

2
, ~13!

eg5
nh2

2
2

d1

2
2

D

4
2

V

2
.

Before going further let us consider some trivial cases
large detunings. IfD is large enough, it can be seen imm
diately that the c.m. motion is decoupled from internal le
dynamics. This may be used in generating particular state
c.m. motion by applying a large detuningD as a sudden
perturbation after a demanded state is created. Whend1 is
large but D50, lower levels of the ion (g,r ) become
coupled through a classical field interaction while they int
act with the upper level~e! via vibrational phonon transi
tions. It can be shown that either one of the couplings, (e-r
or e-g), can be discarded under RWA and the system
haves effectively as aV-type three-level system. Below, w
focus on a nontrivial quantum case of a weakly detuned s
tem in whichD50 andd152nh2. D50 can be true when
lower levels of the ion are degenerate as we consideruk1u
5uk2u. However, there is no loss of generality here. Mo
general case of nondegenerate levels can be treated by
ply consideringk1 and k2 to be proportional and rescalin
the interaction coefficients in the Hamiltonian accordingly.
the weakly detuned case, classical field induced lower-le
transitions cannot contribute to the transformed Hamiltoni
There remains four processes~other four are conjugate pro
cesses! in the form a†Ri j . In the interaction picture, they
acquire phase factors of exp@2it(n1ei2ej)#. We haveee
2e r5ee2eg52V/2. Taking V;2n ~weak excitation re-
gime!, only processes of the ladder transitions would dom
nate the dynamical behavior of the system under the regi
where RWA is valid. The regime of validity here isn
.nh/A2, orh,A2. The RWA applied here works perfectl
in the Lamb-Dicke regime (h!1) and can also be used b
yond Lamb-Dicke limit~given byh,1). Determination of a
certain value of Lamb-Dicke parameter below which RWA
perfectly valid requires comparison of predictions of RW
with those of the exact solution. Unitary transformati
method developed above has an advantage that one h
deal with a less involved matrix representation of the Ham
tonian. The original trapped ion model contains the displa
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ment operators with many nonzero elements in the Fock
sis. The transformed cascade model on the other h
becomes a band matrix and allows for an efficient diagon
ization procedure. We described such a numerical appro
for the exact solution of a two-level system in Ref.@25#.
Generalization of this numerical diagonalization algorith
~NDA! to the present situation is straightforward and su
marized in Appendix C. We have performed extensive n
merical study on RWA and NDA predictions. One compa
son is exemplified in Figs. 2 and 3. Dynamical variables t
are used in characterizing temporal properties of the th
level ion are defined as follows.^n& is the mean number o
phonons,I 512Tr(rv

2) is the impurity parameter@29#, Q
5(^n2&2^n&2)/^n& is the Mandel’sQ-parameter@30#, and
variances of quadratures areDYi

2 where

Y1~u!5
~ae2 iu1a†eiu!

A2
, Y2~u!5

~ae2 iu2a†eiu!

A2i
.

FIG. 2. Dynamical properties of vibrational phonons whenh
50.1 are determined by exactly solving the model via NDA for t
initial condition c(0)5ua55i &(ug&2ur &)/A2. Time is dimension-
less, scaled byA2nhuau, andu50 is used.

FIG. 3. Dynamical properties of vibrational phonons whenh
50.1 are determined under RWA for the initial conditionc(0)
5ua55i &(ug&2ur &)/A2. Time is dimensionless, scaled b
A2nhuau, andu50 is used.
1-4
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When either of the parametersj i5DYi
221/4 becomes nega

tive, the system is said to be in a squeezed state. In addi
we also consider level populationŝRj j & as well as
Q(a,a* )5^aurvua&, which is a quasiprobability function
known as Husimi-Q function @31#. Reduced density matrix
rv of vibrational phonons is found by taking the trace of t
density matrix of the total system over internal electro
levels. In Figs. 2 and 3, we see excellent agreement betw
RWA and NDA predictions. Deviations start to become mo
and more significant ash increases. By examining a numb
of initial conditions andh, we reached a general conclusio
that up to a critical Lamb-Dicke parameterhc;1/uau, RWA
can be used with very good agreement with the NDA. H
a is the initial coherent-state amplitude of the vibration
phonons. The range of perfect agreement is close but sm
than hc . For a52i ,3i ,5,10, excellent quantitative agree
ment is found up toh50.3,0.2,0.07,0.08 respectively. Th
phase ofa plays a role in the optimum range since a wid
range of validity is obtained for purely imaginarya. For
example, when 25 phonons are in a coherent state,hc50.1
and 0.2, respectively, for real and imaginarya. Same con-
clusions were reached for theQ function, which can be ex-
pected as theQ function behavior is closely related to th
impurity parameter. Fora55, we did not find any signifi-
cant difference inQ functions obtained by NDA and RWA up
to h50.06, beyond which small differences in heights of t
peaks of theQ function were observed. Afterh50.08, quan-
titative differences became more appreciable but we still
served qualitatively the same behavior. We would prefer
know the impurity parameter as exactly as possible in or
to identify the formation of macroscopic quantum superp
sitions. Therefore, we shall use RWA only in regimes wh
it is exact. In the vicinity ofhc where quantitative deviation
start to become significant despite the good qualitative ag
ment, we use NDA. It may also be mentioned that the st
dard approximations in LDL consist of the removal of t
displacement operators viaD( ih);1 or D( ih);11 ih(a
1a†). These are possible only if 2huau!1. Unitary trans-
formation method under RWA extends this limit tohcuau
;1. Furthermore, with NDA, it can deal with the who
range ofh. NDA may loose its practicality for smallhc
because for largea, we would need to diagonalize larg
matrices. In those regimes, however, RWA works perfec
Hence, it is good to have analytical solutions in such cas

Finally, we present the Hamiltonian describing the und
lying J configuration for the dynamics of the vibration
phonons while optically, the system is inL configuration,

H̃5nn1nh21n~Rrr 2Rgg!1VRWA, ~14!

where

VRWA52 im~a†Rer2a†Rge1H.c.!, ~15!

with m5nh/A2. The upper level of the ion~e! now becomes
the intermediate level of the cascade as shown in Fig. 4
this cascade model, all levels are linked resonantly with
same transition strengths.
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A given state of vibrational phonons and the ion evolv
in the J configuration according to the propagator in t
interaction picture,

K~ t !5S cosLt 2mSa† 2mSa

maS 11m2aCa† m2aCa

ma†S m2a†Ca† 11m2a†Ca
D . ~16!

Here the basis iŝ eu→(1,0,0),̂ r u→(0,1,0),̂ gu→(0,0,1).

For notational simplicity, we usedL5mA2a†a11 and

C5
cosLt21

L2
, S5

sinLt

L
.

Propagation of an initial statec(0) of the original system
can be expressed as

c~ t !5U0
†UEe2 i t (H̃2VRWA)K~ t !UE

†c~0!. ~17!

The two rightmost factors,UE(0)†c(0)5c̃(0), act as the
initial state for the cascade system, evolving byK(t) into
c̃(t), a state vector of the cascade. The exponential term
the prefactorU0 stand for the interaction picture and th
rotating frame back transformations, respectively. The tim
independent factorUE is the back transformation from th
cascade to the original (L) system. It redistributes the leve
(e,r ,g) amplitudes of the evolved state of the cascade
brings back multiple phonon transition effects through t
shift of the amplitudes in momentum space. This can be s
clearly in the explicit exact solution below. We assume
initial state as a product state of the subsystems whic
given to be

c~0!5~xug&1yur &1zue&) (
n50

`

Fnun&. ~18!

Here Fn are the amplitudes of the Fock number states
vibrational phonons. This state is transformed to an ini
state of the cascade so that

c̃~0!5 (
n50

`

~Anue,n&1Bnur ,n&1Cnug,n&), ~19!

where

FIG. 4. Three-level ion interacting with two laser pulses in aL
configuration can be made unitarily equivalent to resonant casc
transitions of vibrational phonons for the appropriately chosen la
parameters as explained in the text.
1-5



als

-
th

t

to
e

lo
v

eg
es
a
o

at
e
ly

ra-
ade
tors
han
n-

s
uch
the
y-
d
ics
ing
lex

ibu-
the
ch
ore
tion

il-
the
ant
the

er-
her

he
the
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An5
1

A2
(

m50

`

@xFmDnm~ ih!2yFmDnm~2 ih!#,

Bn5
z

A2
Fn1

1

2 (
m50

`

@xFmDnm~ ih!1yFmDnm~2 ih!#,

Cn5
z

A2
Fn2

1

2 (
m50

`

@xFmDnm~ ih!1yFmDnm~2 ih!#.

Matrix elements of the displacement operator^muD(a)un&
5Dmn(a) are the same as Franck-Condon factors fora
5 ih and are given in terms of the Laguerre polynomi
@31#,

Dmn~a!5An!

m!
e2uau2/2am2nL n

m2n~ uau2!. ~20!

It may be noted that forFn corresponding to an initial co
herent statec̃(0) becomes a superposition of the states of
form ub&ua& where b5a,a6 ih, a5e,r ,g. Denoting the
amplitudes of the evolved transformed statec̃(t) by
An(t),Bn(t),Cn(t) in the Schro¨dinger picture, we find tha
the actual state vector of the system is given by

c~ t !5 (
n50

`

~unue,n&1vnur ,n&1wnug,n&), ~21!

where

un5
e2 iv1t

A2
@Bn~ t !1Cn~ t !#,

vn5 (
m50

`

Dmn~ ih!F2
1

A2
Am~ t !1

Bm~ t !2Cm~ t !

2 G ,

wn5 (
m50

`

Dmn~2 ih!F 1

A2
Am~ t !1

Bm~ t !2Cm~ t !

2 G .

The amplitudesAn(t),Bn(t),Cn(t) are given in Appendix B.
This result shows explicitly the inter-relation of state vec
amplitudes of theL and J models. We can describe tim
dependence of the state vector of theL system by examining
the dynamics of the state vector of the cascade model. Be
we shall use a quasiprobability distribution to discuss wa
function temporal properties. It can be noted that for a n
ligibly small Lamb-Dicke parameter, only those amplitud
associated with the same number of vibrational phonons
inter-related, without any interference from amplitudes
different number of phonons. Time dependence of oper
functions Q can be similarly studied within the cascad
model provided that the function is transformed according
As we havê Q&(t)5^c(t)uQuc(t)& where

^Q&~ t !5^c̃~ t !ueit (H̃2VRWA)UE
†QUEe2 i t (H̃2VRWA)uc̃~ t !&,
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it is possible to describe dynamical behaviors of the ope
tors of the trapped ion system using those of the casc
model as building blocks. Time dependences of the opera
of the cascade model are well known and much simpler t
the trapped ion system which involves multiple phonon tra
sitions. For example,

UE
†ReeUE5

1

2
~12Ree!1

1

2
Srg

x ,

UE
†RggUE5

1

4
~11Ree!2

1

2
~Srg

x 1A2Seg
x 2A2Ser

x !,

UE
†a†aUE5a†a1

h2

2
~11Ree22Srg

x !

2
h

A2
i ~a†2a!~Sre

x 2Seg
x !.

Here the dipole~spin! operators are introduced bySi j
x 5(Ri j

1Rji )/2. Time-varying properties of vibrational phonon
and level populations are affected by the propagation of s
dipole operators under ladder transitions. In particular,
excited state time evolution is directly influenced by the d
namics ofSrg

x . Lower-level dynamics carry the combine
effect of all three dipoles. Looking at the cascade dynam
of those dipoles, we can easily understand the underly
time scales and simpler behaviors of the resultant, comp
dynamics of level populations. There appears to be contr
tions from both the dipole and the momentum terms in
mean number of phonons. It is illuminating to compare su
terms with those of the transformed Hamiltonian. Just bef
the rotating wave approximation made, we have the rela

UE
†a†aUE5

UE
†HUE

n
1S 12

h2

2 DRgg

2S 11
h2

2 DRrr 2h2Srg
x . ~22!

The first term can be split into two. One part is the Ham
tonian obtained after RWA, and the other part consists of
remaining counterrotating terms. The RWA part is a const
for the cascade wave function and does not contribute to
dynamics. Considering smallh, the major dynamical contri-
butions come from the counterrotating terms and the inv
sionRrr -Rgg terms. In cases where these are negligible, ot
terms (Rgg1Rrr and the last term! can also influence the
dynamics in the order ofh2.

III. RESULTS AND DISCUSSIONS

We consider an initial state of the system in which t
vibrational phonon subsystem is in a coherent state and
ion is in a superposition state of its lower levels so that

c~0!5
1

A2
~ ug&2ur &) (

n50

`

Fn~a!un&, ~23!
1-6
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where

Fn~a!5e2uau2/2
an

An!
. ~24!

The state in Eq.~23! transforms into an initial state for th
cascade model in which the ion can be considered appr
mately in the intermediate stateue& of the cascade foruau
@h. It is known that a three-level cascade model, prepa
initially in its middle level, produces a two-component c
state @32#. That is why we consider that particular initia
preparation of the originalL system.

For a55, andh50.01, time dependence of the origin
L system is shown in Figs. 5 and 6. In all figures, time
scaled byA2nhuau and is dimensionless. For the initial con
dition where the cascade is prepared in its intermediate s
ue&, time variances of spin operators in the cascade mo
are shown in Fig. 7. Note that the regular collapse a
double revival patterns of the level populations in a casc

FIG. 5. Dynamical properties of vibrational phonons for t
initial condition c(0)5ua55&(ug&2ur &)/A2 in the Lamb-Dicke
limit with h50.01. Time is dimensionless, scaled byA2nhuau, and
u50 is used.

FIG. 6. The same as in Fig. 5 but for the internal level popu
tions of the ion.
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model are well known and not shown here~see, for example,
Ref. @32#!. When only the middle level is populated initially
the mean number of phonons cannot change in a cas
system where the levels are linked resonantly at eq
strengths. The small and rapidly reviving oscillations we o
serve in^n& are due to the counterrotating processes as
argued for Eq.~22!. The other terms in Eq.~22! cannot make
significant contribution. The small Lamb-Dicke parame
used here diminishes any dynamical influences of the le
populations and the dipole termSrg

x in ^n&. Inversion also
cannot contribute as it is vanishing for the cascade mo
Hence, we directly observe the dynamics of counterrotat
terms of theH in the^n& evolution. The MandelQ parameter
indicates the super-Poissonian character of the system
the quadratures show no squeezing, also similar with
cascade model.

Behavior of level populations can be more directly und
stood in terms of the cascade model. Upper-level dynam
of the L system is characterized by theSrg

x evolving under
theJ model as can be seen clearly by comparing Figs. 6
7. The bottom frame in Fig. 7 shows the combined evolut
of Ree andSrg

x of the cascade model. The result is same w
the ^Ree& in the L configuration as expected. Similarly, w
understand that the broad oscillatory nature ofSeg

x under the
cascade model shapes the lower level dynamics of theL
system.

The behavior of the impurity parameter of theL system is
similar to that of the cascade model~see, e.g., Ref.@32#!
prepared initially in its intermediate state. Aroundt5100,
where impurity is almost zero, the phonon subsystem
comes disentangled from the internal degrees of freed
This pure state can be examined by the Husimi-Q function as
shown at several times in Fig. 8.

Initially, Q function is a single-peak Gaussian distributio
centered at thea55. As time progresses, it splits into thre
distinct peaks, rotating counterclockwise on a circle of rad
;uau with different speeds. Only contour lines correspon

-

FIG. 7. Time evolution of spin operators of the cascade mo
prepared initially in stateUE

†c(0) with c(0)5ua55&(ug&2ur &)/2
andh50.01. The bottom frame shows a combined evolution ofRee

with Srg
x such thatf (Ree,Srg

x )5^(12Ree1Srg
x )/2&. Time is dimen-

sionless, scaled byA2nhuau.
1-7
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ing to very low heights are shown in Fig. 8 as the pe
~component! with circular contours is negligibly small com
pared to the other two. At timet5100 there is no interfer-
ence among the components and the pure state is, in
ciple, a three-component Schro¨dinger cat. On the other hand
as one peak is negligible, the state is approximately a t
component cat state. Att5225, two components collide, bu
the small peak survives. Even though there is no cat s
now, the impurity parameter in Fig. 5 makes a local mi
mum. A similar situation happens att5325 where the impu-
rity has another and deeper local minimum. From Fig. 8,
see that the small peak collides with the other two at t
time while the other two are at their extreme phase sp
separation from each other. After that, all three collide
given att5400. It should be mentioned that collisions nev
occur at the starting location due to the presence of the m
ing small peak. The negligible component affects the lo
tions of the other two. The field quasiprobability cannot
gain its original value at all. Therefore, we observe neit
normal nor superrevivals of̂n& in this case.

Furthermore, different from cavity QED models, there
no obvious relation between the splitting-combination tim
of the components of theQ function and the revival times o
^n&. In particular, the occurrence of cat state att5100 does
not coincide with the half-revival time of the mean numb
of phonons. It does, however, coincide with the half-reviv
time of ^n& of the cascade model. This dynamical relati
between theQ function and^n& is hidden in the trapped ion
system due to the contributions of multiple vibrational ph
non transitions, yet it can be revealed by examining the
derlying cascade transitions.

The differences between theQ functions of cavity QED
cascade model and the trapped ion inL configuration reflect
the linear superposition effect of the back unitary transfo
in the state vector amplitudes as we have argued before
such a smallh50.01, ignoring the third peak, we just have

FIG. 8. Contour lines of the vibrational phononQ function in
the complexa plane at dimensionless times~a! t5100, ~b! t
5225, ~c! t5325, and ~d! t5400. Contours corresponding t
heights beyond 0.009 and between 0.000 09 and 0.001 are
shown for clarity in the figure. The initial condition and the para
eters are the same as in Fig. 5.
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two-component cat state similar to the cascade, with o
difference in the rotational speeds and positions of the pe
A more striking difference would be to emphasize the pr
ence of the small peak as an additional third componen
the cat state. We can achieve this objective by conside
even slightly largerh. The sensitive dependence of peaks
Lamb-Dicke parameter should be expected since it in
duces momentum space displacements inUE , and also di-
rectly determines the interaction coefficientm of the cascade
model. We show theh dependence of peaks in Fig. 9.

As h increases, the height of the peak associated w
circular contours increases. Ath50.01 the cat state has tw
components. The negligible third component cannot be
ticed in the scale used in present figures. Whenh50.025,
small peak becomes visible and whenh50.03, it becomes a
reasonably significant component. We could make it ev
higher than the other two peaks by continuing to increash
at the cost of increasing the impurity. However, beyondh
50.05, the impurity becomes too high to classify this st
as a cat state anymore. Correlations of internal and exte
degrees of freedom of the ion do not become disentang
completely and the multiple-component superposition s
becomes an incoherent superposition. The trap frequenc
the laser frequency can be used to pickh for the desired
number of components in the cat state. We note that if
laser frequency is chosen as the control parameter, the
order to maintain the conditiond152nh2, which is inde-
pendent ofn, detunings should also be adjusted according
In Fig. 10, we present results obtained by NDA for a gene
initial condition of the form

c~0!5~cosu0ug&1eif sinu0ur &)ua&. ~25!

Here three comparable components are obtained bot
small and at largeh. We see that impurity parameter can b
significantly lowered down to;0.1. Such states can be co
sidered as almost pure@11,32# and identified to be three
component cat states with comparable peaks. A similar st
ture of three components but with one of them as station

ot

FIG. 9. Contour lines of theQ function at dimensionless time
t5100 for ~a! h50.01, ~b! h50.025, ~c! h50.03, and~d! h
50.05.
1-8
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and not interfering with the others was found in cavity QE
systems@32# and in two-level trapped ions in optical cavitie
@11#. The states in Ref.@32# are not identified to be ca
states as they have much larger impurity parame
(I;0.320.5) and are not interfering. In our results, we o
serve that all three components are time dependent an
teract with each other. In Ref.@32#, it has been concluded
that in order to reduce the impurity down toI;0.1, one
needs to eliminate the effect of the third level via reduc
the dipole moment coupling or by using large detuning. T
approach removes the stationary noninteracting compon
In the present case, we show that it is possible to increase
purity when all three levels are contributing to the ion d
namics and all three components are present.

Let us also note that in our extensive numerical and a
lytical studies for a wide range of parameters, we have fo
that the number of components in the cat states as we
their amplitudes can be tuned by varying the magnitude
phase ofa, u0, andf in addition toh. As the effects are
similar, we shall only mention that there are alternat
routes leading to similar superpositions and effects wh
may provide flexibility in experiments.

IV. CONCLUSION

We have examined the problem of trapped three-level
interacting with two laser beams inL configuration. A gen-
eral family of unitary transformations is developed whi
permits analytical study of multiple vibrational phonon tra
sitions in the actual problem via two-phonon transition mo
els. Multiple transitions are contained within a transformi
matrix of momentum space displacement operators. Var
choices of system parameters in the transformed two-pho
Hamiltonian result in already known three-level interacti
schemes of cavity QED. In addition to their configuration

FIG. 10. Q functions att5100 and the time dependence of th
impurity parameters are shown for two different initial condition
In both figuresa55,u05p/4. Upper figures are forf5p/4, h
50.1 and the lower ones are forf5p/2, h50.03. All figures are
obtained by the exact solution via NDA. Time is dimensionle
scaled byA2nhuau.
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interactions among internal levels can also be tailored to
cur via quantum or classical channels again by choosing
rameters of the system such as detunings, directions,
frequencies of the laser beams.

For a particular set of system parameters under the w
excitation and Lamb-Dicke regimes, a ladder-type tw
phonon transition model can be constructed. Summariz
the parameters, the driving beams are antiparallel and we
red detuned from the upper level by the same amount if
lower levels are degenerate. It may be noted that Lam
Dicke limit here is employed only to solve the problem an
lytically. Presence of counter rotating terms were treated
merically. Their inclusion did not destroy the cat state. It h
been recently argued that when the excited level is eli
nated adiabatically, two component cat states may still
pear beyond the Lamb-Dicke limit@33#. Besides, the ca
states are generated here in a single step in a time determ
by the cascade model. Therefore, going beyond Lamb-Di
limit to decrease preparation time does not seem to be
essential as it might be for other sequential schemes.

Complex temporal properties of the original system a
now understood within the reduced cascade problem. Us
the known results ofJ configuration, we have discusse
time dependence of the trapped ion inL configuration as-
suming that the vibrational phonons are given in a coher
state initially. In particular, time evolution of level popula
tions and mean number of phonons are explained.

Furthermore, identifying the underlying cascade mod
we predicted the existence of two- and three-compon
Schrödinger cat states. We have found that for the same
tial preparation of the system, where the ion is given in
superposition of its lower levels, one can obtain either tw
or three-component cat states depending on the Lamb-D
parameter. At larger Lamb-Dicke parameters, a third com
nent appears and contributes more significantly with the
crease ofh. Trap frequency or laser frequency can be used
adjusth as a knob for this effect. Cascade model charac
ization also permits us to determine when cat states app
We have shown that cat states of the originalL system occur
at half-revival time of the cascade model. It is argued tha
large detuning of the lasers from the upper level as a sud
perturbation results in dynamical decoupling of the phon
subsystem from internal levels. This may be used to keep
cat states for detection and other applications once they
generated.

Unitary transformation method has been developed h
for a trapped three-level ion optically driven inL configura-
tion. We have illustrated the method for the case of unde
ing cascade dynamics of vibrational phonons. This meth
can be easily adopted to three-level ions in other optical c
figurations~such asJ,V) or to engineer different underlying
dynamical mechanisms for vibrational ions. Knowing simp
unitary dynamical equivalents of trapped ion systems is
sirable for understanding complex temporal behaviors, m
ing predictions, and designing system parameters for qu
tum state generation, as well as extending stand
approximate treatments. Unitary transformation method
the three-level ion eliminates the need for standard appr
mate schemes relying on adiabatic elimination and Lam

.

,

1-9



n

l

s-

e

re

ion

mn
-

ive

ro-

he
e

e
e

ns

rnel

in
run-
-
in
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Dicke regimes. We hope the presented method and the
sults can be useful for the ongoing theoretical a
experimental efforts in trapped ion physics.
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APPENDIX A: CONSTANTS OF H̃ 0

The constantsci j in the general expression of the tran
formed free HamiltonianH̃0 in Eq. ~10! are given below:

cer52
V1* V2*

A2V2
~2z1nh121nh12

2 2D!,

crg5z1nS h12h12

uV2u2

V2 D 2
d1

2
1

DuV2u2

2V2

1
n

2 S h1
22h12

2 uV2u2

V2 D ,

cee5nze
21

uV1u2

V2
~2zenh121nh12

2 2D!,

crr 5nze
21nzeh11

nh1
22d1

2
1S nzeh121

nh12
2 2D

2 D uV2u2

V2
,

cgg5crr , ceg52cer .

APPENDIX B: TIME DEPENDENCE OF WAVE FUNCTION
AMPLITUDES IN CASCADE MODEL

The time dependence of the wave function amplitud
An(t),Bn(t),Cn(t) is given below in the Schro¨dinger picture.
An ,Bn ,Cn used without any explicit time dependence a
those given att50:

An~ t !5FAn cos~mtA2n11!2S Bn21A n

2n11

1Cn11A n11

2n11D sin~mtA2n11!Ge2 int(n1h2),

Bn~ t !5H An11A n11

2n13
sin~mtA2n13!

1BnF12
n11

2n13
@12cos~mtA2n13!#G

2Cn12

A~n11!~n12!

2n13
@12cos~mtA2n13!#J

3e2 int(n111h2),
02381
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Cn~ t !5H An21A n

2n21
sin~mtA2n21!

1CnF12
n11

2n21
@12cos~mtA2n21!#G

2Bn22

An~n21!

2n21
@12cos~mtA2n21!#J

3e2 int(n211h2).

APPENDIX C: NUMERICAL DIAGONALIZATION
ALGORITHM

Numerical diagonalization algorithm starts by preparat
of the transformed initial state given by Eq.~19!. Introducing
m as the truncation of the Fock space, we write the colu
vectorsA5(A1 ,A2 , . . . ,Am)T, etc., so that the initial trans
formed state can be expressed asc̃(0)5(A,B,C)T. In the
same representation, the transformed HamiltonianH̃ in Eq.
~12! becomes

H̃5S Hee Her Heg

Hre Hrr Hrg

Hge Hgr Hgg

D . ~C1!

Here,Hab with a,b5e,r ,g are them3m blocks of theH̃;
Haa5ea are diagonal matrices corresponding to effect
free energy part of theH̃; andHrg5Hgr50 are zero matri-
ces. The elements of the interaction matrices are simply p
portional to the elements of the momentum operatori (a†

2a) in the Fock number basis and thusHer ,Heg ,Hre ,Hge

are tri-diagonal matrices. Therefore, theH̃ is a band matrix
with nonvanishing nine diagonals. We numerically find t
eigenvalues and eigenvectors ofH̃. The eigenvectors are th
columns of the diagonalizing matrixV. Writing the eigen-
value vector to beW, the propagating kernel is found to b
K(t)5V exp(2iWt)V21. Time evolved transformed stat
vector becomesc̃(t)5„A(t),B(t),C(t)…T5K(t)c̃(0). Fi-
nally, we get the evolved actual state vector viac(t)
5UEc̃(t) ~up to an unimportant phase factor! as in Eq.~21!.
In the case of RWA, which yields the cascade transitio
model,Her;a† andHeg;a. NDA is still applicable but the
analytical results are also available. The propagating ke
is analytically determined andA(t),B(t),C(t) are explicitly
given in Appendix B. The truncation is chosen so thatm
@ua6 ihu2. We consider successively larger Fock spaces
order to check the convergence and the accuracy of the t
cation. For largera, NDA demands more numerical re
sources. As long as we are in their regime of validity, as
the case of largea with small hc , results of RWA allow for
more efficient numerical treatment.
1-10
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